SlideShare uma empresa Scribd logo
1 de 32
Baixar para ler offline
Robotic Lunar Ecopoiesis 
Test Bed. Phase II 
NIAC 
Paul Todd, Penelope Boston and David Thomas Presented by Paul Todd 
October 11, 2004
Four Levels of Inquiry Concerning Biology and Mars 
1. Planetary protection, contamination and quarantine issues (NRC, 1992), 
2. The search for life on Mars (Banin, 1989; Baninand Mancinelli, 1995; Ivanov, 1995; 
Koike et al., 1995; Biemannet al., 1977), 
3. Human expeditions to Mars and ecosynthesis(Meyer & McKay, 1984, 1989, 1995) 
4. The terraformingof Mars, ecopoiesis(Haynes, 1990; McKay, 1990; Haynes and 
McKay, 1992; McKay et al., 1991, 1994; Hiscox, 1993, 1995, 1998).
ECOPOIESIS 
‡Term introduced by Haynes and McKay 
‡Terraforming= making another planet or object in the solar system like Earth 
‡Heating: (1) Greenhouse gases, (2) Mirrors and smoke, (3) Ecopoiesis 
‡Ecopoiesis= emergence of a living, eventually self-sustaining ecosystem 
‡Precedes terraforming 
‡Required step: experimental ecopoiesis
Starting Position: Robotic Lunar 
EcopoiesisTest Bed 
•Trenched, depressed site•Sealed in all dimensions•Inflatable dome solidifies•Sealed interior controlled to Mars atmosphere•Organisms & chemicals added to artificial regolith•Control and data telemetry to earth
Project Architecture: Roadmap 
Science baseLaboratory test bedBasic researchDistributed test bedsLow-gravity venuesLunar test bedMars experimentsILLUMINATORCOOLING VENTSSOLAR SPECTRUMILLUMINATOR & HOUSINGVACUUMGAS LINEMARS REGOLITHSIMULANTSUBSURFACEREGOLITHACCESS PORTSREPLACEABLEDESSICANTPANELFREEZER BOX -35O CFUSED SILICAATMOSPHEREJAR, 15mbENERGYCONCENTRATORATMOSPHEREGAS LINERECHARGESTATIONMars Atmosphere And Regolith Simulator- Modular Test BedMARS-MTBSENSORARRAYTELEMETRYGAS BOTTLE(BURIED) H O ?2POWER & CONTROL 40cm100cm T = -35OCT = TrT = TaT = -133 to +23o C10m
Robotic Lunar Ecopoiesis 
Test Bed: Phase II Goals 
1.Build and demonstrate Laboratory Test Bed. Use preliminary chamber design from Phase I, purchase and assemble components, demonstrate operation. 
2. Evaluate pioneer organisms using Laboratory Test Bed. Subject organisms identified in Phase I to various Mars-like ecopoieticconditions, test activity and viability. 
3. Develop ecopoiesisresearch community. Design modular test beds for lab and classroom use. Develop user community. 
4. Refine requirements forextraterrestrial test beds.Pursue opportunities within NASA programs such as ISS and RLEP.
Robotic Lunar Ecopoiesis 
Test Bed: Science Advisory Committee 
Penelope Boston. New Mexico Institute of Mining and Technology; Complex Systems Research, Inc. 
Lawrence Kuznetz, NASA Space Biomedical Research Institute 
Christopher McKay, NASA Ames Research Center 
Lynn Rothschild, NASA Ames Research Center 
Andrew Schuerger, University of Florida 
David Thomas, Lyon College
Objective 1: Laboratory Test Bed 
‡Requirements 
‡Design and Construction 
‡Performance
Mars’ atmosphere today: 
Assume that initial engineering efforts will increase atmospheric pressure and maintain the same relative abundances of gases or raise only CO2. •CO295% •N22.7% •Ar1.6% •O20.13% •CO0.07% •H2O0.03% •Trace amounts of Ne, Kr, Xe, O3•No significant ozone layer•Surface pressure 6-10 mbarPat Rawlings
Temperature Cycles on Mars Surface 
M. H. Carr, 1996
Liquid Water on Mars (Sometimes)?
UV 
The main challenge for survival on the surface of Mars is 
the UV radiation between 200 and 300 nm.
Lighting: Temporal Simulation 
Integral at mid-day is about 590 W/m2BY SEASON AT EQUATOR
Laboratory Chamber and 
Subsystems Design Drawings 
zOuter housing controls temperature -130 to +26oC (dry nitrogen cryogenic) 
zSealed illuminator with housing & cooling vents 
zLow-pressure “Mars Jar” held at >7 mbar 
zAtmosphere composition analysis and control 
zRegolithsimulant 
zAutomated operation and data logging 
zAffordable product for research laboratoriesENVIRONMENTALCONTROL UNIT1.5kW SOLARSPECTRUMGENERATORLAPTOP COMPUTERSPECIMENCHAMBERFULL SPECTRUMLIGHT DISTRIBUTION MIRROR2 STAGE REGULATORLIQUID NITROGENSIPHON TANKVACUUMPUMPLOW PRESSUREGAS RESERVOIRMARS ATMOSHPEREHIGH PRESSUREGAS TANKSTANDMARS GAS SUPPLY/ VACUUM SYSTEMMULTI-PANEWINDOW (UV SAFE) WITH CURTAINMARS ATMOSPHEREGAS LINE INVACUUM LINE OUTINSULATEDDOOR
Laboratory Test Bed Thermal Control 
Continuous operation on Mars sol program (-80oC night; +26oC day) consumes >200 gal LN2/wk. A 500-gal supply tank was installed behind a locked safety fence. During dawn and evening, set-point is reset every 10 min to reproduce thermal profile on Mars at low latitude.
Laboratory Test Bed Optical Path 
•1000W Xenon arc 
•Automated arc striking 
•8” x 8” lighted area 
•Fused quartz container 
•Photosyntheticallyactive radiation (PAR) = 1100 μmoles/m2-s = 237 W/m2 (vs. 242) 
•Translates closely to 590 W/m2
Laboratory Test Bed 
RegolithTemperature Control 
•Rise rate (triangles) exceeds requirements 
•Cooling rate (squares) exceeds requirements 
•Watlowcontroller programmed to new set point every hour 
•Simulates daily temperature profile at low latitude at vernal equinox 
•Controlling sensor submerged in regolithsimulant-160-140-120-100-80-60-40-200204012:00 AM4:00 AM8:00 AM12:00 PM4:00 PM8:00 PMTime Of Day (hh:mm) Temperature (C)
Laboratory Test Bed 
Performance DataMars Environmental Conditions (14 day test) 6/1/05 - 6/15/05-90.00-85.00-80.00-75.00-70.00-65.00-60.00-55.00-50.00-45.00-40.00-35.00-30.00-25.00-20.00-15.00-10.00-5.000.005.0010.0015.0020.0025.0030.0035.0040.0045.00 DAY 1 Time (hours) 14 days total Value REGOLITH RTD (C) VACUUM (In Hg) Light (0=off, 10=on) RTD CHAMBER (C)
Objective 2 
Evaluate Pioneer Organisms 
‡Selection of organisms based on Phase I results 
‡Performance of experiments in test bed 
‡Preliminary results
Summary of Requirements 
for Pioneer Martians 
‡Anaerobic 
‡UV resistant 
‡Low pressure 
‡Drought resistant 
‡Freeze resistant 
‡Phototroph 
‡Nitrogen fixing 
C. McKay, 2004
Physiological traits of engineered martianorganisms (“Marsbugs”): 
•Reactive oxygen tolerance (superoxides, peroxides, ozone, etc.). 
•CO2 tolerance. 
•Intracellular acidification tolerance. 
•Carbonate dissolution. 
•Osmotic tolerance and adaptation. 
•Ultraviolet radiation resistance and repair. 
•“Switchable” genes for nutrient cycling (e.g., N-fixation, denitrification). (Hiscoxand Thomas, 1995)
Lava Habitats 
Lavatubes 
Bubbles 
Squeeze Squeeze-ups 
Palagonitization 
Dr. Penny Boston
Chroococcidiopsis 
•Primitive cyanobacterialgenus. 
•Unicellular, multicellular. 
•Capable of surviving in a large variety of extreme conditions: aridity, salinity, high and low temperature. 
•Sole surviving organism in hostile environments. 
•Often endolithic.
High % CO2tolerance05010015020001020304050Hours Fv/Fm (% of starting) Air20% CO240% CO2100% CO2 
CO2effects on Synechococcus. Synechococcusresponds to high CO2similarly to Anabaena. PS-II activity increases at 20% CO2, but is inhibited at 40-100% CO2. At 100%, the photosystems do not recover after 24 hours in air (n = 4, bars =s.d.). Dr. David Thomas.
Experiments with Microbial Specimens to Date 
EXPERIMENT DATE DURATION SPECIMENS 1 May 31 23 hours Dr. Thomas’ 2 June 1 14 days Dr. Thomas’ 3 June 18 8 days Dr. Thomas’ 4 June 23 22 hours Dr. Boston’s 5 June 25 5 weeks Dr. Boston’s Dr.Thomas’
Preliminary Results of Microbial Experiments 
‡14 days at 100mbar, water saturaturation ‡Cyanobacteria(5 strains), Atacamadesert bacteria (6 isolates) ‡Esterase activity, FDA assay0.0000.1000.2000.3000.4000.5000.600 Atacama 2002 - 1Rock Garden - 1Rock Garden - 2Rock Garden - 3Rock Garden - 4Yungay - 2AnabaenaChroococcidiopsis CCMEE1Plectonema UTEX 48Synechococcus 794Synechocystis 680 Organism Fluorescein production, mg/mL ControlDirect exposureIndirect exposure
Objective 3. 
Modular EcopoiesisTest BedRECHARGESTATIONMars Atmosphere And Regolith Simulator- Modular Test BedMARS-MTB 
•Controlled volume = 80 cc 
•Several simulators per recharge station 
•Temperature -80 --+26oC 
•SHOT-designed computing hardware and software 
•Thermoelectric cascade 
•Solar spectrum simulator 
•Classrooms and labs 
•Funding applied for
Objective 4Extraterrestrial Test Bed Opportunities (Phase III) 
zPartial gravity on Shuttle or ISS? 
zModified Avian Development Facility and up to 4 low-pressure jars 
zTest pioneer communities in MARS- chamber, 0.38 g
Concept Proposed for RLEP 
•Test chamber same as laboratory test bed 
•Mars gas pressure reservoir at 10 atmospheres 
•Louvresfor light and temperature controlTELEMETRYPOWER ARRAY FORLOUVRESECOPOIESIS TESTLANDER BASEON LUNAR SURFACEBEDTHERMAL CONTROLLOUVRES & TELEMETRY
PROGRESS ON MILESTONES 
‡Phase I completed; laboratory test bed design, extremophileselection initiated 
‡Phase I articles for publication 
‡Laboratory test bed completed, operated 
‡Modular portable test bed proposed 
‡Low-volume lunar test bed proposed 
‡Science Advisory Committee met twice 
‡Annual First report submitted 
‡Phase II presentations at conferences
Year 2 Tasks 
‡Perform 4 additional 5-week biological experiments 
‡Create community of ecopoiesisand astrobiology simulation scientists 
‡Obtain funding for modular test beds 
‡Report biological results 
‡Stay connected to RLEP
Thanks to HIAC and the SHOT EcopoiesisTeam 
‡Paul Todd, Principal Investigator 
‡Penny Boston, Co-Investigator (lithotrophs) 
‡David Thomas, Co-Investigator (cyanobacteria) 
‡Nathan Thomas, EE, Project Manager 
‡Bill Metz, MET, Mechanical design 
‡John Phelps, EET 
‡Bill Johnson, Software Engineer 
‡Darrell Masden, ME, Thermal Engineer 
‡Lara Deuser, ChE, Lab Scientist 
‡Heidi Platt, ChE

Mais conteúdo relacionado

Destaque

90W LED Module Street Light
90W LED Module Street Light90W LED Module Street Light
90W LED Module Street Lightngt led
 
Особенности ГИА-9 2016
Особенности ГИА-9 2016Особенности ГИА-9 2016
Особенности ГИА-9 2016lelya2709
 
9241547073 vie14
9241547073 vie149241547073 vie14
9241547073 vie14Phi Phi
 
9241547073 vie05
9241547073 vie059241547073 vie05
9241547073 vie05Phi Phi
 
9447 writeup reverse_rolling
9447 writeup reverse_rolling9447 writeup reverse_rolling
9447 writeup reverse_rollingPu Lee
 
9180 Opis Potrzeby Zad Luka Druzyna 8030
9180 Opis Potrzeby  Zad  Luka   Druzyna 80309180 Opis Potrzeby  Zad  Luka   Druzyna 8030
9180 Opis Potrzeby Zad Luka Druzyna 8030Nastoletnia Batalia
 
9.τα αντιβενιζελικά κόμματα
9.τα αντιβενιζελικά κόμματα9.τα αντιβενιζελικά κόμματα
9.τα αντιβενιζελικά κόμματαgiouli
 
9.24.15 EAD R. Doc.
9.24.15 EAD R. Doc.9.24.15 EAD R. Doc.
9.24.15 EAD R. Doc.Erin Dugan
 
94698 Reg[2]..
94698 Reg[2]..94698 Reg[2]..
94698 Reg[2]..marcelino4
 
Presentation in DevDo#9: "TimeTableShare"
Presentation in DevDo#9: "TimeTableShare"Presentation in DevDo#9: "TimeTableShare"
Presentation in DevDo#9: "TimeTableShare"Hiro H.
 
9393年少年犯罪人口
9393年少年犯罪人口9393年少年犯罪人口
9393年少年犯罪人口clinic
 

Destaque (20)

95 Thesis 36-42
95 Thesis 36-4295 Thesis 36-42
95 Thesis 36-42
 
90W LED Module Street Light
90W LED Module Street Light90W LED Module Street Light
90W LED Module Street Light
 
Особенности ГИА-9 2016
Особенности ГИА-9 2016Особенности ГИА-9 2016
Особенности ГИА-9 2016
 
9241547073 vie14
9241547073 vie149241547073 vie14
9241547073 vie14
 
9241547073 vie05
9241547073 vie059241547073 vie05
9241547073 vie05
 
9447 writeup reverse_rolling
9447 writeup reverse_rolling9447 writeup reverse_rolling
9447 writeup reverse_rolling
 
9180 Opis Potrzeby Zad Luka Druzyna 8030
9180 Opis Potrzeby  Zad  Luka   Druzyna 80309180 Opis Potrzeby  Zad  Luka   Druzyna 8030
9180 Opis Potrzeby Zad Luka Druzyna 8030
 
9.τα αντιβενιζελικά κόμματα
9.τα αντιβενιζελικά κόμματα9.τα αντιβενιζελικά κόμματα
9.τα αντιβενιζελικά κόμματα
 
91 umbrella
91 umbrella91 umbrella
91 umbrella
 
9.29.15 webinar
9.29.15 webinar9.29.15 webinar
9.29.15 webinar
 
9.24.15 EAD R. Doc.
9.24.15 EAD R. Doc.9.24.15 EAD R. Doc.
9.24.15 EAD R. Doc.
 
94698 Reg[2]..
94698 Reg[2]..94698 Reg[2]..
94698 Reg[2]..
 
Presentation in DevDo#9: "TimeTableShare"
Presentation in DevDo#9: "TimeTableShare"Presentation in DevDo#9: "TimeTableShare"
Presentation in DevDo#9: "TimeTableShare"
 
9393年少年犯罪人口
9393年少年犯罪人口9393年少年犯罪人口
9393年少年犯罪人口
 
902 jt
902 jt902 jt
902 jt
 
MAM HOME Catalog
MAM HOME Catalog MAM HOME Catalog
MAM HOME Catalog
 
90 ans au service des artisans - Chambre de Métiers et de l'Artisanat d'Aquit...
90 ans au service des artisans - Chambre de Métiers et de l'Artisanat d'Aquit...90 ans au service des artisans - Chambre de Métiers et de l'Artisanat d'Aquit...
90 ans au service des artisans - Chambre de Métiers et de l'Artisanat d'Aquit...
 
9.4.2
9.4.29.4.2
9.4.2
 
90527kungaparet
90527kungaparet90527kungaparet
90527kungaparet
 
9.27.12
9.27.129.27.12
9.27.12
 

Semelhante a 918 todd[1]

ILOA Galaxy Forum Europe 2013 - human missions to europa and titan - hugh hill
ILOA Galaxy Forum Europe 2013 - human missions to europa and titan - hugh hillILOA Galaxy Forum Europe 2013 - human missions to europa and titan - hugh hill
ILOA Galaxy Forum Europe 2013 - human missions to europa and titan - hugh hillILOAHawaii
 
Can Humans Survive 1000 Days in Space?
Can Humans Survive 1000 Days in Space? Can Humans Survive 1000 Days in Space?
Can Humans Survive 1000 Days in Space? mtnadmin
 
Preparation of Nanoparticles
Preparation of NanoparticlesPreparation of Nanoparticles
Preparation of Nanoparticleshephz
 
Planetary surfacesubsurfaceexploration
Planetary surfacesubsurfaceexplorationPlanetary surfacesubsurfaceexploration
Planetary surfacesubsurfaceexplorationClifford Stone
 
Space Microbiology: Modern Research and Advantages for Human Colonization on ...
Space Microbiology: Modern Research and Advantages for Human Colonization on ...Space Microbiology: Modern Research and Advantages for Human Colonization on ...
Space Microbiology: Modern Research and Advantages for Human Colonization on ...AnuragSingh1049
 
TheFinalWorkingTherePanel
TheFinalWorkingTherePanelTheFinalWorkingTherePanel
TheFinalWorkingTherePanelRohan Deshmukh
 
MARS HABITAT DESIGN
MARS HABITAT DESIGNMARS HABITAT DESIGN
MARS HABITAT DESIGNArnob Foysal
 
Canberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesCanberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesJohn Hines
 
Geomicrobiology
GeomicrobiologyGeomicrobiology
GeomicrobiologySarika_12
 
محاضره نانو -دكتور عمر نور
محاضره نانو -دكتور عمر نور محاضره نانو -دكتور عمر نور
محاضره نانو -دكتور عمر نور AymanHassan15
 

Semelhante a 918 todd[1] (20)

Lunar ecopoisis
Lunar ecopoisisLunar ecopoisis
Lunar ecopoisis
 
Programmable plants
Programmable plantsProgrammable plants
Programmable plants
 
Es lecture
Es lectureEs lecture
Es lecture
 
MarsHabitat
MarsHabitatMarsHabitat
MarsHabitat
 
1196 dubowsky[1]
1196 dubowsky[1]1196 dubowsky[1]
1196 dubowsky[1]
 
ILOA Galaxy Forum Europe 2013 - human missions to europa and titan - hugh hill
ILOA Galaxy Forum Europe 2013 - human missions to europa and titan - hugh hillILOA Galaxy Forum Europe 2013 - human missions to europa and titan - hugh hill
ILOA Galaxy Forum Europe 2013 - human missions to europa and titan - hugh hill
 
PPT_aps
PPT_apsPPT_aps
PPT_aps
 
ACCESS Mars project final presentation
ACCESS Mars project final presentationACCESS Mars project final presentation
ACCESS Mars project final presentation
 
Can Humans Survive 1000 Days in Space?
Can Humans Survive 1000 Days in Space? Can Humans Survive 1000 Days in Space?
Can Humans Survive 1000 Days in Space?
 
Preparation of Nanoparticles
Preparation of NanoparticlesPreparation of Nanoparticles
Preparation of Nanoparticles
 
Planetary surfacesubsurfaceexploration
Planetary surfacesubsurfaceexplorationPlanetary surfacesubsurfaceexploration
Planetary surfacesubsurfaceexploration
 
Space Microbiology: Modern Research and Advantages for Human Colonization on ...
Space Microbiology: Modern Research and Advantages for Human Colonization on ...Space Microbiology: Modern Research and Advantages for Human Colonization on ...
Space Microbiology: Modern Research and Advantages for Human Colonization on ...
 
1059 maise[2]
1059 maise[2]1059 maise[2]
1059 maise[2]
 
TheFinalWorkingTherePanel
TheFinalWorkingTherePanelTheFinalWorkingTherePanel
TheFinalWorkingTherePanel
 
MARS HABITAT DESIGN
MARS HABITAT DESIGNMARS HABITAT DESIGN
MARS HABITAT DESIGN
 
nan wshop
nan wshopnan wshop
nan wshop
 
Canberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesCanberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hines
 
1371 silver[1]
1371 silver[1]1371 silver[1]
1371 silver[1]
 
Geomicrobiology
GeomicrobiologyGeomicrobiology
Geomicrobiology
 
محاضره نانو -دكتور عمر نور
محاضره نانو -دكتور عمر نور محاضره نانو -دكتور عمر نور
محاضره نانو -دكتور عمر نور
 

Mais de Clifford Stone (20)

Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
Xray telescopeconcept
Xray telescopeconceptXray telescopeconcept
Xray telescopeconcept
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Wpafb blue bookdocuments
Wpafb blue bookdocumentsWpafb blue bookdocuments
Wpafb blue bookdocuments
 
What gov knows_about_ufos
What gov knows_about_ufosWhat gov knows_about_ufos
What gov knows_about_ufos
 
Welcome oct02
Welcome oct02Welcome oct02
Welcome oct02
 
Weather jun02
Weather jun02Weather jun02
Weather jun02
 
Wassersug richard[1]
Wassersug richard[1]Wassersug richard[1]
Wassersug richard[1]
 
Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952
 
Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952
 
Vol4ch03
Vol4ch03Vol4ch03
Vol4ch03
 
Vol4ch02
Vol4ch02Vol4ch02
Vol4ch02
 
Vol4ch01
Vol4ch01Vol4ch01
Vol4ch01
 
Vol3ch16
Vol3ch16Vol3ch16
Vol3ch16
 
Vol3ch14
Vol3ch14Vol3ch14
Vol3ch14
 
Vol3ch13
Vol3ch13Vol3ch13
Vol3ch13
 
Vol3ch12
Vol3ch12Vol3ch12
Vol3ch12
 
Vol3ch11
Vol3ch11Vol3ch11
Vol3ch11
 
Vol3ch10
Vol3ch10Vol3ch10
Vol3ch10
 
Vol3ch09
Vol3ch09Vol3ch09
Vol3ch09
 

918 todd[1]

  • 1. Robotic Lunar Ecopoiesis Test Bed. Phase II NIAC Paul Todd, Penelope Boston and David Thomas Presented by Paul Todd October 11, 2004
  • 2. Four Levels of Inquiry Concerning Biology and Mars 1. Planetary protection, contamination and quarantine issues (NRC, 1992), 2. The search for life on Mars (Banin, 1989; Baninand Mancinelli, 1995; Ivanov, 1995; Koike et al., 1995; Biemannet al., 1977), 3. Human expeditions to Mars and ecosynthesis(Meyer & McKay, 1984, 1989, 1995) 4. The terraformingof Mars, ecopoiesis(Haynes, 1990; McKay, 1990; Haynes and McKay, 1992; McKay et al., 1991, 1994; Hiscox, 1993, 1995, 1998).
  • 3. ECOPOIESIS ‡Term introduced by Haynes and McKay ‡Terraforming= making another planet or object in the solar system like Earth ‡Heating: (1) Greenhouse gases, (2) Mirrors and smoke, (3) Ecopoiesis ‡Ecopoiesis= emergence of a living, eventually self-sustaining ecosystem ‡Precedes terraforming ‡Required step: experimental ecopoiesis
  • 4. Starting Position: Robotic Lunar EcopoiesisTest Bed •Trenched, depressed site•Sealed in all dimensions•Inflatable dome solidifies•Sealed interior controlled to Mars atmosphere•Organisms & chemicals added to artificial regolith•Control and data telemetry to earth
  • 5. Project Architecture: Roadmap Science baseLaboratory test bedBasic researchDistributed test bedsLow-gravity venuesLunar test bedMars experimentsILLUMINATORCOOLING VENTSSOLAR SPECTRUMILLUMINATOR & HOUSINGVACUUMGAS LINEMARS REGOLITHSIMULANTSUBSURFACEREGOLITHACCESS PORTSREPLACEABLEDESSICANTPANELFREEZER BOX -35O CFUSED SILICAATMOSPHEREJAR, 15mbENERGYCONCENTRATORATMOSPHEREGAS LINERECHARGESTATIONMars Atmosphere And Regolith Simulator- Modular Test BedMARS-MTBSENSORARRAYTELEMETRYGAS BOTTLE(BURIED) H O ?2POWER & CONTROL 40cm100cm T = -35OCT = TrT = TaT = -133 to +23o C10m
  • 6. Robotic Lunar Ecopoiesis Test Bed: Phase II Goals 1.Build and demonstrate Laboratory Test Bed. Use preliminary chamber design from Phase I, purchase and assemble components, demonstrate operation. 2. Evaluate pioneer organisms using Laboratory Test Bed. Subject organisms identified in Phase I to various Mars-like ecopoieticconditions, test activity and viability. 3. Develop ecopoiesisresearch community. Design modular test beds for lab and classroom use. Develop user community. 4. Refine requirements forextraterrestrial test beds.Pursue opportunities within NASA programs such as ISS and RLEP.
  • 7. Robotic Lunar Ecopoiesis Test Bed: Science Advisory Committee Penelope Boston. New Mexico Institute of Mining and Technology; Complex Systems Research, Inc. Lawrence Kuznetz, NASA Space Biomedical Research Institute Christopher McKay, NASA Ames Research Center Lynn Rothschild, NASA Ames Research Center Andrew Schuerger, University of Florida David Thomas, Lyon College
  • 8. Objective 1: Laboratory Test Bed ‡Requirements ‡Design and Construction ‡Performance
  • 9. Mars’ atmosphere today: Assume that initial engineering efforts will increase atmospheric pressure and maintain the same relative abundances of gases or raise only CO2. •CO295% •N22.7% •Ar1.6% •O20.13% •CO0.07% •H2O0.03% •Trace amounts of Ne, Kr, Xe, O3•No significant ozone layer•Surface pressure 6-10 mbarPat Rawlings
  • 10. Temperature Cycles on Mars Surface M. H. Carr, 1996
  • 11. Liquid Water on Mars (Sometimes)?
  • 12. UV The main challenge for survival on the surface of Mars is the UV radiation between 200 and 300 nm.
  • 13. Lighting: Temporal Simulation Integral at mid-day is about 590 W/m2BY SEASON AT EQUATOR
  • 14. Laboratory Chamber and Subsystems Design Drawings zOuter housing controls temperature -130 to +26oC (dry nitrogen cryogenic) zSealed illuminator with housing & cooling vents zLow-pressure “Mars Jar” held at >7 mbar zAtmosphere composition analysis and control zRegolithsimulant zAutomated operation and data logging zAffordable product for research laboratoriesENVIRONMENTALCONTROL UNIT1.5kW SOLARSPECTRUMGENERATORLAPTOP COMPUTERSPECIMENCHAMBERFULL SPECTRUMLIGHT DISTRIBUTION MIRROR2 STAGE REGULATORLIQUID NITROGENSIPHON TANKVACUUMPUMPLOW PRESSUREGAS RESERVOIRMARS ATMOSHPEREHIGH PRESSUREGAS TANKSTANDMARS GAS SUPPLY/ VACUUM SYSTEMMULTI-PANEWINDOW (UV SAFE) WITH CURTAINMARS ATMOSPHEREGAS LINE INVACUUM LINE OUTINSULATEDDOOR
  • 15. Laboratory Test Bed Thermal Control Continuous operation on Mars sol program (-80oC night; +26oC day) consumes >200 gal LN2/wk. A 500-gal supply tank was installed behind a locked safety fence. During dawn and evening, set-point is reset every 10 min to reproduce thermal profile on Mars at low latitude.
  • 16. Laboratory Test Bed Optical Path •1000W Xenon arc •Automated arc striking •8” x 8” lighted area •Fused quartz container •Photosyntheticallyactive radiation (PAR) = 1100 μmoles/m2-s = 237 W/m2 (vs. 242) •Translates closely to 590 W/m2
  • 17. Laboratory Test Bed RegolithTemperature Control •Rise rate (triangles) exceeds requirements •Cooling rate (squares) exceeds requirements •Watlowcontroller programmed to new set point every hour •Simulates daily temperature profile at low latitude at vernal equinox •Controlling sensor submerged in regolithsimulant-160-140-120-100-80-60-40-200204012:00 AM4:00 AM8:00 AM12:00 PM4:00 PM8:00 PMTime Of Day (hh:mm) Temperature (C)
  • 18. Laboratory Test Bed Performance DataMars Environmental Conditions (14 day test) 6/1/05 - 6/15/05-90.00-85.00-80.00-75.00-70.00-65.00-60.00-55.00-50.00-45.00-40.00-35.00-30.00-25.00-20.00-15.00-10.00-5.000.005.0010.0015.0020.0025.0030.0035.0040.0045.00 DAY 1 Time (hours) 14 days total Value REGOLITH RTD (C) VACUUM (In Hg) Light (0=off, 10=on) RTD CHAMBER (C)
  • 19. Objective 2 Evaluate Pioneer Organisms ‡Selection of organisms based on Phase I results ‡Performance of experiments in test bed ‡Preliminary results
  • 20. Summary of Requirements for Pioneer Martians ‡Anaerobic ‡UV resistant ‡Low pressure ‡Drought resistant ‡Freeze resistant ‡Phototroph ‡Nitrogen fixing C. McKay, 2004
  • 21. Physiological traits of engineered martianorganisms (“Marsbugs”): •Reactive oxygen tolerance (superoxides, peroxides, ozone, etc.). •CO2 tolerance. •Intracellular acidification tolerance. •Carbonate dissolution. •Osmotic tolerance and adaptation. •Ultraviolet radiation resistance and repair. •“Switchable” genes for nutrient cycling (e.g., N-fixation, denitrification). (Hiscoxand Thomas, 1995)
  • 22. Lava Habitats Lavatubes Bubbles Squeeze Squeeze-ups Palagonitization Dr. Penny Boston
  • 23. Chroococcidiopsis •Primitive cyanobacterialgenus. •Unicellular, multicellular. •Capable of surviving in a large variety of extreme conditions: aridity, salinity, high and low temperature. •Sole surviving organism in hostile environments. •Often endolithic.
  • 24. High % CO2tolerance05010015020001020304050Hours Fv/Fm (% of starting) Air20% CO240% CO2100% CO2 CO2effects on Synechococcus. Synechococcusresponds to high CO2similarly to Anabaena. PS-II activity increases at 20% CO2, but is inhibited at 40-100% CO2. At 100%, the photosystems do not recover after 24 hours in air (n = 4, bars =s.d.). Dr. David Thomas.
  • 25. Experiments with Microbial Specimens to Date EXPERIMENT DATE DURATION SPECIMENS 1 May 31 23 hours Dr. Thomas’ 2 June 1 14 days Dr. Thomas’ 3 June 18 8 days Dr. Thomas’ 4 June 23 22 hours Dr. Boston’s 5 June 25 5 weeks Dr. Boston’s Dr.Thomas’
  • 26. Preliminary Results of Microbial Experiments ‡14 days at 100mbar, water saturaturation ‡Cyanobacteria(5 strains), Atacamadesert bacteria (6 isolates) ‡Esterase activity, FDA assay0.0000.1000.2000.3000.4000.5000.600 Atacama 2002 - 1Rock Garden - 1Rock Garden - 2Rock Garden - 3Rock Garden - 4Yungay - 2AnabaenaChroococcidiopsis CCMEE1Plectonema UTEX 48Synechococcus 794Synechocystis 680 Organism Fluorescein production, mg/mL ControlDirect exposureIndirect exposure
  • 27. Objective 3. Modular EcopoiesisTest BedRECHARGESTATIONMars Atmosphere And Regolith Simulator- Modular Test BedMARS-MTB •Controlled volume = 80 cc •Several simulators per recharge station •Temperature -80 --+26oC •SHOT-designed computing hardware and software •Thermoelectric cascade •Solar spectrum simulator •Classrooms and labs •Funding applied for
  • 28. Objective 4Extraterrestrial Test Bed Opportunities (Phase III) zPartial gravity on Shuttle or ISS? zModified Avian Development Facility and up to 4 low-pressure jars zTest pioneer communities in MARS- chamber, 0.38 g
  • 29. Concept Proposed for RLEP •Test chamber same as laboratory test bed •Mars gas pressure reservoir at 10 atmospheres •Louvresfor light and temperature controlTELEMETRYPOWER ARRAY FORLOUVRESECOPOIESIS TESTLANDER BASEON LUNAR SURFACEBEDTHERMAL CONTROLLOUVRES & TELEMETRY
  • 30. PROGRESS ON MILESTONES ‡Phase I completed; laboratory test bed design, extremophileselection initiated ‡Phase I articles for publication ‡Laboratory test bed completed, operated ‡Modular portable test bed proposed ‡Low-volume lunar test bed proposed ‡Science Advisory Committee met twice ‡Annual First report submitted ‡Phase II presentations at conferences
  • 31. Year 2 Tasks ‡Perform 4 additional 5-week biological experiments ‡Create community of ecopoiesisand astrobiology simulation scientists ‡Obtain funding for modular test beds ‡Report biological results ‡Stay connected to RLEP
  • 32. Thanks to HIAC and the SHOT EcopoiesisTeam ‡Paul Todd, Principal Investigator ‡Penny Boston, Co-Investigator (lithotrophs) ‡David Thomas, Co-Investigator (cyanobacteria) ‡Nathan Thomas, EE, Project Manager ‡Bill Metz, MET, Mechanical design ‡John Phelps, EET ‡Bill Johnson, Software Engineer ‡Darrell Masden, ME, Thermal Engineer ‡Lara Deuser, ChE, Lab Scientist ‡Heidi Platt, ChE