SlideShare uma empresa Scribd logo
1 de 117
Baixar para ler offline
Land Surface in Weather and
         Climate Models
 “IV WorkEta: Esquema de superfície”
                        Michael Ek
                      (michael.ek@noaa.gov)

       Environmental Modeling Center (EMC)
National Centers for Environmental Prediction (NCEP)
      NOAA Center for Weather and Climate Prediction (NCWCP)
                  5830 University Research Court
                      College Park, MD 20740
                  National Weather Service (NWS)
      National Oceanic and Atmospheric Administration (NOAA)

IV WorkEta – Workshop em Modelagem Numérica de Tempo e Clima em
   Mesoescala utilizando o Modelo Eta: Aspectos Físicos e Numéricos
   CPTEC/INPE, Cachoeira Paulista, São Paulo, 3-8 de Março de 20131
NOAA Center for Weather and Climate
Prediction (NCWCP), College Park, Maryland, USA




                                            2
World Weather Building
www.noaa.gov




         www.nws.noaa.gov




                         Development, upgrade,
                     transition, maintain models




www.ncep.noaa.gov

                             www.emc.ncep.noaa.gov
www.wmo.int




     “www.wmo.int “WWRP”
     “…improve accuracy, lead time and
      utilization of weather prediction.”
                            www.wcrp-climate.org



 “Determine the predictability of climate
and effect of human activities on climate.”

                           “Weather, Water,
                                  Climate”
                           www.gewex.org
Outline

• Role of Land Surface Models (LSMs)
• Requirements:
- atmospheric forcing, valid physics, land data sets/
 parameters, initial land states, cycled land states
• Applications for Weather & Climate
• Validation
• Improving LSMs
• Expanding role of Land Modeling as part of
 an integrated Earth System
• Summary
                                                   5
Outline

• Role of Land Surface Models (LSMs)
• Requirements:
- atmospheric forcing, valid physics, land data sets/
 parameters, initial land states, cycled land states
• Applications for Weather & Climate
• Validation
• Improving LSMs
• Expanding role of Land Modeling as part of
 an integrated Earth System
• Summary
                                                   6
Role of Land Models

• Traditionally, from a coupled (atmosphere-ocean-
  land-ice) Numerical Weather Prediction (NWP)
  and climate modeling perspective, a land-
  surface model provides quantities to a parent
  atmospheric model:
   - Surface sensible heat flux,
   - Surface latent heat flux (evapotranspiration)
   - Upward longwave radiation
      (or skin temperature and surface emissivity),
   -  Upward (reflected) shortwave radiation
      (or surface albedo, including snow effects),
   -  Surface momentum exchange.
                                                 7
Weather & Climate a “Seamless Suite”




 • Products and models are integrated & consistent throughout
 time & space, as well as across forecast application & domain.
  Land      Static vegetation,    Dynamic         Dynamic
             e.g. climatology    vegetation,    ecosystems,
modeling        or realtime       e.g. plant   e.g. changing 8
example:       observations        growth        land cover
Atmospheric Energy Budget
…to close the surface energy budget, & provide surface
  boundary conditions to NWP and climate models.




                              seasonal storage
                                                  9
Water Budget (Hydrological Cycle)
• Land models close the surface water budget, and
provide surface boundary conditions to models.




                                                    10
History of Land Modeling (e.g. at NCEP)
–  1960s (6-Layer PE model): land surface ignored
•  Aside from terrain height and surface friction effects
–  1970s (LFM): land surface ignored
–  Late 1980s (NGM): first simple land model introduced (Tuccillo)
•  Single layer soil slab (“force-restore” model: Deardorff)
•  No explicit vegetation treatment
•  Temporally fixed surface wetness factor
•  Diurnal cycle is treated (as is PBL) with diurnal surface radiation
•  Surface albedo, skin temperature, surface energy balance
•  Snow cover (but not depth)
–  Early1990s (Global Model): OSU land model (Mahrt& Pan, 1984)
•  Multi-layer soil column (2-layers)
•  Explicit annual cycle of vegetation effects
•  Snow pack physics (snowdepth, SWE)
–  Mid-90s (Meso Model): OSU/Noah LSM replaces Force-Restore
–  Mid 2000s (Global Model): Noah replaces OSU (Ek et al 2003)
–  Mid 2000s (Meso Model: WRF): Unified Noah LSM with NCAR
–  2000s-10s: Noah “MP” with explicit canopy, ground water,CO2
MODEL PREDICTIONS:
PROCESSES
                         CLOUDS
  INCOMING
  SOLAR AND
  LONGWAVE       BOUNDARY-LAYER
                TURBULENT MIXING



                EVAPORATION
HEATING
 THE AIR
& OUTGOING
 LONGWAVE     SOIL HEATING
MODEL PREDICTIONS: STATES
FREE ATMOSPHERE

                    ATMOSPHERIC
       ATMOSPHERIC:   BOUNDARY
        TEMPERATURE       LAYER
        HUMIDITY
        WINDS



       SOIL:       LAND-SURFACE
       TEMPERATURE
        MOISTURE
Land-Atmosphere Interaction
•  Many land-surface/atmospheric processes.
•  Interactions & feedbacks between the land and
atmosphere must be properly represented.
•  Global Energy and Water Exchanges (GEWEX)
Program / Global Land/Atmosphere System Study
(GLASS) project: Accurately understand,
model, and predict the role of Local Land-
Atmosphere Coupling “LoCo” in water and
energy cycles in weather and climate models.
•  All land-atmosphere coupling is local…
…initially.



                                                   14
LoCo: Local land-atmospheric modeling
• NEAR-SURFACE
LOCAL COUPLING
METRIC: Evaporative
fraction change with
changing soil moisture
for both bare soil &
vegetated surface =
function of near-
surface turbulence,
canopy control, soil
hydraulics & soil
thermodynamics,
• Utilize GHP/CEOP
reference site data
sets (“clean” fluxnet),
• Extend to coupling
with atmos. boundary-
layer and entrainment
processes,
• Link with approaches
by Santanello et al.

        From “GEWEX
Imperatives: Plans for
   2013 and Beyond”                  15
                                          15
Land-Atmosphere Interaction

Betts et al
 (1996)
     Diurnal
 time-scales

   Seasonal

    Century




                                16
Outline

• Role of Land Surface Models (LSMs)
• Requirements:
    - atmospheric forcing, valid physics, land data sets/
    parameters, initial land states, cycled land states
• Applications for Weather & Climate
• Validation
• Improving LSMs
• Expanding role of Land Modeling as part of
 an integrated Earth System
• Summary
                                                      17
Land Model Requirements

• To provide proper boundary conditions, land model
  must have:
   -  Necessary atmospheric forcing to drive the land
      model,
   -  Appropriate physics to represent land-surface
      processes (for relevant time/spatial scales),
   - Corresponding land data sets and associated
      parameters, e.g. land use/land cover (vegetation
      type), soil type, surface albedo, snow cover,
      surface roughness, etc., and
   -  Proper initial land states, analogous to initial
      atmospheric conditions, though land states may
      carry more “memory” (e.g. especially in deep soil
      moisture), similar to ocean SSTs.              18
Atmospheric Forcing to Land Model




   Precipitation         Incoming solar             Wind speed




 Air temperature   Incoming Longwave             Specific humidity
                                                                 19
+ Atmospheric Pressure        Example from 18 UTC, 12 Feb 2011
Unified NCEP-NCAR Noah land model
•  Four soil layers (10, 30,
   60, 100 cm thick).
•  Linearized (non-
   iterative) surface
   energy budget;
   numerically efficient.
•  Soil hydraulics and
   parameters follow
   Cosby et al.
•  Jarvis-Stewart “big-
   leaf” canopy cond.
•  Direct soil evaporation.
•  Canopy interception.
•  Vegetation-reduced soil
   thermal conductivity.
•  Patchy/fractional snow
   cover effect on surface  •  Freeze/thaw soil physics.
   fluxes; coverage treated •  Snowpack density and snow water
   as function of              equivalent.
                                                              20
   snowdepth & veg type     •  Veg & soil classes parameters.
Prognostic Equations
Soil Moisture (Θ):
• “Richard’s Equation”; DΘ (soil water diffusivity) and
KΘ (hydraulic conductivity), are nonlinear functions of
soil moisture and soil type (Cosby et al 1984); FΘ is a
source/sink term for precipitation/evapotranspiration.

Soil Temperature (T):
• CT (thermal heat capacity) and KT (soil thermal
conductivity; Johansen 1975), non-linear functions of
soil/type; soil ice = fct(soil type/temp./moisture).

Canopy water (Cw):
• P (precipitation) increases Cw, while Ec (canopy
water evaporation) decreases Cw.                     21
Surface Energy Budget


 Rn = Net radiation = Sê - Sé + Lê - Lé
    Sê = incoming shortwave (provided by atmos. model)
    Sé = reflected shortwave (snow-free albedo (α) provided
                          by atmos. model; α modified by Noah model over snow)
              Lê = downward longwave (provided by atmos. model)
              Lé = emitted longwave = εσTs4 (ε=surface emissivity,
    	

 	

       	

     	

σ=Stefan-Boltzmann const., Ts=surface skin temperature)
  H           =         sensible heat flux
 LE           =         latent heat flux (surface evapotranspiration)
  G           =         ground heat flux (subsurface soil heat flux)
SPC           =         snow phase-change heat flux (melting snow)
• Noah model provides: α, Lé, H, LE, G and SPC.
                                                                              22
Surface Water Budget


 	

ΔS   =   change in land-surface water
     P   =   precipitation
     R   =   runoff
     E   =   evapotranspiration
P-R      =   infiltration of moisture into the soil
• ΔS includes changes in soil moisture, snowpack (cold
season), and canopy water (dewfall/frostfall and
intercepted precipitation, which are small).
• Evapotranspiration is a function of surface, soil and
vegetation characteristics: canopy water, snow cover/
depth, vegetation type/cover/density & rooting depth/
density, soil type, soil water & ice, surface roughness.
• Noah model provides: ΔS, R and E.                   23
Potential Evaporation



                                           (Penman)

    open water surface

      	

Δ        =   slope of saturation vapor pressure curve
Rn-G              =   available energy"
        	

ρ      =   air density
     cp           =   specific heat
   Ch             =   surface-layer turbulent exchange coefficient
      U           =   wind speed
  	

δe           =   atmos. vapor pressure deficit (humidity)
           	

γ   =   psychrometric constant, fct(pressure)"    24
Surface Latent Heat Flux

                               (Evapotranspiration)
             Canopy Water
             Evap. (LEc)      Transpiration
                              (LEt)         Bare Soil
   canopy water
                                       Evaporation (LEd)
   canopy



   soil

• LEc is a function of canopy water % saturation.
• LEt uses Jarvis (1976)-Stewart (1988) “big-leaf”
  canopy conductance.
• LEd is a function of near-surface soil % saturation.
• LEc, LEt, and LEd are all a function of LEp.      25
Surface Latent Heat Flux (cont.)
Canopy Water Evaporation (LEc):
• Cw, Cs are canopy water & canopy water saturation,
respectively, a function of veg. type; nc is a coeff.
Transpiration (LEt):
       max   sê
• gc is canopy conductance, gcmax is maximum canopy
conductance and gSê, gT, gδe, gΘ are solar, air
temperature, humidity, and soil moisture availability
factors, respectively, all functions of vegetation type.

Bare Soil Evaporation (LEd):
• Θd, Θs are dry (minimum) & saturated soil moisture
contents, =fct(soil type); nd is a coefficient (nom.=2).
                                                    26
Latent Heat Flux over Snow
    LE (shallow snow) < LE (deep snow)
                               Sublimation
                                 (LEsnow)


                                       LEsnow = LEp

   LEsnow = LEp                 snowpack
                  LEns < LEp               LEns = 0

   soil
      Shallow/Patchy Snow               Deep snow
          Snowcover<1                  Snowcover=1

• LEns = “non-snow” evaporation (evapotranspiration terms).
• 100% snowcover a function of vegetation type, i.e.
shallower for grass & crops, deeper for forests.
                                                       27
Surface Sensible Heat Flux



                      (from canopy/soil
                     snowpack surface)

   canopy                       bare soil       snowpack



   soil

    	

ρ, cp = air density, specific heat
          Ch = surface-layer turbulent exchange coeff.
           U = wind speed
          Tsfc-Tair = surface-air temperature difference
• “effective” Tsfc for canopy, bare soil, snowpack.    28
Ground Heat Flux




                    (to canopy/soil/snowpack surface)

   canopy                           bare soil                  snowpack



   soil
          	

KT = soil thermal conductivity (function of soil type:
                larger for moister soil, larger for clay soil; reduced
                through canopy, reduced through snowpack)
      	

Δz = upper soil layer thickness
Tsfc-Tsoil = surface-upper soil layer temp. difference
• “effective” Tsfc for canopy, bare soil, snowpack.                      29
Land Data Sets (e.g. uncoupled Noah)




 Vegetation Type             Soil Type         Max.-Snow Albedo
  (1-km, USGS)          (1-km, STATSGO-FAO)     (1-deg, Robinson)




Jan              July               winter          summer


  Green Vegetation Fraction               Snow-Free Albedo
 (monthly, 1/8-deg, NESDIS AVHRR)     (seasonal, 1-deg, Matthews)
• Fixed climatologies or (near real-time) observations.
• Some quantities predicted/assimilated (e.g. soil moist., snow,
  vegetation).                                              30
Land Data Sets (e.g. meso NAM)




  Vegetation Type          Soil Type        Max.-Snow Albedo
(1-km, IGBP-MODIS)    (1-km, STATSGO-FAO)   (1-km, UAz-MODIS)




mid-Jan        mid-July          Jan            July


  Green Vegetation Fraction            Snow-Free Albedo
       (weekly, 1/8-deg,                (monthly, 1-km,
     new NESDIS/AVHRR)                    BU-MODIS)       31
Land Data Sets (e.g. GFS/CFS, GLDAS)




 Vegetation Type           Soil Type           Max.-Snow Albedo
   (1-deg, UMD)         (1-deg, Zobler)         (1-deg, Robinson)




Jan            July               Jan               July



 Green Vegetation Fraction                Snow-Free Albedo
 (monthly, 1/8-deg, NESDIS/                (seasonal, 1-deg,
           AVHRR)                             Matthews)        32
Land surface model physics
         parameters (examples)
•  Surface momentum roughness dependent on
   vegetation/land-use type.
•  Stomatal control dependent on vegetation
   type, direct effect on transpiration.
•  Depth of snow (snow water equivalent, or s.w.e.) for
   deep snow and assumption of maximum snow
   albedo is a function of vegetation type.
•  Heat transfer through vegetation and into the
   soil a function of green vegetation fraction
   (coverage) and leaf area index (density).
•  Soil thermal and hydraulic processes highly
   dependent on soil type (vary by orders of
   magnitude).                                    33
Initial Land States
•  Valid land state initial conditions are necessary
   for NWP and climate models, & must be consistent
   with the land model used in a given weather or
   climate model, i.e. from same cycling land model.
•  Land states spun up in a given NWP or climate
   model cannot be used directly to initialize another
   model without a rescaling procedure because of
   differing land model soil moisture climatologies.

                                     May Soil Moisture
                                  Climatology from 30-year
                                    NCEP Climate Forecast
                                  System Reanalysis (CFSR),
                                   spun up from Noah land
                                   model coupled with CFS.
                                                      34
Initial Land States (cont.)
• In addition to soil moisture: the land model
 provides surface skin temperature, soil
 temperature, soil ice, canopy water, and
 snow depth & snow water equivalent.




       National Ice      Air Force Weather Agency
     Center snow cover       snow cover & depth
                                                    35
Initial Land States (cont.)
• In seasonal (and longer) climate
 simulations, land states are cycled so that
 there is an evolution in land states in
 response to atmospheric forcing and land
 model physics.
• Land data set quantities may be observed
 and/or simulated, e.g. green vegetation
 fraction & leaf area index, and even land-use
 type (evolving ecosystems).



                                           36
Land Data Assimilation:
             Motivation

• Better initial conditions of land states
for numerical weather prediction (NWP) and
seasonal climate model forecasts.
 • Assess model (physics) performance
and make improvements by assimilating
real land data (sets).
• Application to regional and global
drought monitoring and seasonal
hydrological prediction.
                                        37
Land Data Assimilation (LDA)
• Observations incorporated into weather, seasonal
climate and hydrological models in analysis cycles.
• In each analysis cycle, observations of current
(and possibly past) state of a system are combined
with results from a weather/climate/hydro model.
• Analysis step is considered “best” estimate of the
current state of the weather/climate/hydro system.
• Analysis step balances uncertainty in data and in
forecast. The model is then advanced in time & its
results becomes the forecast in next analysis cycle.



                                                 38
Land Data Assimilation (LDA)
• Minimization of a "cost function” has the effect of
making sure that the analysis does not drift too far
away from observations and forecasts that are
known to usually be reliable.




                                                  39
Developing Land Data Assimilation Capabilities




     Figure 1: Snow water equivalent (SWE)
  based on Terra/MODIS and Aqua/AMSR-E.                                                                 Figure 2: Annual average precipitation from 1998 to
Future observations will be provided by JPSS/                                                            2009 based on TRMM satellite observations. Future
                                                                                                                     observations will be provided by GPM.
                       VIIRS and DWSS/MIS.




                                                                                                         Figure 5: Current lakes and reservoirs monitored by
Figure 3: Daily soil moisture based on Aqua/                                                             OSTM/Jason-2. Shown are current height variations
       AMSR-E. Future observations will be          Figure 4: Changes in annual-average terrestrial                 relative to 10-year average levels. Future
                          provided by SMAP.        water storage (the sum of groundwater, soil water,                observations will be provided by SWOT.
                                                surface water, snow, and ice, as an equivalent height
C. Peters-Lidard et al                            of water in cm) between 2009 and 2010, based on                                             40
(NASA)                                           GRACE satellite observations. Future observations
                                                                       will be provided by GRACE-II.
NASA Land Information System
      Inputs                  Physics               Outputs        Applications

   Topography,                                      Surface
                        Land Surface Models         Energy
      Soils
                         SAC-HT/SNOW17               Fluxes
     (Static)                                                       Water
                     Noah, CLM, VIC, Catchment      (Qh,Qle)       Supply &
                                                                   Demand
   Land Cover,
  Leaf Area Index                                 Soil Moisture    Agriculture
 (MODIS, AMSR,                                    Evaporation       Hydro-
  TRMM, SRTM)                                                       Electric
                                                                    Power,
    Meteorology:                                                     Water
Modeled & Observed                                   Surface        Quality
 (NLDAS, DMIP II,                                     Water
GFS,GLDAS,TRMM                                        Fluxes        Improved
   GOES, Station)                                 (e.g., Runoff)   Short Term
                                                                       &
  Observed States     Data Assimilation Modules                    Long Term
      (Snow                                         Surface        Predictions
                           (DI, EKF, EnKF)           States
   Soil Moisture
   Temperature)                                   (Snowpack)
                                                                         41
                                                                              41
 Christa Peters-Lidard et al., NASA/GSFC/HSB
Soil Moisture Data Assimilation
                                                                     Data Assimilated:
                                                                     •  AMSR-E LPRM soil moisture
                                                                     •  AMSR-E NASA soil moisture

                                                                     Variables Analyzed:
                                                                         •  Soil Moisture
                                                                         •  Evapotranspiration
                                                                         •  Steamflow

                                                                     Experimental Setup:
                                                                     •  Domain: CONUS, NLDAS
                                                                     •  Resolution: 0.125 deg.
                                                                     •  Period: 2002-01 to 2010-01
                                                                     •  Forcing: NLDASII
                                                                     •  LSM: Noah 2.7.1,3.2

Figure 3: Daily soil moisture based on Aqua/
       AMSR-E. Future observations will be
                          provided by SMAP.

          Peters-Lidard, C.D, S.V. Kumar, D.M. Mocko, Y. Tian, 2011: Estimating evapotranspiration with land data
                                                                                                    42
                         assimilation systems, Hydrological Processes, 25(26), 3979--3992, DOI: 10.1002/hyp.8387
LDA: Ensemble Kalman Filter (EnKF)
                                                         From Rolf Reichle (2008)
                                                 Nonlinearly propagates
                                                 ensemble of model trajectories.
                        y                        Can account for wide range of
                            k                    model errors (incl. non-additive).
                                                 Approx.: Ensemble size.
                                                          Linearized update.

                                                   xki state vector (eg soil moisture)
                                                           Pk state error covariance
                                                   Rk observation error covariance


Propagation tk-1 to tk:                                      Update at tk:
                                             xki+ = xki- + Kk(yki - xki- )
   xki+ = f(xk-1i-) + wki
                                     for each ensemble member i=1…N
     w = model error                                    Kk = Pk (Pk + Rk)-1
                                with Pk computed from ensemble spread
Soil moisture Assimilation -> soil moisture
ALL available (Evaluation vs SCAN)
stations (179)     Anomaly         OL          NASA-DA     LPRM-DA
                   correlation
                   Surface soil    0.55 +/-    0.49 +/-    0.56 +/-
                   moisture        0.01        0.01        0.01
                   (10cm)
                   Root zone soil 0.17 +/-     0.13 +/-    0.19 +/-
                   moisture (1m) 0.01          0.01        0.01


 (21) Stations
                  Anomaly         OL          NASA-DA     LPRM-DA
      listed in   correlation
 Reichle et al.   Surface soil    0.62 +/-    0.53 +/-    0.62 +/-
        (2007)    moisture        0.05        0.05        0.05
                  (10cm)
                  Root zone soil 0.16 +/-     0.13 +/-    0.19 +/-
                  moisture (1m) 0.05          0.05        0.05 44
Latent Heat Flux (Qle) Estimates over US
        (“Observed” vs. “Modeled Open Loop” (OL))
                       DJF                 MAM                    JJA                  SON
    FLUXNET




    MOD16




    GLDAS




    NLDAS
    (Noah 2.7.1)



    NLDAS
    (Noah 3.2)




1   Peters-Lidard, C.D, S.V. Kumar, D.M. Mocko, Y. Tian, 2011: Estimating evapotranspiration with land data   Pg.
                   assimilation systems, Hydrological Processes, 25(26), 3979--3992, DOI: 10.1002/hyp.8387
                                                                                                               45
Soil Moisture Assimilation -> Evapotranspiration (Qle)

                                FLUXNET                                         MOD16
       RMSE




       Bias




  1
      Peters-Lidard, C.D, S.V. Kumar, D.M. Mocko, Y. Tian, 2011: Estimating evapotranspiration with land data   Pg.
                     assimilation systems, Hydrological Processes, 25(26), 3979--3992, DOI: 10.1002/hyp.8387
                                                                                                                 46
Where Does Soil Moisture Assimilation Help Improve
               Qle (i.e. Reduce RMSE) ?
          FLUXNET                 MOD16                                  FLUXNET                   MOD16

    DJF                                                     DJF




    MAM                                                     MAM




    JJA                                                     JJA




    SON                                                     SON




1                                                1

             LPRM-DA                                                          NASA-DA
              Peters-Lidard, Christa D., Sujay V. Kumar, David M. Mocko and Yudong Tian, (2011), Estimating    Pg.
                                Evapotranspiration with Land Data Assimilation Systems, In press, Hyd. Proc.
                                                                                                                47
Where Does Soil Moisture Assimilation Help Improve
           Qle (i.e. Reduce RMSE) ?
        Qle RMSE % Difference             FLUXNET                MOD16
        (DA-OL)
        Landcover type                NASA-DA LPRM-DA NASA-DA LPRM-DA
                                       (Wm-2)     (Wm-2)     (Wm-2)     (Wm-2)

        Evergreen needleleaf forest        17.6        7.9       10.5       -3.6

        Deciduous broadleaf forest          3.2       12.7        0.3        0.7

        Mixed forest                        1.8        8.0       -0.7       -0.9

        Woodlands                          16.4       18.9       11.5       -5.9

        Wooded grassland                    8.8       -0.5        9.6        0.3

        Closed shrubland                    7.3        3.4        2.5        8.9

        Open shrubland                      9.0        7.4        3.6       12.1

        Grassland                          23.9        7.1       32.9       46.4

        Cropland                           12.3       34.7       30.9       40.8

        Bare soil                          -0.1        0.6       -0.8        1.4

        Urban                              -0.1       -0.1       -0.2       -0.3

                                                                                   Pg.
                                                                                    48
Soil Moisture Assimilation -> Streamflow
Evaluation vs. USGS gauges – by major basins




                                          49
Soil Moisture Assimilation -> Streamflow
                        (average seasonal cycles of RMSE– using Xia et al. (2011) stations)
                            NEW ENGLAND                                          SOUTH ATLANTIC         MID ATLANTIC
                80                                                                   50                                                                 32
                                                   OL                                                                   OL                                                                OL
                70                            LPRM-DA                                                                                                   30                           LPRM-DA
                                                                                     45                            LPRM-DA
                                                                                                                                                        28
                60                                                                   40                                                                 26
  RMSE (m3/s)




                                                                                                                                          RMSE (m3/s)
                                                                       RMSE (m3/s)
                50                                                                   35                                                                 24
                40                                                                   30                                                                 22
                30                                                                                                                                      20
                                                                                     25
                                                                                                                                                        18
                20                                                                   20                                                                 16
                10                                                                   15                                                                 14
                 0                                                                   10                                                                 12
                  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
                                   GREAT LAKES                                                              OHIO                                                            TENNESSE
                26                                                                   200                                                                18
                                                   OL                                                                    OL                                                               OL
                24                            LPRM-DA                                180                           LPRM-DA                                                           LPRM-DA
                                                                                                                                                        16
                22                                                                   160
                20
                                                                     RMSE (m3/s)
  RMSE (m3/s)




                                                                                                                                          RMSE (m3/s)
                                                                                     140                                                                14
                18
                16                                                                   120                                                                12
                14                                                                   100
                                                                                                                                                        10
                12                                                                    80
                10
                                                                                      60                                                                 8
                 8
                 6                                                                    40                                                                 6
                  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                       Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                   Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
                                UPPER MISSISSIPPI                                                    LOWER MISSISSIPPI                                                  SOURIS RED RAINY
                120                                                                  40                                                                 40
                                                   OL                                                                   OL                                                                OL
                110                           LPRM-DA                                35                            LPRM-DA                              35                           LPRM-DA
                100                                                                                                                                     30
                                                                                     30
RMSE (m3/s)




                                                                       RMSE (m3/s)




                                                                                                                                          RMSE (m3/s)
                 90
                                                                                                                                                        25
                 80                                                                  25
                                                                                                                                                        20
                 70                                                                  20
                                                                                                                                                        15
                 60
                                                                                     15
                 50                                                                                                                                     10

                 40                                                                  10                                                                  5                                 50
                 30                                                                   5                                                                  0
                   Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Soil Moisture Assimilation -> Streamflow
                      (average seasonal cycles of RMSE– using Xia et al. (2011) stations)
                                   MISSOURI                                                     ARKANSAS-WHITE-RED
              110                                                                 26
                                                   OL                                                                OL
              100                            LPRM-DA                              24                            LPRM-DA
               90
                                                                                  22
               80
RMSE (m3/s)




                                                                   RMSE (m3/s)
               70                                                                 20
               60                                                                 18
               50                                                                 16
               40
                                                                                  14
               30
               20                                                                 12
               10                                                                 10
                0                                                                  8
                 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
                                                                                                  UPPER COLORADO                                                    LOWER COLORADO
                                                                                  10                                                                 10
                                                                                                                     OL                                                                OL
                                                                                                                                                      9                           LPRM-DA
                                                                                   9                            LPRM-DA
                                                                                                                                                      8
                                                                                   8
                                                                                                                                                      7




                                                                                                                                       RMSE (m3/s)
                                                                    RMSE (m3/s)



                                                                                   7
                                                                                                                                                      6
                                                                                   6                                                                  5
                                                                                   5                                                                  4
                                                                                   4                                                                  3
                                                                                   3                                                                  2
                                                                                   2                                                                  1

                                                                                   1                                                                  0
                                                                                    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

                                 GREAT BASIN
                                                                                                 PACIFIC NORTHWEST                                                      CALIFORNIA
              10
                                                 OL                               100                                                                80
               9                            LPRM-DA                                                                  OL                                                                OL
                                                                                   90                           LPRM-DA                              70                           LPRM-DA
               8
                                                                                   80                                                                60
               7
RMSE (m3/s)




                                                                   RMSE (m3/s)




                                                                                                                                       RMSE (m3/s)
               6                                                                   70
                                                                                                                                                     50
               5                                                                   60
                                                                                                                                                     40
               4                                                                   50
                                                                                                                                                     30
               3                                                                   40
               2                                                                   30                                                                20
               1                                                                   20                                                                10                                   51
               0
                Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                    10                                                                 0
                                                                                     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                   Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
SMOS (ESA satellite) soil moisture
     assimilation tests in the NCEP Global
                Forecast Model

 The simplified ensemble Kalman Filter (EnKF) was
" 

embedded in the GFS latest version to assimilate soil
moisture observation
"    Case: 00Z July 6, 2011. (GFS free forecast)
"    Experiments:
        CTL:      Control run
        EnKF:     Sensitivity run


                                                         52
                Weizhong Zheng and Xiwu Zhan (NESDIS/STAR)
Comparison of Soil Moisture between GFS & SMOS
     SMOS                       CTL




       EnKF




                                          53
Comparison of Soil Moisture between GFS & SMOS
     SMOS                       CTL




       EnKF




                                          54
Improved Precipitation in EnKF vs CTL
              CTL                       EnKF




             OBS                    EnKF-
                                     CTL




                                         55
Snow Data Assimilation

                Snow Cover Fraction
           Comparison of snow cover
           fraction between the MODIS
           (blue circles), the open loop
           simulation (black line) and the
           assimilation simulation (green
           line).


            Snow Water Equivalent
           Comparison of snow water
           equivalent between the open
           loop simulation (green), the
           assimilation simulation (red)
           and the in-situ measurement
           (black) averaged over all
           SNOTEL sites in the study
           region.
                                     56
Outline

• Role of Land Surface Models (LSMs)
• Requirements:
- atmospheric forcing, valid physics, land data sets/
 parameters, initial land states, cycled land states
• Applications for Weather & Climate
• Validation
• Improving LSMs
• Expanding role of Land Modeling as part of
 an integrated Earth System
• Summary
                                                   57
APPLICATIONS: e.g. Noah land model in
   NCEP Weather and Climate models
                             Climate                                      led
                                                                                Oceans
                                                                      Coup
                              CFS           Hurricane          2 -Way           HYCOM
                               MOM            GFDL
                                              HWRF
                                                                                WaveWatch III
  1.7B Obs/Day
     Satellites
      99.9%


                                                                                Dispersion
                           Global           Regional NAM
                                               WRF NMM
Global Data               Forecast          (including NARR)
                                                                                ARL/HYSPLIT
Assimilation
                          System
                                                                                Severe Weather
     Regional Data                                                              WRF NMM/ARW
      Assimilation                            Short-Range                       Workstation WRF
                                            Ensemble Forecast
                  North American Ensemble
                      Forecast System        WRF: ARW, NMM                      Air Quality
                                               ETA, RSM
            GFS, Canadian Global Model                                           NAM/CMAQ                  For
                                                                                                           eca
                                                                                                           st



                                                      NLDAS                     Rapid Update
                                                     (drought)                  for Aviation (ARW-based)
                                                                                 58
                  NOAH Land Surface Model
NCEP-NCAR unified Noah land model
• Surface energy
(linearized) & water
budgets; 4 soil layers.
• Forcing: downward
radiation, precip., temp.,
humidity, pressure, wind.
• Land states: Tsfc, Tsoil*,
soil water* and soil ice,
canopy water*, snow depth
and snow density.
*prognostic
• Land data sets: veg. type,
green vegetation fraction,
soil type, snow-free albedo
& maximum snow albedo.

• Noah coupled with NCEP models: North American Mesoscale
model (NAM; short-range), Global Forecast System (GFS;
medium-range), Climate Forecast System (CFS; seasonal), and
uncoupled NLDAS (drought) & GLDAS (climate & drought).  59
Global Land Data Assimilation System (GLDAS)
• GLDAS (run Noah LSM under NASA/Land Information System)
forced with CFSv2/GDAS atmos. data assimil. output & blended
precip.
• “Blended precipitation”: satellite (CMAP; heaviest weight in
tropics where gauges sparse), surface gauge (heaviest in middle
latitudes) and GDAS (modeled; high latitudes).
• CFSv2/GLDAS ingested into CFSv2/GDAS every 24-hours (semi
–coupled) with adjustment to soil states (e.g. soil moisture).
• Snow cycled in CFSv2/GLDAS if model within 0.5x to 2.0x
observed value (IMS snow cover, and AFWA snow depth
products), else adjusted to 0.5 or 2.0 of observed value.




                                                                60
GDAS-CMAP precip   Gauge locations   IMS snow cover   AFWA snow depth
Climate Forecast Syst. & 30-yr Reanalysis
• Global Land Data Assimilation System (GLDAS):
  Daily update of land states via semi-coupled
  Noah model run in NASA Land Information System.
•  Driven by CFS assimilation cycle atmos. forcing &
  “blended” precipitation obs (satellite, gauge, model).
•  Reasonable land climatology: energy/water budgets.




Precipitation Evaporation           Runoff        Soil Moisture          Snow
January (top), July (bottom) Climatology from 30-year NCEP CFS
       Reanalysis (Precip, Evap, Runoff [mm/day]; Soil Moisture, Snow [mm]) 61
Land Modeling and Drought (NLDAS)
•  North Amererican Land Data Assimilation System
•  Noah (& 3 other land models) run in an uncoupled
   mode driven by obs. atmos. forcing to generate
   surface fluxes, land/soil states, runoff & streamflow.
•  Land model runs provide 30-year climatology.
•  Anomalies used for drought monitoring, and
   seasonal hydrological prediction (using climate
   model downscaled forcing); supports the National
   Integrated Drought Information System (NIDIS).




  July 30-year climatology   July 1988 (drought year)   July 1993 (flood year)

                                                                           62
      NLDAS four-model ensemble soil moisture monthly anomaly
• NLDAS is a multi-model land modeling & data assimil. system…
    • …run in uncoupled mode driven by atmospheric forcing
             (using surface meteorology data sets)…
 • …with “long-term” retrospective and near real-time output of
             land-surface water and energy budgets.

        NLDAS Configuration: Land models
NLDAS Data Sets and Setup
NLDAS website
www.emc.ncep.noaa.gov/mmb/nldas
    ldas.gsfc.nasa.gov/nldas




     NLDAS                             NLDAS
 Drought Monitor                  Drought Prediction




Anomaly and percentile for six variables
and three time scales:
• Soil moisture, snow water, runoff, streamflow,
evaporation, precipitation
• Current, Weekly, Monthly
June 1988: Drought Year
Monthly total soil moisture anonamlies for
NLDAS land models and ensemble mean
June 1993: Flood Year
Monthly total soil moisture anonamlies for
NLDAS land models and ensemble mean
NLDAS Seasonal Hydrological
          Forecast System
• System uses VIC land model and includes three
forecasting approaches for necessary downscaled/
ensemble temperature and precipitation forcing data
sets: (1) NCEP Climate Forecast System (CFS), (2)
traditional ESP, and (3) CPC.
• System jointly developed by Princeton University and
University of Washington.
• Transitioned to NCEP/EMC local system in November
2009 as an experimental seasonal forecast system.
• Run at the beginning of each month with forecast
products staged on NLDAS website by mid-month.
• For CFS forcing, transitioning from use of CFSv1 to
now-operational CFSv2.
Weekly Drought Forecast
        System Using CFS forcing




Drought Monitoring (top) & Corresponding Monthly Fcst (bottom)




   03 May 2012           28 June 2012           02 August 2012
                                         Courtesy Dr. L. Luo at Michigan State U.
Global Land Data Assimilation
     System (GLDAS) for drought
Ÿ  GLDAS running Noah LSM part of NCEP Climate
Forecast System (CFSv2) Reanalysis (CFSR)
1979-2010; similar to NLDAS.
Ÿ  GLDAS/Noah uses atmospheric forcing from Climate
Data Assimilation System (CDAS) from CFSR and
observed precipitation.
Ÿ  GLDAS part of the now operational CFSv2 (January
2011).
Ÿ  GLDAS being developed for Global Drought
Information System (GDIS); connections with World
Climate Research Programme.
CFSR/GLDAS Soil Moisture Climatology




                                  71
                                       71
GLDAS CFSR Soil Moisture Anomaly




                May 1988
             (US drought)




                May 1993
              (US floods)
                                   72
                                        72
GLDAS CFSR Soil Moisture Anomaly




                  July 2012
                (US drought)
Outline

• Role of Land Surface Models (LSMs)
• Requirements:
- atmospheric forcing, valid physics, land data sets/
 parameters, initial land states, cycled land states
• Applications for Weather & Climate
• Validation
• Improving LSMs
• Expanding role of Land Modeling as part of
 an integrated Earth System
• Summary
                                                   74
Land Model Validation
• Land model validation uses (near-) surface
  observations, e.g. routine weather observations of
  air temperature, dew point and relative humidity,
  10-meter wind, along with upper-air validation,
  precipitation scores, etc.
• To more fully validate land models, surface fluxes
  and soil states (soil moisture, etc) are also used.
• Comparing monthly diurnal composites useful to
  assess systematic model biases (averaging out
  transient atmospheric conditions).
• Such validations suggest land model physics
  upgrades.

                                                    75
Near-surface verification regions




Western US!         Eastern US!



                                76
July 2008 diurnal monthly mean
        NAM (dashed line) vs obs (solid)
       00-84hr, 00z cycle, 2-m temp & RH
temp



                                1C daytime warm bias slight
       1C daytime warm bias!        nighttime warm bias!




       Western US                 Eastern US

          daytime dry bias
       (increasing dry trend)     slight daytime dry bias
RH




                                     nighttime dry bias
         slight nighttime
              dry bias

                                                         77
Validation with flux site data
 (e.g. via Fluxnet , GEWEX/
    CEOP reference sites).
                                 78
Compare monthly diurnal composites of model!
 output versus observations from flux sites to!
       assess systematic model biases. !




      SURFX (Surface Flux) Network!
     NOAA/ATDD, Tilden Meyers et al!       79
Ft. Peck,!
   Montana!
(grassland)!    January!




                     80
Ft. Peck,!
   Montana!
(grassland)!    July!




                  81
Audubon!
Grassland,!
  Arizona!                   January!




  NOAA/ATDD Surface Flux Network!
                                    82
Audubon!
Grassland,!
  Arizona!                      July !




  NOAA/ATDD Surface Flux Network!
                                    83
Ozarks,!                January!
  Missouri!
(mixed forest)!



NOAA/ATDD Surface Flux Network!
                                  84
Ozarks,!                   July !
  Missouri!
(mixed forest)!



NOAA/ATDD Surface Flux Network!
                                  85
January!

      Walker Branch,!
        Tennessee!
    (deciduous forest)!


NOAA/ATDD Surface Flux Network!
                                  86
July !

      Walker Branch,!
        Tennessee!
    (deciduous forest)!


NOAA/ATDD Surface Flux Network!
                                  87
Ft. Peck, Montana
                          (grassland)


                    SURFACE ENERGY
                      BUDGET TERMS
Downward Solar          January 2008Upward   Longwave
                    monthly averages:
                         model vs obs




          Reflected Solar Downward Longwave




Sensible Heat Flux Latent Heat Flux Ground Heat Flux
                                                88
Ft. Peck, Montana
                     (grassland)



               Sensible heat flux
               monthly averages:
                   model vs obs
January 2008                        October 2008


                            better surface-
                           layer physics in
                               NAM vs GFS



                                         July 2007

      April 2008          July 2008                  89
Ft. Peck, MT   Brookings, SD
  model           (grassland)    (grassland)

            high bias
      obs

                                            Walker Branch, TN
                                            (deciduous)



  low bias

Black Hills, SD    Ozarks, MO
(conifer)          (deciduous)

July 2005, Sensible heat flux
     monthly averages: NAM
(North American Mesoscale)        Bondville, IL
               model vs obs       (cropland)
                                                        90
Land Model Benchmarking
• Comprehensive evaluation of land models that goes beyond
traditional validation, with an established level of a priori
performance for a number of metrics, e.g. modeled surface
fluxes within ±ε [W/m2] of the observations, PDFs of observed
& modeled surface fluxes overlap by at least X%, an annual
carbon budget within Y%, etc.
• Metrics depend on community, e.g. climate, weather, carbon,
hydrology.
• Empirical approaches: e.g. statistical, neural network, other
machine learning; relationship between training and testing
data sets manipulated to see how well a model utilizes
available information.
• Land model (physics) should be able to e.g. out-perform
simple empirical models, persistence (for NWP models),
climatology (for climate models).                             91
Benchmarking vs Evaluation
                                  (Martin Best et al, GEWEX/GLASS)

 •  Evaluation
                                                                                  Model A
        Ø  Run model
                                                                                  Model B
        Ø  Compare output with observations and
          ask:                                                                    Benchmark




                                                                   Error
               q  How good is the model?


 •  Benchmarking
        Ø  Decide how good model needs to be
        Ø  Run model and ask:                                                       Site / Variable
               ü  Does model reach the level
                 required?
                                    PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER)
© Crown copyright Met Office
Joint GEWEX/GLASS-GHP project:
         Land Model Benchmarking
• GLASS tools, i.e. Protocol for the Analysis of Land
  Surface models (PALS): www.pals.unsw.edu.au.
• GEWEX Hydroclimatology Panel (GHP) provides
reference site/model output data sets for different
regions, seasons, &variables: evaluate energy, water
& carbon budgets; coupled, uncoupled model output.




 GHP “CEOP” reference sites         Fluxnet      93 93
Joint GEWEX/GLASS-GHP project:
                                                                               Land Model Benchmarking
• PALS example: CABLE (BOM/Australia) land model, Bondville, IL, USA
  (crolandp), 1997-2006, average diurnal cycles
.                                                               Obs: BondvFluxnet.1.2      Model: Cab1.4bBondv                                                                       Obs: BondvFluxnet.1.2   Model: Cab1.4bBondv                                                                          Obs: BondvFluxnet.1.2       Model: Cab1.4bBondv                                                                                      Obs: BondvFluxnet.1.2   Model: Cab1.4bBondv
                                   400




                                                                                                                                                          400
                                                        Total score: 1.1                    Score: 0.91                                                                                                      Score: 2.9                                                                           Total score: 0.46                    Score: 1.7                                                                                                                      Score: 0.37




            winter   summer
                                                        (NME)                               (NME)                                                                                                            (NME)                                                                                (NME)                                (NME)                                                                                                                           (NME)
 Sensible heat flux W/ m2




                                                                                                                           Sensible heat flux W/ m2
                                   300




                                                                                                                                                          300




                                                                                                                                                                                                                                                                          250




                                                                                                                                                                                                                                                                                                                                                                                                             250
                                                                                                                                                                                                                                           Latent heat flux W/ m2




                                                                                                                                                                                                                                                                                                                                                                           Latent heat flux W/ m2
                                                                Observed                                                                                                                                                                                                                                  Observed
                                                                Modelled                                                                                                                                                                                                                                  Modelled



                                                                                                                                                                                                           obs
                                   200




                                                                                                                                                          200




                                                                                                                                                                                                                                                                          150




                                                                                                                                                                                                                                                                                                                                                                                                             150
                                   100




                                                                                                                                                          100
                                                                                                                                                                                                       model




                                                                                                                                                                                                                                                                          0 50




                                                                                                                                                                                                                                                                                                                                                                                                             0 50
                                   0




                                                                                                                                                          0
                                                        0                  6             12                  18      23                                                      0              6             12                 18      23                                                           0                   6             12                 18        23                                                                    0              6             12                 18        23
                                                                                   DJF hour of day                                                                                                  JJA hour of day                                                                                                           DJF hour of day                                                                                                                 JJA hour of day

                                                                Obs: BondvFluxnet.1.2      Model: Cab1.4bBondv                                                                       Obs: BondvFluxnet.1.2   Model: Cab1.4bBondv                                                                          Obs: BondvFluxnet.1.2       Model: Cab1.4bBondv                                                                                      Obs: BondvFluxnet.1.2   Model: Cab1.4bBondv
                                   400




                                                                                                                                                          400




                                                                                            Score: 0.51                                                                                                      Score: 0.55                                                                                                               Score: 0.57                                                                                                                     Score: 0.28




                                                                                                   spring                                                                            autumn
                                                                                            (NME)                                                                                                            (NME)                                                                                                                     (NME)                                                                                                                           (NME)




                                                                                                                                                                                                                                                                                                      LE
 Sensible heat flux W/ m2




                                                                                                                           Sensible heat flux W/ m2




                                                                H
                                   300




                                                                                                                                                          300




                                                                                                                                                                                                                                                                          250




                                                                                                                                                                                                                                                                                                                                                                                                             250
                                                                                                                                                                                                                                           Latent heat flux W/ m2




                                                                                                                                                                                                                                                                                                                                                                           Latent heat flux W/ m2
                                   200




                                                                                                                                                          200




                                                                                                                                                                                                                                                                          150




                                                                                                                                                                                                                                                                                                                                                                                                             150
                                   100




                                                                                                                                                          100




                                                                                                                                                                                                                                                                          0 50




                                                                                                                                                                                                                                                                                                                                                                                                             0 50
                                   0




                                                                                                                                                          0




                                                        0                  6             12                  18      23                                                      0              6             12                 18      23                                                           0                   6             12                 18        23                                                                    0              6             12                 18        23
                                                                                   MAM hour of day                                                                                                  SON hour of day                                                                                                           MAM hour of day                                                                                                                 SON hour of day


                                                                    Obs: BondvFluxnet.1.2      Model: Cab1.4bBondv                                                                     Obs: BondvFluxnet.1.2   Model: Cab1.4bBondv                                                                            Obs: BondvFluxnet.1.2      Model: Cab1.4bBondv                                                                                     Obs: BondvFluxnet.1.2    Model: Cab1.4bBondv




                                                                                                                                                                                                                                                                                        100 150




                                                                                                                                                                                                                                                                                                                                                                                                                             100 150
                                                            Total score: 0.3                   Score: 0.59                                                                                                     Score: 0.37                                                                            Total score: 1.6                    Score: 3.6                                                                                                                      Score: 1.5
                                                            (NME)                              (NME)                                                                                                           (NME)                                                                                  (NME)                               (NME)                                                                                                                           (NME)
                                                  600




                                                                                                                                                                       600




                                                                                                                                                                                                                                                               Ground heat flux W/ m2




                                                                                                                                                                                                                                                                                                                                                                                                    Ground heat flux W/ m2
                            Net radiation W/ m2




                                                                                                                                                 Net radiation W/ m2




                                                                   Observed                                                                                                                                                                                                                                  Observed
                                                                   Modelled                                                                                                                                                                                                                                  Modelled
                                                  400




                                                                                                                                                                       400




                                                                                                                                                                                                                                                                                        50




                                                                                                                                                                                                                                                                                                                                                                                                                             50
                                                  200




                                                                                                                                                                       200




                                                                                                                                                                                                                                                                                        0




                                                                                                                                                                                                                                                                                                                                                                                                                             0
                                                                                                                                                                                                                                                                                        −50




                                                                                                                                                                                                                                                                                                                                                                                                                             −50
                                                  0




                                                                                                                                                                       0




                                                            0                  6              12              18      23                                                         0              6            12               18      23                                                              0                   6            12                   18        23                                                                   0              6              12                 18        23
                                                                                     DJF hour of day                                                                                                  JJA hour of day                                                                                                           DJF hour of day                                                                                                                  JJA hour of day

                                                                    Obs: BondvFluxnet.1.2      Model: Cab1.4bBondv                                                                     Obs: BondvFluxnet.1.2   Model: Cab1.4bBondv                                                                            Obs: BondvFluxnet.1.2      Model: Cab1.4bBondv                                                                                     Obs: BondvFluxnet.1.2    Model: Cab1.4bBondv
                                                                                                                                                                                                                                                                                        100 150




                                                                                                                                                                                                                                                                                                                                                                                                                             100 150
                                                                                               Score: 0.19                                                                                                     Score: 0.22                                                                                                                Score: 1.2                                                                                                                      Score: 1.8
                                                                                               (NME)                                                                                                           (NME)                                                                                                                      (NME)                                                                                                                           (NME)
                                                  600




                                                                                                                                                                       600




                                                                Rn                                                                                                                                                                                                                                        G
                                                                                                                                                                                                                                                               Ground heat flux W/ m2




                                                                                                                                                                                                                                                                                                                                                                                                    Ground heat flux W/ m2
                            Net radiation W/ m2




                                                                                                                                                 Net radiation W/ m2
                                                  400




                                                                                                                                                                       400




                                                                                                                                                                                                                                                                                        50




                                                                                                                                                                                                                                                                                                                                                                                                                             50
                                                  200




                                                                                                                                                                       200




                                                                                                                                                                                                                                                                                        0




                                                                                                                                                                                                                                                                                                                                                                                                                             0
                                                                                                                                                                                                                                                                                        −50




                                                                                                                                                                                                                                                                                                                                                                                                                             −50
                                                  0




                                                                                                                                                                       0




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     94
                                                            0                  6              12              18      23                                                         0              6            12               18      23                                                              0                   6            12                   18        23                                                                   0              6              12                 18        23
                                                                                     MAM hour of day                                                                                                  SON hour of day                                                                                                           MAM hour of day                                                                                                                 SON hour of day
Outline

• Role of Land Surface Models (LSMs)
• Requirements:
- atmospheric forcing, valid physics, land data sets/
 parameters, initial land states, cycled land states
• Applications for Weather & Climate
• Validation
• Improving LSMs
• Expanding role of Land Modeling as part of
 an integrated Earth System
• Summary
                                                   95
Land Model Improvement
                      Surface flow




     Snowpack &        Saturated         Urban-canopy
      frozen soil    subsurface flow        model

• Urban-canopy & land-use/land cover changes
• Refined surface layer turbulence (esp. stable cond.)
• Refined evapotranspiration (empirical Jarvis-Stewart)
• Surface/subsurface lateral flow (hydrology)
• Dynamic (growing) veg. with multi-layer canopy*
• CO2-based photosynthesis*             *Noah-MP upgrades
• Groundwater/water table*
• Multi-layer snowpack*, refined frozen soil processes
                                                     96
Land Model Improvement:
             Transpiration
Ÿ Use surface fluxes (e.g. latent and sensible) to
evaluate land-surface physics formulations and
parameters, e.g. invert transpiration formulation to
infer canopy conductance. (Similarly for aero. cond.)




                                                  97
Noah-MP: a land component in
    Mesoscale Weather Research &
      Forecasting (WRF) model
• Noah-MP developed by Niu et al (2011, JGR), Univ.
  Texas-Austin, NCAR, NCEP, Univ. Arizona
• Explicit canopy/subcanopy layers, dynamic (growing)
  vegetation, and canopy conductance based on CO2-
  photosynthesis
• Ground water (connection with hydrology models)
• Multi-layer snowpack
• Implicit solution of surface energy budget (SEB, for
  better SEB closure)
• Recent NCAR Improvements to Noah-MP version 3.5
                                                      98
Canopy Absorbed Solar Radiation in Noah-MP
                                                       SWdn




What are the units of solar absorbed
radiation in the canopy?
-  W/m2grid : original two stream makes this assumption
-  W/m2veg : Noah-MP calculates absorption for the grid shaded      fraction
                    but then applies it to the vegetated fraction

Original Noah-MP uses both fractional vegetation cover (turbulent fluxes) and
vegetation stem density (radiation fluxes). In the original code, these were
inconsistent.

For Evergreen Needleleaf Forest, the prescribed stem density gives a constant
horizontal coverage of 72% while turbulent flux fractional vegetation can be any 99
                                                                                  value
from 0% to 100%
Noah-MP vs. Noah: Improved canopy
 radiation effect and surface-layer changes
       in coupled mesoscale WRF v3.5




     Before (V3.4.1)              After (Pre V3.5)
• Reduced low-level (2-meter) air temperature bias   100	
  
Tiled or Separate Land Model Grid
Ÿ  A land model grid may comprise sub-atmospheric-
    grid-scale “tiles” of e.g. grass/crop/shrubland,
    forest, water, etc, of O(1-4km, or even less), with
    coarser-resolution atmospheric forcing, and an
    aggregate flux fed to the “parent” atmospheric.
 Aggregated                                     ABL “blending” height
 surface
                                              • Boundary-layer issues,
 flux                                           e.g. when blending
                                                height > BL depth?
                                              • Land-surface tiling run
                                                under NASA Land
                                                Information System
                                                (LIS); other LIS tools.
                                              • NASA/LIS to be part of
                                       5-50km   NOAA Environmental
                                                Modeling System
 surface tiles with different fluxes            (NEMS).           101
Upgraded land/surface-layer physics:
 Improvement of Satellite Data Utilization over
Desert & Arid Regions in NCEP Operational NWP
   Modeling and Data Assimilation Systems
• Change to surface-layer turbulence physics (thermal
roughness change) and surface microwave emissivity
MW model…
•…yields a reduction of large bias in calculated
brightness temperatures was found for infrared and
microwave satellite sensors for surface channels…
•…so many more satellite measurements can be
utilized in GSI data assimilation system.

                                                102
LST [K] Verification with GOES    3-Day Mean: July 1-3, 2007
  (a)    and SURFRAD
      GFS-GOES:             (b  GFS-GOES: New
                             )
             CTR                             Zot




Large cold
   (c)                           (d
   bias            LST            )                Ch




    Improved significantly            Aerodynamic 103103
       during daytime!           conductance: CTR vs Zot
Outline

• Role of Land Surface Models (LSMs)
• Requirements:
    - valid physics, land data sets/parameters, initial
    land states, atmospheric forcing, cycled land states
• Applications for Weather & Climate
• Validation
• Improving LSMs
• Expanding role of Land Modeling as part of
 an integrated Earth System
• Summary
                                                     104
Expanding Role of Land Models
Ÿ In more fully-coupled Earth System models, role is
   changing, with Weather & Climate connections to:
   Hydrology (soil moisture & ground water/water
      tables, irrigation and groundwater extraction,
      water quality, streamflow and river discharge to
      oceans, drought/flood, lakes, and reservoirs with
      management, etc),
   Biogeochemical cycles (application to ecosystems
      --terrestrial & marine, dynamic vegetation and
      biomass, carbon budgets, etc.)
   Air Quality (interaction with boundary-layer,
      biogenic emissions, VOC, dust/aerosols, etc.)
Ÿ More constraints, i.e. we must close the energy
   and water budgets, and those related to air quality
   and biogeochemical cycles.                      105
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"

Mais conteúdo relacionado

Mais procurados

Climate Modelling, Predictions and Projections
Climate Modelling, Predictions and ProjectionsClimate Modelling, Predictions and Projections
Climate Modelling, Predictions and Projectionsipcc-media
 
Atmospheric stability and plume behaviour
Atmospheric stability and plume behaviourAtmospheric stability and plume behaviour
Atmospheric stability and plume behaviourAratiSavant
 
3.3 Climate data and projections
3.3 Climate data and projections3.3 Climate data and projections
3.3 Climate data and projectionsNAP Events
 
The atmosphere and the oceans
The atmosphere and the oceansThe atmosphere and the oceans
The atmosphere and the oceansLaura Parsons
 
Modeling the Climate System: Is model-based science like model-based engineer...
Modeling the Climate System: Is model-based science like model-based engineer...Modeling the Climate System: Is model-based science like model-based engineer...
Modeling the Climate System: Is model-based science like model-based engineer...Steve Easterbrook
 
Complete the evidence for climate change
Complete the evidence for climate changeComplete the evidence for climate change
Complete the evidence for climate changeWill Williams
 
atmosphere: structure and composition
atmosphere: structure and compositionatmosphere: structure and composition
atmosphere: structure and compositionDrbasharat
 
Humidity, Lapse rate and Types of Cloud
Humidity, Lapse rate and Types of CloudHumidity, Lapse rate and Types of Cloud
Humidity, Lapse rate and Types of Cloudaikyatha
 
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki Basin
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki BasinClimate Change Impact Assessment on Hydrological Regime of Kali Gandaki Basin
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki BasinHI-AWARE
 
Climate System
Climate SystemClimate System
Climate SystemEd Stermer
 
Climate change and Agriculture: Impact Aadaptation and Mitigation
Climate change and Agriculture: Impact Aadaptation and MitigationClimate change and Agriculture: Impact Aadaptation and Mitigation
Climate change and Agriculture: Impact Aadaptation and MitigationPragyaNaithani
 
Climate change prediction
Climate change predictionClimate change prediction
Climate change predictioncdenef
 
APPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLING
APPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLINGAPPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLING
APPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLINGAbhiram Kanigolla
 

Mais procurados (20)

Climate Modelling, Predictions and Projections
Climate Modelling, Predictions and ProjectionsClimate Modelling, Predictions and Projections
Climate Modelling, Predictions and Projections
 
Atmospheric stability and plume behaviour
Atmospheric stability and plume behaviourAtmospheric stability and plume behaviour
Atmospheric stability and plume behaviour
 
Climate Models
Climate Models Climate Models
Climate Models
 
3.3 Climate data and projections
3.3 Climate data and projections3.3 Climate data and projections
3.3 Climate data and projections
 
The atmosphere and the oceans
The atmosphere and the oceansThe atmosphere and the oceans
The atmosphere and the oceans
 
Modeling the Climate System: Is model-based science like model-based engineer...
Modeling the Climate System: Is model-based science like model-based engineer...Modeling the Climate System: Is model-based science like model-based engineer...
Modeling the Climate System: Is model-based science like model-based engineer...
 
Downscaling and its limitation on climate change impact assessments
Downscaling and its limitation on climate change impact assessmentsDownscaling and its limitation on climate change impact assessments
Downscaling and its limitation on climate change impact assessments
 
Climate Modelling
Climate ModellingClimate Modelling
Climate Modelling
 
Complete the evidence for climate change
Complete the evidence for climate changeComplete the evidence for climate change
Complete the evidence for climate change
 
atmosphere: structure and composition
atmosphere: structure and compositionatmosphere: structure and composition
atmosphere: structure and composition
 
Hydrologic modeling
Hydrologic modelingHydrologic modeling
Hydrologic modeling
 
Climate change and water resources
Climate change and water resourcesClimate change and water resources
Climate change and water resources
 
Climate change and drought
Climate change and droughtClimate change and drought
Climate change and drought
 
Humidity, Lapse rate and Types of Cloud
Humidity, Lapse rate and Types of CloudHumidity, Lapse rate and Types of Cloud
Humidity, Lapse rate and Types of Cloud
 
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki Basin
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki BasinClimate Change Impact Assessment on Hydrological Regime of Kali Gandaki Basin
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki Basin
 
Overview of climate variability and climate change in GMS
Overview of climate variability and climate change in GMSOverview of climate variability and climate change in GMS
Overview of climate variability and climate change in GMS
 
Climate System
Climate SystemClimate System
Climate System
 
Climate change and Agriculture: Impact Aadaptation and Mitigation
Climate change and Agriculture: Impact Aadaptation and MitigationClimate change and Agriculture: Impact Aadaptation and Mitigation
Climate change and Agriculture: Impact Aadaptation and Mitigation
 
Climate change prediction
Climate change predictionClimate change prediction
Climate change prediction
 
APPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLING
APPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLINGAPPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLING
APPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLING
 

Destaque

Raymond Desjardins - Impacto de la agricultura sobre el cambio climático
Raymond Desjardins - Impacto de la agricultura sobre el cambio climáticoRaymond Desjardins - Impacto de la agricultura sobre el cambio climático
Raymond Desjardins - Impacto de la agricultura sobre el cambio climáticoFundación Ramón Areces
 
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...GIS in the Rockies
 
Picasso 6 iii bimestre
Picasso 6 iii bimestrePicasso 6 iii bimestre
Picasso 6 iii bimestrePilar Ojeda
 
Gaopeng gets into top 10 by revenue; QQtuan becomes a sales platform.
Gaopeng gets into top 10 by revenue; QQtuan becomes a sales platform.  Gaopeng gets into top 10 by revenue; QQtuan becomes a sales platform.
Gaopeng gets into top 10 by revenue; QQtuan becomes a sales platform. dataotuan
 
Bruna elid e beatriz messias pronto 26 abril
Bruna elid e beatriz messias pronto 26 abrilBruna elid e beatriz messias pronto 26 abril
Bruna elid e beatriz messias pronto 26 abrilNute Jpa
 
Businessplan template - Sundi Iyer
Businessplan template - Sundi IyerBusinessplan template - Sundi Iyer
Businessplan template - Sundi IyerTiE Bangalore
 
Maennertherapie
MaennertherapieMaennertherapie
MaennertherapieMerleee
 
Eset españa informe cuatrimestral de seguridad (mayo agosto)
Eset españa informe cuatrimestral de seguridad (mayo agosto)Eset españa informe cuatrimestral de seguridad (mayo agosto)
Eset españa informe cuatrimestral de seguridad (mayo agosto)Yolanda Ruiz Hervás
 

Destaque (20)

J. Rozante - Metrics for the Evaluation of Numerical Predictions
J. Rozante - Metrics for the Evaluation of Numerical PredictionsJ. Rozante - Metrics for the Evaluation of Numerical Predictions
J. Rozante - Metrics for the Evaluation of Numerical Predictions
 
J. Bustamante - Ensemble Prediction
J. Bustamante - Ensemble PredictionJ. Bustamante - Ensemble Prediction
J. Bustamante - Ensemble Prediction
 
Giarolla - Applications of the ETA/CPTEC Model in Agriculture
Giarolla - Applications of the ETA/CPTEC Model in AgricultureGiarolla - Applications of the ETA/CPTEC Model in Agriculture
Giarolla - Applications of the ETA/CPTEC Model in Agriculture
 
Climate Change Pryeccion with ETA Model
Climate Change Pryeccion with ETA ModelClimate Change Pryeccion with ETA Model
Climate Change Pryeccion with ETA Model
 
Raymond Desjardins - Impacto de la agricultura sobre el cambio climático
Raymond Desjardins - Impacto de la agricultura sobre el cambio climáticoRaymond Desjardins - Impacto de la agricultura sobre el cambio climático
Raymond Desjardins - Impacto de la agricultura sobre el cambio climático
 
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
 
 
Gugu tata
Gugu  tataGugu  tata
Gugu tata
 
Picasso 6 iii bimestre
Picasso 6 iii bimestrePicasso 6 iii bimestre
Picasso 6 iii bimestre
 
07112013 milano
07112013 milano07112013 milano
07112013 milano
 
P.E.K.K.A info
P.E.K.K.A infoP.E.K.K.A info
P.E.K.K.A info
 
Cómo optimizar nuestro facebook de empresa
Cómo optimizar nuestro facebook de empresaCómo optimizar nuestro facebook de empresa
Cómo optimizar nuestro facebook de empresa
 
Gaopeng gets into top 10 by revenue; QQtuan becomes a sales platform.
Gaopeng gets into top 10 by revenue; QQtuan becomes a sales platform.  Gaopeng gets into top 10 by revenue; QQtuan becomes a sales platform.
Gaopeng gets into top 10 by revenue; QQtuan becomes a sales platform.
 
Bruna elid e beatriz messias pronto 26 abril
Bruna elid e beatriz messias pronto 26 abrilBruna elid e beatriz messias pronto 26 abril
Bruna elid e beatriz messias pronto 26 abril
 
Solicitud de afiliacion
Solicitud de afiliacionSolicitud de afiliacion
Solicitud de afiliacion
 
Businessplan template - Sundi Iyer
Businessplan template - Sundi IyerBusinessplan template - Sundi Iyer
Businessplan template - Sundi Iyer
 
Maennertherapie
MaennertherapieMaennertherapie
Maennertherapie
 
Enc072611 a07
Enc072611 a07Enc072611 a07
Enc072611 a07
 
Eset españa informe cuatrimestral de seguridad (mayo agosto)
Eset españa informe cuatrimestral de seguridad (mayo agosto)Eset españa informe cuatrimestral de seguridad (mayo agosto)
Eset españa informe cuatrimestral de seguridad (mayo agosto)
 
igma2 3rd meeting press release
igma2 3rd meeting press releaseigma2 3rd meeting press release
igma2 3rd meeting press release
 

Semelhante a M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"

1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.pptRasakumar Raj
 
1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.pptlakshmi sirisha
 
Grace satellite technology
Grace satellite technologyGrace satellite technology
Grace satellite technologydzbsjk
 
Climate_Modelling_Saurabh.pdf
Climate_Modelling_Saurabh.pdfClimate_Modelling_Saurabh.pdf
Climate_Modelling_Saurabh.pdfAtikNawaz2
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.pptgrssieee
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.pptgrssieee
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.pptgrssieee
 
Late Noachian Icy Highlands climate model: Exploring the possibility of trans...
Late Noachian Icy Highlands climate model: Exploring the possibility of trans...Late Noachian Icy Highlands climate model: Exploring the possibility of trans...
Late Noachian Icy Highlands climate model: Exploring the possibility of trans...Sérgio Sacani
 
Models in climate science
Models in climate scienceModels in climate science
Models in climate scienceAdarsh Singh
 
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...Dirk Kassenaar M.Sc. P.Eng.
 
Applications of Integrated Models to Watershed and Sub-Watershed Scale Analys...
Applications of Integrated Models to Watershed and Sub-Watershed Scale Analys...Applications of Integrated Models to Watershed and Sub-Watershed Scale Analys...
Applications of Integrated Models to Watershed and Sub-Watershed Scale Analys...Dirk Kassenaar M.Sc. P.Eng.
 
Surface and soil moisture monitoring, estimations, variations, and retrievals
Surface and soil moisture monitoring, estimations, variations, and retrievalsSurface and soil moisture monitoring, estimations, variations, and retrievals
Surface and soil moisture monitoring, estimations, variations, and retrievalsJenkins Macedo
 
ARandolph_wstc_presentation_dep_rev
ARandolph_wstc_presentation_dep_revARandolph_wstc_presentation_dep_rev
ARandolph_wstc_presentation_dep_revTony Randolph
 

Semelhante a M. Ek - Land Surface in Weather and Climate Models; "Surface scheme" (20)

Intercomparison
IntercomparisonIntercomparison
Intercomparison
 
1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt
 
1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt
 
Grace satellite technology
Grace satellite technologyGrace satellite technology
Grace satellite technology
 
Mauro Sulis
Mauro SulisMauro Sulis
Mauro Sulis
 
Swat & modflow
Swat & modflowSwat & modflow
Swat & modflow
 
NY
NYNY
NY
 
AMIP
AMIPAMIP
AMIP
 
Event 31
Event 31Event 31
Event 31
 
Climate_Modelling_Saurabh.pdf
Climate_Modelling_Saurabh.pdfClimate_Modelling_Saurabh.pdf
Climate_Modelling_Saurabh.pdf
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt
 
Late Noachian Icy Highlands climate model: Exploring the possibility of trans...
Late Noachian Icy Highlands climate model: Exploring the possibility of trans...Late Noachian Icy Highlands climate model: Exploring the possibility of trans...
Late Noachian Icy Highlands climate model: Exploring the possibility of trans...
 
09-19 Lecture.ppt
09-19 Lecture.ppt09-19 Lecture.ppt
09-19 Lecture.ppt
 
Models in climate science
Models in climate scienceModels in climate science
Models in climate science
 
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
 
Applications of Integrated Models to Watershed and Sub-Watershed Scale Analys...
Applications of Integrated Models to Watershed and Sub-Watershed Scale Analys...Applications of Integrated Models to Watershed and Sub-Watershed Scale Analys...
Applications of Integrated Models to Watershed and Sub-Watershed Scale Analys...
 
Surface and soil moisture monitoring, estimations, variations, and retrievals
Surface and soil moisture monitoring, estimations, variations, and retrievalsSurface and soil moisture monitoring, estimations, variations, and retrievals
Surface and soil moisture monitoring, estimations, variations, and retrievals
 
ARandolph_wstc_presentation_dep_rev
ARandolph_wstc_presentation_dep_revARandolph_wstc_presentation_dep_rev
ARandolph_wstc_presentation_dep_rev
 

Mais de Decision and Policy Analysis Program

Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...Decision and Policy Analysis Program
 
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)Decision and Policy Analysis Program
 
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...Decision and Policy Analysis Program
 
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)Decision and Policy Analysis Program
 
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climáticoVulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climáticoDecision and Policy Analysis Program
 
Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...Decision and Policy Analysis Program
 
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...Decision and Policy Analysis Program
 
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...Decision and Policy Analysis Program
 
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...Decision and Policy Analysis Program
 
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...Decision and Policy Analysis Program
 

Mais de Decision and Policy Analysis Program (20)

Propuesta Servicios Climáticos región del SICA CAC/CIAT
Propuesta Servicios Climáticos región del SICA CAC/CIATPropuesta Servicios Climáticos región del SICA CAC/CIAT
Propuesta Servicios Climáticos región del SICA CAC/CIAT
 
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
 
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
 
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
 
Servicios Climaticos para la Agricultura (FIMA)
Servicios Climaticos para la Agricultura (FIMA)Servicios Climaticos para la Agricultura (FIMA)
Servicios Climaticos para la Agricultura (FIMA)
 
Servicios Climaticos para la Agricultura (FAO-PLACA)
Servicios Climaticos para la Agricultura (FAO-PLACA)Servicios Climaticos para la Agricultura (FAO-PLACA)
Servicios Climaticos para la Agricultura (FAO-PLACA)
 
Modelación de impactos de cambio climático en agricultura
Modelación de impactos de cambio climático en agriculturaModelación de impactos de cambio climático en agricultura
Modelación de impactos de cambio climático en agricultura
 
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
 
Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Servicios Climáticos para la Agricultura (ANSC-Guatemala)Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Servicios Climáticos para la Agricultura (ANSC-Guatemala)
 
Modelación climática; Cambio climático y agricultura
Modelación climática; Cambio climático y agriculturaModelación climática; Cambio climático y agricultura
Modelación climática; Cambio climático y agricultura
 
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climáticoVulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
 
Modelacion de cultivos para generar servicios agroclimaticos
Modelacion de cultivos para generar servicios agroclimaticosModelacion de cultivos para generar servicios agroclimaticos
Modelacion de cultivos para generar servicios agroclimaticos
 
Introducción a los servicios climáticos
Introducción a los servicios climáticosIntroducción a los servicios climáticos
Introducción a los servicios climáticos
 
Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...
 
Servicios climáticos para la agricultura en América Latina
Servicios climáticos para la agricultura en América LatinaServicios climáticos para la agricultura en América Latina
Servicios climáticos para la agricultura en América Latina
 
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
 
Mesas Técnicas Agroclimáticas en Centro América
Mesas Técnicas Agroclimáticas en Centro AméricaMesas Técnicas Agroclimáticas en Centro América
Mesas Técnicas Agroclimáticas en Centro América
 
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
 
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
 
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
 

Último

08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 

Último (20)

08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 

M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"

  • 1. Land Surface in Weather and Climate Models “IV WorkEta: Esquema de superfície” Michael Ek (michael.ek@noaa.gov) Environmental Modeling Center (EMC) National Centers for Environmental Prediction (NCEP) NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 National Weather Service (NWS) National Oceanic and Atmospheric Administration (NOAA) IV WorkEta – Workshop em Modelagem Numérica de Tempo e Clima em Mesoescala utilizando o Modelo Eta: Aspectos Físicos e Numéricos CPTEC/INPE, Cachoeira Paulista, São Paulo, 3-8 de Março de 20131
  • 2. NOAA Center for Weather and Climate Prediction (NCWCP), College Park, Maryland, USA 2 World Weather Building
  • 3. www.noaa.gov www.nws.noaa.gov Development, upgrade, transition, maintain models www.ncep.noaa.gov www.emc.ncep.noaa.gov
  • 4. www.wmo.int “www.wmo.int “WWRP” “…improve accuracy, lead time and utilization of weather prediction.” www.wcrp-climate.org “Determine the predictability of climate and effect of human activities on climate.” “Weather, Water, Climate” www.gewex.org
  • 5. Outline • Role of Land Surface Models (LSMs) • Requirements: - atmospheric forcing, valid physics, land data sets/ parameters, initial land states, cycled land states • Applications for Weather & Climate • Validation • Improving LSMs • Expanding role of Land Modeling as part of an integrated Earth System • Summary 5
  • 6. Outline • Role of Land Surface Models (LSMs) • Requirements: - atmospheric forcing, valid physics, land data sets/ parameters, initial land states, cycled land states • Applications for Weather & Climate • Validation • Improving LSMs • Expanding role of Land Modeling as part of an integrated Earth System • Summary 6
  • 7. Role of Land Models • Traditionally, from a coupled (atmosphere-ocean- land-ice) Numerical Weather Prediction (NWP) and climate modeling perspective, a land- surface model provides quantities to a parent atmospheric model: - Surface sensible heat flux, - Surface latent heat flux (evapotranspiration) - Upward longwave radiation (or skin temperature and surface emissivity), -  Upward (reflected) shortwave radiation (or surface albedo, including snow effects), -  Surface momentum exchange. 7
  • 8. Weather & Climate a “Seamless Suite” • Products and models are integrated & consistent throughout time & space, as well as across forecast application & domain. Land Static vegetation, Dynamic Dynamic e.g. climatology vegetation, ecosystems, modeling or realtime e.g. plant e.g. changing 8 example: observations growth land cover
  • 9. Atmospheric Energy Budget …to close the surface energy budget, & provide surface boundary conditions to NWP and climate models. seasonal storage 9
  • 10. Water Budget (Hydrological Cycle) • Land models close the surface water budget, and provide surface boundary conditions to models. 10
  • 11. History of Land Modeling (e.g. at NCEP) –  1960s (6-Layer PE model): land surface ignored •  Aside from terrain height and surface friction effects –  1970s (LFM): land surface ignored –  Late 1980s (NGM): first simple land model introduced (Tuccillo) •  Single layer soil slab (“force-restore” model: Deardorff) •  No explicit vegetation treatment •  Temporally fixed surface wetness factor •  Diurnal cycle is treated (as is PBL) with diurnal surface radiation •  Surface albedo, skin temperature, surface energy balance •  Snow cover (but not depth) –  Early1990s (Global Model): OSU land model (Mahrt& Pan, 1984) •  Multi-layer soil column (2-layers) •  Explicit annual cycle of vegetation effects •  Snow pack physics (snowdepth, SWE) –  Mid-90s (Meso Model): OSU/Noah LSM replaces Force-Restore –  Mid 2000s (Global Model): Noah replaces OSU (Ek et al 2003) –  Mid 2000s (Meso Model: WRF): Unified Noah LSM with NCAR –  2000s-10s: Noah “MP” with explicit canopy, ground water,CO2
  • 12. MODEL PREDICTIONS: PROCESSES CLOUDS INCOMING SOLAR AND LONGWAVE BOUNDARY-LAYER TURBULENT MIXING EVAPORATION HEATING THE AIR & OUTGOING LONGWAVE SOIL HEATING
  • 13. MODEL PREDICTIONS: STATES FREE ATMOSPHERE ATMOSPHERIC ATMOSPHERIC: BOUNDARY TEMPERATURE LAYER HUMIDITY WINDS SOIL: LAND-SURFACE TEMPERATURE MOISTURE
  • 14. Land-Atmosphere Interaction •  Many land-surface/atmospheric processes. •  Interactions & feedbacks between the land and atmosphere must be properly represented. •  Global Energy and Water Exchanges (GEWEX) Program / Global Land/Atmosphere System Study (GLASS) project: Accurately understand, model, and predict the role of Local Land- Atmosphere Coupling “LoCo” in water and energy cycles in weather and climate models. •  All land-atmosphere coupling is local… …initially. 14
  • 15. LoCo: Local land-atmospheric modeling • NEAR-SURFACE LOCAL COUPLING METRIC: Evaporative fraction change with changing soil moisture for both bare soil & vegetated surface = function of near- surface turbulence, canopy control, soil hydraulics & soil thermodynamics, • Utilize GHP/CEOP reference site data sets (“clean” fluxnet), • Extend to coupling with atmos. boundary- layer and entrainment processes, • Link with approaches by Santanello et al. From “GEWEX Imperatives: Plans for 2013 and Beyond” 15 15
  • 16. Land-Atmosphere Interaction Betts et al (1996) Diurnal time-scales Seasonal Century 16
  • 17. Outline • Role of Land Surface Models (LSMs) • Requirements: - atmospheric forcing, valid physics, land data sets/ parameters, initial land states, cycled land states • Applications for Weather & Climate • Validation • Improving LSMs • Expanding role of Land Modeling as part of an integrated Earth System • Summary 17
  • 18. Land Model Requirements • To provide proper boundary conditions, land model must have: -  Necessary atmospheric forcing to drive the land model, -  Appropriate physics to represent land-surface processes (for relevant time/spatial scales), - Corresponding land data sets and associated parameters, e.g. land use/land cover (vegetation type), soil type, surface albedo, snow cover, surface roughness, etc., and -  Proper initial land states, analogous to initial atmospheric conditions, though land states may carry more “memory” (e.g. especially in deep soil moisture), similar to ocean SSTs. 18
  • 19. Atmospheric Forcing to Land Model Precipitation Incoming solar Wind speed Air temperature Incoming Longwave Specific humidity 19 + Atmospheric Pressure Example from 18 UTC, 12 Feb 2011
  • 20. Unified NCEP-NCAR Noah land model •  Four soil layers (10, 30, 60, 100 cm thick). •  Linearized (non- iterative) surface energy budget; numerically efficient. •  Soil hydraulics and parameters follow Cosby et al. •  Jarvis-Stewart “big- leaf” canopy cond. •  Direct soil evaporation. •  Canopy interception. •  Vegetation-reduced soil thermal conductivity. •  Patchy/fractional snow cover effect on surface •  Freeze/thaw soil physics. fluxes; coverage treated •  Snowpack density and snow water as function of equivalent. 20 snowdepth & veg type •  Veg & soil classes parameters.
  • 21. Prognostic Equations Soil Moisture (Θ): • “Richard’s Equation”; DΘ (soil water diffusivity) and KΘ (hydraulic conductivity), are nonlinear functions of soil moisture and soil type (Cosby et al 1984); FΘ is a source/sink term for precipitation/evapotranspiration. Soil Temperature (T): • CT (thermal heat capacity) and KT (soil thermal conductivity; Johansen 1975), non-linear functions of soil/type; soil ice = fct(soil type/temp./moisture). Canopy water (Cw): • P (precipitation) increases Cw, while Ec (canopy water evaporation) decreases Cw. 21
  • 22. Surface Energy Budget Rn = Net radiation = Sê - Sé + Lê - Lé Sê = incoming shortwave (provided by atmos. model) Sé = reflected shortwave (snow-free albedo (α) provided by atmos. model; α modified by Noah model over snow) Lê = downward longwave (provided by atmos. model) Lé = emitted longwave = εσTs4 (ε=surface emissivity, σ=Stefan-Boltzmann const., Ts=surface skin temperature) H = sensible heat flux LE = latent heat flux (surface evapotranspiration) G = ground heat flux (subsurface soil heat flux) SPC = snow phase-change heat flux (melting snow) • Noah model provides: α, Lé, H, LE, G and SPC. 22
  • 23. Surface Water Budget ΔS = change in land-surface water P = precipitation R = runoff E = evapotranspiration P-R = infiltration of moisture into the soil • ΔS includes changes in soil moisture, snowpack (cold season), and canopy water (dewfall/frostfall and intercepted precipitation, which are small). • Evapotranspiration is a function of surface, soil and vegetation characteristics: canopy water, snow cover/ depth, vegetation type/cover/density & rooting depth/ density, soil type, soil water & ice, surface roughness. • Noah model provides: ΔS, R and E. 23
  • 24. Potential Evaporation (Penman) open water surface Δ = slope of saturation vapor pressure curve Rn-G = available energy" ρ = air density cp = specific heat Ch = surface-layer turbulent exchange coefficient U = wind speed δe = atmos. vapor pressure deficit (humidity) γ = psychrometric constant, fct(pressure)" 24
  • 25. Surface Latent Heat Flux (Evapotranspiration) Canopy Water Evap. (LEc) Transpiration (LEt) Bare Soil canopy water Evaporation (LEd) canopy soil • LEc is a function of canopy water % saturation. • LEt uses Jarvis (1976)-Stewart (1988) “big-leaf” canopy conductance. • LEd is a function of near-surface soil % saturation. • LEc, LEt, and LEd are all a function of LEp. 25
  • 26. Surface Latent Heat Flux (cont.) Canopy Water Evaporation (LEc): • Cw, Cs are canopy water & canopy water saturation, respectively, a function of veg. type; nc is a coeff. Transpiration (LEt): max sê • gc is canopy conductance, gcmax is maximum canopy conductance and gSê, gT, gδe, gΘ are solar, air temperature, humidity, and soil moisture availability factors, respectively, all functions of vegetation type. Bare Soil Evaporation (LEd): • Θd, Θs are dry (minimum) & saturated soil moisture contents, =fct(soil type); nd is a coefficient (nom.=2). 26
  • 27. Latent Heat Flux over Snow LE (shallow snow) < LE (deep snow) Sublimation (LEsnow) LEsnow = LEp LEsnow = LEp snowpack LEns < LEp LEns = 0 soil Shallow/Patchy Snow Deep snow Snowcover<1 Snowcover=1 • LEns = “non-snow” evaporation (evapotranspiration terms). • 100% snowcover a function of vegetation type, i.e. shallower for grass & crops, deeper for forests. 27
  • 28. Surface Sensible Heat Flux (from canopy/soil snowpack surface) canopy bare soil snowpack soil ρ, cp = air density, specific heat Ch = surface-layer turbulent exchange coeff. U = wind speed Tsfc-Tair = surface-air temperature difference • “effective” Tsfc for canopy, bare soil, snowpack. 28
  • 29. Ground Heat Flux (to canopy/soil/snowpack surface) canopy bare soil snowpack soil KT = soil thermal conductivity (function of soil type: larger for moister soil, larger for clay soil; reduced through canopy, reduced through snowpack) Δz = upper soil layer thickness Tsfc-Tsoil = surface-upper soil layer temp. difference • “effective” Tsfc for canopy, bare soil, snowpack. 29
  • 30. Land Data Sets (e.g. uncoupled Noah) Vegetation Type Soil Type Max.-Snow Albedo (1-km, USGS) (1-km, STATSGO-FAO) (1-deg, Robinson) Jan July winter summer Green Vegetation Fraction Snow-Free Albedo (monthly, 1/8-deg, NESDIS AVHRR) (seasonal, 1-deg, Matthews) • Fixed climatologies or (near real-time) observations. • Some quantities predicted/assimilated (e.g. soil moist., snow, vegetation). 30
  • 31. Land Data Sets (e.g. meso NAM) Vegetation Type Soil Type Max.-Snow Albedo (1-km, IGBP-MODIS) (1-km, STATSGO-FAO) (1-km, UAz-MODIS) mid-Jan mid-July Jan July Green Vegetation Fraction Snow-Free Albedo (weekly, 1/8-deg, (monthly, 1-km, new NESDIS/AVHRR) BU-MODIS) 31
  • 32. Land Data Sets (e.g. GFS/CFS, GLDAS) Vegetation Type Soil Type Max.-Snow Albedo (1-deg, UMD) (1-deg, Zobler) (1-deg, Robinson) Jan July Jan July Green Vegetation Fraction Snow-Free Albedo (monthly, 1/8-deg, NESDIS/ (seasonal, 1-deg, AVHRR) Matthews) 32
  • 33. Land surface model physics parameters (examples) •  Surface momentum roughness dependent on vegetation/land-use type. •  Stomatal control dependent on vegetation type, direct effect on transpiration. •  Depth of snow (snow water equivalent, or s.w.e.) for deep snow and assumption of maximum snow albedo is a function of vegetation type. •  Heat transfer through vegetation and into the soil a function of green vegetation fraction (coverage) and leaf area index (density). •  Soil thermal and hydraulic processes highly dependent on soil type (vary by orders of magnitude). 33
  • 34. Initial Land States •  Valid land state initial conditions are necessary for NWP and climate models, & must be consistent with the land model used in a given weather or climate model, i.e. from same cycling land model. •  Land states spun up in a given NWP or climate model cannot be used directly to initialize another model without a rescaling procedure because of differing land model soil moisture climatologies. May Soil Moisture Climatology from 30-year NCEP Climate Forecast System Reanalysis (CFSR), spun up from Noah land model coupled with CFS. 34
  • 35. Initial Land States (cont.) • In addition to soil moisture: the land model provides surface skin temperature, soil temperature, soil ice, canopy water, and snow depth & snow water equivalent. National Ice Air Force Weather Agency Center snow cover snow cover & depth 35
  • 36. Initial Land States (cont.) • In seasonal (and longer) climate simulations, land states are cycled so that there is an evolution in land states in response to atmospheric forcing and land model physics. • Land data set quantities may be observed and/or simulated, e.g. green vegetation fraction & leaf area index, and even land-use type (evolving ecosystems). 36
  • 37. Land Data Assimilation: Motivation • Better initial conditions of land states for numerical weather prediction (NWP) and seasonal climate model forecasts. • Assess model (physics) performance and make improvements by assimilating real land data (sets). • Application to regional and global drought monitoring and seasonal hydrological prediction. 37
  • 38. Land Data Assimilation (LDA) • Observations incorporated into weather, seasonal climate and hydrological models in analysis cycles. • In each analysis cycle, observations of current (and possibly past) state of a system are combined with results from a weather/climate/hydro model. • Analysis step is considered “best” estimate of the current state of the weather/climate/hydro system. • Analysis step balances uncertainty in data and in forecast. The model is then advanced in time & its results becomes the forecast in next analysis cycle. 38
  • 39. Land Data Assimilation (LDA) • Minimization of a "cost function” has the effect of making sure that the analysis does not drift too far away from observations and forecasts that are known to usually be reliable. 39
  • 40. Developing Land Data Assimilation Capabilities Figure 1: Snow water equivalent (SWE) based on Terra/MODIS and Aqua/AMSR-E. Figure 2: Annual average precipitation from 1998 to Future observations will be provided by JPSS/ 2009 based on TRMM satellite observations. Future observations will be provided by GPM. VIIRS and DWSS/MIS. Figure 5: Current lakes and reservoirs monitored by Figure 3: Daily soil moisture based on Aqua/ OSTM/Jason-2. Shown are current height variations AMSR-E. Future observations will be Figure 4: Changes in annual-average terrestrial relative to 10-year average levels. Future provided by SMAP. water storage (the sum of groundwater, soil water, observations will be provided by SWOT. surface water, snow, and ice, as an equivalent height C. Peters-Lidard et al of water in cm) between 2009 and 2010, based on 40 (NASA) GRACE satellite observations. Future observations will be provided by GRACE-II.
  • 41. NASA Land Information System Inputs Physics Outputs Applications Topography, Surface Land Surface Models Energy Soils SAC-HT/SNOW17 Fluxes (Static) Water Noah, CLM, VIC, Catchment (Qh,Qle) Supply & Demand Land Cover, Leaf Area Index Soil Moisture Agriculture (MODIS, AMSR, Evaporation Hydro- TRMM, SRTM) Electric Power, Meteorology: Water Modeled & Observed Surface Quality (NLDAS, DMIP II, Water GFS,GLDAS,TRMM Fluxes Improved GOES, Station) (e.g., Runoff) Short Term & Observed States Data Assimilation Modules Long Term (Snow Surface Predictions (DI, EKF, EnKF) States Soil Moisture Temperature) (Snowpack) 41 41 Christa Peters-Lidard et al., NASA/GSFC/HSB
  • 42. Soil Moisture Data Assimilation Data Assimilated: •  AMSR-E LPRM soil moisture •  AMSR-E NASA soil moisture Variables Analyzed: •  Soil Moisture •  Evapotranspiration •  Steamflow Experimental Setup: •  Domain: CONUS, NLDAS •  Resolution: 0.125 deg. •  Period: 2002-01 to 2010-01 •  Forcing: NLDASII •  LSM: Noah 2.7.1,3.2 Figure 3: Daily soil moisture based on Aqua/ AMSR-E. Future observations will be provided by SMAP. Peters-Lidard, C.D, S.V. Kumar, D.M. Mocko, Y. Tian, 2011: Estimating evapotranspiration with land data 42 assimilation systems, Hydrological Processes, 25(26), 3979--3992, DOI: 10.1002/hyp.8387
  • 43. LDA: Ensemble Kalman Filter (EnKF) From Rolf Reichle (2008) Nonlinearly propagates ensemble of model trajectories. y Can account for wide range of k model errors (incl. non-additive). Approx.: Ensemble size. Linearized update. xki state vector (eg soil moisture) Pk state error covariance Rk observation error covariance Propagation tk-1 to tk: Update at tk: xki+ = xki- + Kk(yki - xki- ) xki+ = f(xk-1i-) + wki for each ensemble member i=1…N w = model error Kk = Pk (Pk + Rk)-1 with Pk computed from ensemble spread
  • 44. Soil moisture Assimilation -> soil moisture ALL available (Evaluation vs SCAN) stations (179) Anomaly OL NASA-DA LPRM-DA correlation Surface soil 0.55 +/- 0.49 +/- 0.56 +/- moisture 0.01 0.01 0.01 (10cm) Root zone soil 0.17 +/- 0.13 +/- 0.19 +/- moisture (1m) 0.01 0.01 0.01 (21) Stations Anomaly OL NASA-DA LPRM-DA listed in correlation Reichle et al. Surface soil 0.62 +/- 0.53 +/- 0.62 +/- (2007) moisture 0.05 0.05 0.05 (10cm) Root zone soil 0.16 +/- 0.13 +/- 0.19 +/- moisture (1m) 0.05 0.05 0.05 44
  • 45. Latent Heat Flux (Qle) Estimates over US (“Observed” vs. “Modeled Open Loop” (OL)) DJF MAM JJA SON FLUXNET MOD16 GLDAS NLDAS (Noah 2.7.1) NLDAS (Noah 3.2) 1 Peters-Lidard, C.D, S.V. Kumar, D.M. Mocko, Y. Tian, 2011: Estimating evapotranspiration with land data Pg. assimilation systems, Hydrological Processes, 25(26), 3979--3992, DOI: 10.1002/hyp.8387 45
  • 46. Soil Moisture Assimilation -> Evapotranspiration (Qle) FLUXNET MOD16 RMSE Bias 1 Peters-Lidard, C.D, S.V. Kumar, D.M. Mocko, Y. Tian, 2011: Estimating evapotranspiration with land data Pg. assimilation systems, Hydrological Processes, 25(26), 3979--3992, DOI: 10.1002/hyp.8387 46
  • 47. Where Does Soil Moisture Assimilation Help Improve Qle (i.e. Reduce RMSE) ? FLUXNET MOD16 FLUXNET MOD16 DJF DJF MAM MAM JJA JJA SON SON 1 1 LPRM-DA NASA-DA Peters-Lidard, Christa D., Sujay V. Kumar, David M. Mocko and Yudong Tian, (2011), Estimating Pg. Evapotranspiration with Land Data Assimilation Systems, In press, Hyd. Proc. 47
  • 48. Where Does Soil Moisture Assimilation Help Improve Qle (i.e. Reduce RMSE) ? Qle RMSE % Difference FLUXNET MOD16 (DA-OL) Landcover type NASA-DA LPRM-DA NASA-DA LPRM-DA (Wm-2) (Wm-2) (Wm-2) (Wm-2) Evergreen needleleaf forest 17.6 7.9 10.5 -3.6 Deciduous broadleaf forest 3.2 12.7 0.3 0.7 Mixed forest 1.8 8.0 -0.7 -0.9 Woodlands 16.4 18.9 11.5 -5.9 Wooded grassland 8.8 -0.5 9.6 0.3 Closed shrubland 7.3 3.4 2.5 8.9 Open shrubland 9.0 7.4 3.6 12.1 Grassland 23.9 7.1 32.9 46.4 Cropland 12.3 34.7 30.9 40.8 Bare soil -0.1 0.6 -0.8 1.4 Urban -0.1 -0.1 -0.2 -0.3 Pg. 48
  • 49. Soil Moisture Assimilation -> Streamflow Evaluation vs. USGS gauges – by major basins 49
  • 50. Soil Moisture Assimilation -> Streamflow (average seasonal cycles of RMSE– using Xia et al. (2011) stations) NEW ENGLAND SOUTH ATLANTIC MID ATLANTIC 80 50 32 OL OL OL 70 LPRM-DA 30 LPRM-DA 45 LPRM-DA 28 60 40 26 RMSE (m3/s) RMSE (m3/s) RMSE (m3/s) 50 35 24 40 30 22 30 20 25 18 20 20 16 10 15 14 0 10 12 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec GREAT LAKES OHIO TENNESSE 26 200 18 OL OL OL 24 LPRM-DA 180 LPRM-DA LPRM-DA 16 22 160 20 RMSE (m3/s) RMSE (m3/s) RMSE (m3/s) 140 14 18 16 120 12 14 100 10 12 80 10 60 8 8 6 40 6 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec UPPER MISSISSIPPI LOWER MISSISSIPPI SOURIS RED RAINY 120 40 40 OL OL OL 110 LPRM-DA 35 LPRM-DA 35 LPRM-DA 100 30 30 RMSE (m3/s) RMSE (m3/s) RMSE (m3/s) 90 25 80 25 20 70 20 15 60 15 50 10 40 10 5 50 30 5 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 51. Soil Moisture Assimilation -> Streamflow (average seasonal cycles of RMSE– using Xia et al. (2011) stations) MISSOURI ARKANSAS-WHITE-RED 110 26 OL OL 100 LPRM-DA 24 LPRM-DA 90 22 80 RMSE (m3/s) RMSE (m3/s) 70 20 60 18 50 16 40 14 30 20 12 10 10 0 8 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec UPPER COLORADO LOWER COLORADO 10 10 OL OL 9 LPRM-DA 9 LPRM-DA 8 8 7 RMSE (m3/s) RMSE (m3/s) 7 6 6 5 5 4 4 3 3 2 2 1 1 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec GREAT BASIN PACIFIC NORTHWEST CALIFORNIA 10 OL 100 80 9 LPRM-DA OL OL 90 LPRM-DA 70 LPRM-DA 8 80 60 7 RMSE (m3/s) RMSE (m3/s) RMSE (m3/s) 6 70 50 5 60 40 4 50 30 3 40 2 30 20 1 20 10 51 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 10 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 52. SMOS (ESA satellite) soil moisture assimilation tests in the NCEP Global Forecast Model The simplified ensemble Kalman Filter (EnKF) was "  embedded in the GFS latest version to assimilate soil moisture observation "  Case: 00Z July 6, 2011. (GFS free forecast) "  Experiments: CTL: Control run EnKF: Sensitivity run 52 Weizhong Zheng and Xiwu Zhan (NESDIS/STAR)
  • 53. Comparison of Soil Moisture between GFS & SMOS SMOS CTL EnKF 53
  • 54. Comparison of Soil Moisture between GFS & SMOS SMOS CTL EnKF 54
  • 55. Improved Precipitation in EnKF vs CTL CTL EnKF OBS EnKF- CTL 55
  • 56. Snow Data Assimilation Snow Cover Fraction Comparison of snow cover fraction between the MODIS (blue circles), the open loop simulation (black line) and the assimilation simulation (green line). Snow Water Equivalent Comparison of snow water equivalent between the open loop simulation (green), the assimilation simulation (red) and the in-situ measurement (black) averaged over all SNOTEL sites in the study region. 56
  • 57. Outline • Role of Land Surface Models (LSMs) • Requirements: - atmospheric forcing, valid physics, land data sets/ parameters, initial land states, cycled land states • Applications for Weather & Climate • Validation • Improving LSMs • Expanding role of Land Modeling as part of an integrated Earth System • Summary 57
  • 58. APPLICATIONS: e.g. Noah land model in NCEP Weather and Climate models Climate led Oceans Coup CFS Hurricane 2 -Way HYCOM MOM GFDL HWRF WaveWatch III 1.7B Obs/Day Satellites 99.9% Dispersion Global Regional NAM WRF NMM Global Data Forecast (including NARR) ARL/HYSPLIT Assimilation System Severe Weather Regional Data WRF NMM/ARW Assimilation Short-Range Workstation WRF Ensemble Forecast North American Ensemble Forecast System WRF: ARW, NMM Air Quality ETA, RSM GFS, Canadian Global Model NAM/CMAQ For eca st NLDAS Rapid Update (drought) for Aviation (ARW-based) 58 NOAH Land Surface Model
  • 59. NCEP-NCAR unified Noah land model • Surface energy (linearized) & water budgets; 4 soil layers. • Forcing: downward radiation, precip., temp., humidity, pressure, wind. • Land states: Tsfc, Tsoil*, soil water* and soil ice, canopy water*, snow depth and snow density. *prognostic • Land data sets: veg. type, green vegetation fraction, soil type, snow-free albedo & maximum snow albedo. • Noah coupled with NCEP models: North American Mesoscale model (NAM; short-range), Global Forecast System (GFS; medium-range), Climate Forecast System (CFS; seasonal), and uncoupled NLDAS (drought) & GLDAS (climate & drought). 59
  • 60. Global Land Data Assimilation System (GLDAS) • GLDAS (run Noah LSM under NASA/Land Information System) forced with CFSv2/GDAS atmos. data assimil. output & blended precip. • “Blended precipitation”: satellite (CMAP; heaviest weight in tropics where gauges sparse), surface gauge (heaviest in middle latitudes) and GDAS (modeled; high latitudes). • CFSv2/GLDAS ingested into CFSv2/GDAS every 24-hours (semi –coupled) with adjustment to soil states (e.g. soil moisture). • Snow cycled in CFSv2/GLDAS if model within 0.5x to 2.0x observed value (IMS snow cover, and AFWA snow depth products), else adjusted to 0.5 or 2.0 of observed value. 60 GDAS-CMAP precip Gauge locations IMS snow cover AFWA snow depth
  • 61. Climate Forecast Syst. & 30-yr Reanalysis • Global Land Data Assimilation System (GLDAS): Daily update of land states via semi-coupled Noah model run in NASA Land Information System. •  Driven by CFS assimilation cycle atmos. forcing & “blended” precipitation obs (satellite, gauge, model). •  Reasonable land climatology: energy/water budgets. Precipitation Evaporation Runoff Soil Moisture Snow January (top), July (bottom) Climatology from 30-year NCEP CFS Reanalysis (Precip, Evap, Runoff [mm/day]; Soil Moisture, Snow [mm]) 61
  • 62. Land Modeling and Drought (NLDAS) •  North Amererican Land Data Assimilation System •  Noah (& 3 other land models) run in an uncoupled mode driven by obs. atmos. forcing to generate surface fluxes, land/soil states, runoff & streamflow. •  Land model runs provide 30-year climatology. •  Anomalies used for drought monitoring, and seasonal hydrological prediction (using climate model downscaled forcing); supports the National Integrated Drought Information System (NIDIS). July 30-year climatology July 1988 (drought year) July 1993 (flood year) 62 NLDAS four-model ensemble soil moisture monthly anomaly
  • 63. • NLDAS is a multi-model land modeling & data assimil. system… • …run in uncoupled mode driven by atmospheric forcing (using surface meteorology data sets)… • …with “long-term” retrospective and near real-time output of land-surface water and energy budgets. NLDAS Configuration: Land models
  • 64. NLDAS Data Sets and Setup
  • 65. NLDAS website www.emc.ncep.noaa.gov/mmb/nldas ldas.gsfc.nasa.gov/nldas NLDAS NLDAS Drought Monitor Drought Prediction Anomaly and percentile for six variables and three time scales: • Soil moisture, snow water, runoff, streamflow, evaporation, precipitation • Current, Weekly, Monthly
  • 66. June 1988: Drought Year Monthly total soil moisture anonamlies for NLDAS land models and ensemble mean
  • 67. June 1993: Flood Year Monthly total soil moisture anonamlies for NLDAS land models and ensemble mean
  • 68. NLDAS Seasonal Hydrological Forecast System • System uses VIC land model and includes three forecasting approaches for necessary downscaled/ ensemble temperature and precipitation forcing data sets: (1) NCEP Climate Forecast System (CFS), (2) traditional ESP, and (3) CPC. • System jointly developed by Princeton University and University of Washington. • Transitioned to NCEP/EMC local system in November 2009 as an experimental seasonal forecast system. • Run at the beginning of each month with forecast products staged on NLDAS website by mid-month. • For CFS forcing, transitioning from use of CFSv1 to now-operational CFSv2.
  • 69. Weekly Drought Forecast System Using CFS forcing Drought Monitoring (top) & Corresponding Monthly Fcst (bottom) 03 May 2012 28 June 2012 02 August 2012 Courtesy Dr. L. Luo at Michigan State U.
  • 70. Global Land Data Assimilation System (GLDAS) for drought Ÿ  GLDAS running Noah LSM part of NCEP Climate Forecast System (CFSv2) Reanalysis (CFSR) 1979-2010; similar to NLDAS. Ÿ  GLDAS/Noah uses atmospheric forcing from Climate Data Assimilation System (CDAS) from CFSR and observed precipitation. Ÿ  GLDAS part of the now operational CFSv2 (January 2011). Ÿ  GLDAS being developed for Global Drought Information System (GDIS); connections with World Climate Research Programme.
  • 71. CFSR/GLDAS Soil Moisture Climatology 71 71
  • 72. GLDAS CFSR Soil Moisture Anomaly May 1988 (US drought) May 1993 (US floods) 72 72
  • 73. GLDAS CFSR Soil Moisture Anomaly July 2012 (US drought)
  • 74. Outline • Role of Land Surface Models (LSMs) • Requirements: - atmospheric forcing, valid physics, land data sets/ parameters, initial land states, cycled land states • Applications for Weather & Climate • Validation • Improving LSMs • Expanding role of Land Modeling as part of an integrated Earth System • Summary 74
  • 75. Land Model Validation • Land model validation uses (near-) surface observations, e.g. routine weather observations of air temperature, dew point and relative humidity, 10-meter wind, along with upper-air validation, precipitation scores, etc. • To more fully validate land models, surface fluxes and soil states (soil moisture, etc) are also used. • Comparing monthly diurnal composites useful to assess systematic model biases (averaging out transient atmospheric conditions). • Such validations suggest land model physics upgrades. 75
  • 77. July 2008 diurnal monthly mean NAM (dashed line) vs obs (solid) 00-84hr, 00z cycle, 2-m temp & RH temp 1C daytime warm bias slight 1C daytime warm bias! nighttime warm bias! Western US Eastern US daytime dry bias (increasing dry trend) slight daytime dry bias RH nighttime dry bias slight nighttime dry bias 77
  • 78. Validation with flux site data (e.g. via Fluxnet , GEWEX/ CEOP reference sites). 78
  • 79. Compare monthly diurnal composites of model! output versus observations from flux sites to! assess systematic model biases. ! SURFX (Surface Flux) Network! NOAA/ATDD, Tilden Meyers et al! 79
  • 80. Ft. Peck,! Montana! (grassland)! January! 80
  • 81. Ft. Peck,! Montana! (grassland)! July! 81
  • 82. Audubon! Grassland,! Arizona! January! NOAA/ATDD Surface Flux Network! 82
  • 83. Audubon! Grassland,! Arizona! July ! NOAA/ATDD Surface Flux Network! 83
  • 84. Ozarks,! January! Missouri! (mixed forest)! NOAA/ATDD Surface Flux Network! 84
  • 85. Ozarks,! July ! Missouri! (mixed forest)! NOAA/ATDD Surface Flux Network! 85
  • 86. January! Walker Branch,! Tennessee! (deciduous forest)! NOAA/ATDD Surface Flux Network! 86
  • 87. July ! Walker Branch,! Tennessee! (deciduous forest)! NOAA/ATDD Surface Flux Network! 87
  • 88. Ft. Peck, Montana (grassland) SURFACE ENERGY BUDGET TERMS Downward Solar January 2008Upward Longwave monthly averages: model vs obs Reflected Solar Downward Longwave Sensible Heat Flux Latent Heat Flux Ground Heat Flux 88
  • 89. Ft. Peck, Montana (grassland) Sensible heat flux monthly averages: model vs obs January 2008 October 2008 better surface- layer physics in NAM vs GFS July 2007 April 2008 July 2008 89
  • 90. Ft. Peck, MT Brookings, SD model (grassland) (grassland) high bias obs Walker Branch, TN (deciduous) low bias Black Hills, SD Ozarks, MO (conifer) (deciduous) July 2005, Sensible heat flux monthly averages: NAM (North American Mesoscale) Bondville, IL model vs obs (cropland) 90
  • 91. Land Model Benchmarking • Comprehensive evaluation of land models that goes beyond traditional validation, with an established level of a priori performance for a number of metrics, e.g. modeled surface fluxes within ±ε [W/m2] of the observations, PDFs of observed & modeled surface fluxes overlap by at least X%, an annual carbon budget within Y%, etc. • Metrics depend on community, e.g. climate, weather, carbon, hydrology. • Empirical approaches: e.g. statistical, neural network, other machine learning; relationship between training and testing data sets manipulated to see how well a model utilizes available information. • Land model (physics) should be able to e.g. out-perform simple empirical models, persistence (for NWP models), climatology (for climate models). 91
  • 92. Benchmarking vs Evaluation (Martin Best et al, GEWEX/GLASS) •  Evaluation Model A Ø  Run model Model B Ø  Compare output with observations and ask: Benchmark Error q  How good is the model? •  Benchmarking Ø  Decide how good model needs to be Ø  Run model and ask: Site / Variable ü  Does model reach the level required? PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER) © Crown copyright Met Office
  • 93. Joint GEWEX/GLASS-GHP project: Land Model Benchmarking • GLASS tools, i.e. Protocol for the Analysis of Land Surface models (PALS): www.pals.unsw.edu.au. • GEWEX Hydroclimatology Panel (GHP) provides reference site/model output data sets for different regions, seasons, &variables: evaluate energy, water & carbon budgets; coupled, uncoupled model output. GHP “CEOP” reference sites Fluxnet 93 93
  • 94. Joint GEWEX/GLASS-GHP project: Land Model Benchmarking • PALS example: CABLE (BOM/Australia) land model, Bondville, IL, USA (crolandp), 1997-2006, average diurnal cycles . Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv 400 400 Total score: 1.1 Score: 0.91 Score: 2.9 Total score: 0.46 Score: 1.7 Score: 0.37 winter summer (NME) (NME) (NME) (NME) (NME) (NME) Sensible heat flux W/ m2 Sensible heat flux W/ m2 300 300 250 250 Latent heat flux W/ m2 Latent heat flux W/ m2 Observed Observed Modelled Modelled obs 200 200 150 150 100 100 model 0 50 0 50 0 0 0 6 12 18 23 0 6 12 18 23 0 6 12 18 23 0 6 12 18 23 DJF hour of day JJA hour of day DJF hour of day JJA hour of day Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv 400 400 Score: 0.51 Score: 0.55 Score: 0.57 Score: 0.28 spring autumn (NME) (NME) (NME) (NME) LE Sensible heat flux W/ m2 Sensible heat flux W/ m2 H 300 300 250 250 Latent heat flux W/ m2 Latent heat flux W/ m2 200 200 150 150 100 100 0 50 0 50 0 0 0 6 12 18 23 0 6 12 18 23 0 6 12 18 23 0 6 12 18 23 MAM hour of day SON hour of day MAM hour of day SON hour of day Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv 100 150 100 150 Total score: 0.3 Score: 0.59 Score: 0.37 Total score: 1.6 Score: 3.6 Score: 1.5 (NME) (NME) (NME) (NME) (NME) (NME) 600 600 Ground heat flux W/ m2 Ground heat flux W/ m2 Net radiation W/ m2 Net radiation W/ m2 Observed Observed Modelled Modelled 400 400 50 50 200 200 0 0 −50 −50 0 0 0 6 12 18 23 0 6 12 18 23 0 6 12 18 23 0 6 12 18 23 DJF hour of day JJA hour of day DJF hour of day JJA hour of day Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv Obs: BondvFluxnet.1.2 Model: Cab1.4bBondv 100 150 100 150 Score: 0.19 Score: 0.22 Score: 1.2 Score: 1.8 (NME) (NME) (NME) (NME) 600 600 Rn G Ground heat flux W/ m2 Ground heat flux W/ m2 Net radiation W/ m2 Net radiation W/ m2 400 400 50 50 200 200 0 0 −50 −50 0 0 94 0 6 12 18 23 0 6 12 18 23 0 6 12 18 23 0 6 12 18 23 MAM hour of day SON hour of day MAM hour of day SON hour of day
  • 95. Outline • Role of Land Surface Models (LSMs) • Requirements: - atmospheric forcing, valid physics, land data sets/ parameters, initial land states, cycled land states • Applications for Weather & Climate • Validation • Improving LSMs • Expanding role of Land Modeling as part of an integrated Earth System • Summary 95
  • 96. Land Model Improvement Surface flow Snowpack & Saturated Urban-canopy frozen soil subsurface flow model • Urban-canopy & land-use/land cover changes • Refined surface layer turbulence (esp. stable cond.) • Refined evapotranspiration (empirical Jarvis-Stewart) • Surface/subsurface lateral flow (hydrology) • Dynamic (growing) veg. with multi-layer canopy* • CO2-based photosynthesis* *Noah-MP upgrades • Groundwater/water table* • Multi-layer snowpack*, refined frozen soil processes 96
  • 97. Land Model Improvement: Transpiration Ÿ Use surface fluxes (e.g. latent and sensible) to evaluate land-surface physics formulations and parameters, e.g. invert transpiration formulation to infer canopy conductance. (Similarly for aero. cond.) 97
  • 98. Noah-MP: a land component in Mesoscale Weather Research & Forecasting (WRF) model • Noah-MP developed by Niu et al (2011, JGR), Univ. Texas-Austin, NCAR, NCEP, Univ. Arizona • Explicit canopy/subcanopy layers, dynamic (growing) vegetation, and canopy conductance based on CO2- photosynthesis • Ground water (connection with hydrology models) • Multi-layer snowpack • Implicit solution of surface energy budget (SEB, for better SEB closure) • Recent NCAR Improvements to Noah-MP version 3.5 98
  • 99. Canopy Absorbed Solar Radiation in Noah-MP SWdn What are the units of solar absorbed radiation in the canopy? -  W/m2grid : original two stream makes this assumption -  W/m2veg : Noah-MP calculates absorption for the grid shaded fraction but then applies it to the vegetated fraction Original Noah-MP uses both fractional vegetation cover (turbulent fluxes) and vegetation stem density (radiation fluxes). In the original code, these were inconsistent. For Evergreen Needleleaf Forest, the prescribed stem density gives a constant horizontal coverage of 72% while turbulent flux fractional vegetation can be any 99 value from 0% to 100%
  • 100. Noah-MP vs. Noah: Improved canopy radiation effect and surface-layer changes in coupled mesoscale WRF v3.5 Before (V3.4.1) After (Pre V3.5) • Reduced low-level (2-meter) air temperature bias 100  
  • 101. Tiled or Separate Land Model Grid Ÿ  A land model grid may comprise sub-atmospheric- grid-scale “tiles” of e.g. grass/crop/shrubland, forest, water, etc, of O(1-4km, or even less), with coarser-resolution atmospheric forcing, and an aggregate flux fed to the “parent” atmospheric. Aggregated ABL “blending” height surface • Boundary-layer issues, flux e.g. when blending height > BL depth? • Land-surface tiling run under NASA Land Information System (LIS); other LIS tools. • NASA/LIS to be part of 5-50km NOAA Environmental Modeling System surface tiles with different fluxes (NEMS). 101
  • 102. Upgraded land/surface-layer physics: Improvement of Satellite Data Utilization over Desert & Arid Regions in NCEP Operational NWP Modeling and Data Assimilation Systems • Change to surface-layer turbulence physics (thermal roughness change) and surface microwave emissivity MW model… •…yields a reduction of large bias in calculated brightness temperatures was found for infrared and microwave satellite sensors for surface channels… •…so many more satellite measurements can be utilized in GSI data assimilation system. 102
  • 103. LST [K] Verification with GOES 3-Day Mean: July 1-3, 2007 (a) and SURFRAD GFS-GOES: (b GFS-GOES: New ) CTR Zot Large cold (c) (d bias LST ) Ch Improved significantly Aerodynamic 103103 during daytime! conductance: CTR vs Zot
  • 104. Outline • Role of Land Surface Models (LSMs) • Requirements: - valid physics, land data sets/parameters, initial land states, atmospheric forcing, cycled land states • Applications for Weather & Climate • Validation • Improving LSMs • Expanding role of Land Modeling as part of an integrated Earth System • Summary 104
  • 105. Expanding Role of Land Models Ÿ In more fully-coupled Earth System models, role is changing, with Weather & Climate connections to: Hydrology (soil moisture & ground water/water tables, irrigation and groundwater extraction, water quality, streamflow and river discharge to oceans, drought/flood, lakes, and reservoirs with management, etc), Biogeochemical cycles (application to ecosystems --terrestrial & marine, dynamic vegetation and biomass, carbon budgets, etc.) Air Quality (interaction with boundary-layer, biogenic emissions, VOC, dust/aerosols, etc.) Ÿ More constraints, i.e. we must close the energy and water budgets, and those related to air quality and biogeochemical cycles. 105