SlideShare uma empresa Scribd logo
1 de 37
Epigenética. Más allá de los genes…
Índice. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
1. La Epigenética. Se define a la epigenética como el estudio  de los cambios heredables que se producen en la función génica sin ningún cambio en la  secuencia de ADN, es decir, son los factores  que alteran el ADN sin que se altere el orden  de la secuencia de bases nitrogenadas del ADN. Estos cambios son causados por factores externos, provocando alteraciones epigenéticas. A estas alteraciones se llaman  “epimutaciones” .
1.La Epigenética. Estas “epimutaciones”  se producen a lo largo de toda nuestra vida.  Pero a diferencia de la genética; la epigenética  es un proceso reversible, ya que los mecanismos que interviene en este proceso están regulados por enzimas.   El control epigenético ocurre de dos maneras diferentes:  la metilación del ADN y el mecanismo de interacción entre las histonas y el ADN.  Las principales investigaciones de epigenética se llevan a cabo en el Instituto Nacional de Oncológica.
2.Historia de la epigenética. ,[object Object],[object Object],Posteriormente Aristóteles pensaba que crecíamos de  materias amorfas que se desarrollaban dentro de la madre, gracias al padre.   ,[object Object],[object Object],[object Object],[object Object],Gregor Mendel.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],“ Parece que los cambios en el genotipo sólo tienen efectos en la  evolución si traen consigo alteraciones en el proceso epigenético por el que se forman los fenotipos; y los tipos de cambio posible en el adulto o en cualquier animal están limitados a las posibles alteraciones en el sistema epigenético por el que éste se produce.” Waddington 1953: 190. Conrad Waddington.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
2.1.Breve biografía de Conrad Waddington.   Waddington fue uno de los mayores integradores entre genética, embriología y evolución, un interés que se refleja en su trayectoria académica.  En 1929 empieza a trabajar en el Laboratorio Strangeways y un año más tarde,  presenta sus primeros resultados sobre el cultivo de embriones de pollo en el Congreso Internacional de Citología Experimental. Partidario del ecologismo y de las teorías pacifistas, fue uno de los miembros fundadores del Club de Roma. Entre 1938 y 1940 Waddington escribió varios textos dedicados a la acción ontogenética de los genes, destacando el libro  Organisers and Genes  (1940). En 1939 Waddington realizó una estancia de tres meses con el grupo de genetistas del California Institute of Technology donde empezó a aplicar el tipo de técnicas  utilizadas por Salomé Gluecksohn-Schoenheimer en ratones a Drosophila.
3.  Metilación del ADN. La metilación es un proceso químico en el cual se añaden pequeñas  moléculas de metilo (CH3-) a las bases  nitrogenadas del ADN. La unión de estas pequeñas de metilo  actúan como un “interruptor” de genes, es decir, inhiben o expresan la expresión  de un determinado gen.  La metilación tiene lugar, principalmente, en las citosinas de los dinucleótidos CpG.   Este proceso también pueden afectar a las histonas.
Las islas CpG son regiones del ADN entre 0.5 y 5 Kb (un Kb son alrededor de mil pares de bases (Pb). Un Pb equivale a 3.4 Å) que presentan una proporción de dinucleótidos G:C  del 55% y suponen alrededor del 1% del genoma humano. Estas “islas” no se encuentran  metiladas, pero su metilación provoca que determinados genes se puedan expresar  o inhibir.  No intervienen en procesos relacionados con la expresión de la  información genética.
La metilación está regulado por unas enzimas llamadas ADN-metiltransferasas, las cuales metilan el ADN durante la replicación de este, causando que las células preneoplásicas,  cancerosas y envejecidas comparten  tres cambios importantes en los niveles de metilación: 1. La hipometilación de la heterocromatina  que conduce a una inestabilidad genómica e  incrementa los eventos de recombinación mitótica.  2. La hipermetilación de genes individuales.   3. La hipermetilación de la islas CpG de genes  constitutivos.
Los tres niveles de metilación pueden presentarse en forma individual o simultánea.  La hipermetilación está involucrada con el silenciamiento de genes y la hipometilación con la sobre-expresión de ciertas proteínas involucradas en los procesos de invasión y metástasis en el cáncer.
3.1.  Modificación de las histonas . Las modificaciones de las histonas las realizan enzimas que ayudan en  la expresión de un gen (acetil transferasas de histonas, HAT) o  que reprimen o silencian su expresión (DNA metil trasferasas, metil tranferasas  de histonas y desacetilasa de histonas HDAC).  Además de estas existen las kinasas,  ubiquitin ligasas y sumoil ligasas que regulan tanto de forma positiva como negativa la expresión  de genes.
El proceso que más modifica a las histonas es la acetilación,  llevada a cabo por unas proteínas denominadas histona acetil transferasas (HATs).  Las HATs se activan en su mayoría por fosforilación. Esta reacción requiere del cofactor acetilCoA que entrega  su grupo acetil.  Estas modificaciones de las histonas pueden  ser heredadas, y por tanto influyen en la  expresión génica, ya que cambian la arquitectura  local de la cromatina y pueden reclutar otras  proteínas que reconozcan  las modificaciones  específicas de las histonas según la hipótesis llamada el “código de las  histonas”.
La acetilación de las histonas regula la expresión de genes relacionados con la inflamación que se desarrolla en determinadas  enfermedades y también  tiene funciones tales como la reparación de ADN y proliferación celular. Algunos estudios  determinan que ciertos patrones de modificación de las histonas conducen  a determinadas patologías entre las que podrían encontrarse,  además de patologías tumorales, patologías inflamatorias de localización broncopulmonar como el asma.
4.  Futuro de la epigenética: Dado que la epigenética es una ciencia que está empezando a desarrollarse el futuro de la epigenética se centra en el descubrimiento  de todas las  “ epimutaciones” que afectan a nuestro genoma. La epigenética nos puede ayudar a paliar  las enfermedades que antes eran difíciles de curar.  Algunos países como Estados Unidos o  la Unión Europa están realizando sustanciales esfuerzos para llevar a cabo programas de investigación para encontrar los fármacos que nos puedan ayudar.
Las principales investigaciones en el campo de la epigenética en España se están llevando a cabo por Manuel Esteller y su equipo  El futuro de la epigenética no solo va centrado a la cura de determinadas enfermedades, sino también como influye el medio ambiente sobre nosotros y nuestra vida. Manuel Esteller y su equipo (CNIO).
4.1.  Enfermedades epigenéticas. Las principales enfermedades que la  epigenética está intentado curar son el cáncer, la esquizofrenia y el alzhéimer.  También se están intentando curar algunas enfermedades muy específicos  como determinados síndromes que proceden a la leucemia o al Alzheimer. La mayoría de estas enfermedades, presentan una alta metilación de  las células del paciente.
4.1.1  El cáncer. Aunque tiene una procedencia genética, se han realizado estudios  en el que se ha demostrado que este factor no era tan importante, ya  que las células tumorales presentan una metilación mayor del ADN  que las células vecinas. Se han descrito alteraciones epigenéticas  como alteraciones en el patrón de metilación de determinados genes, pérdida de la impronta o alteraciones a gran escala de la   cromatina.
Por ejemplo, la activación de la expresión de la proteína de unión a calcio S100 A4 en el cáncer de colon es un ejemplo de alteración en el patrón de metilación.  En estas células tumorales el gen que codifica la proteína S100 A4 se encuentra hipometilado permitiéndose la expresión y síntesis de la proteína  Otra alteración es la aparición de metástasis, que causa el 90% de las muertes de pacientes con cáncer.  La metástasis provoca que las células  donde se origina el nuevo tumor sufran una mayor modificación de su ADN y por tanto que también se vuelvan cancerosas.
Recientemente se ha descubierto que las células tumorales presentan la pérdida de actividad de unas pequeñas moléculas denominadas microRNAs, que en las células sanas se encargan de frenar el crecimiento y división celular, así como de fijarlas en su tejido correspondiente.  En el desarrollo del cáncer estos microRNAs dejan de producirse debido a que los grupos químicos metilo bloquean su expresión, por lo que la célula empieza a dividirse frenéticamente, se despega de su sustrato y migra a estructuras  vecinas. Algunos estudios epigenéticos se centran en  la metilación anómala de los microRNAs, los cuales podrían ser utilizada como un biomarcador para predecir  el riesgo de tener metástasis cuando se produce el diagnóstico de cáncer. A través de estos estudios puede determinar el manejo  clínico más adecuado del paciente.
Sin embargo, hoy en día hay muchas curar para el cáncer. El de testículos y el de piel no melanoma poseen un 90% de curación; y  el cáncer de mama localizado, un 80%.  Cáncer de pulmón. Sin embargo, con otros tipos de cáncer pasa lo contrario.  Por tanto el futuro de los tratamientos contra el  cáncer es curar todos esos cánceres que presentan un porcentaje muy elevado de no curación. En el mercado hay dos fármacos para tratar determinados tipos de  subcáncer.
Estos fármacos corrigen la metilación, pero existen además otras opciones en estudio, aún no autorizadas ni en Europa ni en Estados Unidos, cuyo mecanismo de acción consiste en inducir la acetilación de las histonas.
4.1.2  La esquizofrenia. Si bien la predisposición a desarrollar esquizofrenia ha  sido atribuido a un componente genético, pero la evidencia experimental de  los últimos años sugiere que este trastorno puede ser el resultado de una alteración  epigenética.  La epigenética dice que la fisiopatología de la enfermedad se sostiene en cambios de la expresión génica causados por cambios en la secuencia del ADN, principalmente en los genes en los  que se encuentra la información para sintetizar la enzima ácido glutámico  descarboxilasa.  Esta enzima es la encargada de sintetizar el ácido amino butírico (GABA), (es el principal neurotransmisor inhibitorio cerebral), cuyos genes codificantes están  hipermetilados en pacientes con esquizofrenia cuando se los compara con  individuos sanos.
Ácido amino butírico  Esto determina un menor nivel de expresión de la enzima y niveles disminuidos de GABA, lo que involucra íntimamente a este  neurotransmisor en el desarrollo de la  esquizofrenia. Pero para algunos científicos el factor ambiental que determina la esquizofrenia  es la edad del padre ya que cada vez que se generan nuevos  espermatozoides se da una oportunidad a una nueva mutación epigenética . Entre los factores de riesgo que pueden crear estas mutaciones  epigenéticas del esperma del padre están los efectos de la exposición  a sustancias tóxicas, infecciones, deficiencias nutricionales, o por otro  lado un déficit en las enzimas que reparan el ADN, o los errores de otros factores que influyen en la fidelidad de la información genética masculina. En el trascurso de los años, todos estos factores pueden irse acumulando.
Sin embargo hay factores de riesgo maternos, como las infecciones o la mala nutrición en el primer o segundo trimestres de embarazo,  las complicaciones en el parto o el hecho de que el alumbramiento se produzca en invierno ( la calidad de los alimentos son más bajos que en verano) aumentan la probabilidad de que el hijo padezca la enfermedad.  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],http://es.kendincos.net/video-tvnjlrh-esquizofrenia-hipotesis-epigenetica.html
4.2.3  El alzhéimer.  Se ha observado que las neuronas de los pacientes afectados de esta enfermedad, poseen una metilación insuficiente de los genes que codifican la proteína tau. Esta proteína es la encargada de mantener los microtúbulos del  citoesqueleto de las neuronas, y el más mínimo cambio de la  proteína provoca la destrucción del citoesqueleto.
Cuando esto sucede, los microtúbulos se desintegran, colapsando el sistema de transporte de las neuronas. Esto puede dar lugar inicialmente al mal funcionamiento de la comunicación entre las neuronas y posteriormente a la  muerte de las células. Otro hallazgo parece implicar a la proteína beta amiloide, que deriva de la Proteína  precursora amiloidea (en inglés, APP, por Amyloid Precursor Protein) es una  proteína integral de membrana, y es expresada es muchos tipos de tejidos, y  está concentrada en la sinapsis entre neuronas. Proteína beta amiloide.
La beta amiloide está implicada en el desarrollo de las placas aminoleideas que se encuentran en los pacientes con esta enfermedad. Las placas aminoleideas forman pequeñas costras que impiden la sinapsis entre las neuronas, y su origen es debido a una hipofosforilación del gen que  codifica a la APP.
4.2.  Fármacos epigenéticos. En la actualidad los fármacos que se están desarrollando van encaminados a  la curación del cáncer y la esquizofrenia, añadiendo o quitando la metilación que han sufrido las células en estas enfermedades.  Para el cáncer se usa el  TRANSKRIP , un medicamento  desarrollado por Laboratorios Alpharma.  En el mercado, actualmente, hay cinco medicamentos  epigenéticos.
Tambien se usa el CONACYT ,  en el que se ha observado que su uso  inactiva por metilación a los oncogenes proliferadores, provocando que los pacientes que han recibido este tratamiento, el tumor deje de aumentar de tamaño. Componentes básicos del Conacyt. Otros medicamentos son el Vidaza y  Decitabine, que se encuentra en fase clínica, pero parece se que su uso  provoca que las células hipermetiladas de la esquizofrenia y cáncer recuperen parte de la metilación  que deberíantener.
Para el alzhéimer, las investigaciones actuales no han producido ningún medicamento efectivo contra la enfermedad.  Pero se están desarrollando medicamentos para  controlar la metilación que presenta  el gen que codifica a la proteína tau.  También se están desarrollando fármacos para determinados tipos de síndromes muy específicos.
5.  Trabajo de campo. Nuestro trabajo de campo son el estudio de las investigaciones actuales que se están llevando a cabo de epigenética, especialmente en Europa y Estados Unidos. La principal investigación es la elaboración del royecto Epigenoma  Humano que con él se pretende realizar un mapa  exhaustivo de las metilaciones y modificaciones de las histonas.
Las investigaciones de la doctora Susan Gasser se basan en la  marcación y  seguimiento de  los movimientos de los componentes nucleares cuando éstos se organizan en las células de la levadura, para determinar la metilación que  sufre el ADN durante la replicación. En Munich, Alemania, se está investigando la metilación de las células madres, ya que esta es responsable de la especialización que sufren las células del  organismo. En Nápoles, se está investigando cómo nuestros genes puden llegan a estar  bloqueados, inactivados y, quizás más tarde, reactivados. Los elementos que utilizan para comprender el control del genoma proceden principalmente de su investigación con la mosca de la fruta, aunque también han desarrollado  técnicas para observar células de mamífero in vitro. Tanto las moscas como los mamíferos emplean genes homeóticos (de plan corporal) en su crecimiento y desarrollo.
En España, las investigaciones son realizadas por Manuel Esteller, donde se centra principalmente en el estudio de las enfermedades epigenéticas. En el Reino Unido se están llevando  investigaciones sobre la  acetilación de las histonas por  diferentes laboratorios.  En Francia un grupo de científicos  están estudiando la conexión que hay entre genética  y epigenética.
6.  Conclusión. La diversidad de factores epigenéticos y de procesos asociados tienen un potencial de investigación. Ya son cincuenta años desde que Conrad y col. relacionaron la acetilación de las histonas a un aumento en la cantidad de RNA.  A través del entendimiento y del avance en nuevas herramientas será mas rápido entender el mecanismo por el cual la célula regula la expresión de un gen. Así,  sumado a la característica hereditaria de un individuo en una población, la cantidad y calidad de la expresión de un gen esta también determinada por este código  epigenético el que no se encuentra archivado en el Proyecto Genoma Humano.
Por tanto la expresión de un gen esta estrechamente ligada al estímulo, a la probabilidad de que ciertos  patrones de silenciamiento dados en la división celular permitan su expresión y a que la capacidad de la célula de responder frente al estimulo. Finalmente todavía nos quedan muchas cosas por descubrir sobre nuestro Epigenoma. http:// www.publicidadysalud.com /2009/10/de-los-remedios-de-la-abuela-a-la- epigenetica

Mais conteúdo relacionado

Mais procurados

T4 la revolucion genetica
T4 la revolucion geneticaT4 la revolucion genetica
T4 la revolucion genetica
Eduardo Gómez
 
Agentes mutagenos
Agentes mutagenosAgentes mutagenos
Agentes mutagenos
Lorena1891
 
Mutaciones
MutacionesMutaciones
Mutaciones
ggeorge_
 
Enfermedades autosómicas dominantes
Enfermedades autosómicas dominantesEnfermedades autosómicas dominantes
Enfermedades autosómicas dominantes
Montserrat It
 
Codigo Genetico
Codigo GeneticoCodigo Genetico
Codigo Genetico
jent46
 
Alteraciones de la información genética
Alteraciones de la información genéticaAlteraciones de la información genética
Alteraciones de la información genética
Julio Sanchez
 

Mais procurados (20)

13.mecanismo epigenéticos
13.mecanismo epigenéticos13.mecanismo epigenéticos
13.mecanismo epigenéticos
 
T4 la revolucion genetica
T4 la revolucion geneticaT4 la revolucion genetica
T4 la revolucion genetica
 
Proceso de traducción del adn
Proceso de traducción del adnProceso de traducción del adn
Proceso de traducción del adn
 
Mutaciones genéticas 1
Mutaciones genéticas 1Mutaciones genéticas 1
Mutaciones genéticas 1
 
Concepto de mutación. Importancia de las mutaciones como mecanismos de variab...
Concepto de mutación. Importancia de las mutaciones como mecanismos de variab...Concepto de mutación. Importancia de las mutaciones como mecanismos de variab...
Concepto de mutación. Importancia de las mutaciones como mecanismos de variab...
 
Epigenética y su impacto en la salud
Epigenética y su impacto en la saludEpigenética y su impacto en la salud
Epigenética y su impacto en la salud
 
Mutaciones espontaneas
Mutaciones espontaneasMutaciones espontaneas
Mutaciones espontaneas
 
Agentes mutagenos
Agentes mutagenosAgentes mutagenos
Agentes mutagenos
 
El fujo de la información genética
El fujo de la información genéticaEl fujo de la información genética
El fujo de la información genética
 
Mutaciones
MutacionesMutaciones
Mutaciones
 
Enfermedades autosómicas dominantes
Enfermedades autosómicas dominantesEnfermedades autosómicas dominantes
Enfermedades autosómicas dominantes
 
Inhibidores de la CTE
Inhibidores de la CTEInhibidores de la CTE
Inhibidores de la CTE
 
HERENCIA EPIGENÉTICA E IMPRONTA GENÓMICA
HERENCIA EPIGENÉTICA E IMPRONTA GENÓMICAHERENCIA EPIGENÉTICA E IMPRONTA GENÓMICA
HERENCIA EPIGENÉTICA E IMPRONTA GENÓMICA
 
Mutación. polimorfismos
Mutación. polimorfismosMutación. polimorfismos
Mutación. polimorfismos
 
Clase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipoClase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipo
 
Breve historia de la genética
Breve historia de la genéticaBreve historia de la genética
Breve historia de la genética
 
Transcripcion del ADN
Transcripcion del ADNTranscripcion del ADN
Transcripcion del ADN
 
Las mutaciones
Las mutacionesLas mutaciones
Las mutaciones
 
Codigo Genetico
Codigo GeneticoCodigo Genetico
Codigo Genetico
 
Alteraciones de la información genética
Alteraciones de la información genéticaAlteraciones de la información genética
Alteraciones de la información genética
 

Semelhante a EpigenéTica Crescencio Perez

Alteraciones de la información genética
Alteraciones de la información genéticaAlteraciones de la información genética
Alteraciones de la información genética
Julio Sanchez
 

Semelhante a EpigenéTica Crescencio Perez (20)

Alteraciones de la Informacion Genetica
Alteraciones de la Informacion GeneticaAlteraciones de la Informacion Genetica
Alteraciones de la Informacion Genetica
 
MUTACIONES
MUTACIONESMUTACIONES
MUTACIONES
 
Mutaciones genéticas
Mutaciones genéticasMutaciones genéticas
Mutaciones genéticas
 
Mutaciones genéticas
Mutaciones genéticasMutaciones genéticas
Mutaciones genéticas
 
Angelaperez alteraciones geneticas
Angelaperez alteraciones geneticasAngelaperez alteraciones geneticas
Angelaperez alteraciones geneticas
 
Tema 16
Tema 16Tema 16
Tema 16
 
Tema 16
Tema 16Tema 16
Tema 16
 
Hemofilia.
Hemofilia.Hemofilia.
Hemofilia.
 
Epigenetica la-esencia-del-cambio.-como ves-pdf
Epigenetica la-esencia-del-cambio.-como ves-pdfEpigenetica la-esencia-del-cambio.-como ves-pdf
Epigenetica la-esencia-del-cambio.-como ves-pdf
 
Trabajo expresion genetica
Trabajo  expresion geneticaTrabajo  expresion genetica
Trabajo expresion genetica
 
Alteraciones de la información genética
Alteraciones de la información genéticaAlteraciones de la información genética
Alteraciones de la información genética
 
Electivo 5 C2
Electivo 5 C2Electivo 5 C2
Electivo 5 C2
 
Epigenetica y psiquiatría
Epigenetica y psiquiatríaEpigenetica y psiquiatría
Epigenetica y psiquiatría
 
Anomalias geneticas
Anomalias geneticasAnomalias geneticas
Anomalias geneticas
 
alteración de la información Genetica
alteración de la información Geneticaalteración de la información Genetica
alteración de la información Genetica
 
Mutaciones Genéticas: Hemofilia
Mutaciones Genéticas: HemofiliaMutaciones Genéticas: Hemofilia
Mutaciones Genéticas: Hemofilia
 
Mutaciones Genéticas "Hemofilia"
Mutaciones Genéticas "Hemofilia"Mutaciones Genéticas "Hemofilia"
Mutaciones Genéticas "Hemofilia"
 
Malformaciones geneticas
Malformaciones  geneticasMalformaciones  geneticas
Malformaciones geneticas
 
Argumentos cientificos inicio de la vida
Argumentos cientificos inicio de la vidaArgumentos cientificos inicio de la vida
Argumentos cientificos inicio de la vida
 
Malformacionesgeneticas seylitzdiaz17228519
Malformacionesgeneticas seylitzdiaz17228519Malformacionesgeneticas seylitzdiaz17228519
Malformacionesgeneticas seylitzdiaz17228519
 

Último

redes informaticas en una oficina administrativa
redes informaticas en una oficina administrativaredes informaticas en una oficina administrativa
redes informaticas en una oficina administrativa
nicho110
 

Último (12)

investigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXIinvestigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXI
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
Buenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptxBuenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptx
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
redes informaticas en una oficina administrativa
redes informaticas en una oficina administrativaredes informaticas en una oficina administrativa
redes informaticas en una oficina administrativa
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
 

EpigenéTica Crescencio Perez

  • 1. Epigenética. Más allá de los genes…
  • 2.
  • 3. 1. La Epigenética. Se define a la epigenética como el estudio de los cambios heredables que se producen en la función génica sin ningún cambio en la secuencia de ADN, es decir, son los factores que alteran el ADN sin que se altere el orden de la secuencia de bases nitrogenadas del ADN. Estos cambios son causados por factores externos, provocando alteraciones epigenéticas. A estas alteraciones se llaman “epimutaciones” .
  • 4. 1.La Epigenética. Estas “epimutaciones” se producen a lo largo de toda nuestra vida. Pero a diferencia de la genética; la epigenética es un proceso reversible, ya que los mecanismos que interviene en este proceso están regulados por enzimas. El control epigenético ocurre de dos maneras diferentes: la metilación del ADN y el mecanismo de interacción entre las histonas y el ADN. Las principales investigaciones de epigenética se llevan a cabo en el Instituto Nacional de Oncológica.
  • 5.
  • 6.
  • 7.
  • 8. 2.1.Breve biografía de Conrad Waddington. Waddington fue uno de los mayores integradores entre genética, embriología y evolución, un interés que se refleja en su trayectoria académica. En 1929 empieza a trabajar en el Laboratorio Strangeways y un año más tarde, presenta sus primeros resultados sobre el cultivo de embriones de pollo en el Congreso Internacional de Citología Experimental. Partidario del ecologismo y de las teorías pacifistas, fue uno de los miembros fundadores del Club de Roma. Entre 1938 y 1940 Waddington escribió varios textos dedicados a la acción ontogenética de los genes, destacando el libro Organisers and Genes (1940). En 1939 Waddington realizó una estancia de tres meses con el grupo de genetistas del California Institute of Technology donde empezó a aplicar el tipo de técnicas utilizadas por Salomé Gluecksohn-Schoenheimer en ratones a Drosophila.
  • 9. 3. Metilación del ADN. La metilación es un proceso químico en el cual se añaden pequeñas moléculas de metilo (CH3-) a las bases nitrogenadas del ADN. La unión de estas pequeñas de metilo actúan como un “interruptor” de genes, es decir, inhiben o expresan la expresión de un determinado gen. La metilación tiene lugar, principalmente, en las citosinas de los dinucleótidos CpG. Este proceso también pueden afectar a las histonas.
  • 10. Las islas CpG son regiones del ADN entre 0.5 y 5 Kb (un Kb son alrededor de mil pares de bases (Pb). Un Pb equivale a 3.4 Å) que presentan una proporción de dinucleótidos G:C del 55% y suponen alrededor del 1% del genoma humano. Estas “islas” no se encuentran metiladas, pero su metilación provoca que determinados genes se puedan expresar o inhibir. No intervienen en procesos relacionados con la expresión de la información genética.
  • 11. La metilación está regulado por unas enzimas llamadas ADN-metiltransferasas, las cuales metilan el ADN durante la replicación de este, causando que las células preneoplásicas, cancerosas y envejecidas comparten tres cambios importantes en los niveles de metilación: 1. La hipometilación de la heterocromatina que conduce a una inestabilidad genómica e incrementa los eventos de recombinación mitótica. 2. La hipermetilación de genes individuales. 3. La hipermetilación de la islas CpG de genes constitutivos.
  • 12. Los tres niveles de metilación pueden presentarse en forma individual o simultánea. La hipermetilación está involucrada con el silenciamiento de genes y la hipometilación con la sobre-expresión de ciertas proteínas involucradas en los procesos de invasión y metástasis en el cáncer.
  • 13. 3.1. Modificación de las histonas . Las modificaciones de las histonas las realizan enzimas que ayudan en la expresión de un gen (acetil transferasas de histonas, HAT) o que reprimen o silencian su expresión (DNA metil trasferasas, metil tranferasas de histonas y desacetilasa de histonas HDAC). Además de estas existen las kinasas, ubiquitin ligasas y sumoil ligasas que regulan tanto de forma positiva como negativa la expresión de genes.
  • 14. El proceso que más modifica a las histonas es la acetilación, llevada a cabo por unas proteínas denominadas histona acetil transferasas (HATs). Las HATs se activan en su mayoría por fosforilación. Esta reacción requiere del cofactor acetilCoA que entrega su grupo acetil. Estas modificaciones de las histonas pueden ser heredadas, y por tanto influyen en la expresión génica, ya que cambian la arquitectura local de la cromatina y pueden reclutar otras proteínas que reconozcan las modificaciones específicas de las histonas según la hipótesis llamada el “código de las histonas”.
  • 15. La acetilación de las histonas regula la expresión de genes relacionados con la inflamación que se desarrolla en determinadas enfermedades y también tiene funciones tales como la reparación de ADN y proliferación celular. Algunos estudios determinan que ciertos patrones de modificación de las histonas conducen a determinadas patologías entre las que podrían encontrarse, además de patologías tumorales, patologías inflamatorias de localización broncopulmonar como el asma.
  • 16. 4. Futuro de la epigenética: Dado que la epigenética es una ciencia que está empezando a desarrollarse el futuro de la epigenética se centra en el descubrimiento de todas las “ epimutaciones” que afectan a nuestro genoma. La epigenética nos puede ayudar a paliar las enfermedades que antes eran difíciles de curar. Algunos países como Estados Unidos o la Unión Europa están realizando sustanciales esfuerzos para llevar a cabo programas de investigación para encontrar los fármacos que nos puedan ayudar.
  • 17. Las principales investigaciones en el campo de la epigenética en España se están llevando a cabo por Manuel Esteller y su equipo El futuro de la epigenética no solo va centrado a la cura de determinadas enfermedades, sino también como influye el medio ambiente sobre nosotros y nuestra vida. Manuel Esteller y su equipo (CNIO).
  • 18. 4.1. Enfermedades epigenéticas. Las principales enfermedades que la epigenética está intentado curar son el cáncer, la esquizofrenia y el alzhéimer. También se están intentando curar algunas enfermedades muy específicos como determinados síndromes que proceden a la leucemia o al Alzheimer. La mayoría de estas enfermedades, presentan una alta metilación de las células del paciente.
  • 19. 4.1.1 El cáncer. Aunque tiene una procedencia genética, se han realizado estudios en el que se ha demostrado que este factor no era tan importante, ya que las células tumorales presentan una metilación mayor del ADN que las células vecinas. Se han descrito alteraciones epigenéticas como alteraciones en el patrón de metilación de determinados genes, pérdida de la impronta o alteraciones a gran escala de la cromatina.
  • 20. Por ejemplo, la activación de la expresión de la proteína de unión a calcio S100 A4 en el cáncer de colon es un ejemplo de alteración en el patrón de metilación. En estas células tumorales el gen que codifica la proteína S100 A4 se encuentra hipometilado permitiéndose la expresión y síntesis de la proteína Otra alteración es la aparición de metástasis, que causa el 90% de las muertes de pacientes con cáncer. La metástasis provoca que las células donde se origina el nuevo tumor sufran una mayor modificación de su ADN y por tanto que también se vuelvan cancerosas.
  • 21. Recientemente se ha descubierto que las células tumorales presentan la pérdida de actividad de unas pequeñas moléculas denominadas microRNAs, que en las células sanas se encargan de frenar el crecimiento y división celular, así como de fijarlas en su tejido correspondiente. En el desarrollo del cáncer estos microRNAs dejan de producirse debido a que los grupos químicos metilo bloquean su expresión, por lo que la célula empieza a dividirse frenéticamente, se despega de su sustrato y migra a estructuras vecinas. Algunos estudios epigenéticos se centran en la metilación anómala de los microRNAs, los cuales podrían ser utilizada como un biomarcador para predecir el riesgo de tener metástasis cuando se produce el diagnóstico de cáncer. A través de estos estudios puede determinar el manejo clínico más adecuado del paciente.
  • 22. Sin embargo, hoy en día hay muchas curar para el cáncer. El de testículos y el de piel no melanoma poseen un 90% de curación; y el cáncer de mama localizado, un 80%. Cáncer de pulmón. Sin embargo, con otros tipos de cáncer pasa lo contrario. Por tanto el futuro de los tratamientos contra el cáncer es curar todos esos cánceres que presentan un porcentaje muy elevado de no curación. En el mercado hay dos fármacos para tratar determinados tipos de subcáncer.
  • 23. Estos fármacos corrigen la metilación, pero existen además otras opciones en estudio, aún no autorizadas ni en Europa ni en Estados Unidos, cuyo mecanismo de acción consiste en inducir la acetilación de las histonas.
  • 24. 4.1.2 La esquizofrenia. Si bien la predisposición a desarrollar esquizofrenia ha sido atribuido a un componente genético, pero la evidencia experimental de los últimos años sugiere que este trastorno puede ser el resultado de una alteración epigenética. La epigenética dice que la fisiopatología de la enfermedad se sostiene en cambios de la expresión génica causados por cambios en la secuencia del ADN, principalmente en los genes en los que se encuentra la información para sintetizar la enzima ácido glutámico descarboxilasa. Esta enzima es la encargada de sintetizar el ácido amino butírico (GABA), (es el principal neurotransmisor inhibitorio cerebral), cuyos genes codificantes están hipermetilados en pacientes con esquizofrenia cuando se los compara con individuos sanos.
  • 25. Ácido amino butírico Esto determina un menor nivel de expresión de la enzima y niveles disminuidos de GABA, lo que involucra íntimamente a este neurotransmisor en el desarrollo de la esquizofrenia. Pero para algunos científicos el factor ambiental que determina la esquizofrenia es la edad del padre ya que cada vez que se generan nuevos espermatozoides se da una oportunidad a una nueva mutación epigenética . Entre los factores de riesgo que pueden crear estas mutaciones epigenéticas del esperma del padre están los efectos de la exposición a sustancias tóxicas, infecciones, deficiencias nutricionales, o por otro lado un déficit en las enzimas que reparan el ADN, o los errores de otros factores que influyen en la fidelidad de la información genética masculina. En el trascurso de los años, todos estos factores pueden irse acumulando.
  • 26.
  • 27. 4.2.3 El alzhéimer. Se ha observado que las neuronas de los pacientes afectados de esta enfermedad, poseen una metilación insuficiente de los genes que codifican la proteína tau. Esta proteína es la encargada de mantener los microtúbulos del citoesqueleto de las neuronas, y el más mínimo cambio de la proteína provoca la destrucción del citoesqueleto.
  • 28. Cuando esto sucede, los microtúbulos se desintegran, colapsando el sistema de transporte de las neuronas. Esto puede dar lugar inicialmente al mal funcionamiento de la comunicación entre las neuronas y posteriormente a la muerte de las células. Otro hallazgo parece implicar a la proteína beta amiloide, que deriva de la Proteína precursora amiloidea (en inglés, APP, por Amyloid Precursor Protein) es una proteína integral de membrana, y es expresada es muchos tipos de tejidos, y está concentrada en la sinapsis entre neuronas. Proteína beta amiloide.
  • 29. La beta amiloide está implicada en el desarrollo de las placas aminoleideas que se encuentran en los pacientes con esta enfermedad. Las placas aminoleideas forman pequeñas costras que impiden la sinapsis entre las neuronas, y su origen es debido a una hipofosforilación del gen que codifica a la APP.
  • 30. 4.2. Fármacos epigenéticos. En la actualidad los fármacos que se están desarrollando van encaminados a la curación del cáncer y la esquizofrenia, añadiendo o quitando la metilación que han sufrido las células en estas enfermedades. Para el cáncer se usa el TRANSKRIP , un medicamento desarrollado por Laboratorios Alpharma. En el mercado, actualmente, hay cinco medicamentos epigenéticos.
  • 31. Tambien se usa el CONACYT , en el que se ha observado que su uso inactiva por metilación a los oncogenes proliferadores, provocando que los pacientes que han recibido este tratamiento, el tumor deje de aumentar de tamaño. Componentes básicos del Conacyt. Otros medicamentos son el Vidaza y Decitabine, que se encuentra en fase clínica, pero parece se que su uso provoca que las células hipermetiladas de la esquizofrenia y cáncer recuperen parte de la metilación que deberíantener.
  • 32. Para el alzhéimer, las investigaciones actuales no han producido ningún medicamento efectivo contra la enfermedad. Pero se están desarrollando medicamentos para controlar la metilación que presenta el gen que codifica a la proteína tau. También se están desarrollando fármacos para determinados tipos de síndromes muy específicos.
  • 33. 5. Trabajo de campo. Nuestro trabajo de campo son el estudio de las investigaciones actuales que se están llevando a cabo de epigenética, especialmente en Europa y Estados Unidos. La principal investigación es la elaboración del royecto Epigenoma Humano que con él se pretende realizar un mapa exhaustivo de las metilaciones y modificaciones de las histonas.
  • 34. Las investigaciones de la doctora Susan Gasser se basan en la marcación y seguimiento de los movimientos de los componentes nucleares cuando éstos se organizan en las células de la levadura, para determinar la metilación que sufre el ADN durante la replicación. En Munich, Alemania, se está investigando la metilación de las células madres, ya que esta es responsable de la especialización que sufren las células del organismo. En Nápoles, se está investigando cómo nuestros genes puden llegan a estar bloqueados, inactivados y, quizás más tarde, reactivados. Los elementos que utilizan para comprender el control del genoma proceden principalmente de su investigación con la mosca de la fruta, aunque también han desarrollado técnicas para observar células de mamífero in vitro. Tanto las moscas como los mamíferos emplean genes homeóticos (de plan corporal) en su crecimiento y desarrollo.
  • 35. En España, las investigaciones son realizadas por Manuel Esteller, donde se centra principalmente en el estudio de las enfermedades epigenéticas. En el Reino Unido se están llevando investigaciones sobre la acetilación de las histonas por diferentes laboratorios. En Francia un grupo de científicos están estudiando la conexión que hay entre genética y epigenética.
  • 36. 6. Conclusión. La diversidad de factores epigenéticos y de procesos asociados tienen un potencial de investigación. Ya son cincuenta años desde que Conrad y col. relacionaron la acetilación de las histonas a un aumento en la cantidad de RNA. A través del entendimiento y del avance en nuevas herramientas será mas rápido entender el mecanismo por el cual la célula regula la expresión de un gen. Así, sumado a la característica hereditaria de un individuo en una población, la cantidad y calidad de la expresión de un gen esta también determinada por este código epigenético el que no se encuentra archivado en el Proyecto Genoma Humano.
  • 37. Por tanto la expresión de un gen esta estrechamente ligada al estímulo, a la probabilidad de que ciertos patrones de silenciamiento dados en la división celular permitan su expresión y a que la capacidad de la célula de responder frente al estimulo. Finalmente todavía nos quedan muchas cosas por descubrir sobre nuestro Epigenoma. http:// www.publicidadysalud.com /2009/10/de-los-remedios-de-la-abuela-a-la- epigenetica