SlideShare uma empresa Scribd logo
1 de 117
Baixar para ler offline
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Explainanddemonstratetheimportance
ofthetailsofthedistributions,
tailcorrelationsand
lowfrequency/highseverityevents
ArthurCharpentier
Universit´edeRennes1&´EcolePolytechnique
http://blogperso.univ-rennes1.fr/arthur.charpentier/
1
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
SCRandSolvency
2
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
SCRandSolvency
3
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
SCRandSolvency
4
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
SCRandSolvency
5
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OnriskdependenceinQIS’s
http://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
6
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OnriskdependenceinQIS’s
http://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
7
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OnriskdependenceinQIS’s
http://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
8
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OnriskdependenceinQIS’s
http://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
9
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OnriskdependenceinQIS’s
http://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
10
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Howtocapturedependenceinriskmodels?
Iscorrelationrelevanttocapturedependenceinformation?
Consider(seeMcNeil,Embrechts&Straumann(2003))2log-normalrisks,
•X∼LN(0,1),i.e.X=exp(X�
)whereX�
∼N(0,1)
•Y∼LN(0,σ2
),i.e.Y=exp(Y�
)whereY�
∼N(0,σ2
)
Recallthatcorr(X�
,Y�
)takesanyvaluein[−1,+1].
Sincecorr(X,Y)�=corr(X�
,Y�
),whatcanbecorr(X,Y)?
11
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Howtocapturedependenceinriskmodels?
012345
−0.50.00.51.0
Standarddeviation,sigma
Correlation
Fig.1–Rangeforthecorrelation,cor(X,Y),X∼LN(0,1),Y∼LN(0,σ2
).
12
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Howtocapturedependenceinriskmodels?
012345
−0.50.00.51.0
Standarddeviation,sigma
Correlation
Fig.2–cor(X,Y),X∼LN(0,1),Y∼LN(0,σ2
),Gaussiancopula,r=0.5.
13
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Whataboutofficialactuarialdocuments?
14
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Whataboutofficialactuarialdocuments?
15
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Whataboutofficialactuarialdocuments?
16
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Whataboutregulatorytechnicaldocuments?
17
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Whataboutregulatorytechnicaldocuments?
18
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Whataboutregulatorytechnicaldocuments?
19
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Whataboutregulatorytechnicaldocuments?
20
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Motivations:dependenceandcopulas
Definition1.AcopulaCisajointdistributionfunctionon[0,1]d
,with
uniformmarginson[0,1].
Theorem2.(Sklar)LetCbeacopula,andF1,...,Fdbedmarginal
distributions,thenF(x)=C(F1(x1),...,Fd(xd))isadistributionfunction,with
F∈F(F1,...,Fd).
Conversely,ifF∈F(F1,...,Fd),thereexistsCsuchthat
F(x)=C(F1(x1),...,Fd(xd)).Further,iftheFi’sarecontinuous,thenCis
unique,andgivenby
C(u)=F(F−1
1(u1),...,F−1
d(ud))forallui∈[0,1]
WewillthendefinethecopulaofF,orthecopulaofX.
21
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
CopuladensityLevelcurvesofthecopula
Fig.3–Graphicalrepresentationofacopula,C(u,v)=P(U≤u,V≤v).
22
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
CopuladensityLevelcurvesofthecopula
Fig.4–Densityofacopula,c(u,v)=
∂2
C(u,v)
∂u∂v
.
23
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Someveryclassicalcopulas
•TheindependentcopulaC(u,v)=uv=C⊥
(u,v).
ThecopulaisstandardlydenotedΠ,PorC⊥
,andanindependentversionof
(X,Y)willbedenoted(X⊥
,Y⊥
).ItisarandomvectorsuchthatX⊥L
=Xand
Y⊥L
=Y,withcopulaC⊥
.
Inhigherdimension,C⊥
(u1,...,ud)=u1×...×udistheindependentcopula.
•ThecomonotoniccopulaC(u,v)=min{u,v}=C+
(u,v).
ThecopulaisstandardlydenotedM,orC+
,andancomonotoneversionof
(X,Y)willbedenoted(X+
,Y+
).ItisarandomvectorsuchthatX+L
=Xand
Y+L
=Y,withcopulaC+
.
(X,Y)hascopulaC+
ifandonlyifthereexistsastrictlyincreasingfunctionh
suchthatY=h(X),orequivalently(X,Y)
L
=(F−1
X(U),F−1
Y(U))whereUis
U([0,1]).
24
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Someveryclassicalcopulas
Inhigherdimension,C+
(u1,...,ud)=min{u1,...,ud}isthecomonotonic
copula.
•ThecontercomotoniccopulaC(u,v)=max{u+v−1,0}=C−
(u,v).
ThecopulaisstandardlydenotedW,orC−
,andancontercomontoneversionof
(X,Y)willbedenoted(X−
,Y−
).ItisarandomvectorsuchthatX−L
=Xand
Y−L
=Y,withcopulaC−
.
(X,Y)hascopulaC−
ifandonlyifthereexistsastrictlydecreasingfunctionh
suchthatY=h(X),orequivalently(X,Y)
L
=(F−1
X(1−U),F−1
Y(U)).
Inhigherdimension,C−
(u1,...,ud)=max{u1+...+ud−(d−1),0}isnota
copula.
ButnotethatforanycopulaC,
C−
(u1,...,ud)≤C(u1,...,ud)≤C+
(u1,...,ud)
25
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81
Frechetlowerbound
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81 Independencecopula
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81
Frechetupperbound
�������������������
������������������
������������������
������������������
������������������
������������������
�������������������
������������������
������������������
������������������
������������������
Scatterplot,LowerFréchet!Hoeffdingbound
������������������
������������������
������������������������������������������������
������������������
������������������
Scatterplot,UpperFréchet!Hoeffdingbound
Fig.5–Contercomontonce,independent,andcomonotonecopulas.
26
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Elliptical(Gaussianandt)copulas
Theideaistoextendthemultivariateprobitmodel,X=(X1,...,Xd)with
marginalB(pi)distributions,modeledasYi=1(X�
i≤ui),whereX�
∼N(I,Σ).
•TheGaussiancopula,withparameterα∈(−1,1),
C(u,v)=
1
2π
√
1−α2
�Φ−1
(u)
−∞
�Φ−1
(v)
−∞
exp
�
−(x2
−2αxy+y2
)
2(1−α2)
�
dxdy.
Analogouslythet-copulaisthedistributionof(T(X),T(Y))whereTisthet-cdf,
andwhere(X,Y)hasajointt-distribution.
•TheStudentt-copulawithparameterα∈(−1,1)andν≥2,
C(u,v)=
1
2π
√
1−α2
�t−1
ν(u)
−∞
�t−1
ν(v)
−∞
�
1+
x2
−2αxy+y2
2(1−α2)
�−((ν+2)/2)
dxdy.
27
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Archimedeancopulas
•ArchimediancopulasC(u,v)=φ−1
(φ(u)+φ(v)),whereφisdecreasingconvex
(0,1),withφ(0)=∞andφ(1)=0.
Example3.Ifφ(t)=[−logt]α
,thenCisGumbel’scopula,andif
φ(t)=t−α
−1,CisClayton’s.NotethatC⊥
isobtainedwhenφ(t)=−logt.
Thefrailtyapproach:assumethatXandYareconditionallyindependent,given
thevalueofanheterogeneouscomponentΘ.Assumefurtherthat
P(X≤x|Θ=θ)=(GX(x))θ
andP(Y≤y|Θ=θ)=(GY(y))θ
forsomebaselinedistributionfunctionsGXandGY.Then
F(x,y)=ψ(ψ−1
(FX(x))+ψ−1
(FY(y))),
whereψdenotestheLaplacetransformofΘ,i.e.ψ(t)=E(e−tΘ
).
28
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
������������
������������
������������������������������������������������
!3!2!10123
!3!2!10123
������������������������������������������������
Fig.6–Continuousclassesofrisks,(Xi,Yi)and(Φ−1
(FX(Xi)),Φ−1
(FY(Yi))).
29
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
SomemoreexamplesofArchimedeancopulas
ψ(t)rangeθ
(1)1
θ
(t−θ−1)[−1,0)∪(0,∞)Clayton,Clayton(1978)
(2)(1−t)θ[1,∞)
(3)log
1−θ(1−t)
t
[−1,1)Ali-Mikhail-Haq
(4)(−logt)θ[1,∞)Gumbel,Gumbel(1960),Hougaard(1986)
(5)−loge−θt−1
e−θ−1
(−∞,0)∪(0,∞)Frank,Frank(1979),Nelsen(1987)
(6)−log{1−(1−t)θ}[1,∞)Joe,Frank(1981),Joe(1993)
(7)−log{θt+(1−θ)}(0,1]
(8)1−t
1+(θ−1)t
[1,∞)
(9)log(1−θlogt)(0,1]Barnett(1980),Gumbel(1960)
(10)log(2t−θ−1)(0,1]
(11)log(2−tθ)(0,1/2]
(12)(1
t
−1)θ[1,∞)
(13)(1−logt)θ−1(0,∞)
(14)(t−1/θ−1)θ[1,∞)
(15)(1−t1/θ)θ[1,∞)Genest&Ghoudi(1994)
(16)(θ
t
+1)(1−t)[0,∞)
30
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Extremevaluecopulas
•Extremevaluecopulas
C(u,v)=exp
�
(logu+logv)A
�
logu
logu+logv
��
,
whereAisadependencefunction,convexon[0,1]withA(0)=A(1)=1,et
max{1−ω,ω}≤A(ω)≤1forallω∈[0,1].
Analternativedefinitionisthefollowing:Cisanextremevaluecopulaifforall
z>0,
C(u1,...,ud)=C(u
1/z
1,...,u
1/z
d)z
.
Thosecopulaarethencalledmax-stable:definethemaximumcomponentwiseof
asampleX1,...,Xn,i.e.Mi=max{Xi,1,...,Xi,n}.
Remarkmoredifficulttocharacterizewhend≥3.
31
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Gaussian,Studentt(andelliptical)copulas
Focusesonpairwisedependencethroughthecorrelationmatrix,







X1
X2
X3
X4







∼N







0,
1r12r13r14
r121r23r24
r13r231r34
r14r24r341







Dependencein[0,1]d
←→summarizedind(d+1)/2parameters,
32
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Archimedeancopulas
Initially,dependencein[0,1]d
←→summarizedinonefunctionalparameterson
[0,1].Butappearslessflexiblebecauseofexchangeabilityfeatures.
ItispossibletointroducehierarchicalArchimedeancopulas(seeSavu&Trede
(2006)orMcNeil(2007)).LetU=(U1,U2,U3,U4),
C(u1,u2,u3,u4)=φ−1
1[φ1(u1)+φ1(u2)+φ1(u3)+φ1(u4)],
which,ifφiisparametrizedwithparameterαi,canbesummarizedthrough
A=







1α2α4α4
α21α4α4
α4α41α3
alpha4α4α31







33
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Archimedeancopulas
Initially,dependencein[0,1]d
←→summarizedinonefunctionalparameterson
[0,1].Butappearslessflexiblebecauseofexchangeabilityfeatures.
ItispossibletointroducehierarchicalArchimedeancopulas(seeSavu&Trede
(2006)orMcNeil(2007)).LetU=(U1,U2,U3,U4),
C(u1,u2,u3,u4)=φ−1
4(φ4
�
φ−1
2(φ2(u1)+φ2(u2))
�
+φ4
�
φ−1
3(φ3(u3)+φ3(u4))
�
),
which,ifφiisparametrizedwithparameterαi,canbesummarizedthrough
A=







1α2α4α4
α21α4α4
α4α41α3
alpha4α4α31







34
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Archimedeancopulas
Initially,dependencein[0,1]d
←→summarizedinonefunctionalparameterson
[0,1].Butappearslessflexiblebecauseofexchangeabilityfeatures.
ItispossibletointroducehierarchicalArchimedeancopulas(seeSavu&Trede
(2006)orMcNeil(2007)).LetU=(U1,U2,U3,U4),
C(u1,u2,u3,u4)=φ−1
4(φ4
�
φ−1
2(φ2(u1)+φ2(u2))
�
+φ4
�
φ−1
3(φ3(u3)+φ3(u4))
�
),
which,ifφiisparametrizedwithparameterαi,canbesummarizedthrough
A=







1α2α4α4
α21α4α4
α4α41α3
alpha4α4α31







35
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Archimedeancopulas
Initially,dependencein[0,1]d
←→summarizedinonefunctionalparameterson
[0,1].Butappearslessflexiblebecauseofexchangeabilityfeatures.
ItispossibletointroducehierarchicalArchimedeancopulas(seeSavu&Trede
(2006)orMcNeil(2007)).LetU=(U1,U2,U3,U4),
C(u1,u2,u3,u4)=φ−1
4(φ4
�
φ−1
2(φ2(u1)+φ2(u2))
�
+φ4
�
φ−1
3(φ3(u3)+φ3(u4))
�
),
which,ifφiisparametrizedwithparameterαi,canbesummarizedthrough
A=







1α2α4α4
α21α4α4
α4α41α3
α4α4α31







36
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Archimedeancopulas
Initially,dependencein[0,1]d
←→summarizedinonefunctionalparameterson
[0,1].Butappearslessflexiblebecauseofexchangeabilityfeatures.
ItispossibletointroducehierarchicalArchimedeancopulas(seeSavu&Trede
(2006)orMcNeil(2007)).LetU=(U1,U2,U3,U4),
C(u1,u2,u3,u4)=φ−1
4(φ4[φ−1
3(φ3
�
φ−1
2(φ2(u1)+φ2(u2))
�
+φ3(u3))]+φ4(u4)),
which,ifφiisparametrizedwithparameterαi,canbesummarizedthrough
A=







1α2α3α4
α21α3α4
α3α31α4
α4α4α41







37
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Archimedeancopulas
Initially,dependencein[0,1]d
←→summarizedinonefunctionalparameterson
[0,1].Butappearslessflexiblebecauseofexchangeabilityfeatures.
ItispossibletointroducehierarchicalArchimedeancopulas(seeSavu&Trede
(2006)orMcNeil(2007)).LetU=(U1,U2,U3,U4),
C(u1,u2,u3,u4)=φ−1
4(φ4[φ−1
3(φ3
�
φ−1
2(φ2(u1)+φ2(u2))
�
+φ3(u3))]+φ4(u4)),
which,ifφiisparametrizedwithparameterαi,canbesummarizedthrough
A=







1α2α3α4
α21α3α4
α3α31α4
α4α4α41







38
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Archimedeancopulas
Initially,dependencein[0,1]d
←→summarizedinonefunctionalparameterson
[0,1].Butappearslessflexiblebecauseofexchangeabilityfeatures.
ItispossibletointroducehierarchicalArchimedeancopulas(seeSavu&Trede
(2006)orMcNeil(2007)).LetU=(U1,U2,U3,U4),
C(u1,u2,u3,u4)=φ−1
4(φ4[φ−1
3(φ3
�
φ−1
2(φ2(u1)+φ2(u2))
�
+φ3(u3))]+φ4(u4)),
which,ifφiisparametrizedwithparameterαi,canbesummarizedthrough
A=







1α2α3α4
α21α3α4
α3α31α4
α4α4α41







39
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Oncopulaparametrization
•Extremevaluecopulas
Here,dependencein[0,1]d
←→summarizedinonefunctionalparameterson
[0,1]d−1
.
Further,focusesonlyonfirstordertaildependence.
40
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Naturalpropertiesfordependencemeasures
Definition4.κismeasureofconcordanceifandonlyifκsatisfies
•κisdefinedforeverypair(X,Y)ofcontinuousrandomvariables,
•−1≤κ(X,Y)≤+1,κ(X,X)=+1andκ(X,−X)=−1,
•κ(X,Y)=κ(Y,X),
•ifXandYareindependent,thenκ(X,Y)=0,
•κ(−X,Y)=κ(X,−Y)=−κ(X,Y),
•if(X1,Y1)�PQD(X2,Y2),thenκ(X1,Y1)≤κ(X2,Y2),
•if(X1,Y1),(X2,Y2),...isasequenceofcontinuousrandomvectorsthat
convergetoapair(X,Y)thenκ(Xn,Yn)→κ(X,Y)asn→∞.
41
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Naturalpropertiesfordependencemeasures
Ifκismeasureofconcordance,then,iffandgarebothstrictlyincreasing,then
κ(f(X),g(Y))=κ(X,Y).Further,κ(X,Y)=1ifY=f(X)withfalmostsurely
strictlyincreasing,andanalogouslyκ(X,Y)=−1ifY=f(X)withfalmost
surelystrictlydecreasing(seeScarsini(1984)).
Rankcorrelationscanbeconsidered,i.e.Spearman’sρdefinedas
ρ(X,Y)=corr(FX(X),FY(Y))=12
�1
0
�1
0
C(u,v)dudv−3
andKendall’sτdefinedas
τ(X,Y)=4
�1
0
�1
0
C(u,v)dC(u,v)−1.
42
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Historicalversionofthosecoefficients
SimilarlyKendall’stauwasnotdefinedusingcopulae,butastheprobabilityof
concordance,minustheprobabilityofdiscordance,i.e.
τ(X,Y)=3[P((X1−X2)(Y1−Y2)>0)−P((X1−X2)(Y1−Y2)<0)],
where(X1,Y1)and(X2,Y2)denotetwoindependentversionsof(X,Y)(see
Nelsen(1999)).
Equivalently,τ(X,Y)=1−
4Q
n(n2−1)
whereQisthenumberofinversions
betweentherankingsofXandY(numberofdiscordance).
43
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
!2.0!1.5!1.0!0.50.00.51.0
!0.50.00.51.01.5
����������������
X
Y
!2.0!1.5!1.0!0.50.00.51.0
!0.50.00.51.01.5
����������������
X
Y
Fig.7–Concordanceversusdiscordance.
44
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Alternativeexpressionsofthosecoefficients
Notethatthosecoefficientscanalsobeexpressedasfollows
ρ(X,Y)=
�
[0,1]×[0,1]
C(u,v)−C⊥
(u,v)dudv
�
[0,1]×[0,1]
C+(u,v)−C⊥(u,v)dudv
(thenormalizedaveragedistancebetweenCandC⊥
),forinstance.
ThecaseoftheGaussianrandomvector
If(X,Y)isaGaussianrandomvectorwithcorrelationr,then(Kruskal(1958))
ρ(X,Y)=
6
π
arcsin
�r
2
�
andτ(X,Y)=
2
π
arcsin(r).
45
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
FromKendall’tautocopulaparameters
Kendall’sτ0.00.10.20.30.40.50.60.70.80.91.0
Gaussianθ0.000.160.310.450.590.710.810.890.950.991.00
Gumbelθ1.001.111.251.431.672.002.503.335.0010.0+∞
Plackettθ1.001.572.484.006.6011.421.144.1115530+∞
Claytonθ0.000.220.500.861.332.003.004.678.0018.0+∞
Frankθ0.000.911.862.924.165.747.9311.418.220.9+∞
Joeθ1.001.191.441.772.212.863.834.568.7714.4+∞
Galambosθ0.000.340.510.700.951.281.792.624.299.30+∞
Morgensteinθ0.000.450.90--------
46
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
FromSpearman’srhotocopulaparameters
Spearman’sρ0.00.10.20.30.40.50.60.70.80.91.0
Gaussianθ0.000.100.210.310.420.520.620.720.810.911.00
Gumbelθ1.001.071.161.261.381.541.752.072.583.73+∞
A.M.H.θ1.001.111.251.431.672.002.503.335.0010.0+∞
Plackettθ1.001.351.842.523.545.127.7612.724.266.1+∞
Claytonθ0.000.140.310.510.761.061.512.143.195.56+∞
Frankθ0.000.601.221.882.613.454.475.827.9012.2+∞
Joeθ1.001.121.271.461.691.992.393.004.036.37+∞
Galambosθ0.000.280.400.510.650.811.031.341.863.01+∞
Morgensteinθ0.000.300.600.90-------
47
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
������������������
������������������
����������������
����������������
!2024
!2024
Margesgaussiennes
Fig.8–SimulationsofGumbel’scopulaθ=1.2.
48
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
������������������
������������������
����������������
�����������������
!2024
!2024
Margesgaussiennes
Fig.9–SimulationsoftheGaussiancopula(θ=0.95).
49
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
TailcorrelationandSolvencyII
50
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
TailcorrelationandSolvencyII
51
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Strongtaildependence
Joe(1993)defined,inthebivariatecaseataildependencemeasure.
Definition5.Let(X,Y)denotearandompair,theupperandlowertail
dependenceparametersaredefined,ifthelimitexist,as
λL=lim
u→0
P
�
X≤F−1
X(u)|Y≤F−1
Y(u)
�
,
=lim
u→0
P(U≤u|V≤u)=lim
u→0
C(u,u)
u
,
and
λU=lim
u→1
P
�
X>F−1
X(u)|Y>F−1
Y(u)
�
=lim
u→0
P(U>1−u|V≤1−u)=lim
u→0
C�
(u,u)
u
.
52
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Gaussiancopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
LandRconcentrationfunctions
Lfunction(lowertails)Rfunction(uppertails)
GAUSSIAN
●
●
Fig.10–LandRcumulativecurves.
53
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Gumbelcopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
LandRconcentrationfunctions
Lfunction(lowertails)Rfunction(uppertails)
GUMBEL
●
●
Fig.11–LandRcumulativecurves.
54
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Claytoncopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
LandRconcentrationfunctions
Lfunction(lowertails)Rfunction(uppertails)
CLAYTON
●
●
Fig.12–LandRcumulativecurves.
55
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Studenttcopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
LandRconcentrationfunctions
Lfunction(lowertails)Rfunction(uppertails)
STUDENT(df=5)
●
●
Fig.13–LandRcumulativecurves.
56
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Studenttcopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
LandRconcentrationfunctions
Lfunction(lowertails)Rfunction(uppertails)
STUDENT(df=3)
●
●
Fig.14–LandRcumulativecurves.
57
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Estimationoftaildependence
58
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Estimating(strong)taildependence
From
P≈
P
�
X>F−1
X(u),Y>F−1
Y(u)
�
P
�
Y>F−1
Y(u)
�foruclosedto1,
asforHill’sestimator,anaturalestimatorforλisobtainedwithu=1−k/n,
�λ
(k)
U=
1
n
�n
i=11(Xi>Xn−k:n,Yi>Yn−k:n)
1
n
�n
i=11(Yi>Yn−k:n)
,
hence
�λ
(k)
U=
1
k
n�
i=1
1(Xi>Xn−k:n,Yi>Yn−k:n).
�λ
(k)
L=
1
k
n�
i=1
1(Xi≤Xk:n,Yi≤Yk:n).
59
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Asymptoticconvergence,howfast?
0.00.20.40.60.81.0
0.00.20.40.60.81.0
(Upper)taildependence,Gaussiancopula,n=200
Exceedanceprobability
0.0010.0050.0500.500
0.00.20.40.60.81.0
Logscale,(lower)taildependence
Exceedanceprobability(logscale)
Fig.15–ConvergenceofLandRfunctions,Gaussiancopula,n=200.
60
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Asymptoticconvergence,howfast?
0.00.20.40.60.81.0
0.00.20.40.60.81.0
(Upper)taildependence,Gaussiancopula,n=200
Exceedanceprobability
0.0010.0050.0500.500
0.00.20.40.60.81.0
Logscale,(lower)taildependence
Exceedanceprobability(logscale)
Fig.16–ConvergenceofLandRfunctions,Gaussiancopula,n=2,000.
61
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Asymptoticconvergence,howfast?
0.00.20.40.60.81.0
0.00.20.40.60.81.0
(Upper)taildependence,Gaussiancopula,n=200
Exceedanceprobability
0.0010.0050.0500.500
0.00.20.40.60.81.0
Logscale,(lower)taildependence
Exceedanceprobability(logscale)
Fig.17–ConvergenceofLandRfunctions,Gaussiancopula,n=20,000.
62
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Weaktaildependence
IfXandYareindependent(intails),forulargeenough
P(X>F−1
X(u),Y>F−1
Y(u))=P(X>F−1
X(u))·P(Y>F−1
Y(u))=(1−u)2
,
orequivalently,logP(X>F−1
X(u),Y>F−1
Y(u))=2·log(1−u).Further,ifX
andYarecomonotonic(intails),forulargeenough
P(X>F−1
X(u),Y>F−1
Y(u))=P(X>F−1
X(u))=(1−u)1
,
orequivalently,logP(X>F−1
X(u),Y>F−1
Y(u))=1·log(1−u).
=⇒limitoftheratio
log(1−u)
logP(Z1>F−1
1(u),Z2>F−1
2(u))
.
63
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Weaktaildependence
Coles,Heffernan&Tawn(1999)defined
Definition6.Let(X,Y)denotearandompair,theupperandlowertail
dependenceparametersaredefined,ifthelimitexist,as
ηL=lim
u→0
log(u)
logP(Z1≤F−1
1(u),Z2≤F−1
2(u))
=lim
u→0
log(u)
logC(u,u)
,
and
ηU=lim
u→1
log(1−u)
logP(Z1>F−1
1(u),Z2>F−1
2(u))
=lim
u→0
log(u)
logC�(u,u)
.
64
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Gaussiancopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
Chidependencefunctions
lowertailsuppertails
GAUSSIAN
●
●
Fig.18–χfunctions.
65
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Gumbelcopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
Chidependencefunctions
lowertailsuppertails
GUMBEL
●
●
Fig.19–χfunctions.
66
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Claytoncopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
Chidependencefunctions
lowertailsuppertails
CLAYTON
●
●
Fig.20–χfunctions.
67
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Studenttcopula
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
0.00.20.40.60.81.0
Chidependencefunctions
lowertailsuppertails
STUDENT(df=3)
●
●
Fig.21–χfunctions.
68
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Applicationinriskmanagement:Loss-ALAE
0.00.20.40.60.81.0
0.00.20.40.60.81.0
Loss
AllocatedExpenses
Fig.22–Lossesandallocatedexpenses.
69
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Applicationinriskmanagement:Loss-ALAE
0.00.20.40.60.81.0
0.00.20.40.60.81.0
LandRconcentrationfunctions
Lfunction(lowertails)Rfunction(uppertails)
Gumbelcopula
●
●
0.00.20.40.60.81.0
0.00.20.40.60.81.0
Chidependencefunctions
lowertailsuppertails
Gumbelcopula
●
●
Fig.23–LandRcumulativecurves,andχfunctions.
70
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Applicationinriskmanagement:car-household
0.00.20.40.60.81.0
0.00.20.40.60.81.0
Carclaims
Householdclaims
Fig.24–MotorandHouseholdclaims.
71
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Applicationinriskmanagement:car-household
0.00.20.40.60.81.0
0.00.20.40.60.81.0
LandRconcentrationfunctions
Lfunction(lowertails)Rfunction(uppertails)
Gumbelcopula
●
●
0.00.20.40.60.81.0
0.00.20.40.60.81.0
Chidependencefunctions
lowertailsuppertails
Gumbelcopula
●
●
Fig.25–LandRcumulativecurves,andχfunctions.
72
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
CaseofArchimedeancopulas
ForanexhaustivestudyoftailbehaviorforArchimedeancopulas,see
Charpentier&Segers(2008).
•uppertail:functionofφ�
(1)andθ1=−lim
s→0
sφ�
(1−s)
φ(1−s)
,
◦φ�
(1)<0:tailindependence
◦φ�
(1)=0andθ1=1:dependenceinindependence
◦φ�
(1)=0andθ1>1:taildependence
•lowertail:functionofφ(0)andθ0=−lim
s→0
sφ�
(s)
φ(s)
,
◦φ(0)<∞:tailindependence
◦φ(0)=∞andθ0=0:dependenceinindependence
◦φ(0)=∞andθ0>0:taildependence
0.00.20.40.60.81.0
05101520
73
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Measuringrisks?
thepurepremiumasatechnicalbenchmark
Pascal,Fermat,Condorcet,Huygens,d’AlembertintheXVIIIthcentury
proposedtoevaluatethe“produitscalairedesprobabilit´esetdesgains”,
<p,x>=
n�
i=1
pixi=
n�
i=1
P(X=xi)·xi=EP(X),
basedonthe“r`egledesparties”.
ForQu´etelet,theexpectedvaluewas,inthecontextofinsurance,thepricethat
guaranteesafinancialequilibrium.
Fromthisidea,weconsiderininsurancethepurepremiumasEP(X).Asin
Cournot(1843),“l’esp´erancemath´ematiqueestdonclejusteprixdeschances”
(orthe“fairprice”mentionedinFeller(1953)).
Problem:SaintPeterburg’sparadox,i.e.infinitemeanrisks(cf.natural
catastrophes)
74
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
thepurepremiumasatechnicalbenchmark
ForapositiverandomvariableX,recallthatEP(X)=
�∞
0
P(X>x)dx.
0246810
0.00.20.40.60.81.0
Expectedvalue
Lossvalue,X
Probabilitylevel,P
Fig.26–ExpectedvalueEP(X)=
�
xdFX(x)=
�
P(X>x)dx.
75
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
frompurepremiumtoexpectedutilityprinciple
Ru(X)=
�
u(x)dP=
�
P(u(X)>x))dx
whereu:[0,∞)→[0,∞)isautilityfunction.
Examplewithanexponentialutility,u(x)=[1−e−αx
]/α,
Ru(X)=
1
α
log
�
EP(eαX
)
�
,
i.e.theentropicriskmeasure.
SeeCramer(1728),Bernoulli(1738),vonNeumann&Morgenstern
(1944),Rochet(1994)...etc.
76
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Distortionofvaluesversusdistortionofprobabilities
0246810
0.00.20.40.60.81.0
Expectedutility(powerutilityfunction)
Lossvalue,X
Probabilitylevel,P
Fig.27–Expectedutility
�
u(x)dFX(x).
77
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Distortionofvaluesversusdistortionofprobabilities
0246810
0.00.20.40.60.81.0
Expectedutility(powerutilityfunction)
Lossvalue,X
Probabilitylevel,P
Fig.28–Expectedutility
�
u(x)dFX(x).
78
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
frompurepremiumtodistortedpremiums(Wang)
Rg(X)=
�
xdg◦P=
�
g(P(X>x))dx
whereg:[0,1]→[0,1]isadistortedfunction.
Example
•ifg(x)=I(X≥1−α)Rg(X)=VaR(X,α),
•ifg(x)=min{x/(1−α),1}Rg(X)=TVaR(X,α)(alsocalledexpected
shortfall),Rg(X)=EP(X|X>VaR(X,α)).
SeeD’Alembert(1754),Schmeidler(1986,1989),Yaari(1987),Denneberg
(1994)...etc.
Remark:Rg(X)mightbedenotedEg◦P.Butitisnotanexpectedvaluesince
Q=g◦Pisnotaprobabilitymeasure.
79
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Distortionofvaluesversusdistortionofprobabilities
0246810
0.00.20.40.60.81.0
Distortedpremiumbetadistortionfunction)
Lossvalue,X
Probabilitylevel,P
Fig.29–Distortedprobabilities
�
g(P(X>x))dx.
80
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Distortionofvaluesversusdistortionofprobabilities
0246810
0.00.20.40.60.81.0
Distortedpremiumbetadistortionfunction)
Lossvalue,X
Probabilitylevel,P
Fig.30–Distortedprobabilities
�
g(P(X>x))dx.
81
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
someparticularcasesaclassicalpremiums
Theexponentialpremiumorentropymeasure:obtainedwhentheagent
asanexponentialutilityfunction,i.e.
πsuchthatU(ω−π)=EP(U(ω−S)),U(x)=−exp(−αx),
i.e.π=
1
α
logEP(eαX
).
Esscher’stransform(seeEsscher(1936),B¨uhlmann(1980)),
π=EQ(X)=
EP(X·eαX
)
EP(eαX)
,
forsomeα>0,i.e.
dQ
dP
=
eαX
EP(eαX)
.
Wang’spremium(seeWang(2000)),extendingtheSharpratioconcept
E(X)=
�∞
0
F(x)dxandπ=
�∞
0
Φ(Φ−1
(F(x))+λ)dx
82
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Riskmeasures
ThetwomostcommonlyusedriskmeasuresforarandomvariableX(assuming
thatalossispositive)are,q∈(0,1),
•Value-at-Risk(VaR),
VaRq(X)=inf{x∈R,P(X>x)≤α},
•ExpectedShortfall(ES),TailConditionalExpectation(TCE)orTail
Value-at-Risk(TVaR)
TVaRq(X)=E(X|X>VaRq(X)),
Artzner,Delbaen,Eber&Heath(1999):agoodriskmeasureis
subadditive,
TVaRissubadditive,VaRisnotsubadditive(ingeneral).
83
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Riskmeasures:apratitionner(mis)understanding
84
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Riskmeasures:apratitionner(mis)understanding
85
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Riskmeasures:apratitionner(mis)understanding
86
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Riskmeasures:apratitionner(mis)understanding
87
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Riskmeasures:apratitionner(mis)understanding
88
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Riskmeasuresanddiversification
AnycopulaCisboundedbyFrchet-Hoeffdingbounds,
max
�d�
i=1
ui−(d−1),0
�
≤C(u1,...,ud)≤min{u1,...,ud},
andthus,anydistributionFonF(F1,...,Fd)isbounded
max
�d�
i=1
Fi(xi)−(d−1),0
�
≤F(x1,...,xd)≤min{F1(x1),...,Ff(xd)}.
Doesthismeansthecomonotonicityisalwaystheworst-casescenario?
Givenarandompair(X,Y),let(X−
,Y−
)and(X+
,Y+
)denote
contercomonotonicandcomonotonicversionsof(X,Y),dowehave
R(φ(X−
,Y−
))
?
≤R(φ(X,
Y)
)
?
≤R(φ(X+
,Y+
)).
89
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Tchen’stheoremandboundingsomepurepremiums
Ifφ:R2
→Rissupermodular,i.e.
φ(x2,y2)−φ(x1,y2)−φ(x2,y1)+φ(x1,y1)≥0,
foranyx1≤x2andy1≤y2,thenif(X,Y)∈F(FX,FY),
E
�
φ(X−
,Y−
)
�
≤E(φ(X,Y))≤E
�
φ(X+
,Y+
)
�
,
asprovedinTchen(1981).
Example7.thestoplosspremiumforthesumoftworisksE((X+Y−d)+)is
supermodular.
90
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Example8.Forthen-yearjoint-lifeannuity,
axy:n�=
n�
k=1
vk
P(Tx>kandTy>k)=
n�
k=1
vk
kpxy.
Then
a−
xy:n�≤axy:n�≤a+
xy:n�,
where
a−
xy:n�=
n�
k=1
vk
max{kpx+kpy−1,0}(lowerFrchetbound),
a+
xy:n�=
n�
k=1
vk
min{kpx,kpy}(upperFrchetbound).
91
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Makarov’stheoremandboundingValue-at-Risk
InthecasewhereRdenotestheValue-at-Risk(i.e.quantilefunctionoftheP&L
distribution),
R−
≤R(X−
+Y−
)�≤R(X+Y)�≤R(X+
+Y+
)≤R+
,
wheree.g.R+
canexceedthecomonotoniccase.Recallthat
R(X+Y)=VaRq[X+Y]=F−1
X+Y(q)=inf{x∈R|FX+Y(x)≥q}.
Proposition9.Let(X,Y)∈F(FX,FY)thenforalls∈R,
τC−(FX,FY)(s)≤P(X+Y≤s)≤ρC−(FX,FY)(s),
where
τC(FX,FY)(s)=sup
x,y∈R
{C(FX(x),FY(y)),x+y=s}
and,if˜C(u,v)=u+v−C(u,v),
ρC(FX,FY)(s)=inf
x,y∈R
{˜C(FX(x),FY(y)),x+y=s}.
92
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
0.00.20.40.60.81.0
!4!2024
����������������������������������
Sommede2risquesGaussiens
Fig.31–Value-at-Riskfor2GaussianrisksN(0,1).
93
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
������������������������
�������
����������������������������������
����������������������������
Fig.32–Value-at-Riskfor2GaussianrisksN(0,1).
94
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
������������������
��������
����������������������������������
������������������������
Fig.33–Value-at-Riskfor2GammarisksG(3,1).
95
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
������������������������
��������
����������������������������������
������������������������
Fig.34–Value-at-Riskfor2GammarisksG(3,1).
96
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Willtheriskoftheportfolioincreasewithcorrelation?
Recallthefollowingtheoreticalresult:
Proposition10.AssumethatXandX�
areinthesameFr´echetspace(i.e.
Xi
L
=X�
i),anddefine
S=X1+···+XnandS�
=X�
1+···+X�
n.
IfX�X�
fortheconcordanceorder,thenS�TVaRS�
forthestop-lossor
TVaRorder.
AconsequenceisthatifXandX�
areexchangeable,
corr(Xi,Xj)≤corr(X�
i,X�
j)=⇒TVaR(S,p)≤TVaR(S�
,p),forallp∈(0,1).
SeeM¨uller&Stoyen(2002)forsomepossibleextensions.
97
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Consider
•dlinesofbusiness,
•simplyabinomialdistributiononeachlineofbusiness,withsmallloss
probability(e.g.π=1/1000).
Let



1ifthereisaclaimonlinei
0ifnot
,andS=X1+···+Xd.
WillthecorrelationamongtheXi’sincreasetheValue-at-RiskofS?
Consideraprobitmodel,i.e.Xi=1(X�
i≤ui),whereX�
∼N(0,Σ),i.e.a
Gaussiancopula.
AssumethatΣ=[σi,j]whereσi,j=ρ∈[−1,1]wheni�=j.
98
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Fig.35–99.75%TVaR(orexpectedshortfall)forGaussiancopulas.
99
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Fig.36–99%TVaR(orexpectedshortfall)forGaussiancopulas.
100
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Whataboutotherriskmeasures,e.g.Value-at-Risk?
corr(Xi,Xj)≤corr(X�
i,X�
j)�VaR(S,p)≤VaR(S�
,p),forallp∈(0,1).
(seee.g.Mittnik&Yener(2008)).
101
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Fig.37–99.75%VaRforGaussiancopulas.
102
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Fig.38–99%VaRforGaussiancopulas.
103
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Whatcouldbetheimpactoftaildependence?
Previously,weconsideredaGaussiancopula,i.e.tailindependence.Whatifthere
wastaildependence?
ConsiderthecaseofaStudentt-copula,withνdegreesoffreedom.
104
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Fig.39–99.75%TVaR(orexpectedshortfall)forStudentt-copulas.
105
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Fig.40–99%TVaR(orexpectedshortfall)forStudentt-copulas.
106
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Fig.41–99.75%VaRforStudentt-copulas.
107
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
Fig.42–99%VaRforStudentt-copulas.
108
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Themorecorrelated,themorerisky?
109
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OntheCEIPSrecommendations
110
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OntheCEIPSrecommendations
111
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OntheCEIPSrecommendations
112
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OntheCEIPSrecommendations
113
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OntheCEIPSrecommendations
114
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
OntheCEIPSrecommendations
115
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Afirstconclusion
116
ArthurCHARPENTIER-Extremesandcorrelationinriskmanagement
Anotherpossibleconclusion
•(standard)correlationisdefinitivelynotanappropriatetooltodescribe
dependencefeatures,
◦inordertofullydescribedependence,usecopulas,
◦sincemajorfocusinriskmanagementisrelatedtoextremalevent,focuson
taildependencemeausres,
•whichcopulacanbeappropriate?
◦Ellipticalcopulasofferaniceandsimpleparametrization,basedonpairwise
comparison,
◦Archimedeancopulasmightbetoorestrictive,butpossibletointroduce
HierarchicalArchimedeancopulas,
•Value-at-Riskmightyieldtonon-intuitiveresults,
◦needtogetabetterunderstandingaboutValue-at-Riskpitfalls,
◦needtoconsideralternativedownsideriskmeasures(namelyTVaR).
117

Mais conteúdo relacionado

Mais de Arthur Charpentier

Mais de Arthur Charpentier (20)

Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 
Side 2019 #6
Side 2019 #6Side 2019 #6
Side 2019 #6
 
Side 2019 #5
Side 2019 #5Side 2019 #5
Side 2019 #5
 

Último

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 

Último (20)

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 

Sortie