SlideShare uma empresa Scribd logo
1 de 64
Baixar para ler offline
Arthur CHARPENTIER, modeling heat waves




                         Modeling heat-waves :
       return period for non-stationary extremes

                                     Arthur Charpentier
                                Université du Québec à Montréal

                                  charpentier.arthur@uqam.ca
                              http ://freakonometrics.blog.free.fr/




      Changement climatique et gestion des risques, Lyon, Movember 2011


                                                                          1
Arthur CHARPENTIER, modeling heat waves




                                           Motivation
“Tous nos scénarios à dix ans montrent une aggravation des tempêtes,
inondations, sécheresses. Les catastrophes centennales vont devenir plus
fréquentes.” Jean-Marc Lamère, délégué général de la Fédération Française des
Sociétés d’Assurances, 2003.
Climate change, from Third IPCC Agreement ,2001 :




                                                                            2
Arthur CHARPENTIER, modeling heat waves




                                           Motivation
“there is no longer any doubt that the Earth’s climate is changing [...] globally,
nine of the past 10 years have been the warmest since records began in 1861”,
February 2005, opening the conference Climate change : a global, national and
regional challenge, Dennis Tirpak.




source : Meehklet al. (2009).

                                                                                 3
Arthur CHARPENTIER, modeling heat waves




                          The European heatwave of 2003
Third IPCC Assessment, 2001 : treatment of extremes (e.g. trends in extreme
high temperature) is “clearly inadequate”. Karl & Trenberth (2003) noticed
that “the likely outcome is more frequent heat waves”, “more intense and longer
lasting” added Meehl & Tebaldi (2004).
In Nîmes, there were more than 30 days with temperatures higher than 35◦ C
(versus 4 in hot summers, and 12 in the previous heat wave, in 1947).
Similarly, the average maximum (minimum) temperature in Paris peaked over
35◦ C for 10 consecutive days, on 4-13 August. Previous records were 4 days in
1998 (8 to 11 of August), and 5 days in 1911 (8 to 12 of August).
Similar conditions were found in London, where maximum temperatures peaked
above 30◦ C during the period 4-13 August
(see e.g. Burt (2004), Burt & Eden (2004) and Fink et al. (2004).)


                                                                             4
Arthur CHARPENTIER, modeling heat waves




                                                                                                                                                                                      q

                                                                                                                                                                          q q q
                                                                                                                                                                                          q q
                                                                                                                                                                                                q
                                                                                                                                                                q q
                                                                                                                                                                      q           q
                        20




                                                                                                                                                                                                            q
                                                                      q                               q
                                                                                q q
    Temperature in °C




                                                                                      q                                                     q               q
                                                                                                                                                                                                                    q
                                                                                                          q           q                                                                                         q                     q
                                                                  q                                                           q q                       q                                               q
                                                                                                                                                                                                    q
                                                      q                                                                                                                                                                                           q q q
                                                              q
                                                                                          q                               q
                        15




                                                                                                              q                                 q
                                                                                                  q                                                                                                                                       q
                                          q                               q q                 q                   q                                                                                                               q
                              q       q                                                                                                 q           q
                                                          q                                                                         q                                                                                   q                     q           q
                                  q

                                                  q                                                                                                                                                                         q q




                                              q
                        10




                                                                                                                                                                                                                                                              q



                             juil. 02                             juil. 12                            juil. 22                              août 01                           août 11                               août 21                           août 31




                                                                                                                                                                                                                                                                  5
Arthur CHARPENTIER, modeling heat waves




                Which temperature might be interesting ?
Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago : minimum
temperature should be most important for health impact (see also Kovats &
Koppe (2005)), several nights with no relief from very warm nighttime




                                                                      6
Arthur CHARPENTIER, modeling heat waves




                Which temperature might be interesting ?
Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago : minimum
temperature should be most important for health impact (see also Kovats &
Koppe (2005)), several nights with no relief from very warm night-time




                                                                      7
Arthur CHARPENTIER, modeling heat waves




                                   Modeling temperature
Consider the following decomposition

                                           Yt = µt + St + Xt

where
• µt is a (linear) general tendency
• St is a seasonal cycle
• Xt is the remaining (stationary) noise




                                                               8
Arthur CHARPENTIER, modeling heat waves




                         Nonstationarity and linear trend
Consider a spline and lowess regression




                                                            9
Arthur CHARPENTIER, modeling heat waves




                         Nonstationarity and linear trend
or a polynomial regression,and compare local slopes,




                                                            10
Arthur CHARPENTIER, modeling heat waves




                         Nonstationarity and linear trend
Several authors (from Laneet al. (1994) to Blacket al. (2004)) have tried to
explain global warming, and to find explanatory factors.
As pointed out in Queredaet al. (2000), the “analysis of the trend is difficult
and could be biased by non-climatic processes such as the urban effect”. In fact,
“most of the temperature rise could be due to an urban effect” : global warming
can be understood as one of the consequence of “global pollution” (see also
Houghton (1997) or Braunet al. (2004) for a detailed study of the impact of
transportation).




                                                                               11
Arthur CHARPENTIER, modeling heat waves




    Quantile regression to describe ’extremal’ temperature
See Yan (2002), Meehl & Tebaldi (2004), or Alexanderet al. (2006).
Least square used to estimate a linear model for E(Yt ),
                          T                                        T
                  min           (Yt − [β0 + β1 t])2 = min                R(Yt − [β0 + β1 t])
                 β0 ,β1                                   β0 ,β1
                          t=1                                      t=1

where R(x) = x2 .
Quantile regression can be used, let p ∈ (0, 1), and consider
                                               T
                                      min            R(Yt − [β0 + β1 t])
                                      β0 ,β1
                                               t=1

where                                            
                                                  x · (p − 1) if x < 0
                   Rp (x) = x · (p − 1(x < 0)) =
                                                  x · p if x > 0


                                                                                               12
Arthur CHARPENTIER, modeling heat waves




Remark :

            E(Y ) = argmin E (Y − γ)2                = argmin         (Y − γ)2 dF (y)

while
                                           γ                               +∞
        Qp (Y ) = argmin [p − 1] ·              [γ − x]dF (x) + p ·             [x − γ]dF (x) .
                                           −∞                          γ


5%, 25%, 75%, and 95% quantile regressions,




                                                                                                  13
Arthur CHARPENTIER, modeling heat waves




    Quantile regression to describe ’extremal’ temperature
slopes (β1 ) of quantile regressions, as functions of probability q ∈ (0, 1),




Remark : constant rate means that scenario 1 is realistic in the Third IPCC
Agreement, 2001 :




                                                                                14
Arthur CHARPENTIER, modeling heat waves




    Quantile regression to describe ’extremal’ temperature
slopes (β1 ) of quantile regressions, as functions of probability q ∈ (0.9, 1),




                                                                                  15
Arthur CHARPENTIER, modeling heat waves




                            Regression for yearly maxima
Let Mi denote the highest minimal daily temperature observed during year i,




                                                                              16
Arthur CHARPENTIER, modeling heat waves




                            Regression for yearly maxima
Let Mi denote the highest minimal daily temperature observed during year i,




                                                                              17
Arthur CHARPENTIER, modeling heat waves




                         Linear trend, and Gaussian noise
Benestad (2003) or Redner & Petersen (2006)
temperature for a given (calendar) day is an “independent Gaussian random
variable with constant standard deviation σ and a mean that increases at constant
speed ν”
In the US, ν = 0.03◦ C per year, and σ = 3.5◦ C
In Paris, ν = 0.027◦ C per year, and σ = 3.23◦ C
Assuming independence it is possible to estimate return periods




                                                                             18
Arthur CHARPENTIER, modeling heat waves




                         Linear trend, and Gaussian noise
Return period of k consecutive days with temperature exceeding s,




                                                                    19
Arthur CHARPENTIER, modeling heat waves




                                 The seasonal component
Seasonal pattern during the yearly




did not use a cosine function to model St but a spline regression (on circular
data),


                                                                                 20
Arthur CHARPENTIER, modeling heat waves




              The residual part (or stationary component)
Let Xt = Yt − β0 + β1 t + St




                                                            21
Arthur CHARPENTIER, modeling heat waves




              The residual part (or stationary component)
Xt might look stationary,




                                                            22
Arthur CHARPENTIER, modeling heat waves




              The residual part (or stationary component)
but the variance of Xt seems to have a seasonal pattern,




                                                            23
Arthur CHARPENTIER, modeling heat waves




              The residual part (or stationary component)
Dispersion and variance of residuals, graph of |Xt | series




                                                              24
Arthur CHARPENTIER, modeling heat waves




                           A spatial model for residuals ?
Consider here two series of temperatures (e.g. Paris and Marseille).




                                                                       25
Arthur CHARPENTIER, modeling heat waves




                           A spatial model for residuals ?
Consider here two series of temperatures (e.g. Paris and Marseille).




                                                                       26
Arthur CHARPENTIER, modeling heat waves




                           A spatial model for residuals ?
Consider here two series of temperatures (e.g. Paris and Marseille), and their
stationary residuals




                                                                                 27
Arthur CHARPENTIER, modeling heat waves




                                  Tail dependence indices
For the lower tail

  L(z) = P(U < z, V < z)/z = C(z, z)/z = P(U < z|V < z) = P(V < z|U < z),

and for the upper tail

                    R(z) = P(U > z, V > z)/(1 − z) = P(U > z|V > z).

see Joe (1990). Define

                     λU = R(1) = lim R(z) and λL = L(0) = lim L(z).
                                           z→1            z→0

such that
                                           −1          −1
                           λL = lim P X ≤ FX (u) |Y ≤ FY (u) ,
                                    u→0
and
                                           −1          −1
                           λU = lim P X > FX (u) |Y > FY (u) .
                                    u→1



                                                                       28
Arthur CHARPENTIER, modeling heat waves




                                  Tail dependence indices
Ledford & Tawn (1996) suggested the following alternative approach,
• for independent random variables,
  P(X > t, Y > t) = P(X > t) × P(Y > t) = P(X > t)2 ,
• for comonotonic random variables, P(X > t, Y > t) = P(X > t) = P(X > t)1 ,
Assume that P(X > t, Y > t) ∼ P(X > t)1/η as t → ∞, where η ∈ (0, 1] will be a
tail index.
Define
                               2 log(1 − z)                  2 log(1 − z)
                  χU (z) =                  − 1 and χL (z) =              −1
                               log C (z, z)                  log C(z, z)
with ηU = (1 + limz→0 χU (z))/2 and ηL = (1 + limz→0 χL (z))/2 sont appelés
indices de queue supérieure et inférieure, respectivement.




                                                                               29
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011
Slides lyon-2011

Mais conteúdo relacionado

Destaque (19)

Rappels stats-2014-part2
Rappels stats-2014-part2Rappels stats-2014-part2
Rappels stats-2014-part2
 
Slide 2040-1-a2013
Slide 2040-1-a2013Slide 2040-1-a2013
Slide 2040-1-a2013
 
Slides act2040-a2013-2
Slides act2040-a2013-2Slides act2040-a2013-2
Slides act2040-a2013-2
 
Actuariat et Données
Actuariat et DonnéesActuariat et Données
Actuariat et Données
 
Classification
ClassificationClassification
Classification
 
Slides act6420-e2014-ts-1
Slides act6420-e2014-ts-1Slides act6420-e2014-ts-1
Slides act6420-e2014-ts-1
 
Slides act6420-e2014-partie-1
Slides act6420-e2014-partie-1Slides act6420-e2014-partie-1
Slides act6420-e2014-partie-1
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Slides université Laval, Actuariat, Avril 2011
Slides université Laval, Actuariat, Avril 2011Slides université Laval, Actuariat, Avril 2011
Slides université Laval, Actuariat, Avril 2011
 
Slides lausanne-2013-v2
Slides lausanne-2013-v2Slides lausanne-2013-v2
Slides lausanne-2013-v2
 
Slides 2040-3
Slides 2040-3Slides 2040-3
Slides 2040-3
 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
 
Exercices act2121-session7
Exercices act2121-session7Exercices act2121-session7
Exercices act2121-session7
 
Slides 2040-2-0
Slides 2040-2-0Slides 2040-2-0
Slides 2040-2-0
 
Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission
 
Exercices act2121-session8
Exercices act2121-session8Exercices act2121-session8
Exercices act2121-session8
 
Slides act6420-e2014-partie-2
Slides act6420-e2014-partie-2Slides act6420-e2014-partie-2
Slides act6420-e2014-partie-2
 
THE RTI ACT 2005 PRESENTATION
THE RTI ACT 2005 PRESENTATIONTHE RTI ACT 2005 PRESENTATION
THE RTI ACT 2005 PRESENTATION
 
Slides6420 h2012 02
Slides6420 h2012 02Slides6420 h2012 02
Slides6420 h2012 02
 

Semelhante a Slides lyon-2011

Stat7840 hao wu
Stat7840 hao wuStat7840 hao wu
Stat7840 hao wuHao Wu
 
Weak Lensing Simulator
Weak Lensing SimulatorWeak Lensing Simulator
Weak Lensing SimulatorCorey Chivers
 
Regression Modelling Overview
Regression Modelling OverviewRegression Modelling Overview
Regression Modelling OverviewPaul Hewson
 
Navigating Molecular Haystacks: Tools & Applications
Navigating Molecular Haystacks: Tools & ApplicationsNavigating Molecular Haystacks: Tools & Applications
Navigating Molecular Haystacks: Tools & ApplicationsRajarshi Guha
 
Living In The Cloud
Living In The CloudLiving In The Cloud
Living In The Cloudacme
 
Survey of Esoko Users
Survey of Esoko UsersSurvey of Esoko Users
Survey of Esoko UsersEsoko
 
Liquid Measurement Story
Liquid Measurement StoryLiquid Measurement Story
Liquid Measurement Storycheggi1
 
Example sweavefunnelplot
Example sweavefunnelplotExample sweavefunnelplot
Example sweavefunnelplotTony Hirst
 
Introduction to power laws
Introduction to power lawsIntroduction to power laws
Introduction to power lawsColin Gillespie
 
Robust parametric classification and variable selection with minimum distance...
Robust parametric classification and variable selection with minimum distance...Robust parametric classification and variable selection with minimum distance...
Robust parametric classification and variable selection with minimum distance...echi99
 
F1 2011 Korea Race Report
F1 2011 Korea Race ReportF1 2011 Korea Race Report
F1 2011 Korea Race ReportTony Hirst
 
Portuguese Market and On-board Sampling Effort Review
Portuguese Market and On-board Sampling Effort ReviewPortuguese Market and On-board Sampling Effort Review
Portuguese Market and On-board Sampling Effort ReviewErnesto Jardim
 
F1 India 2011: Free Practice Summary Stats
F1 India 2011: Free Practice Summary StatsF1 India 2011: Free Practice Summary Stats
F1 India 2011: Free Practice Summary StatsTony Hirst
 

Semelhante a Slides lyon-2011 (17)

Stat7840 hao wu
Stat7840 hao wuStat7840 hao wu
Stat7840 hao wu
 
Weak Lensing Simulator
Weak Lensing SimulatorWeak Lensing Simulator
Weak Lensing Simulator
 
Regression Modelling Overview
Regression Modelling OverviewRegression Modelling Overview
Regression Modelling Overview
 
Navigating Molecular Haystacks: Tools & Applications
Navigating Molecular Haystacks: Tools & ApplicationsNavigating Molecular Haystacks: Tools & Applications
Navigating Molecular Haystacks: Tools & Applications
 
Slides geotop
Slides geotopSlides geotop
Slides geotop
 
Slides binar-hec
Slides binar-hecSlides binar-hec
Slides binar-hec
 
Slides GEOTOP
Slides GEOTOPSlides GEOTOP
Slides GEOTOP
 
Living In The Cloud
Living In The CloudLiving In The Cloud
Living In The Cloud
 
Survey of Esoko Users
Survey of Esoko UsersSurvey of Esoko Users
Survey of Esoko Users
 
Clustering Plot
Clustering PlotClustering Plot
Clustering Plot
 
Liquid Measurement Story
Liquid Measurement StoryLiquid Measurement Story
Liquid Measurement Story
 
Example sweavefunnelplot
Example sweavefunnelplotExample sweavefunnelplot
Example sweavefunnelplot
 
Introduction to power laws
Introduction to power lawsIntroduction to power laws
Introduction to power laws
 
Robust parametric classification and variable selection with minimum distance...
Robust parametric classification and variable selection with minimum distance...Robust parametric classification and variable selection with minimum distance...
Robust parametric classification and variable selection with minimum distance...
 
F1 2011 Korea Race Report
F1 2011 Korea Race ReportF1 2011 Korea Race Report
F1 2011 Korea Race Report
 
Portuguese Market and On-board Sampling Effort Review
Portuguese Market and On-board Sampling Effort ReviewPortuguese Market and On-board Sampling Effort Review
Portuguese Market and On-board Sampling Effort Review
 
F1 India 2011: Free Practice Summary Stats
F1 India 2011: Free Practice Summary StatsF1 India 2011: Free Practice Summary Stats
F1 India 2011: Free Practice Summary Stats
 

Mais de Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Último

Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Bhuvaneswari Subramani
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 

Último (20)

Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 

Slides lyon-2011

  • 1. Arthur CHARPENTIER, modeling heat waves Modeling heat-waves : return period for non-stationary extremes Arthur Charpentier Université du Québec à Montréal charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Changement climatique et gestion des risques, Lyon, Movember 2011 1
  • 2. Arthur CHARPENTIER, modeling heat waves Motivation “Tous nos scénarios à dix ans montrent une aggravation des tempêtes, inondations, sécheresses. Les catastrophes centennales vont devenir plus fréquentes.” Jean-Marc Lamère, délégué général de la Fédération Française des Sociétés d’Assurances, 2003. Climate change, from Third IPCC Agreement ,2001 : 2
  • 3. Arthur CHARPENTIER, modeling heat waves Motivation “there is no longer any doubt that the Earth’s climate is changing [...] globally, nine of the past 10 years have been the warmest since records began in 1861”, February 2005, opening the conference Climate change : a global, national and regional challenge, Dennis Tirpak. source : Meehklet al. (2009). 3
  • 4. Arthur CHARPENTIER, modeling heat waves The European heatwave of 2003 Third IPCC Assessment, 2001 : treatment of extremes (e.g. trends in extreme high temperature) is “clearly inadequate”. Karl & Trenberth (2003) noticed that “the likely outcome is more frequent heat waves”, “more intense and longer lasting” added Meehl & Tebaldi (2004). In Nîmes, there were more than 30 days with temperatures higher than 35◦ C (versus 4 in hot summers, and 12 in the previous heat wave, in 1947). Similarly, the average maximum (minimum) temperature in Paris peaked over 35◦ C for 10 consecutive days, on 4-13 August. Previous records were 4 days in 1998 (8 to 11 of August), and 5 days in 1911 (8 to 12 of August). Similar conditions were found in London, where maximum temperatures peaked above 30◦ C during the period 4-13 August (see e.g. Burt (2004), Burt & Eden (2004) and Fink et al. (2004).) 4
  • 5. Arthur CHARPENTIER, modeling heat waves q q q q q q q q q q q 20 q q q q q Temperature in °C q q q q q q q q q q q q q q q q q q q q q 15 q q q q q q q q q q q q q q q q q q q q q q q q 10 q juil. 02 juil. 12 juil. 22 août 01 août 11 août 21 août 31 5
  • 6. Arthur CHARPENTIER, modeling heat waves Which temperature might be interesting ? Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago : minimum temperature should be most important for health impact (see also Kovats & Koppe (2005)), several nights with no relief from very warm nighttime 6
  • 7. Arthur CHARPENTIER, modeling heat waves Which temperature might be interesting ? Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago : minimum temperature should be most important for health impact (see also Kovats & Koppe (2005)), several nights with no relief from very warm night-time 7
  • 8. Arthur CHARPENTIER, modeling heat waves Modeling temperature Consider the following decomposition Yt = µt + St + Xt where • µt is a (linear) general tendency • St is a seasonal cycle • Xt is the remaining (stationary) noise 8
  • 9. Arthur CHARPENTIER, modeling heat waves Nonstationarity and linear trend Consider a spline and lowess regression 9
  • 10. Arthur CHARPENTIER, modeling heat waves Nonstationarity and linear trend or a polynomial regression,and compare local slopes, 10
  • 11. Arthur CHARPENTIER, modeling heat waves Nonstationarity and linear trend Several authors (from Laneet al. (1994) to Blacket al. (2004)) have tried to explain global warming, and to find explanatory factors. As pointed out in Queredaet al. (2000), the “analysis of the trend is difficult and could be biased by non-climatic processes such as the urban effect”. In fact, “most of the temperature rise could be due to an urban effect” : global warming can be understood as one of the consequence of “global pollution” (see also Houghton (1997) or Braunet al. (2004) for a detailed study of the impact of transportation). 11
  • 12. Arthur CHARPENTIER, modeling heat waves Quantile regression to describe ’extremal’ temperature See Yan (2002), Meehl & Tebaldi (2004), or Alexanderet al. (2006). Least square used to estimate a linear model for E(Yt ), T T min (Yt − [β0 + β1 t])2 = min R(Yt − [β0 + β1 t]) β0 ,β1 β0 ,β1 t=1 t=1 where R(x) = x2 . Quantile regression can be used, let p ∈ (0, 1), and consider T min R(Yt − [β0 + β1 t]) β0 ,β1 t=1 where   x · (p − 1) if x < 0 Rp (x) = x · (p − 1(x < 0)) =  x · p if x > 0 12
  • 13. Arthur CHARPENTIER, modeling heat waves Remark : E(Y ) = argmin E (Y − γ)2 = argmin (Y − γ)2 dF (y) while γ +∞ Qp (Y ) = argmin [p − 1] · [γ − x]dF (x) + p · [x − γ]dF (x) . −∞ γ 5%, 25%, 75%, and 95% quantile regressions, 13
  • 14. Arthur CHARPENTIER, modeling heat waves Quantile regression to describe ’extremal’ temperature slopes (β1 ) of quantile regressions, as functions of probability q ∈ (0, 1), Remark : constant rate means that scenario 1 is realistic in the Third IPCC Agreement, 2001 : 14
  • 15. Arthur CHARPENTIER, modeling heat waves Quantile regression to describe ’extremal’ temperature slopes (β1 ) of quantile regressions, as functions of probability q ∈ (0.9, 1), 15
  • 16. Arthur CHARPENTIER, modeling heat waves Regression for yearly maxima Let Mi denote the highest minimal daily temperature observed during year i, 16
  • 17. Arthur CHARPENTIER, modeling heat waves Regression for yearly maxima Let Mi denote the highest minimal daily temperature observed during year i, 17
  • 18. Arthur CHARPENTIER, modeling heat waves Linear trend, and Gaussian noise Benestad (2003) or Redner & Petersen (2006) temperature for a given (calendar) day is an “independent Gaussian random variable with constant standard deviation σ and a mean that increases at constant speed ν” In the US, ν = 0.03◦ C per year, and σ = 3.5◦ C In Paris, ν = 0.027◦ C per year, and σ = 3.23◦ C Assuming independence it is possible to estimate return periods 18
  • 19. Arthur CHARPENTIER, modeling heat waves Linear trend, and Gaussian noise Return period of k consecutive days with temperature exceeding s, 19
  • 20. Arthur CHARPENTIER, modeling heat waves The seasonal component Seasonal pattern during the yearly did not use a cosine function to model St but a spline regression (on circular data), 20
  • 21. Arthur CHARPENTIER, modeling heat waves The residual part (or stationary component) Let Xt = Yt − β0 + β1 t + St 21
  • 22. Arthur CHARPENTIER, modeling heat waves The residual part (or stationary component) Xt might look stationary, 22
  • 23. Arthur CHARPENTIER, modeling heat waves The residual part (or stationary component) but the variance of Xt seems to have a seasonal pattern, 23
  • 24. Arthur CHARPENTIER, modeling heat waves The residual part (or stationary component) Dispersion and variance of residuals, graph of |Xt | series 24
  • 25. Arthur CHARPENTIER, modeling heat waves A spatial model for residuals ? Consider here two series of temperatures (e.g. Paris and Marseille). 25
  • 26. Arthur CHARPENTIER, modeling heat waves A spatial model for residuals ? Consider here two series of temperatures (e.g. Paris and Marseille). 26
  • 27. Arthur CHARPENTIER, modeling heat waves A spatial model for residuals ? Consider here two series of temperatures (e.g. Paris and Marseille), and their stationary residuals 27
  • 28. Arthur CHARPENTIER, modeling heat waves Tail dependence indices For the lower tail L(z) = P(U < z, V < z)/z = C(z, z)/z = P(U < z|V < z) = P(V < z|U < z), and for the upper tail R(z) = P(U > z, V > z)/(1 − z) = P(U > z|V > z). see Joe (1990). Define λU = R(1) = lim R(z) and λL = L(0) = lim L(z). z→1 z→0 such that −1 −1 λL = lim P X ≤ FX (u) |Y ≤ FY (u) , u→0 and −1 −1 λU = lim P X > FX (u) |Y > FY (u) . u→1 28
  • 29. Arthur CHARPENTIER, modeling heat waves Tail dependence indices Ledford & Tawn (1996) suggested the following alternative approach, • for independent random variables, P(X > t, Y > t) = P(X > t) × P(Y > t) = P(X > t)2 , • for comonotonic random variables, P(X > t, Y > t) = P(X > t) = P(X > t)1 , Assume that P(X > t, Y > t) ∼ P(X > t)1/η as t → ∞, where η ∈ (0, 1] will be a tail index. Define 2 log(1 − z) 2 log(1 − z) χU (z) = − 1 and χL (z) = −1 log C (z, z) log C(z, z) with ηU = (1 + limz→0 χU (z))/2 and ηL = (1 + limz→0 χL (z))/2 sont appelés indices de queue supérieure et inférieure, respectivement. 29