Evolução atomica 2015

264 visualizações

Publicada em

0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
264
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
8
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Evolução atomica 2015

  1. 1. Primeiro modelo atômico
  2. 2. Leucipo (450 a.C)  Demócrito e Leucipo  Viveu por volta de 450 a.C  Ele dizia que a matéria podia ser dividida em partículas cada vez menores , até chegar a um limite.
  3. 3. Modelos atômicos A origem da palavra átomo A palavra átomo foi utilizada pela primeira vez na Grécia antiga, por volta de 400 aC. Demócrito (um filósofo grego) acreditava que todo tipo de matéria fosse formado por diminutas partículas que denominou átomos (sem divisão). Acreditava-se que tais partículas representavam a menor porção de matéria possível, ou seja, eram indivisíveis. Como esta idéia não pôde ser comprovada por Demócrito e seus contemporâneos, ela ficou conhecida como 1º modelo atômico, mas meramente filosófico.
  4. 4. Modelo Atômico
  5. 5. Modelo Atômico de Dalton As idéias de Demócrito permaneceram inalteradas por aproximadamente 2200 anos. Em 1808, Dalton retomou estas idéias sob uma nova perspectiva: a experimentação. Baseado em reações químicas e pesagens minuciosas, chegou à conclusão de que os átomos realmente existiam e que possuíam algumas características: - Toda matéria é formada por diminutas partículas esféricas, maciças, neutras e indivisíveis chamadas átomos. - Existe um número finito de tipos de átomos na natureza. - A combinação de iguais ou diferentes tipos de átomos originam os diferentes materiais.
  6. 6. Modelo atômico da bola de bilhar No seu modelo o átomo era uma esfera maciça;  Indivisível  Impenetrável  Indestrutível  Lembrando uma bola de bilhar. Dalton e o modelo da bola de bilhar
  7. 7. Modelo Atômico de Thomson (1898) Com a descoberta dos prótons e elétrons, Thomson propôs um modelo de átomo no qual os elétrons e os prótons, estariam uniformemente distribuídos, garantindo o equilíbrio elétrico entre as cargas positiva dos prótons e negativa dos elétrons.
  8. 8. THONSON: Pudim de ameixas. * Conseguiu mostrar a existência de cargas elétricas (positivas e negativas) em um átomo.
  9. 9. Modelo de Thompson Pudim de Passas 1897: J. J. Thomson mede a razão e/m (= 1.76 X 1011 C/kg), mostrando que independe do material do catodo e da voltagem usada A mesma razão medida para íons de hidrogênio davam um valor cerca de 2000 vezes menor!
  10. 10. Modelo Atômico de Rutherford (1911) Rutherford bombardeou uma fina lâmina de ouro (0,0001 mm) com partículas "alfa" (núcleo de átomo de hélio: 2 prótons e 2 nêutrons), emitidas pelo "polônio" (Po), contido num bloco de chumbo (Pb), provido de uma abertura estreita, para dar passagem às partículas "alfa" por ele emitidas. Envolvendo a lâmina de ouro (Au), foi colocada uma tela protetora revestida de sulfeto de zinco (ZnS).
  11. 11. RUTHERFORD: Sistema Planetário *O átomo estaria dividido em duas regiões: Núcleo (prótons e nêutrons) Eletrosfera (elétrons).
  12. 12. Modelo Atômico de Rutherford (1911) Observando as cintilações na tela de ZnS, Rutherford verificou que muitas partículas "alfa" atravessavam a lâmina de ouro, sem sofrerem desvio, e poucas partículas "alfa" sofriam desvio. Como as partículas "alfa" têm carga elétrica positiva, o desvio seria provocado por um choque com outra carga positiva, isto é, com o núcleo do átomo, constituído por prótons.
  13. 13. Experiência de Rutherford
  14. 14. Experiência de Rutherford
  15. 15. Modelo Atômico de Rutherford (1911) Assim, o átomo seria um imenso vazio, no qual o núcleo ocuparia uma pequena parte, enquanto que os elétrons o circundariam numa região negativa chamada de eletrosfera, modificando assim, o modelo atômico proposto por Thomson.
  16. 16. Modelo de Bohr - 1913 Objetivo: explicar a fórmula empírica de Balmer e o modelo de Rutherford 1º Postulado: Bohr admitiu que, tanto a lei de Coulomb como as leis de Newton são ainda aplicáveis no domínio atômico. Assim o elétron mover-se-á numa órbita circular ao redor do núcleo sendo a força central (+) a responsável pelo movimento;
  17. 17. 2º Postulado: postulado da quantificação das órbitas 3º Postulado: nas órbitas permitidas não há radiação de energia eletromagnética. Deste modo a energia total do elétron permanece constante e as orbitas são ditas estacionárias.
  18. 18. SUBNÍVEIS (s , p , d , f)
  19. 19. - Os Postulados de Niels Bohr (1885-1962) De acordo com o modelo atômico proposto por Rutherford, os elétrons ao girarem ao redor do núcleo, com o tempo perderiam energia, e se chocariam com o mesmo. Como o átomo é uma estrutura estável, Niels Bohr formulou uma teoria (1913) sobre o movimento dos elétrons, fundamentado na Teoria Quântica da Radiação (1900) de Max Planck. A teoria de Bohr fundamenta-se nos seguintes postulados: 1º postulado: Os elétrons descrevem órbitas circulares estacionárias ao redor do núcleo, sem emitirem nem absorverem energia.
  20. 20. 7 camadas = 7 níveis Camadas K L M N O P Q Níveis (n) 1 2 3 4 5 6 7 Máximo de elétrons por nível 2 8 18 32 32 18 2 Os elétrons não estão distribuídos ao acaso na eletrosfera. Eles apresentam-se inseridos em um conjunto de camadas ou níveis, que são formados por um conjunto de subníveis, dispostos em ordem crescente de energia.
  21. 21. 2º postulado (de Niels Bohr) : Fornecendo energia (elétrica, térmica, ....) a um átomo, um ou mais elétrons a absorvem e saltam para níveis mais afastados do núcleo. Ao voltarem as suas órbitas originais, devolvem a energia recebida em forma de luz (fenômeno observado, tomando como exemplo, uma barra de ferro aquecida ao rubro).
  22. 22. Segundo postulado de Bohr. Um átomo irradia energia quando um elétron salta de uma órbita de maior energia para uma de menor energia. Órbitas de Bohr para o átomo de hidrogênio A linha vermelha no espectro atômico é causada por elétrons saltando da terceira órbita para a segunda órbita O comprimento de onda guarda relação com a energia. Os menores comprimentos de onda de luz significam vibrações mais rápidas e maior energia.
  23. 23. A linha verde-azulada no espectro atômico é causada por elétrons saltando da quarta para a segunda órbita. A linha azul no espectro atômico é causada por elétrons saltando da quinta para a segunda órbita A linha violeta mais brilhante no espectro atômico é causada por elétrons saltando da sexta para a segunda órbita.
  24. 24. Teorias de Bohr
  25. 25. Teoria Quântica De acordo com Max Planck (1900), quando uma partícula passa de uma situação de maior energia para outra de menor energia ou vice-versa, a energia é perdida ou recebida em "pacotes" que recebe o nome de quanta(quantum é o singular de quanta). O quantum é o pacote fundamental de energia e é indivisível. Cada tipo de energia tem o seu quantum. A Teoria Quântica permitiu a identificação dos elétrons de um determinado átomo, surgindo assim os "números quânticos".
  26. 26. Princípio da incerteza de Heisenberg: é impossível determinar com precisão a posição e a velocidade de um elétron num mesmo instante. Orbital é a região onde é mais provável encontrar um életron
  27. 27. Órbitas: 1circular e as demais elípticas
  28. 28. - Modelo Atômico de Sommerfeld (1916) Ao pesquisar o átomo, Sommerfeld concluiu que os elétrons de um mesmo nível, ocupam órbitas de trajetórias diferentes (circulares e elípticas) a que denominou de subníveis, que podem ser de quatro tipos: s , p , d , f .
  29. 29. CONCEITOS SOBRE O ÁTOMO  Número Atômico (Z): quantidades de prótons.  Z = p = e  Número de Massa (A): a soma das partículas que constitui o átomo.  A = Z + n + e  A = Z + n  REPRESENTAÇÃO DE UM ÁTOMO
  30. 30. SEMELHANÇA ATÔMICA ISÓTOPOS: mesmo número de prótons. ISÓBAROS: mesmo número de massa. ISÓTONOS: mesmo número de nêutrons.
  31. 31. ISOELETRONICOS: mesmo número de elétrons. ÍONS: são átomos que ganharam ou perderam elétrons
  32. 32. Átomos
  33. 33. Átomos
  34. 34. Átomos
  35. 35. Vídeo Aula
  36. 36. Trabalho atomistas

×