SlideShare uma empresa Scribd logo
1 de 18
Baixar para ler offline
Tugas Matematika
Integral Hal 49- 59
Disusun Oleh :
POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
TAHUN AJARAN 2014/2015
Industri Air Kantung Sungailiat 33211
Bangka Induk, Propinsi Kepulauan Bangka Belitung
Telp : +62717 93586
Fax : +6271793585 email : polman@polman-babel.ac.id
http://www.polman-babel.ac.id
Kelompok 7 :
- Fery Ardiansyah
- Rakam Tiano
- Sarman
- Mirza ramadhan
Dua aturan integrasi berguna
Latihan 7.7
Cari integral tak tentu yang paling umum..
1. 3𝑥4
− 5𝑥3
− 21𝑥2
+ 36𝑥 − 10 𝑑𝑥
2. 3𝑥2
− 4𝑐𝑜𝑠 2𝑥 𝑑𝑥
3.
8
𝑡5
+
5
𝑡
𝑑𝑡
4.
1
25 − 𝜃2
+
1
100 + 𝜃2
𝑑𝜃
5.
𝑒5𝑥
− 𝑒4𝑥
𝑒2𝑥
𝑑𝑥
6.
𝑥7
+ 𝑥4
𝑥5
𝑑𝑥
7.
𝑥7
+ 𝑥4
𝑥5
𝑑𝑥
8. 𝑥2
+ 4 2
𝑑𝑥 = 𝑥4
9.
7
𝑡
3 𝑑𝑡
10.
20 + 𝑥
𝑥
𝑑𝑥
Penyelesaian :
1. 3𝑥4
− 5𝑥3
− 21𝑥2
+ 36𝑥 − 10 𝑑𝑥 = 3𝑥4
𝑑𝑥 − 5𝑥3
𝑑𝑥 − 21𝑥2
𝑑𝑥 +
36𝑥 𝑑𝑥 − 10 𝑑𝑥 = 3 𝑥4
𝑑𝑥 − 5 𝑥3
𝑑𝑥 − 21 𝑥2
𝑑𝑥 + 36 𝑥 𝑑𝑥 −
10 𝑑𝑥 = 3
𝑥5
5
− 5
𝑥4
4
− 21
𝑥3
3
+ 36
𝑥2
2
− 10𝑥 + 𝑐 =
3
5
𝑥5
−
5
4
𝑥4
− 7𝑥3
+
18𝑥2
− 10𝑥 + 𝑐
2. 3𝑥2
− 4𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3𝑥2
𝑑𝑥 − 4 𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3 𝑥2
𝑑𝑥 − 4 𝑐𝑜𝑠 2𝑥 𝑑𝑥 =
3
𝑥3
3
− 4
1
2
𝑠𝑖𝑛2𝑥 + 𝑐 = 𝑥3
− 2 sin 2𝑥 + 𝑐
3.
8
𝑡5 +
5
𝑡
𝑑𝑡 =
8
𝑡5 𝑑𝑥 +
5
𝑡
𝑑𝑥 = 8 𝑡−5
𝑑𝑥 + 5
1
𝑡
𝑑𝑥 = 8
𝑡−4
−4
+ 5 𝑙𝑛 𝑡 + 𝑐 =
−2𝑡−4
+ 5 𝑙𝑛 𝑡 + 𝑐
4.
1
25−𝜃2
+
1
100+𝜃2 𝑑𝜃 =
1
25−𝜃2
𝑑𝑥 +
1
100+𝜃2 𝑑𝑥 =
1
52+𝜃2
𝑑𝑥 +
1
102+𝜃2 𝑑𝑥 =
𝑠𝑖𝑛−1 𝜃
5
+
1
10
𝑡𝑎𝑛−1 𝜃
10
+ 𝑐
5.
𝑒5𝑥 −𝑒4𝑥
𝑒2𝑥 𝑑𝑥 = 𝑒3𝑥
− 𝑒2𝑥
𝑑𝑥 = 𝑒3𝑥
𝑑𝑥 − 𝑒2𝑥
𝑑𝑥 =
1
3
𝑒3𝑥
−
1
2
𝑒2𝑥
+ 𝑐
6.
𝑥7+𝑥4
𝑥5 𝑑𝑥 =
𝑥7
𝑥5 𝑑𝑥 +
𝑥4
𝑥5 𝑑𝑥 =
7.
1
𝑒6+𝑥2 𝑑𝑥 = 𝑒6
+ 𝑥2
𝑑𝑥 = 𝑙𝑛 𝑒6
+ 𝑥2
+ 𝑐
8. 𝑥2
+ 4 2
𝑑𝑥 = 𝑥4
+ 16 + 2. 𝑥2
. 4 𝑑𝑥 = 𝑥4
+ 8𝑥2
+ 16 𝑑𝑥 =
1
4+1
𝑥4+1
+
8
2+1
𝑥2+1
+ 16𝑥 + 𝑐 =
1
5
𝑥5
+
8
3
𝑥3
+ 𝑐
9.
7
𝑡3 𝑑𝑡 = 7𝑡−
1
3 𝑑𝑡 =
7
−
1
3
+1
𝑡−
1
3
+1
+ 𝑐 =
7
2
3
𝑡
2
3 + 𝑐 =
21
2
𝑡
2
3 + 𝑐
10.
20+𝑥
𝑥
𝑑𝑥 = 20 + 𝑥 𝑥−
1
2 𝑑𝑥 = 20𝑥−
1
2 + 𝑥
1
2 𝑑𝑥 =
20
−
1
2
+1
𝑥−
1
2
+1
+
1
1
2
+1
𝑥
1
2
+1
+ 𝑐 =
20
1
2
𝑥
1
2 +
1
3
2
𝑥
3
2 + 𝑐 = 40𝑥
1
2 +
2
3
𝑥
3
2 + 𝑐
Integrasi dasar teknik
Integrasi dengan substitusi
Latihan 8.1
Gunakan integrasi dengan substitusi untuk menemukan integral tak tentu yang paling umum.
1. 3 𝑥3
− 5 4
𝑥2
𝑑𝑥
2. 𝑒 𝑥4
𝑥3
𝑑𝑥
3.
𝑡
𝑡2 + 7
𝑑𝑡
4. 𝑥5
− 3𝑥
1
4 5𝑥4
− 3 𝑑𝑥
5.
𝑥3
− 2𝑥
𝑥4 − 4𝑥2 + 5 4
𝑑𝑥
6.
𝑥3
− 2𝑥
𝑥4 − 4𝑥2 + 5
𝑑𝑥
7. cos 3𝑥2
+ 1 𝑑𝑥
8.
3𝑐𝑜𝑠2
𝑥(𝑠𝑖𝑛 𝑥)
𝑥
𝑑𝑥
9.
𝑒2𝑥
1 + 𝑒4𝑥
𝑑𝑥
10. 6𝑡2
𝑒 𝑡3−2
𝑑𝑡
PENYELESAIAN
1. 3 𝑥3
− 5 4
𝑥2
𝑑𝑥
u = x3
– 5 du = 3x2
dx
= 𝑢4
𝑑𝑢
=
1
5
𝑢5
+ 𝑐
=
(𝑥3
− 5)5
5
+ 𝑐
2. 𝑒 𝑥4
𝑥3
𝑑𝑥
𝑢 = 𝑥4
= 𝑒 𝑥4 1
4
. 4𝑥3
𝑑𝑥
=
1
4
𝑒 𝑥3
4𝑥3
𝑑𝑥
=
1
4
𝑒 𝑢
𝑑𝑢
=
1
4
𝑒 𝑢
+ 𝑐
=
1
4
𝑒 𝑥4
+ 𝑐
3.
𝑡
𝑡2 + 7
𝑑𝑡
𝑢 = 𝑡2
+ 7 𝑑𝑢 = 2𝑡 𝑑𝑥
𝑡
𝑡2 + 7
𝑑𝑡
1
2
2𝑡
𝑡2 + 7
𝑑𝑡
1
2
2𝑡
𝑡2 + 7
𝑑𝑡
1
2
𝑑𝑢
𝑢
1
2
𝐼𝑛 𝑢 + 𝑐
1
2
𝐼𝑛 𝑡2
+ 7 + 𝑐
4. 𝑥5
− 3𝑥
1
4 5𝑥4
− 3 𝑑𝑥
𝑢 = 𝑥5
− 3𝑥 𝑑𝑢 = 5𝑥4
− 3 𝑑𝑥
= 𝑢
1
4 𝑑𝑢
= 4𝑢
5
4 + 𝑐
= 4 𝑥5
− 3𝑥
5
4 + 𝑐
5.
𝑥3
− 2𝑥
𝑥4 − 4𝑥2 + 5 4
𝑑𝑥
𝑢 = 𝑥4
− 4𝑥2
+ 5 𝑑𝑢 = 4𝑥3
− 8𝑥 𝑑𝑥
=
1
4
.
4 𝑥3
− 2𝑥
𝑢4
𝑑𝑥
=
1
4
𝑑𝑢
𝑢4
=
1
4
𝐼𝑛 𝑢 + 𝑐
=
1
4
𝐼𝑛 𝑥4
− 4𝑥2
+ 5 + 𝑐
6.
𝑥3
− 2𝑥
𝑥4 − 4𝑥2 + 5
𝑑𝑥
𝑢 = 𝑥4
− 4𝑥2
+ 5 𝑑𝑢 = 4𝑥3
− 8𝑥 𝑑𝑥
= 4 𝑥3
− 2𝑥
=
1
4
.
4(𝑥3
− 2𝑥)
𝑥4 − 4𝑥2 + 5
𝑑𝑥
=
1
4
𝑑𝑢
𝑢
=
1
4
𝐼𝑛 𝑢 + 𝑐
=
1
4
𝐼𝑛 𝑥4
− 4𝑥2
+ 5 + 𝑐
9.
𝑒2𝑥
1 + 𝑒4𝑥
𝑑𝑥
=
𝑒2𝑥
1 + 𝑒2𝑥(2)
𝑑𝑥
𝑢 = 1 + 𝑒2𝑥
𝑑𝑢 = 2. 𝑒2𝑥
𝑑𝑥
=
1
2
.
2. 𝑒2𝑥
1 + 𝑒2𝑥(2)
=
1
2
𝑑𝑢
𝑢
=
1
2
𝐼𝑛 𝑢 𝑑𝑥
=
1
2
𝐼𝑛 1 + 𝑒4𝑥
+ 𝑐
10. 6𝑡2
𝑒 𝑡3−2
𝑑𝑡
𝑢 = 𝑡3
− 2 𝑑𝑢 = 3𝑡2
𝑑𝑡
= 6𝑡2
𝑒 𝑡3−2
𝑑𝑡
= 2 3𝑡2
𝑒 𝑡3−2
𝑑𝑡
=
1
3
. 3 2 . 3𝑡2
. 𝑒 𝑡3−2
𝑑𝑡
=
1
3
6 𝑑𝑢. 𝑒 𝑢
=
1
3
𝑒 𝑢
. 6 𝑑𝑢
=
1
3
𝑒 𝑡3−2
. 6 + 𝑐
= 2𝑒 𝑡3−2
+ 𝑐
Integrasi dengan bagian
Latihan 8.2
Gunakan integrasi dengan bagian untuk menemukan integral tak tentu yang paling umum.
1. 2𝑥.sin2x dx
2. 𝑥3
lnx dx
3. 𝑡𝑒 𝑡
dt
4. 𝑥 cos x dx
5. 𝑐𝑜𝑡−1
𝑥 𝑑𝑥
6. 𝑥2
𝑒 𝑥
𝑑𝑥
7. 𝑤( 𝑤 − 3)2
𝑑𝑤
8. 𝑥3
𝑖𝑛 4𝑥 𝑑𝑥
9. 𝑡 (𝑡 + 5)−4
𝑑𝑡
10. 𝑥 𝑥 + 2 . 𝑑𝑥
PENYELESAIAN
1. 2𝑥 sin 2𝑥 𝑑𝑥
Misalnya :
u = 2x du = x
dv = sin 2x dx v= sin 2𝑥𝑑𝑥 = -
1
2
cos2x
𝑢. 𝑑𝑣 = 𝑢𝑣 – 𝑢. 𝑑𝑢
2𝑥 sin 2𝑥 𝑑𝑥 = (2x) (-
1
2
cos 2x ) - (−
1
2
cos 2x ) . 2x
= -
2
2
cos 2x +
1
2
cos 2x dx
= - x cos 2x +
1
2
.
1
2
sin 2x
= - x cos 2x +
1
2
. sin 2x + c
2. 𝑥3
𝑖𝑛 𝑥 𝑑𝑥
Misalnya :
U= inx du =
1
𝑥
dx
dv= 𝑥3
dx v = 𝑥3
𝑑𝑥 =
𝑥4
4
𝑢. 𝑑𝑣 = 𝑢𝑣 – 𝑢. 𝑑𝑢
𝑥3
𝑖𝑛 𝑥 𝑑𝑥 = (in x) (
𝑥4
4
) -
𝑥4
4
.
1
𝑥
dx
=
𝑥4 𝑖𝑛𝑥
4
-
1
4
.
𝑥4
4
=
𝑥4 𝑖𝑛𝑥
4
-
𝑥4
16
+ c
3. 𝑡𝑒 𝑡
𝑑𝑡
Misalnya :
U = t du = dt
dv = 𝑒 𝑡
dt v = 𝑒 𝑡
dt = 𝑒 𝑡
𝑢. 𝑑𝑣 = 𝑢. 𝑣 – 𝑢. 𝑑𝑢
𝑡𝑒 𝑡
𝑑𝑡 = (t) (𝑒 𝑡
) - 𝑒 𝑡
dt
= 𝑡𝑒 𝑡
- 𝑒 𝑡
dt
= 𝑡𝑒 𝑡
- 𝑒 𝑡
+ c
4. 𝑥 cos 𝑥 𝑑𝑥
Misalnya :
U= x du = dx
dv = cos x dx v = cos 𝑥 𝑑𝑥 = sin x
𝑢. 𝑑𝑣 = 𝑢. 𝑣 – 𝑢. 𝑑𝑢
𝑥 cos 𝑥 𝑑𝑥 = ( x ) ( sin x ) - sin 𝑥 𝑑𝑥
= sin x + cosx dx
= sin x + cosx + c
5. 𝑐𝑜𝑡−1
( x ) dx
Misalnya :
U = sin𝑥−1
Du= cos𝑥−1
Subtitusi du = sin𝑥−1
du = cos𝑥−1
𝑐𝑜𝑠𝑥 −1
𝑠𝑖𝑛𝑥 −1 dx =
𝑑𝑢
𝑢
Salve integral
= in (u) + c
Subsitusi kembali
U=sin𝑥−1
= in (sin𝑥−1
) + 𝑐
6. 𝑥2
𝑒 𝑥
𝑑𝑥
Misalnya :
U = 𝑥2
du = 2x
dv = 𝑒 𝑥
dx v = 𝑒 𝑥
dx = 𝑒 𝑥
𝑢. 𝑑𝑣 = u.v - 𝑢.du
𝑥2
𝑒 𝑥
𝑑𝑥 = 𝑥2
𝑒 𝑥
- 𝑥
2
. 2𝑥
=𝑥𝑒2𝑥
- 2𝑥. 𝑑𝑥
=𝑥𝑒2𝑥
- x+c
7. 𝑤(𝑤 − 3)2
𝑑𝑤
Misalnya :
U= w du= dw
dv = (𝑤 − 3)2
𝑑𝑤 𝑣 = 2𝑤 − 6 = 𝑤 − 3
𝑢. 𝑑𝑣 = u.v - 𝑢.du
𝑤(𝑤 − 3)2
𝑑𝑤 = 𝑤. 𝑤 − 3 − 𝑤. 𝑑𝑤
= 𝑤2
− 3𝑤 −
1
2
𝑤 + 𝑐
8. 𝑥3
𝑖𝑛 4𝑥 𝑑𝑥
Misalnya :
U= in4x du=
1
4𝑥
𝑑𝑥
dv= 𝑥3
𝑑𝑥 v = 𝑥3
dx =
1
4
𝑥4
𝑢. 𝑑𝑣 = u.v - 𝑣.du
𝑥3
𝑖𝑛 4𝑥 𝑑𝑥 = in4x.
1
4
𝑥4
- in4x .
1
4𝑥
𝑑𝑥
=
1
4
𝑥4
𝑖𝑛4𝑥 −
1
5
𝑥5
∶
1
2
16𝑥2
+ 𝑐
=
1
4
𝑥4
𝑖𝑛4𝑥 -
2𝑥5
80𝑥2 + c
9. 𝑡(𝑡 + 5)−4
𝑑𝑡
Misalnya :
U= t du= dt
dv =(𝑡 + 5)−4
𝑣 = −4𝑡−3
− 20−3
= 2𝑡−2
+ 10−2
𝑢. 𝑑𝑣 = u.v - 𝑣.du
𝑡(𝑡 + 5)−4
𝑑𝑡 =( t. 2𝑡−2
+ 10−2
) - 2𝑡−2
+ 10−2
. 𝑑𝑡
= 20𝑡−4
+ (2𝑡 + 10 + 𝑑𝑡
10. 𝑥 𝑥 + 2 .dx
Misalnya :
U = x du = dx
Dv= 𝑥 + 2 dx v= (𝑥 + 2)
1
2 =2𝑥1
1
2 +0.671
1
2
𝑢. 𝑑𝑣 = u.v - 𝑣.du
𝑥 𝑥 + 2 .dx = x . 2𝑥1
1
2 +0.671
1
2 - 2𝑥1
1
2 + 0.671
1
2 . dx
= x.2,67𝑥
3
2 - (2𝑥
3
2 + 0,67
3
2) dx
= 2,67𝑥2
3
2 - 2,67𝑥
6
2 + c
Integrasi dengan menggunakan tabel rumus
terpisahkan
Latihan 8.3
Gunakan tabel rumus integral dalam Lampiran C untuk menemukan integral tak tentu yang
paling umum.
1. cot 𝑥 𝑑𝑥
2.
1
𝑥+2 (2𝑥+5)
𝑑𝑥
3. 𝑙𝑛𝑥 2
𝑑𝑥
4. 𝑥 cos 𝑥 𝑑𝑥
5.
𝑥
𝑥+2 2 𝑑𝑥
6. 3𝑥𝑒 𝑥
𝑑𝑥
7. 10 𝑤 + 3 𝑑𝑤
8. 𝑡(𝑡 + 5)−1
𝑑𝑡
9. 𝑥 𝑥 + 2 𝑑𝑥
10.
1
sin 𝑢 cos 𝑢
𝑑𝑢
PENYELESAIAN
1. cot 𝑥 𝑑𝑥
( Formula nomor 7)
Penyelesaian :
𝑐𝑜𝑡 𝑥 𝑑𝑥 =
𝑐𝑜𝑠𝑥
𝑠𝑖𝑛𝑥
𝑑𝑥
Misalkan :
𝑢 = sin 𝑥
𝑑𝑢 = cos 𝑥 𝑑𝑥
Subsitusi 𝑑𝑢 = cos 𝑥, 𝑈 = sin 𝑥
cos 𝑥
sin 𝑥
𝑑𝑥 =
𝑑𝑢
𝑢
𝑠𝑎𝑙𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙
ln 𝑢 + 𝐶
subsitusi kembali 𝑈 = sin 𝑥
𝑙𝑛 sin 𝑥 + 𝑐
2.
1
𝑥+2 (2𝑥+5)
𝑑𝑥
=
1
𝑥 + 2 (2𝑥 + 5)
=
𝐴
𝑥 + 2
+
𝐴
2𝑥 + 5
𝐴 =
1
𝑥 + 2 (2.2 + 5)
=
1
9
𝐵 =
1
5 + 2 (2𝑥 + 5)
=
1
7
Sehingga :
1
𝑥 + 2 2𝑥 + 5
𝑑𝑥 =
1
𝑥 + 2 2𝑥 + 5
=
1
9
𝑥 + 2
𝑑𝑥 +
1
9
2𝑥 + 5
𝑑𝑥
=
1
9
𝑙𝑛 𝑥 + 2 +
1
7
ln 2𝑥 + 5 + c
3. 𝑙𝑛𝑥 2
𝑑𝑥 = 𝑙𝑛𝑥 𝑙𝑛𝑥 𝑑𝑥
Missal :
U = ln x 𝑑𝑢 = (
1
𝑥
)2
Dv = dx
dv = 𝑑𝑥
v = x
(𝑙𝑛𝑥)2
𝑑𝑥 = 𝑢𝑣 − 𝑣𝑑𝑢 (x ln )
= (𝑙𝑛𝑥)2
. x - 𝑥
1
𝑥2 𝑑𝑥
= 𝑥. (𝑙𝑛𝑥)2
-
1
𝑥
𝑑𝑥
= 𝑥. (𝑙𝑛𝑥)2
x - 𝑥−1
𝑑𝑥
= 𝑥. (𝑙𝑛𝑥)2
-
1
0
𝑥0
+ 𝑐
= 𝑥. (𝑙𝑛𝑥)2
- ~ + 𝑐
= ln x ( x ln x-x ) – (𝑥 ln 𝑥 − 𝑥) .
1
𝑥
=x (ln x)2
- x ln x -
4. 𝑥 cos 𝑥 𝑑𝑥
Penyelesaian :
𝑈 = 𝑋 → 𝑑𝑢 = 𝑑𝑥
𝑑𝑣 = 𝑐𝑜𝑠𝑥 → 𝑣 = 𝑠𝑖𝑛𝑥
𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛𝑥 𝑑𝑥
𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐
5.
𝑥
𝑥+2 2 𝑑𝑥
Penyelesaian :
𝑥
𝑥+2 2 =
𝐴
𝑥+2
+
𝐵
𝑥+2
=
𝐴 𝑥+2 +𝐵
𝑥+2
2
𝐴 = 2
𝐴 + 𝐵 = 0 = −2
Sehingga :
𝑥
𝑥 + 2 2
𝑑𝑥 =
𝑑𝑥
𝑥 + 2
–
𝑑𝑥
𝑥 + 2 2
𝑀𝑖𝑠𝑎𝑙𝑙 𝑢 = 𝑥 + 2 → 𝑑𝑢 = 𝑑𝑥
𝑑𝑥
𝑥 + 2
–
𝑑𝑥
𝑥 + 2 2
=
𝑑𝑢
𝑢
–
𝑑𝑢
𝑢2
= 2𝑙𝑛 +
2
𝑢
+ 𝑐
2𝑙𝑛 𝑥 + 2 +
2
𝑥+2
+ 𝑐
6. 3𝑥𝑒 𝑥
𝑑𝑥
U = 3x dv = 𝑒 𝑥
𝑑𝑥
𝑑𝑢
𝑑𝑥
= 3 v = 𝑒 𝑥
𝑑𝑥 = 𝑒 𝑥
du = 3 dx
𝑢𝑑𝑣 = u.v – 𝑣 𝑑𝑢
= (3x) . (𝑒 𝑥
) – 𝑒 𝑥
. 3 𝑑𝑥
= 3x 𝑒 𝑥
− 3𝑒 𝑥
7. 10 𝑤 + 3 dw
( Formula nomor 2)
10 𝑤 + 3 dw = (10 𝑤 + 3)
1
2 dw
=
1
1
2
+ 1
(10 𝑤 + 3)
1
2
+1
+ 𝑐
=
2
3
(10 𝑤 + 3)
3
2 + 𝑐
8. 𝑡(𝑡 + 5)−1
𝑑𝑡
=
𝑡
𝑡+5
dt = 𝑡 (𝑡 + 5)−1
𝑑𝑡
Missal:
U = t + 5 U= t+5
𝑑𝑢
𝑑𝑡
= 1 t = (u-5)
𝑑𝑢 = 𝑑𝑡 t=u→u=t+5 =5
t = 2 → u=t+5 = 7
=
𝑡
𝑡+5
dt = 𝑡 (𝑡 + 5)−1
𝑑𝑡 = 𝑢 − 5 𝑢−1
𝑑𝑢 = 𝑢0
− 5𝑢−1
𝑑𝑢
(𝑢0
− 5𝑢) … … … … . = 𝑢 − 𝑢
−5𝑢−1
+1 du
−5(𝑢1
−
1
5
𝑥 ) 𝑑𝑥
-5 (ln 𝑢 -
1
5
0+1
𝑥0+1
)
-5 ( ln 𝑡 + 5 -
1
5
x)
-5 ln 𝑡 + 5 + x
9. 𝑥 𝑥 + 2 𝑑𝑥
𝑚𝑖𝑠𝑎𝑙 𝑢 = 𝑥 + 2 → 𝑥 = 𝑢 − 2
𝑑𝑢 = 𝑑𝑥
Sehingga integral diatas dapat menjadi :
= 𝑖𝑛𝑡 𝑢 − 2 𝑈 𝑑𝑢
= 𝑖𝑛𝑡 𝑢 − 2 𝑈
1
2 𝑑𝑢
= 𝑖𝑛𝑡 𝑈
5
2 − 𝑈
1
2 𝑑𝑢
=
2
7
𝑈
2
7 −
2
3
𝑈
3
2 + 𝐶
= 𝑖𝑛𝑡 (𝑥 + 2)
5
2 −
2
3
(𝑥 + 2)
3
2 + 𝐶
10.
1
sin 𝑢 cos 𝑢
𝑑𝑥 = (sin 𝑢)−1
(cos 𝑢)−1
dx

Mais conteúdo relacionado

Mais procurados (15)

Tugas mtk 2
Tugas mtk 2Tugas mtk 2
Tugas mtk 2
 
Tugas2 matematika
Tugas2 matematikaTugas2 matematika
Tugas2 matematika
 
Tugas 2 matematika 2
Tugas 2  matematika 2Tugas 2  matematika 2
Tugas 2 matematika 2
 
Tugas 2
Tugas 2Tugas 2
Tugas 2
 
Tugas 2 mtk 2
Tugas 2 mtk 2Tugas 2 mtk 2
Tugas 2 mtk 2
 
Tugas 2 MTK2
Tugas 2 MTK2Tugas 2 MTK2
Tugas 2 MTK2
 
Tugas Matematika 3
Tugas Matematika 3Tugas Matematika 3
Tugas Matematika 3
 
Tugas 2
Tugas 2Tugas 2
Tugas 2
 
Tugas 2
Tugas 2Tugas 2
Tugas 2
 
Formulas
FormulasFormulas
Formulas
 
Tugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 ebTugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 eb
 
Tugas matematika 2 (semester 2)
Tugas matematika 2 (semester 2) Tugas matematika 2 (semester 2)
Tugas matematika 2 (semester 2)
 
Tugas mtk 3
Tugas mtk 3Tugas mtk 3
Tugas mtk 3
 
Tugas 3 mtk2
Tugas 3 mtk2Tugas 3 mtk2
Tugas 3 mtk2
 
Tugas 3 MTK2
Tugas 3 MTK2Tugas 3 MTK2
Tugas 3 MTK2
 

Destaque (20)

Harga alat berat
Harga  alat beratHarga  alat berat
Harga alat berat
 
feliz cumpleaños BRANDON MATEO
feliz cumpleaños BRANDON MATEOfeliz cumpleaños BRANDON MATEO
feliz cumpleaños BRANDON MATEO
 
Infographie - CV
Infographie - CVInfographie - CV
Infographie - CV
 
Ave maris stella
Ave maris stellaAve maris stella
Ave maris stella
 
los metaleros
los metaleroslos metaleros
los metaleros
 
Investigacion educativa
Investigacion educativaInvestigacion educativa
Investigacion educativa
 
Informações sobre investimentos no ceará / www.ssilveiraimoveis.com.br
Informações sobre investimentos no ceará / www.ssilveiraimoveis.com.brInformações sobre investimentos no ceará / www.ssilveiraimoveis.com.br
Informações sobre investimentos no ceará / www.ssilveiraimoveis.com.br
 
1 PresentacióN De Trabajo1
1 PresentacióN De Trabajo11 PresentacióN De Trabajo1
1 PresentacióN De Trabajo1
 
Flow diagram bio seven wwtp (bfhws bfhwc series)
Flow diagram bio seven wwtp (bfhws bfhwc series)Flow diagram bio seven wwtp (bfhws bfhwc series)
Flow diagram bio seven wwtp (bfhws bfhwc series)
 
Word 2010 principal
Word 2010 principalWord 2010 principal
Word 2010 principal
 
Treinando 003
Treinando 003Treinando 003
Treinando 003
 
5 spread
5 spread5 spread
5 spread
 
HViolence
HViolenceHViolence
HViolence
 
Luisitop
LuisitopLuisitop
Luisitop
 
Tortuga carey
Tortuga careyTortuga carey
Tortuga carey
 
ntees
nteesntees
ntees
 
SUPEROFERTA BERLIN - 25 AÑOS CAIDA MURO
SUPEROFERTA BERLIN - 25 AÑOS CAIDA MUROSUPEROFERTA BERLIN - 25 AÑOS CAIDA MURO
SUPEROFERTA BERLIN - 25 AÑOS CAIDA MURO
 
Índia aspectos gerais
Índia   aspectos geraisÍndia   aspectos gerais
Índia aspectos gerais
 
Cipta melodi
Cipta melodiCipta melodi
Cipta melodi
 
Las primeras literaturas
Las primeras literaturasLas primeras literaturas
Las primeras literaturas
 

Tugas Matematika Kelompok 7

  • 1. Tugas Matematika Integral Hal 49- 59 Disusun Oleh : POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG TAHUN AJARAN 2014/2015 Industri Air Kantung Sungailiat 33211 Bangka Induk, Propinsi Kepulauan Bangka Belitung Telp : +62717 93586 Fax : +6271793585 email : polman@polman-babel.ac.id http://www.polman-babel.ac.id Kelompok 7 : - Fery Ardiansyah - Rakam Tiano - Sarman - Mirza ramadhan
  • 2. Dua aturan integrasi berguna Latihan 7.7 Cari integral tak tentu yang paling umum.. 1. 3𝑥4 − 5𝑥3 − 21𝑥2 + 36𝑥 − 10 𝑑𝑥 2. 3𝑥2 − 4𝑐𝑜𝑠 2𝑥 𝑑𝑥 3. 8 𝑡5 + 5 𝑡 𝑑𝑡 4. 1 25 − 𝜃2 + 1 100 + 𝜃2 𝑑𝜃 5. 𝑒5𝑥 − 𝑒4𝑥 𝑒2𝑥 𝑑𝑥 6. 𝑥7 + 𝑥4 𝑥5 𝑑𝑥 7. 𝑥7 + 𝑥4 𝑥5 𝑑𝑥 8. 𝑥2 + 4 2 𝑑𝑥 = 𝑥4 9. 7 𝑡 3 𝑑𝑡 10. 20 + 𝑥 𝑥 𝑑𝑥
  • 3. Penyelesaian : 1. 3𝑥4 − 5𝑥3 − 21𝑥2 + 36𝑥 − 10 𝑑𝑥 = 3𝑥4 𝑑𝑥 − 5𝑥3 𝑑𝑥 − 21𝑥2 𝑑𝑥 + 36𝑥 𝑑𝑥 − 10 𝑑𝑥 = 3 𝑥4 𝑑𝑥 − 5 𝑥3 𝑑𝑥 − 21 𝑥2 𝑑𝑥 + 36 𝑥 𝑑𝑥 − 10 𝑑𝑥 = 3 𝑥5 5 − 5 𝑥4 4 − 21 𝑥3 3 + 36 𝑥2 2 − 10𝑥 + 𝑐 = 3 5 𝑥5 − 5 4 𝑥4 − 7𝑥3 + 18𝑥2 − 10𝑥 + 𝑐 2. 3𝑥2 − 4𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3𝑥2 𝑑𝑥 − 4 𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3 𝑥2 𝑑𝑥 − 4 𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3 𝑥3 3 − 4 1 2 𝑠𝑖𝑛2𝑥 + 𝑐 = 𝑥3 − 2 sin 2𝑥 + 𝑐 3. 8 𝑡5 + 5 𝑡 𝑑𝑡 = 8 𝑡5 𝑑𝑥 + 5 𝑡 𝑑𝑥 = 8 𝑡−5 𝑑𝑥 + 5 1 𝑡 𝑑𝑥 = 8 𝑡−4 −4 + 5 𝑙𝑛 𝑡 + 𝑐 = −2𝑡−4 + 5 𝑙𝑛 𝑡 + 𝑐 4. 1 25−𝜃2 + 1 100+𝜃2 𝑑𝜃 = 1 25−𝜃2 𝑑𝑥 + 1 100+𝜃2 𝑑𝑥 = 1 52+𝜃2 𝑑𝑥 + 1 102+𝜃2 𝑑𝑥 = 𝑠𝑖𝑛−1 𝜃 5 + 1 10 𝑡𝑎𝑛−1 𝜃 10 + 𝑐 5. 𝑒5𝑥 −𝑒4𝑥 𝑒2𝑥 𝑑𝑥 = 𝑒3𝑥 − 𝑒2𝑥 𝑑𝑥 = 𝑒3𝑥 𝑑𝑥 − 𝑒2𝑥 𝑑𝑥 = 1 3 𝑒3𝑥 − 1 2 𝑒2𝑥 + 𝑐 6. 𝑥7+𝑥4 𝑥5 𝑑𝑥 = 𝑥7 𝑥5 𝑑𝑥 + 𝑥4 𝑥5 𝑑𝑥 = 7. 1 𝑒6+𝑥2 𝑑𝑥 = 𝑒6 + 𝑥2 𝑑𝑥 = 𝑙𝑛 𝑒6 + 𝑥2 + 𝑐 8. 𝑥2 + 4 2 𝑑𝑥 = 𝑥4 + 16 + 2. 𝑥2 . 4 𝑑𝑥 = 𝑥4 + 8𝑥2 + 16 𝑑𝑥 = 1 4+1 𝑥4+1 + 8 2+1 𝑥2+1 + 16𝑥 + 𝑐 = 1 5 𝑥5 + 8 3 𝑥3 + 𝑐 9. 7 𝑡3 𝑑𝑡 = 7𝑡− 1 3 𝑑𝑡 = 7 − 1 3 +1 𝑡− 1 3 +1 + 𝑐 = 7 2 3 𝑡 2 3 + 𝑐 = 21 2 𝑡 2 3 + 𝑐 10. 20+𝑥 𝑥 𝑑𝑥 = 20 + 𝑥 𝑥− 1 2 𝑑𝑥 = 20𝑥− 1 2 + 𝑥 1 2 𝑑𝑥 = 20 − 1 2 +1 𝑥− 1 2 +1 + 1 1 2 +1 𝑥 1 2 +1 + 𝑐 = 20 1 2 𝑥 1 2 + 1 3 2 𝑥 3 2 + 𝑐 = 40𝑥 1 2 + 2 3 𝑥 3 2 + 𝑐
  • 4. Integrasi dasar teknik Integrasi dengan substitusi Latihan 8.1 Gunakan integrasi dengan substitusi untuk menemukan integral tak tentu yang paling umum. 1. 3 𝑥3 − 5 4 𝑥2 𝑑𝑥 2. 𝑒 𝑥4 𝑥3 𝑑𝑥 3. 𝑡 𝑡2 + 7 𝑑𝑡 4. 𝑥5 − 3𝑥 1 4 5𝑥4 − 3 𝑑𝑥 5. 𝑥3 − 2𝑥 𝑥4 − 4𝑥2 + 5 4 𝑑𝑥 6. 𝑥3 − 2𝑥 𝑥4 − 4𝑥2 + 5 𝑑𝑥 7. cos 3𝑥2 + 1 𝑑𝑥 8. 3𝑐𝑜𝑠2 𝑥(𝑠𝑖𝑛 𝑥) 𝑥 𝑑𝑥 9. 𝑒2𝑥 1 + 𝑒4𝑥 𝑑𝑥 10. 6𝑡2 𝑒 𝑡3−2 𝑑𝑡
  • 5. PENYELESAIAN 1. 3 𝑥3 − 5 4 𝑥2 𝑑𝑥 u = x3 – 5 du = 3x2 dx = 𝑢4 𝑑𝑢 = 1 5 𝑢5 + 𝑐 = (𝑥3 − 5)5 5 + 𝑐 2. 𝑒 𝑥4 𝑥3 𝑑𝑥 𝑢 = 𝑥4 = 𝑒 𝑥4 1 4 . 4𝑥3 𝑑𝑥 = 1 4 𝑒 𝑥3 4𝑥3 𝑑𝑥 = 1 4 𝑒 𝑢 𝑑𝑢 = 1 4 𝑒 𝑢 + 𝑐 = 1 4 𝑒 𝑥4 + 𝑐 3. 𝑡 𝑡2 + 7 𝑑𝑡 𝑢 = 𝑡2 + 7 𝑑𝑢 = 2𝑡 𝑑𝑥 𝑡 𝑡2 + 7 𝑑𝑡
  • 6. 1 2 2𝑡 𝑡2 + 7 𝑑𝑡 1 2 2𝑡 𝑡2 + 7 𝑑𝑡 1 2 𝑑𝑢 𝑢 1 2 𝐼𝑛 𝑢 + 𝑐 1 2 𝐼𝑛 𝑡2 + 7 + 𝑐 4. 𝑥5 − 3𝑥 1 4 5𝑥4 − 3 𝑑𝑥 𝑢 = 𝑥5 − 3𝑥 𝑑𝑢 = 5𝑥4 − 3 𝑑𝑥 = 𝑢 1 4 𝑑𝑢 = 4𝑢 5 4 + 𝑐 = 4 𝑥5 − 3𝑥 5 4 + 𝑐 5. 𝑥3 − 2𝑥 𝑥4 − 4𝑥2 + 5 4 𝑑𝑥 𝑢 = 𝑥4 − 4𝑥2 + 5 𝑑𝑢 = 4𝑥3 − 8𝑥 𝑑𝑥 = 1 4 . 4 𝑥3 − 2𝑥 𝑢4 𝑑𝑥 = 1 4 𝑑𝑢 𝑢4 = 1 4 𝐼𝑛 𝑢 + 𝑐 = 1 4 𝐼𝑛 𝑥4 − 4𝑥2 + 5 + 𝑐
  • 7. 6. 𝑥3 − 2𝑥 𝑥4 − 4𝑥2 + 5 𝑑𝑥 𝑢 = 𝑥4 − 4𝑥2 + 5 𝑑𝑢 = 4𝑥3 − 8𝑥 𝑑𝑥 = 4 𝑥3 − 2𝑥 = 1 4 . 4(𝑥3 − 2𝑥) 𝑥4 − 4𝑥2 + 5 𝑑𝑥 = 1 4 𝑑𝑢 𝑢 = 1 4 𝐼𝑛 𝑢 + 𝑐 = 1 4 𝐼𝑛 𝑥4 − 4𝑥2 + 5 + 𝑐 9. 𝑒2𝑥 1 + 𝑒4𝑥 𝑑𝑥 = 𝑒2𝑥 1 + 𝑒2𝑥(2) 𝑑𝑥 𝑢 = 1 + 𝑒2𝑥 𝑑𝑢 = 2. 𝑒2𝑥 𝑑𝑥 = 1 2 . 2. 𝑒2𝑥 1 + 𝑒2𝑥(2) = 1 2 𝑑𝑢 𝑢 = 1 2 𝐼𝑛 𝑢 𝑑𝑥 = 1 2 𝐼𝑛 1 + 𝑒4𝑥 + 𝑐
  • 8. 10. 6𝑡2 𝑒 𝑡3−2 𝑑𝑡 𝑢 = 𝑡3 − 2 𝑑𝑢 = 3𝑡2 𝑑𝑡 = 6𝑡2 𝑒 𝑡3−2 𝑑𝑡 = 2 3𝑡2 𝑒 𝑡3−2 𝑑𝑡 = 1 3 . 3 2 . 3𝑡2 . 𝑒 𝑡3−2 𝑑𝑡 = 1 3 6 𝑑𝑢. 𝑒 𝑢 = 1 3 𝑒 𝑢 . 6 𝑑𝑢 = 1 3 𝑒 𝑡3−2 . 6 + 𝑐 = 2𝑒 𝑡3−2 + 𝑐
  • 9. Integrasi dengan bagian Latihan 8.2 Gunakan integrasi dengan bagian untuk menemukan integral tak tentu yang paling umum. 1. 2𝑥.sin2x dx 2. 𝑥3 lnx dx 3. 𝑡𝑒 𝑡 dt 4. 𝑥 cos x dx 5. 𝑐𝑜𝑡−1 𝑥 𝑑𝑥 6. 𝑥2 𝑒 𝑥 𝑑𝑥 7. 𝑤( 𝑤 − 3)2 𝑑𝑤 8. 𝑥3 𝑖𝑛 4𝑥 𝑑𝑥 9. 𝑡 (𝑡 + 5)−4 𝑑𝑡 10. 𝑥 𝑥 + 2 . 𝑑𝑥
  • 10. PENYELESAIAN 1. 2𝑥 sin 2𝑥 𝑑𝑥 Misalnya : u = 2x du = x dv = sin 2x dx v= sin 2𝑥𝑑𝑥 = - 1 2 cos2x 𝑢. 𝑑𝑣 = 𝑢𝑣 – 𝑢. 𝑑𝑢 2𝑥 sin 2𝑥 𝑑𝑥 = (2x) (- 1 2 cos 2x ) - (− 1 2 cos 2x ) . 2x = - 2 2 cos 2x + 1 2 cos 2x dx = - x cos 2x + 1 2 . 1 2 sin 2x = - x cos 2x + 1 2 . sin 2x + c 2. 𝑥3 𝑖𝑛 𝑥 𝑑𝑥 Misalnya : U= inx du = 1 𝑥 dx dv= 𝑥3 dx v = 𝑥3 𝑑𝑥 = 𝑥4 4 𝑢. 𝑑𝑣 = 𝑢𝑣 – 𝑢. 𝑑𝑢 𝑥3 𝑖𝑛 𝑥 𝑑𝑥 = (in x) ( 𝑥4 4 ) - 𝑥4 4 . 1 𝑥 dx = 𝑥4 𝑖𝑛𝑥 4 - 1 4 . 𝑥4 4 = 𝑥4 𝑖𝑛𝑥 4 - 𝑥4 16 + c 3. 𝑡𝑒 𝑡 𝑑𝑡 Misalnya : U = t du = dt dv = 𝑒 𝑡 dt v = 𝑒 𝑡 dt = 𝑒 𝑡 𝑢. 𝑑𝑣 = 𝑢. 𝑣 – 𝑢. 𝑑𝑢
  • 11. 𝑡𝑒 𝑡 𝑑𝑡 = (t) (𝑒 𝑡 ) - 𝑒 𝑡 dt = 𝑡𝑒 𝑡 - 𝑒 𝑡 dt = 𝑡𝑒 𝑡 - 𝑒 𝑡 + c 4. 𝑥 cos 𝑥 𝑑𝑥 Misalnya : U= x du = dx dv = cos x dx v = cos 𝑥 𝑑𝑥 = sin x 𝑢. 𝑑𝑣 = 𝑢. 𝑣 – 𝑢. 𝑑𝑢 𝑥 cos 𝑥 𝑑𝑥 = ( x ) ( sin x ) - sin 𝑥 𝑑𝑥 = sin x + cosx dx = sin x + cosx + c 5. 𝑐𝑜𝑡−1 ( x ) dx Misalnya : U = sin𝑥−1 Du= cos𝑥−1 Subtitusi du = sin𝑥−1 du = cos𝑥−1 𝑐𝑜𝑠𝑥 −1 𝑠𝑖𝑛𝑥 −1 dx = 𝑑𝑢 𝑢 Salve integral = in (u) + c Subsitusi kembali U=sin𝑥−1 = in (sin𝑥−1 ) + 𝑐 6. 𝑥2 𝑒 𝑥 𝑑𝑥 Misalnya : U = 𝑥2 du = 2x dv = 𝑒 𝑥 dx v = 𝑒 𝑥 dx = 𝑒 𝑥 𝑢. 𝑑𝑣 = u.v - 𝑢.du 𝑥2 𝑒 𝑥 𝑑𝑥 = 𝑥2 𝑒 𝑥 - 𝑥 2 . 2𝑥 =𝑥𝑒2𝑥 - 2𝑥. 𝑑𝑥 =𝑥𝑒2𝑥 - x+c 7. 𝑤(𝑤 − 3)2 𝑑𝑤 Misalnya : U= w du= dw
  • 12. dv = (𝑤 − 3)2 𝑑𝑤 𝑣 = 2𝑤 − 6 = 𝑤 − 3 𝑢. 𝑑𝑣 = u.v - 𝑢.du 𝑤(𝑤 − 3)2 𝑑𝑤 = 𝑤. 𝑤 − 3 − 𝑤. 𝑑𝑤 = 𝑤2 − 3𝑤 − 1 2 𝑤 + 𝑐 8. 𝑥3 𝑖𝑛 4𝑥 𝑑𝑥 Misalnya : U= in4x du= 1 4𝑥 𝑑𝑥 dv= 𝑥3 𝑑𝑥 v = 𝑥3 dx = 1 4 𝑥4 𝑢. 𝑑𝑣 = u.v - 𝑣.du 𝑥3 𝑖𝑛 4𝑥 𝑑𝑥 = in4x. 1 4 𝑥4 - in4x . 1 4𝑥 𝑑𝑥 = 1 4 𝑥4 𝑖𝑛4𝑥 − 1 5 𝑥5 ∶ 1 2 16𝑥2 + 𝑐 = 1 4 𝑥4 𝑖𝑛4𝑥 - 2𝑥5 80𝑥2 + c 9. 𝑡(𝑡 + 5)−4 𝑑𝑡 Misalnya : U= t du= dt dv =(𝑡 + 5)−4 𝑣 = −4𝑡−3 − 20−3 = 2𝑡−2 + 10−2 𝑢. 𝑑𝑣 = u.v - 𝑣.du 𝑡(𝑡 + 5)−4 𝑑𝑡 =( t. 2𝑡−2 + 10−2 ) - 2𝑡−2 + 10−2 . 𝑑𝑡 = 20𝑡−4 + (2𝑡 + 10 + 𝑑𝑡 10. 𝑥 𝑥 + 2 .dx Misalnya : U = x du = dx Dv= 𝑥 + 2 dx v= (𝑥 + 2) 1 2 =2𝑥1 1 2 +0.671 1 2 𝑢. 𝑑𝑣 = u.v - 𝑣.du 𝑥 𝑥 + 2 .dx = x . 2𝑥1 1 2 +0.671 1 2 - 2𝑥1 1 2 + 0.671 1 2 . dx = x.2,67𝑥 3 2 - (2𝑥 3 2 + 0,67 3 2) dx = 2,67𝑥2 3 2 - 2,67𝑥 6 2 + c
  • 13. Integrasi dengan menggunakan tabel rumus terpisahkan Latihan 8.3 Gunakan tabel rumus integral dalam Lampiran C untuk menemukan integral tak tentu yang paling umum. 1. cot 𝑥 𝑑𝑥 2. 1 𝑥+2 (2𝑥+5) 𝑑𝑥 3. 𝑙𝑛𝑥 2 𝑑𝑥 4. 𝑥 cos 𝑥 𝑑𝑥 5. 𝑥 𝑥+2 2 𝑑𝑥 6. 3𝑥𝑒 𝑥 𝑑𝑥 7. 10 𝑤 + 3 𝑑𝑤 8. 𝑡(𝑡 + 5)−1 𝑑𝑡 9. 𝑥 𝑥 + 2 𝑑𝑥 10. 1 sin 𝑢 cos 𝑢 𝑑𝑢
  • 14. PENYELESAIAN 1. cot 𝑥 𝑑𝑥 ( Formula nomor 7) Penyelesaian : 𝑐𝑜𝑡 𝑥 𝑑𝑥 = 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑥 𝑑𝑥 Misalkan : 𝑢 = sin 𝑥 𝑑𝑢 = cos 𝑥 𝑑𝑥 Subsitusi 𝑑𝑢 = cos 𝑥, 𝑈 = sin 𝑥 cos 𝑥 sin 𝑥 𝑑𝑥 = 𝑑𝑢 𝑢 𝑠𝑎𝑙𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ln 𝑢 + 𝐶 subsitusi kembali 𝑈 = sin 𝑥 𝑙𝑛 sin 𝑥 + 𝑐 2. 1 𝑥+2 (2𝑥+5) 𝑑𝑥 = 1 𝑥 + 2 (2𝑥 + 5) = 𝐴 𝑥 + 2 + 𝐴 2𝑥 + 5 𝐴 = 1 𝑥 + 2 (2.2 + 5) = 1 9 𝐵 = 1 5 + 2 (2𝑥 + 5) = 1 7 Sehingga : 1 𝑥 + 2 2𝑥 + 5 𝑑𝑥 = 1 𝑥 + 2 2𝑥 + 5
  • 15. = 1 9 𝑥 + 2 𝑑𝑥 + 1 9 2𝑥 + 5 𝑑𝑥 = 1 9 𝑙𝑛 𝑥 + 2 + 1 7 ln 2𝑥 + 5 + c 3. 𝑙𝑛𝑥 2 𝑑𝑥 = 𝑙𝑛𝑥 𝑙𝑛𝑥 𝑑𝑥 Missal : U = ln x 𝑑𝑢 = ( 1 𝑥 )2 Dv = dx dv = 𝑑𝑥 v = x (𝑙𝑛𝑥)2 𝑑𝑥 = 𝑢𝑣 − 𝑣𝑑𝑢 (x ln ) = (𝑙𝑛𝑥)2 . x - 𝑥 1 𝑥2 𝑑𝑥 = 𝑥. (𝑙𝑛𝑥)2 - 1 𝑥 𝑑𝑥 = 𝑥. (𝑙𝑛𝑥)2 x - 𝑥−1 𝑑𝑥 = 𝑥. (𝑙𝑛𝑥)2 - 1 0 𝑥0 + 𝑐 = 𝑥. (𝑙𝑛𝑥)2 - ~ + 𝑐 = ln x ( x ln x-x ) – (𝑥 ln 𝑥 − 𝑥) . 1 𝑥 =x (ln x)2 - x ln x - 4. 𝑥 cos 𝑥 𝑑𝑥 Penyelesaian : 𝑈 = 𝑋 → 𝑑𝑢 = 𝑑𝑥 𝑑𝑣 = 𝑐𝑜𝑠𝑥 → 𝑣 = 𝑠𝑖𝑛𝑥 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
  • 16. 𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛𝑥 𝑑𝑥 𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐 5. 𝑥 𝑥+2 2 𝑑𝑥 Penyelesaian : 𝑥 𝑥+2 2 = 𝐴 𝑥+2 + 𝐵 𝑥+2 = 𝐴 𝑥+2 +𝐵 𝑥+2 2 𝐴 = 2 𝐴 + 𝐵 = 0 = −2 Sehingga : 𝑥 𝑥 + 2 2 𝑑𝑥 = 𝑑𝑥 𝑥 + 2 – 𝑑𝑥 𝑥 + 2 2 𝑀𝑖𝑠𝑎𝑙𝑙 𝑢 = 𝑥 + 2 → 𝑑𝑢 = 𝑑𝑥 𝑑𝑥 𝑥 + 2 – 𝑑𝑥 𝑥 + 2 2 = 𝑑𝑢 𝑢 – 𝑑𝑢 𝑢2 = 2𝑙𝑛 + 2 𝑢 + 𝑐 2𝑙𝑛 𝑥 + 2 + 2 𝑥+2 + 𝑐 6. 3𝑥𝑒 𝑥 𝑑𝑥 U = 3x dv = 𝑒 𝑥 𝑑𝑥 𝑑𝑢 𝑑𝑥 = 3 v = 𝑒 𝑥 𝑑𝑥 = 𝑒 𝑥 du = 3 dx 𝑢𝑑𝑣 = u.v – 𝑣 𝑑𝑢
  • 17. = (3x) . (𝑒 𝑥 ) – 𝑒 𝑥 . 3 𝑑𝑥 = 3x 𝑒 𝑥 − 3𝑒 𝑥 7. 10 𝑤 + 3 dw ( Formula nomor 2) 10 𝑤 + 3 dw = (10 𝑤 + 3) 1 2 dw = 1 1 2 + 1 (10 𝑤 + 3) 1 2 +1 + 𝑐 = 2 3 (10 𝑤 + 3) 3 2 + 𝑐 8. 𝑡(𝑡 + 5)−1 𝑑𝑡 = 𝑡 𝑡+5 dt = 𝑡 (𝑡 + 5)−1 𝑑𝑡 Missal: U = t + 5 U= t+5 𝑑𝑢 𝑑𝑡 = 1 t = (u-5) 𝑑𝑢 = 𝑑𝑡 t=u→u=t+5 =5 t = 2 → u=t+5 = 7 = 𝑡 𝑡+5 dt = 𝑡 (𝑡 + 5)−1 𝑑𝑡 = 𝑢 − 5 𝑢−1 𝑑𝑢 = 𝑢0 − 5𝑢−1 𝑑𝑢 (𝑢0 − 5𝑢) … … … … . = 𝑢 − 𝑢 −5𝑢−1 +1 du −5(𝑢1 − 1 5 𝑥 ) 𝑑𝑥 -5 (ln 𝑢 - 1 5 0+1 𝑥0+1 ) -5 ( ln 𝑡 + 5 - 1 5 x)
  • 18. -5 ln 𝑡 + 5 + x 9. 𝑥 𝑥 + 2 𝑑𝑥 𝑚𝑖𝑠𝑎𝑙 𝑢 = 𝑥 + 2 → 𝑥 = 𝑢 − 2 𝑑𝑢 = 𝑑𝑥 Sehingga integral diatas dapat menjadi : = 𝑖𝑛𝑡 𝑢 − 2 𝑈 𝑑𝑢 = 𝑖𝑛𝑡 𝑢 − 2 𝑈 1 2 𝑑𝑢 = 𝑖𝑛𝑡 𝑈 5 2 − 𝑈 1 2 𝑑𝑢 = 2 7 𝑈 2 7 − 2 3 𝑈 3 2 + 𝐶 = 𝑖𝑛𝑡 (𝑥 + 2) 5 2 − 2 3 (𝑥 + 2) 3 2 + 𝐶 10. 1 sin 𝑢 cos 𝑢 𝑑𝑥 = (sin 𝑢)−1 (cos 𝑢)−1 dx