SlideShare uma empresa Scribd logo
1 de 93
UCEMA – ITBA MEP
Análisis de Riesgo en Evaluación de Proyectos
Simulación MonteCarlo
Alejandro Bustamante
La Evaluación de Riesgos es la cuantificación
de la probabilidad de ocurrencia y del
impacto potencial de diferentes fuentes de
riesgo.
El Análisis de Riesgos es el proceso de:
– identificación de fuentes de riesgo,
– evaluación cuantitativa y cualitativa del
riesgo,
– administración del riesgo,
– comunicación a las partes interesadas de la
evaluación hecha y las decisiones tomadas.
Hay dos componentes que explican nuestra
incapacidad para predecir en forma precisa
un evento futuro:
Riesgo: es un efecto aleatorio propio del
sistema bajo análisis. Se puede reducir
alterando el sistema.
Incertidumbre es el nivel de ignorancia del
evaluador acerca de los parámetros que
caracterizan el sistema a modelar. Se puede
reducir a veces con mediciones adicionales o
mayor estudio, o consulta a expertos.
La Variabilidad Total es la combinación de
riesgo e incertidumbre.
Tanto el riesgo como la incertidumbre se
describen mediante distribuciones de
probabilidad.
Por lo tanto, una distribucion de probabilidad
puede reflejar en parte el carácter estocástico
del sistema analizado y en parte la
incertidumbre acerca del comportamiento de
la variable.
Los resultados que se obtengan de un
modelo de este tipo reflejaran la variabilidad
total: el efecto conjunto de riesgo e
incertidumbre.
Distribución de Probabilidad
Una distribución de probabilidad describe el
rango de valores que puede tomar una
variable aleatoria y la probabilidad asignada
a cada valor o rango de valores.
Probabilidad: Frecuentista y Subjetiva
Para eventos repetibles y medibles, la
probabilidad representa la frecuencia relativa
de ocurrencia de un evento.
Para eventos que no son repetibles o
mensurables, la probabilidad es la expresión
del grado de creencia que tiene un individuo
acerca de la ocurrencia de un evento incierto.
Desde este punto de vista, las probabilidades
son en última instancia subjetivas por
naturaleza, y es posible que dos personas
asignen diferente probabilidad de ocurrencia
a un mismo evento.
Separar el riesgo de la incertidumbre permite
entender qué pasos podrían tomarse que
sean más efectivos para reducir la
variabilidad total.
Si una proporción importante de la
variabilidad total se debe a incertidumbre,
entonces nuestra estimación acerca del
futuro podría mejorarse recopilando mejor
información.
Si una proporción importante de la
variabilidad total se debiera a riesgo, la única
manera de reducir la variabilidad total es
modificando el sistema analizado.
Administración del Riesgo
Negociar las variables negociables
Aumentar el compromiso
Buscar más información
Tomar precauciones adicionales
Compartir el riesgo
Transferir el riesgo
Formular planes de contingencia
No tomar medidas, asumir el riesgo
Cancelar el proyecto
Administración de portfolio
Presentación de modelos
Un modelo es una herramienta de análisis y de
comunicación. Como tal, debe ser entendido no solo
por quien lo diseñó sino también por terceros.
1. Presentar claramente la estructura lógica y los
supuestos empleados.
2. Incluír solamente las estadísticas indispensables.
3. Usar gráficos para transmitir conceptos.
4. Los resultados obtenidos deben responder a los
interrogantes planteados.
5. No incluír en el informe más información que la
necesaria. Derivar los datos de apoyo a los Anexos.
Simulación MonteCarlo
1. Diseñar el modelo lógico de decisión
2. Especificar distribuciones de probabilidad para las
variables aleatorias relevantes.
3. Incluír posibles dependencias entre variables.
4. Muestrear valores de las variables aleatorias
5. Calcular el resultado del modelo según los valores
del muestreo (iteración) y registrar el resultado
6. Repetir el proceso hasta tener una muestra
estadísticamente representativa
7. Obtener la distribución de frecuencias del resultado
de las iteraciones
8. Calcular media, desvío y curva de percentiles
acumulados
Ley de los Grandes Números
(desigualdad de Tschebycheff)
Cuanto mayor sea el tamaño de la muestra,
mayor será el ajuste entre la distribución
muestral y la distribución teórica sobre la que
se basa la muestra.
Teorema Central del Límite (TCL)
La media muestral de un conjunto de n
variables muestreadas en forma
independiente a partir de una misma
distribución f(x) se ajusta a una distribución
aprox. Normal con los siguientes parámetros:
x = Normal ( mu, sigma / n1/2
)
En otras palabras, la distribución del
promedio de un conjunto de variables
aleatorias depende tanto de la cantidad de
variables aleatorias promediadas como de la
incertidumbre aportada por cada variable.
Teorema Central del Límite (cont.)
La suma de n variables aleatorias
independientes da como resultado una
distribución aproximadamente Normal, sin
importar la forma de la distribución de las
variables sumadas (siempre y cuando no
haya una variable cuya contribución a la
variabilidad total sea dominante).
El producto de n variables aleatorias
independientes da como resultado una
distribución aproximadamente Lognormal,
independientemente de la forma de la
distribución de las variables intervinientes.
Generación de valores muestrales
Las computadoras son capaces de generar
números aleatorios entre 0 y 1.
Los algoritmos para generar números
aleatorios comienzan con cualquier valor
entre 0 y 1. Todos los números aleatorios
que se generen a continuación dependerán
de este valor inicial (semilla).
Generación de valores muestrales
La función de Distribución Acumulada F(x) de
una variable aleatoria indica la probabilidad p
que la variable X tome un valor menor o igual
que x.
F(x) = p (X<=x)
A toda Función de Probabilidad Acumulada F(x)
le corresponde una Función Inversa
G (F(x)) = x
La Función Inversa indica los valores de x
asociados a distintos valores de F(x)
Generación de valores muestrales
Para generar un valor muestral a partir de
una distribución de probabilidad:
– 1. Se genera un número aleatorio entre 0 y
1 a partir de una distribución Uniforme
– 2. El valor obtenido se usa para alimentar
la ecuación correspondiente a la Función
Inversa de la distribución de probabilidad
muestreada, de modo de generar un valor
x para la variable aleatoria.
Métodos de Muestreo: MonteCarlo
El muestreo MonteCarlo es totalmente
aleatorio.
Esto implica que si el número de iteraciones
no es lo suficientemente elevado, es posible
que se sobremuestreen algunos segmentos
de la distribución que se quiere replicar y se
submuestreen otros segmentos.
Métodos de muestreo: Hipercubo Latino
Es un método de muestreo estratificado sin
reemplazo (muestreo con memoria).
– 1. Se segmenta la distribución de
probabilidad acumulada F(x) en n
intervalos (donde n es el número de
iteraciones a realizar)
– 2. Se genera un número aleatorio que
corresponderá a un determinado segmento
de F(x).
– 3. Se genera un segundo número aleatorio
para determinar el punto preciso del
muestreo dentro de ese intervalo F(x).
Métodos de muestreo: Hipercubo Latino
– 4. Se calcula el valor de x correspondiente
a la Función Inversa G (F(x)).
– 5. Se repite el proceso en la segunda
iteración, pero descartando el segmento ya
muestreado.
– 6. Se repite el proceso hasta completar el
número de iteraciones de la muestra.
Intervalo de confianza para el resultado
esperado
Para un tamaño de muestra n > 30 el
intervalo del resultado esperado es:
IC 100*(1-alfa) = x +/- t (alfa/2,n-1)*s/(n)1/2
t(alfa,n) es el valor de x tal que P(t>x)=alfa
x - t *s/(n)1/2
< x < x + t *s/(n)1/2
Tamaño de muestra necesario para lograr
estimaciones dentro de tolerancia
Si la estimación del valor esperado debe
tener una precisión representada por una
tolerancia de desvío D en valor absoluto un
porcentaje 100*(1-alfa) de las veces,
entonces el tamaño de la muestra n
necesario es:
n = (zalfa/2)2
* (sigma)2
/ (D) 2
zalfa = P (z>zalfa ) = alfa
Distribuciones de Probabilidad
Fuentes de información para cuantificar la
incertidumbre en variables aleatorias:
– 1. Series de datos
– 2. Opinión de expertos
Cuando se procura caracterizar a una
variable aleatoria a partir de los datos
disponibles se parte del supuesto que los
datos observados son una muestra aleatoria
de una distribución de probabilidad que
trataremos de identificar.
Distribuciones de Probabilidad
Discretas
Una variable aleatoria representada mediante
una distribución discreta de probabilidad
puede tomar un valor de entre un conjunto de
valores, cada uno de los cuales tiene
asignada una determinada probabilidad de
ocurrencia.
Ejemplos: Binomial, Geométrica, Poisson,
Discreta.
Distribuciones de Probabilidad
Continuas
Una variable aleatoria representada mediante
una distribución continua de probabilidad
puede tomar cualquier valor dentro de un
rango determinado.
Ejemplos: Normal, Lognormal, Uniforme,
Triangular, Histograma
Distribuciones de Probabilidad
No Limitadas
La variable aleatoria puede tomar valores entre +infinito
y -infinito.
Ejemplos: Normal, Logística
Limitadas
Los valores de la variable aleatoria quedan confinados
entre dos valores extremos.
Ejemplos: Binomial, Beta, Uniforme, Triangular,
Histograma
Parcialmente Limitadas
Los valores de la variable aleatoria quedan limitados en
uno de los extremos de la distribución.
Ejemplos: Poisson, Exponencial
Distribuciones de Probabilidad
Paramétricas
La distribución de probabilidad se ajusta a la
descripción matemática de un proceso
aleatorio que cumple con determinados
supuestos teóricos.
Los parámetros que definen la distribución en
general no guardan relación intuitiva con la
forma de la distribución.
Ejemplos: Normal, Lognormal, Exponencial,
Beta.
Distribuciones de Probabilidad
Paramétricas (cont.)
Son de aplicación cuando:
– 1. la teoría sobre la que se fundamenta
una determinada distribución es aplicable
al problema.
– 2. se acepta que esa distribución da un
buen ajuste de la variable aleatoria aunque
no haya una teoría para explicarlo.
– 3. la distribución se ajusta
aproximadamente a la opinión del experto
y no se requiere mucha precisión.
Distribuciones de Probabilidad
No Paramétricas
Los parámetros que se usan para definir
estas distribuciones describen la forma de la
distribución.
No se apoyan en una teoría que describa el
proceso de generación de valores aleatorios.
Ejemplos: Triangular, Histograma, General,
Uniforme, Acumulada
Distribuciones de Probabilidad
No Paramétricas (cont.)
Estas distribuciones en general son más
útiles cuando se busca recabar la opinión
subjetiva de expertos, con las siguientes
excepciones:
1. el experto puede estar muy familiarizado
con los parámetros que definen una
distribución paramétrica.
2. a veces los parámetros de una distribución
paramétrica son intuitivos (p.ej. Binomial)
Distribuciones de Probabilidad
Subjetivas
El uso de estas distribuciones de
probabilidad es la única alternativa para
describir una variable aleatoria cuando:
1. No hay una base de antecedentes.
2. Los datos del pasado no son relevantes.
3. Los datos son escasos y no cubren todo el
rango de posibles valores.
4. Es demasiado caro generar datos.
5. Generar valores llevaría demasiado tiempo
Distribuciones de Probabilidad
Subjetivas (cont.)
En las estimaciones subjetivas hay dos
fuentes de incertidumbre:
– Variabilidad asociada a la variable
aleatoria en sí .
– Incertidumbre asociada a la falta de
conocimiento sobre el comportamiento de
la variable.
La distribución subjetiva especificada agrega
ambas fuentes de incertidumbre
Distribuciones de probabilidad a partir
de Opinión de expertos
Una técnica básica para obtener distribuciones
subjetivas consiste en desagregar el
problema en las variables que lo componen:
pone en evidencia la estructura lógica del
problema de decisión
las variables del problema son algo más
tangible de estimar que el resultado.
la desagregación facilita el reconocimiento de
dependencias entre componentes del
problema.
Distribuciones a partir de Opinión de expertos
Desagregación (cont.)
el análisis de riesgo es menos dependiente
de las estimaciones hechas para cada
componente
la estimación de la distribución del resultado
del modelo a partir de la agregación de los
componentes será más precisa que lo que
podría haber sido de tratar de estimarla
directamente
la agregación tendrá en cuenta los efectos
del TCL en forma automática.
Uniforme
Todos los valores dentro del rango factible
tienen la misma densidad de probabilidad.
Parámetros : Uniform (min,max)
Aplicaciones: U(0,1) se usa en la generación
de los valores de todas las demás
distribuciones de probabilidad en el muestreo
aleatorio.
Es una aproximación muy cruda para usar
como estimación de la incertidumbre
percibida de un parámetro
Triangular
Aplicaciones: estimar subjetivamente la
distribución de la variable aleatoria cuando
todo lo que puede precisarse de la misma es
el valor mínimo, el valor más probable y el
valor máximo.
Parámetros: Triang (min, +prob, max)
Triangular (cont.)
Sus propiedades estadísticas se derivan de
su forma, no de una teoría subyacente.
Es de definición intuitiva y de gran flexibilidad
en cuanto a geometrías posibles.
La forma de la distribución usualmente lleva
a sobreestimar la densidad de las colas y a
subestimar la densidad en el “tronco” de la
distribución.
Se pueden definir el valor mínimo y el valor
máximo como umbrales de ocurrencia
práctica. En vez de tomarlos como valores
absolutos, se los toma como percentiles,
dejando “abiertas las colas”.
Histograma
Aplicaciones: representar la forma de la
distribución de una serie de datos o la
opinión de un experto acerca de la forma de
la distribución de una variable.
Parámetros: Histogram (min, max, {pi}
Todos los intervalos de la distribución tienen
el mismo “ancho”.
General
Aplicaciones: reflejar la opinión de expertos.
Es la más flexible de las distribuciones
continuas. Es un histograma “estilizado”.
Parámetros: General (min, max, {xi} , {pi}
Es posible, aunque no es recomendable,
especificar intervalos de distinto “ancho”.
Acumulada
Aplicaciones: recabar opinión de expertos.
Parámetros: Cumulative ({xi},{Pi},min,max)
Puede ser de utilidad cuando se procura
estimar una variable cuyo rango cubre varios
órdenes de magnitud.
Desventajas: insensibilidad de la escala de
probabilidades. Es más facil representar la
variabilidad que se quiere reflejar cuando se
trabaja con distribuciones de frecuencia
relativa.
BetaPert
Es una versión de la distribución Beta que
usa los mismos supuestos acerca de la
media de una variable aleatoria que las redes
PERT.
Parámetros: BetaPert (a,b,c)
BetaPert (cont.)
1. La media de una distribución BetaPert es
cuatro veces más sensible al valor medio que
a los valores extremos.
2. El desvío standard de una distribución
BetaPert es menos sensible a los valores
extremos que la distribución Triangular.
El desvío standard de una distribución
BetaPert es sistemáticamente menor que
el de una Triangular, particularmente
cuando las distribuciones son sesgadas.
Discreta
Aplicaciones:
1. Describir una variable aleatoria que puede tomar
uno de entre un conjunto de valores discretos.
2. Describir probabilidades condicionales para
distintos estados de la naturaleza, donde cada
estado de la naturaleza tiene una probabilidad de
ocurrencia p.
3. Armar distribuciones de probabilidad compuestas
a partir de la opinión de dos o más expertos, donde a
la opinión de cada experto se le otorga una
ponderación p.
Parámetros: Discrete ({xi},{pi}
Obtención de distribuciones de probabilidad a
partir de opiniones diferentes
Definir una distribución Discreta donde {xi}
representa la opinión de los expertos y {pi} es
la ponderación asignada a cada opinión.
Enfoques incorrectos:
Tomar la opinión más conservadora (no se
usa toda la información disponibles, se
genera una distribución sesgada)
Promediar los valores de las opiniones: se
subestima la variabilidad (recordar TCL)
Series de datos: Selección de Distribuciones
1. ¿Se trata de una variable discreta o
continua?
2. ¿Es realmente necesario ajustar los datos
a una distribución de probabilidad teórica?
3. ¿Hay correspondencia entre el rango
teórico de la variable y la distribución a
ajustar?
Distribuciones empíricas: variables Discretas
1. Si la cantidad de datos no es muy elevada, la
frecuencia de datos para cada valor de x puede ser
usada directamente para definir una distribución
Discreta.
2. Si hay muchos datos, es más fácil ordenar los
datos en forma de histograma y definir entonces una
distribución Acumulada con parámetros {xi} , {F(xi)} ,
min , max
Se puede reintroducir el caracter discreto de la
variable incluyendo la distribución Acumulada dentro
de una función ROUND (redondeo)
Distribuciones empíricas: variables Continuas
1. Se plotea la frecuencia acumulada de los datos
observados.
2. Se hace un ranking de los datos en orden
ascendente.
3. Se estima un mínimo y un máximo en forma
subjetiva.
4. Se calcula la probabilidad acumulada para cada
valor de x según la fórmula:
F(xi) = i / (n+1)
i = rango del dato observado
n = cantidad de datos observados
{xi} , {F(xi)} , min , max serán parámetros que se usen
para definir una distribución Acumulada
Procesos estocásticos
Un proceso estocástico es un sistema de
eventos que se pueden contar,
en el que los eventos ocurren de acuerdo a
un proceso aleatorio bien definido.
Distribuciones de probabilidad para
Procesos Discretos
Un Proceso Discreto se caracteriza por una
probabilidad p de ocurrencia de un evento discreto en
cada prueba.
Una vez que se tiene una estimación de p, se pueden
estimar:
1. Distribución de la cantidad s de ocurrencia de un
evento en n pruebas: Binomial (n,p)
2. Distribución de la cantidad de pruebas hasta que
ocurra un evento por primera vez :1 + Geométrica (p)
3. Distribución de la cantidad de pruebas hasta que
ocurran s eventos: s + Negbin (s,p)
Distribuciones de probabilidad para
Procesos Discretos
Para que las distribuciones de probabilidad
mencionadas sean de aplicación se debe
cumplir el supuesto que el sistema a estudiar
tiene las características de un Proceso
Binomial.
Proceso Binomial: la probabilidad de
ocurrencia de un evento es constante e
independiente de la cantidad o proximidad en
el tiempo de eventos ya ocurridos.
Beta
Aplicaciones: estimar la probabilidad de
ocurrencia p de un evento, a partir de la
observación de s eventos en n pruebas.
Parámetros: Beta (alfa1,alfa2)
alfa 1 : s+1 alfa2: n-s+1
La distribución Beta puede tomar muchas
formas, según los valores de alfa1 y alfa2.
A medida que aumenta n, se gana precisión
en la estimación de p (la distribución de p se
comprime)
Dada la gran variedad de formas que puede
asumir según los valores asignados a los
parámetros, la distribución Beta también se
usa para describir datos empíricos.
Si los valores de ambos parámetros son
iguales, Beta es simétrica.
Si alfa1 es menor que alfa2, la distribución
está sesgada hacia la derecha.
Si alfa1 es mayor que alfa2, la distribución
está sesgada hacia la izquierda
Binomial
Aplicaciones: estimar la distribución de la
cantidad s de ocurrencias de un evento en n
pruebas, cuando hay una probabilidad p de
ocurrencia del evento en cada prueba.
Parámetros: Binomial (n,p)
Para n>30 o cuando p es alta, la distribución
Binomial puede ser aproximada por una
distribución Normal ((np),(npq)1/2
).
Condiciones subyacentes a una
distribución Binomial
En cada prueba sólo hay dos resultados
posibles
Las pruebas son independientes (lo que
ocurre en la primera prueba no afecta a la
segunda, y sucesivamente).
La probabilidad de ocurrencia del evento se
mantiene constante a través de las pruebas
(no hay un proceso de aprendizaje)
Geométrica
Aplicaciones: estimar la cantidad n de
pruebas necesarias hasta la ocurrencia del
primer evento, cuando la probabilidad p de
ocurrencia de un evento se mantiene
constante en el tiempo.
Parámetros: n = 1 + Geometric (p)
La distribución Geométrica es análoga a la
distribución Exponencial: Geométrica se
aplica a variables discretas, Exponencial se
aplica a variables continuas.
Condiciones subyacentes de una
distribución Geométrica
La cantidad de eventos no está prefijada.
Se continúa con las pruebas hasta lograr el
primer éxito.
La probabilidad de éxito p es constante a
través de las pruebas.
Binomial Negativa
Aplicaciones: estimar la distribución de la
cantidad n de pruebas hasta que ocurran s
eventos, cuando la probabilidad p de
ocurrencia de un evento es constante en el
tiempo.
Parámetros: n = s + Negbin (s,p)
s es el parámetro que le da la forma a la
distribución.
Condiciones subyacentes de una
distribución Binomial Negativa
La cantidad de pruebas no está prefijada.
Se continúa con las pruebas hasta que se
observa la cantidad de eventos (s) buscada.
La probabilidad de éxito p es constante de
prueba a prueba.
Distribución Hipergeométrica
Al igual que la distribución Binomial, esta
distribución describe la cantidad de
ocurrencias de un evento en una cantidad de
pruebas.
La diferencia con la distribución Binomial es
que a medida que se avanza con las pruebas
cambia la probabilidad de ocurrencia del
evento: pruebas sin reemplazo.
Condiciones subyacentes de una
distribución Hipergeométrica
La cantidad total de elementos de una
población es finita.
La muestra representa una porción de la
población.
La probabilidad de ocurrencia del evento en
la población es conocida y cambia
ligeramente luego de cada prueba.
Distribuciones de probabilidad para
Procesos Continuos
Un Proceso Continuo se caracteriza por un
Intervalo Medio de Tiempo entre Eventos
(beta).
Una vez que se tiene una estimación de beta,
se puede estimar también:
1. Distribución de la cantidad de eventos por
unidad de tiempo: Poisson (lambda)
2.Distribución de Tiempo hasta la ocurrencia
del próximo evento: Exponencial (beta)
3. Distribución de Tiempo hasta que ocurran
n eventos: Gamma (n, beta)
Distribuciones de probabilidad para
Procesos Continuos (cont.)
Para que estas distribuciones sean aplicables
se debe cumplir el supuesto que el sistema
estudiado tiene las características de un
Proceso tipo Poisson.
Proceso tipo Poisson: la probabilidad de
ocurrencia de un evento por unidad de
exposición es constante e independiente de
la cantidad o proximidad de eventos
ocurridos.
La unidad de exposición puede ser cualquier
variable continua (tiempo, distancia, etc)
Estimación del Intervalo Medio de
Tiempo entre Eventos (beta)
beta es el intervalo de exposición promedio
entre n eventos observados.
El verdadero valor de beta puede ser
estimado a partir de n eventos observados
valiéndose del TCL:
beta = Normal (t,sigma/(n-1)1/2
)
t = promedio de los n-1 intervalos contiguos
sigma = desvío standard de los ti intervalos.
La precisión de la estimación de beta
aumenta a medida que aumenta n.
Poisson
Aplicaciones: estimar la cantidad N de
ocurrencias de un evento en un intervalo de
tiempo T cuando el tiempo medio entre
eventos sucesivos (beta) se ajusta a un
proceso tipo Poisson.
Parámetros: N = Poisson (lambda * t)
lambda = 1 / beta
Lambda se puede interpretar como la
cantidad promedio de ocurrencias del evento
por unidad de exposición.
Condiciones subyacentes a una
distribución Poisson
La cantidad de eventos por unidad de
exposición no está limitada a un valor
discreto.
Los eventos son independientes entre sí (el
número de eventos en un intervalo de
exposición no afecta al número de eventos
en otro intervalo de exposición).
La cantidad promedio de eventos se
mantiene constante de intervalo a intervalo.
Exponencial
Aplicaciones: estimar la distribución del
(tiempo) entre ocurrencias sucesivas de un
evento que tiene una probabilidad de
ocurrencia p constante por unidad de
(tiempo).
Parámetros: Expon (beta)
Si la probabilidad p de ocurrencia del evento
es constante a través del tiempo, la
estimación del tiempo que medie hasta la
ocurrencia del próximo evento es
independiente del tiempo que haya
transcurrido desde la última ocurrencia.
Gamma
Aplicaciones: estimar la distribución del
tiempo requerido para la ocurrencia de alfa
eventos, cuando los eventos se ajustan a un
Proceso tipo Poisson con tiempo medio de
ocurrencia entre eventos beta.
Esta distribución se usa bastante en
meteorología, seguros y teoría de colas.
Parámetros: Gamma (alfa, beta)
Condiciones subyacentes de una
distribución Gamma
La cantidad de posibles ocurrencias de un
evento en cualquier unidad de medida no
está limitada a valores discretos.
La ocurrencia de los eventos es
independiente entre sí.
La cantidad promedio de ocurrencias del
evento se mantiene constante entre
intervalos sucesivos.
Patrones lógicos comunes
a Procesos Discretos y Continuos
En un Proceso Binomial, el parámetro descriptivo
clave es p, probabilidad de ocurrencia del evento en
cada prueba, que se asume constante para todas las
pruebas
En un proceso Poisson, el parámetro descriptivo
clave es lambda (cantidad media de eventos que
ocurren por unidad de exposición) que se asume es
constante sobre el período total de exposición.
Weibull
La distribución Weibull (alfa,beta) asume que la
probabilidad p de ocurrencia del evento cambia
con el transcurso del tiempo.
– alfa = 1 probabilidad constante (Exponencial)
– alfa > 1 probabilidad creciente
– alfa < 1 probabilidad decreciente.
alfa es el parámetro de forma, beta es el parámetro de
ubicación.
El parámetro beta permite representar una distribución
exponencial con valor mínimo distinto de 0.
Normal
Aplicaciones: una variedad de situaciones,
como se desprende del Teorema Central del
Límite.
Es útil en finanzas pues la suma o diferencia
de distribuciones Normales resulta también
en una distribución Normal con parámetros
que pueden ser determinados a partir del
TCL.
Parámetros: Normal (mu,sigma)
Estimación subjetiva de los parámetros
de una Normal
• Media: Valor más probable
• Desvío: el intervalo +/- 2*sigma contiene el
95% de los valores, por lo tanto:
Sigma: (máximo - más probable) / 2
• La distribución Normal se extiende de -inf a
+ inf, aunque si CV<1/3 la probabilidad de
que ocurra un valor negativo es menor que
0.14%.
Lognormal
Aplicaciones: modelizar variables que son el
producto de una cantidad de otras variables
aleatorias que ocurren naturalmente.
Generalmente brinda una buena representación
de variables que se extienden de 0 a +inf y
que tienen un sesgo positivo.
Parámetros: Lognormal (mu,sigma)
Se usan como parámetros la media aritmética y
el desvío standard de los datos disponibles.
Condiciones subyacentes de una
distribución Lognormal
La variable aleatoria puede tomar valores
que aumentan sin límites pero no puede
tomar valores negativos.
La variable aleatoria tiene un sesgo positivo
(modo < media) con la mayor parte de los
valores cerca del límite inferior.
El logaritmo natural de la variable se ajusta a
una distribución Normal.
Pareto
Aplicaciones: modelar cualquier variable que
tenga un valor mínimo (que también es el
más probable) para la cual la densidad de
probabilidad decrece geométricamente hacia
cero.
Parámetros : Pareto (tita, a)
a = valor mínimo y modal
Valor Extremo (Gumbel)
Se usa para describir valores extremos de
una variable en un período de tiempo
(caudales, precipitaciones, fuerza de rotura
de materiales, etc).
Parámetros : modo, parámetro de escala.
Los datos usados para ajustar los parámetros
de la distribución pueden provenir de una
submuestra de tamaño 2 x (n)1/2
que incluya
los valores de un extremo de la muestra.
Ajuste de los datos a una distribución teórica
Los parámetros de la distribución que permitan
lograr el mejor ajuste a los datos se determinan
usualmente mediante alguno de los siguientes
dos métodos:
1. Estimadores de Máxima Verosimilitud:
maximizan la probabilidad que la distribución
definida con estos parámetros sea capaz de
generar los datos observados.
2. Minimización de las diferencias absolutas
entre los valores de probabilidad acumulada
observados y los derivados de la distribucón
teórica (usando programas de optimización)
Indicadores de Bondad de Ajuste
Los indicadores estadísticos de Bondad de
Ajuste más usados son 3:
1. Para distribuciones discretas y continuas,
tanto numéricas como no numéricas: Chi
cuadrado. Es el indicador menos potente.
2. Para distribuciones continuas:
Kolmogorov-Smirnov (K-S). No es muy
sensible para detectar discrepancias en las
colas de la distribución.
3. Anderson-Darling (versión sofisticada de
K-S), pone más énfasis en las colas.
Indicadores de Bondad de Ajuste
Cuanto menor sea el valor de cada indicador,
mayor será el ajuste aparente entre la
distribución teórica y los datos observados.
Los valores standard de K-S y A-D son de
uso limitado para comparar valores críticos
cuando hay menos de 30 observaciones.
Esto se puede corregir usando K-S y A-D
modificados.
Hay muchas distribuciones que tienen
formas similares y que pueden ser
capaces de generar los datos observados.
Dependencia y Correlación
Una relación de Dependencia ocurre cuando
el valor muestreado de una variable
(independiente) tiene una relación estadística
que determina aproximadamente el valor que
va a ser generado para la otra variable
(dependiente).
La diferencia principal entre Dependencia y
Correlación es que la primera presupone una
relación causal, mientras que la segunda no
(puede haber un factor externo que afecta a
ambas variables).
Correlación Lineal (Pearson)
El coeficiente r da una medida de la
covarianza entre dos conjuntos de datos.
r puede tomar valores desde -1 a +1
Al dividir por los desvíos standard de cada
conjunto de datos se logra un índice de
covarianza que no depende de las unidades
de medida en que están expresados los
datos.
Supuestos: la relación entre variables es de
tipo lineal.
Correlación por orden de rango
(Spearman)
Es un método no paramétrico para cuantificar la
relación entre variables.
r puede tomar valores desde -1 a +1
Ventajas:
– 1. Las variables se correlacionan de acuerdo al
rango de valores generados en cada distribución.
Esto significa que todas las distribuciones
correlacionadas preservan su forma original.
– 2. Como no depende de supuestos acerca de la
relación matemática de las variables a
correlacionar, puede ser aplicable a cualquier tipo
de relación entre distribuciones (lineal, no lineal).
El coeficiente de correlación de Pearson
mide la intensidad de la relación lineal entre
variables.
Si dos variables aleatorias no tienen la
misma distribución de probabilidad, es
improbable que se relacionen en forma lineal,
por lo que el coeficiente de correlación tendrá
poco significado.
Si se toman los valores según rangos y no
según valores absolutos, el coeficiente de
correlación así calculado tiene sentido
incluso para variables con diferentes
distribuciones.
Desventajas de correlacionar variables
mediante el coeficiente Spearman
1. Es difícil estimar el coeficiente de
correlación entre dos distribuciones de
formas diferentes.
2. El mismo coeficiente de correlación puede
resultar en diferentes gráficos de puntos para
diferentes distribuciones correlacionadas.
Esto puede ser aún más marcado si las
distribuciones a correlacionar son diferentes.
Recomendaciones respecto al uso de
coeficientes de correlación de Spearman
1. Usar estos coeficientes para correlacionar
variables que tengan un impacto menor sobre los
resultados del modelo.
2. Tratar de restringir su uso a correlacionar
distribuciones de geometría similar.
3. Si se correlacionan distribuciones de geometría
diferente, antes de aceptar el coeficiente observar el
gráfico de puntos resultante.
4. Evitar correlacionar distribuciones cuando no haya
una razón lógica que permita suponer una
correlación.
Matrices de Correlación
Permiten correlacionar varias distribuciones
de probabilidad mediante coeficientes de
Spearman.
Como la fórmula de los coeficientes de
correlación por orden de rango es simétrica,
los elementos de la matriz son simétricos
alrededor de la diagonal.
Tiene que haber una cierta lógica en los
coeficientes ingresados (p.ej. condición
transitiva)
Efectos de la correlación sobre los
resultados del modelo
El efecto es función de:
Relación entre las variables correlacionadas
y el resultado.
Forma de las distribuciones correlacionadas.
Efecto de la correlación sobre el
resultado de la Suma de dos variables
correlacionadas (modelos aditivos)
El valor esperado del resultado no se ve
afectado por la presencia de correlación.
El desvío standard del resultado aumenta a
medida que aumenta r (si las variables
correlacionadas “tiran” el resultado para el mismo
lado).
Efecto de la correlación sobre el resultado
del producto de dos variables
correlacionadas (modelos multiplicativos)
El valor esperado del resultado aumenta a
medida que aumenta r (toda la distribución se
desplaza hacia la derecha a medida que
aumenta r).
No se pueden hacer generalizaciones
respecto al desvío standard, aunque en
general aumenta a medida que aumenta r.
Coeficientes de correlación a partir de la
opinión de expertos
1. Determinar la lógica de la relación entre
las variables a correlacionar
2. Determinar cuál es la variable
independiente
3. Definir la distribución de la variable
independiente
4. Seleccionar varios valores de la variable
independiente (incluyendo mínimo, máximo y
al menos otros dos puntos relevantes)
Coeficientes de correlación a partir de la
opinión de expertos (cont.)
5. Preguntar al experto por algunos valores de
interés de la variable dependiente (mínimos,
máximos, más probable) que estima se
corresponderían con cada valor de la variable
independiente.
6. Plotear estos valores y encontrar las
ecuaciones que unan cada conjunto de valores.
7. Usar estas ecuaciones en una distribución
Triangular o BetaPert para definir la variable
dependiente.
Determinación de la contribución
relativa de cada variable a la variabilidad
del resultado
Los coeficientes de correlación entre el
resultado y las variables dan una idea de la
influencia de cada variable, pero no
cuantifican esta influencia.
Si el modelo es aditivo, la contribución
relativa de cada variable a la variabilidad total
puede estimarse de la siguiente manera:
– 1. Calcular el coeficiente de correlación
entre cada variable y el resultado.
– 2. Calcular la suma de estas correlaciones.
– 3. Dividir cada coeficiente por la suma.
Las fracciones resultantes representan
aproximadamente la contribución relativa
de cada variable a la variabilidad total.
Cuando el modelo no es aditivo y/o las variables
no son independientes:
– 1. Correr una simulación inicial, con todas las
variables especificadas.
– 2. Correr luego varias simulaciones, en cada una de
las cuales se “congela” una variable en su valor
esperado.
– 3. Anotar el desvío standard del resultado de cada
simulación.
– 4. Calcular la reducción en la variabilidad del resultado
para cada simulación en la cual se haya “congelado”
una variable.
– 5. Normalizar dividiendo el valor absoluto de la
reducción por la suma de todas las reducciones. Las
fracciones resultantes darán una estimación de la

Mais conteúdo relacionado

Mais procurados

Propiedades de los estimadores puntuales (2)
Propiedades de los estimadores puntuales (2)Propiedades de los estimadores puntuales (2)
Propiedades de los estimadores puntuales (2)Luz Hernández
 
4. estadistica inferencial
4.  estadistica inferencial4.  estadistica inferencial
4. estadistica inferencialrbarriosm
 
Estimadores puntuales
Estimadores puntualesEstimadores puntuales
Estimadores puntualesRuth Garcia
 
Tecnicas del proyecto del mercado.pecp completas 2003
Tecnicas del proyecto del mercado.pecp completas 2003Tecnicas del proyecto del mercado.pecp completas 2003
Tecnicas del proyecto del mercado.pecp completas 2003carlacartaya
 
Tecnicas del proyecto del mercado.pecp completas 2003
Tecnicas del proyecto del mercado.pecp completas 2003Tecnicas del proyecto del mercado.pecp completas 2003
Tecnicas del proyecto del mercado.pecp completas 2003carlacartaya
 
Alexis (estimación estadística)
Alexis (estimación estadística)Alexis (estimación estadística)
Alexis (estimación estadística)Alexis Rodriguez
 
Ejercicios sobre muestreo
Ejercicios sobre muestreoEjercicios sobre muestreo
Ejercicios sobre muestreo216846
 
Estadística Inferencial
Estadística Inferencial Estadística Inferencial
Estadística Inferencial Willian Delgado
 
Estadistica MI-23
Estadistica MI-23Estadistica MI-23
Estadistica MI-23knoshie
 
07 – Estimación puntual e introducción a la estadística inferencial
07 – Estimación puntual e introducción a la estadística inferencial07 – Estimación puntual e introducción a la estadística inferencial
07 – Estimación puntual e introducción a la estadística inferencialDiego Andrés Alvarez Marín
 
Métodos y distribución de muestreo
Métodos y distribución de muestreoMétodos y distribución de muestreo
Métodos y distribución de muestreoUANL
 
Maxima versimilitud
Maxima versimilitudMaxima versimilitud
Maxima versimilitudSCG 52
 

Mais procurados (20)

Elementos de inferencia
Elementos de inferenciaElementos de inferencia
Elementos de inferencia
 
Estadistica 2
Estadistica 2Estadistica 2
Estadistica 2
 
Simulador De Riesgos Montecarlo
Simulador De Riesgos MontecarloSimulador De Riesgos Montecarlo
Simulador De Riesgos Montecarlo
 
Propiedades de los estimadores puntuales (2)
Propiedades de los estimadores puntuales (2)Propiedades de los estimadores puntuales (2)
Propiedades de los estimadores puntuales (2)
 
Mic sesión 5
Mic sesión 5Mic sesión 5
Mic sesión 5
 
4. estadistica inferencial
4.  estadistica inferencial4.  estadistica inferencial
4. estadistica inferencial
 
Terminos basicos
Terminos basicosTerminos basicos
Terminos basicos
 
Introduccion a estadistica inferencial
Introduccion a estadistica inferencialIntroduccion a estadistica inferencial
Introduccion a estadistica inferencial
 
Estimadores puntuales
Estimadores puntualesEstimadores puntuales
Estimadores puntuales
 
Tecnicas del proyecto del mercado.pecp completas 2003
Tecnicas del proyecto del mercado.pecp completas 2003Tecnicas del proyecto del mercado.pecp completas 2003
Tecnicas del proyecto del mercado.pecp completas 2003
 
Tecnicas del proyecto del mercado.pecp completas 2003
Tecnicas del proyecto del mercado.pecp completas 2003Tecnicas del proyecto del mercado.pecp completas 2003
Tecnicas del proyecto del mercado.pecp completas 2003
 
Estadistica Muestreo
Estadistica MuestreoEstadistica Muestreo
Estadistica Muestreo
 
Alexis (estimación estadística)
Alexis (estimación estadística)Alexis (estimación estadística)
Alexis (estimación estadística)
 
Ejercicios sobre muestreo
Ejercicios sobre muestreoEjercicios sobre muestreo
Ejercicios sobre muestreo
 
Estadística Inferencial
Estadística Inferencial Estadística Inferencial
Estadística Inferencial
 
Estadistica MI-23
Estadistica MI-23Estadistica MI-23
Estadistica MI-23
 
Mic sesión 8b
Mic sesión 8bMic sesión 8b
Mic sesión 8b
 
07 – Estimación puntual e introducción a la estadística inferencial
07 – Estimación puntual e introducción a la estadística inferencial07 – Estimación puntual e introducción a la estadística inferencial
07 – Estimación puntual e introducción a la estadística inferencial
 
Métodos y distribución de muestreo
Métodos y distribución de muestreoMétodos y distribución de muestreo
Métodos y distribución de muestreo
 
Maxima versimilitud
Maxima versimilitudMaxima versimilitud
Maxima versimilitud
 

Destaque

SimulacióN Mov Placas tectónicas
SimulacióN Mov Placas tectónicasSimulacióN Mov Placas tectónicas
SimulacióN Mov Placas tectónicasctepay
 
Proyecto Final De SimulacióN Mario Parra Mendez
Proyecto Final De SimulacióN Mario Parra  MendezProyecto Final De SimulacióN Mario Parra  Mendez
Proyecto Final De SimulacióN Mario Parra Mendezmario parra
 
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011Ankit Garg
 
Simulacion de procesos industriales
Simulacion de procesos industrialesSimulacion de procesos industriales
Simulacion de procesos industrialesmarcosrgg
 
Informe Final Del Proyecto De Simulacion De Sistemas
Informe Final  Del Proyecto De Simulacion De SistemasInforme Final  Del Proyecto De Simulacion De Sistemas
Informe Final Del Proyecto De Simulacion De SistemasJulio Criollo
 
Simulación implementación equipamento de un restaurante para 40 comensales
Simulación implementación equipamento de un restaurante para 40 comensalesSimulación implementación equipamento de un restaurante para 40 comensales
Simulación implementación equipamento de un restaurante para 40 comensalesCORPORACION UNIFICADA NACIONAL CUN-
 
Proyecto investigación operativa
Proyecto investigación operativaProyecto investigación operativa
Proyecto investigación operativaVictor Jerez
 

Destaque (11)

SimulacióN Mov Placas tectónicas
SimulacióN Mov Placas tectónicasSimulacióN Mov Placas tectónicas
SimulacióN Mov Placas tectónicas
 
Proyecto de Simulación
Proyecto de SimulaciónProyecto de Simulación
Proyecto de Simulación
 
Proyecto Final De SimulacióN Mario Parra Mendez
Proyecto Final De SimulacióN Mario Parra  MendezProyecto Final De SimulacióN Mario Parra  Mendez
Proyecto Final De SimulacióN Mario Parra Mendez
 
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
 
Proyecto de simulacion
Proyecto de simulacionProyecto de simulacion
Proyecto de simulacion
 
Simulacion de procesos industriales
Simulacion de procesos industrialesSimulacion de procesos industriales
Simulacion de procesos industriales
 
Informe Final Del Proyecto De Simulacion De Sistemas
Informe Final  Del Proyecto De Simulacion De SistemasInforme Final  Del Proyecto De Simulacion De Sistemas
Informe Final Del Proyecto De Simulacion De Sistemas
 
Simulación implementación equipamento de un restaurante para 40 comensales
Simulación implementación equipamento de un restaurante para 40 comensalesSimulación implementación equipamento de un restaurante para 40 comensales
Simulación implementación equipamento de un restaurante para 40 comensales
 
Proyecto investigación operativa
Proyecto investigación operativaProyecto investigación operativa
Proyecto investigación operativa
 
Expo proyecto final
Expo proyecto finalExpo proyecto final
Expo proyecto final
 
Proyecto Simulación Lavandería
 Proyecto  Simulación Lavandería Proyecto  Simulación Lavandería
Proyecto Simulación Lavandería
 

Semelhante a Mc anal. riesgos en eval. de proyectos simulacion mc [1]

Semelhante a Mc anal. riesgos en eval. de proyectos simulacion mc [1] (20)

Análisis de riesgos
Análisis de riesgos Análisis de riesgos
Análisis de riesgos
 
Montecarlo
MontecarloMontecarlo
Montecarlo
 
211 209-1-pb
211 209-1-pb211 209-1-pb
211 209-1-pb
 
Análisis de los datos y tabulación
Análisis de los datos y tabulaciónAnálisis de los datos y tabulación
Análisis de los datos y tabulación
 
Hidroesta
HidroestaHidroesta
Hidroesta
 
2. FFF ESTADISTICA APLICADA AL CONTROL DE CALIDAD.ppt
2.   FFF ESTADISTICA APLICADA AL CONTROL DE CALIDAD.ppt2.   FFF ESTADISTICA APLICADA AL CONTROL DE CALIDAD.ppt
2. FFF ESTADISTICA APLICADA AL CONTROL DE CALIDAD.ppt
 
Intervalos de confianza-1
Intervalos de confianza-1Intervalos de confianza-1
Intervalos de confianza-1
 
estadistica inferencial
estadistica inferencialestadistica inferencial
estadistica inferencial
 
Inferencia estadistica
Inferencia estadisticaInferencia estadistica
Inferencia estadistica
 
[Resumen] Simulacion de montecarlo
[Resumen] Simulacion de montecarlo[Resumen] Simulacion de montecarlo
[Resumen] Simulacion de montecarlo
 
Simulacion uam
Simulacion uamSimulacion uam
Simulacion uam
 
130447032 inferencia-estadistica-unidad-ii (1)
130447032 inferencia-estadistica-unidad-ii (1)130447032 inferencia-estadistica-unidad-ii (1)
130447032 inferencia-estadistica-unidad-ii (1)
 
La estimación
La estimaciónLa estimación
La estimación
 
Medidasdetendenciacentralydispersion.pdf
Medidasdetendenciacentralydispersion.pdfMedidasdetendenciacentralydispersion.pdf
Medidasdetendenciacentralydispersion.pdf
 
Error relativo
Error relativoError relativo
Error relativo
 
Definición de simulación
Definición de simulaciónDefinición de simulación
Definición de simulación
 
Definición de simulación
Definición de simulaciónDefinición de simulación
Definición de simulación
 
Unidad III generacion de variables aleatorias
Unidad III generacion de variables aleatoriasUnidad III generacion de variables aleatorias
Unidad III generacion de variables aleatorias
 
Estadistica prueba slideshare
Estadistica prueba slideshareEstadistica prueba slideshare
Estadistica prueba slideshare
 
Pruebas de hipótesis e inferencia estadística
Pruebas de hipótesis e inferencia estadísticaPruebas de hipótesis e inferencia estadística
Pruebas de hipótesis e inferencia estadística
 

Mais de JULIO GONZALEZ SANZ

Cmmi hm 2008 sepg model changes for high maturity 1v01[1]
Cmmi hm 2008 sepg model changes for high maturity  1v01[1]Cmmi hm 2008 sepg model changes for high maturity  1v01[1]
Cmmi hm 2008 sepg model changes for high maturity 1v01[1]JULIO GONZALEZ SANZ
 
Cmmi%20 model%20changes%20for%20high%20maturity%20v01[1]
Cmmi%20 model%20changes%20for%20high%20maturity%20v01[1]Cmmi%20 model%20changes%20for%20high%20maturity%20v01[1]
Cmmi%20 model%20changes%20for%20high%20maturity%20v01[1]JULIO GONZALEZ SANZ
 
Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]JULIO GONZALEZ SANZ
 
Workshop healthy ingredients ppm[1]
Workshop healthy ingredients ppm[1]Workshop healthy ingredients ppm[1]
Workshop healthy ingredients ppm[1]JULIO GONZALEZ SANZ
 
The need for a balanced measurement system
The need for a balanced measurement systemThe need for a balanced measurement system
The need for a balanced measurement systemJULIO GONZALEZ SANZ
 
Just in-time and lean production
Just in-time and lean productionJust in-time and lean production
Just in-time and lean productionJULIO GONZALEZ SANZ
 
History of manufacturing systems and lean thinking enfr
History of manufacturing systems and lean thinking enfrHistory of manufacturing systems and lean thinking enfr
History of manufacturing systems and lean thinking enfrJULIO GONZALEZ SANZ
 
Une 66175 presentacion norma 2006 por julio
Une 66175 presentacion norma 2006 por julioUne 66175 presentacion norma 2006 por julio
Une 66175 presentacion norma 2006 por julioJULIO GONZALEZ SANZ
 
An architecture for data quality
An architecture for data qualityAn architecture for data quality
An architecture for data qualityJULIO GONZALEZ SANZ
 
Sap analytics creating smart business processes
Sap analytics   creating smart business processesSap analytics   creating smart business processes
Sap analytics creating smart business processesJULIO GONZALEZ SANZ
 
Big data analytics, research report
Big data analytics, research reportBig data analytics, research report
Big data analytics, research reportJULIO GONZALEZ SANZ
 

Mais de JULIO GONZALEZ SANZ (20)

Cmmi hm 2008 sepg model changes for high maturity 1v01[1]
Cmmi hm 2008 sepg model changes for high maturity  1v01[1]Cmmi hm 2008 sepg model changes for high maturity  1v01[1]
Cmmi hm 2008 sepg model changes for high maturity 1v01[1]
 
Cmmi%20 model%20changes%20for%20high%20maturity%20v01[1]
Cmmi%20 model%20changes%20for%20high%20maturity%20v01[1]Cmmi%20 model%20changes%20for%20high%20maturity%20v01[1]
Cmmi%20 model%20changes%20for%20high%20maturity%20v01[1]
 
Cmmi 26 ago_2009_
Cmmi 26 ago_2009_Cmmi 26 ago_2009_
Cmmi 26 ago_2009_
 
Creation use-of-simple-model
Creation use-of-simple-modelCreation use-of-simple-model
Creation use-of-simple-model
 
Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]
 
Workshop healthy ingredients ppm[1]
Workshop healthy ingredients ppm[1]Workshop healthy ingredients ppm[1]
Workshop healthy ingredients ppm[1]
 
The need for a balanced measurement system
The need for a balanced measurement systemThe need for a balanced measurement system
The need for a balanced measurement system
 
Magic quadrant
Magic quadrantMagic quadrant
Magic quadrant
 
6 six sigma presentation
6 six sigma presentation6 six sigma presentation
6 six sigma presentation
 
Volvo csr suppliers guide vsib
Volvo csr suppliers guide vsibVolvo csr suppliers guide vsib
Volvo csr suppliers guide vsib
 
Just in-time and lean production
Just in-time and lean productionJust in-time and lean production
Just in-time and lean production
 
History of manufacturing systems and lean thinking enfr
History of manufacturing systems and lean thinking enfrHistory of manufacturing systems and lean thinking enfr
History of manufacturing systems and lean thinking enfr
 
Using minitab exec files
Using minitab exec filesUsing minitab exec files
Using minitab exec files
 
Sga iso-14001
Sga iso-14001Sga iso-14001
Sga iso-14001
 
Cslt closing plenary_portugal
Cslt closing plenary_portugalCslt closing plenary_portugal
Cslt closing plenary_portugal
 
Une 66175 presentacion norma 2006 por julio
Une 66175 presentacion norma 2006 por julioUne 66175 presentacion norma 2006 por julio
Une 66175 presentacion norma 2006 por julio
 
Swebokv3
Swebokv3 Swebokv3
Swebokv3
 
An architecture for data quality
An architecture for data qualityAn architecture for data quality
An architecture for data quality
 
Sap analytics creating smart business processes
Sap analytics   creating smart business processesSap analytics   creating smart business processes
Sap analytics creating smart business processes
 
Big data analytics, research report
Big data analytics, research reportBig data analytics, research report
Big data analytics, research report
 

Mc anal. riesgos en eval. de proyectos simulacion mc [1]

  • 1. UCEMA – ITBA MEP Análisis de Riesgo en Evaluación de Proyectos Simulación MonteCarlo Alejandro Bustamante
  • 2. La Evaluación de Riesgos es la cuantificación de la probabilidad de ocurrencia y del impacto potencial de diferentes fuentes de riesgo. El Análisis de Riesgos es el proceso de: – identificación de fuentes de riesgo, – evaluación cuantitativa y cualitativa del riesgo, – administración del riesgo, – comunicación a las partes interesadas de la evaluación hecha y las decisiones tomadas.
  • 3. Hay dos componentes que explican nuestra incapacidad para predecir en forma precisa un evento futuro: Riesgo: es un efecto aleatorio propio del sistema bajo análisis. Se puede reducir alterando el sistema. Incertidumbre es el nivel de ignorancia del evaluador acerca de los parámetros que caracterizan el sistema a modelar. Se puede reducir a veces con mediciones adicionales o mayor estudio, o consulta a expertos. La Variabilidad Total es la combinación de riesgo e incertidumbre.
  • 4. Tanto el riesgo como la incertidumbre se describen mediante distribuciones de probabilidad. Por lo tanto, una distribucion de probabilidad puede reflejar en parte el carácter estocástico del sistema analizado y en parte la incertidumbre acerca del comportamiento de la variable. Los resultados que se obtengan de un modelo de este tipo reflejaran la variabilidad total: el efecto conjunto de riesgo e incertidumbre.
  • 5. Distribución de Probabilidad Una distribución de probabilidad describe el rango de valores que puede tomar una variable aleatoria y la probabilidad asignada a cada valor o rango de valores.
  • 6. Probabilidad: Frecuentista y Subjetiva Para eventos repetibles y medibles, la probabilidad representa la frecuencia relativa de ocurrencia de un evento. Para eventos que no son repetibles o mensurables, la probabilidad es la expresión del grado de creencia que tiene un individuo acerca de la ocurrencia de un evento incierto. Desde este punto de vista, las probabilidades son en última instancia subjetivas por naturaleza, y es posible que dos personas asignen diferente probabilidad de ocurrencia a un mismo evento.
  • 7. Separar el riesgo de la incertidumbre permite entender qué pasos podrían tomarse que sean más efectivos para reducir la variabilidad total. Si una proporción importante de la variabilidad total se debe a incertidumbre, entonces nuestra estimación acerca del futuro podría mejorarse recopilando mejor información. Si una proporción importante de la variabilidad total se debiera a riesgo, la única manera de reducir la variabilidad total es modificando el sistema analizado.
  • 8. Administración del Riesgo Negociar las variables negociables Aumentar el compromiso Buscar más información Tomar precauciones adicionales Compartir el riesgo Transferir el riesgo Formular planes de contingencia No tomar medidas, asumir el riesgo Cancelar el proyecto Administración de portfolio
  • 9. Presentación de modelos Un modelo es una herramienta de análisis y de comunicación. Como tal, debe ser entendido no solo por quien lo diseñó sino también por terceros. 1. Presentar claramente la estructura lógica y los supuestos empleados. 2. Incluír solamente las estadísticas indispensables. 3. Usar gráficos para transmitir conceptos. 4. Los resultados obtenidos deben responder a los interrogantes planteados. 5. No incluír en el informe más información que la necesaria. Derivar los datos de apoyo a los Anexos.
  • 10. Simulación MonteCarlo 1. Diseñar el modelo lógico de decisión 2. Especificar distribuciones de probabilidad para las variables aleatorias relevantes. 3. Incluír posibles dependencias entre variables. 4. Muestrear valores de las variables aleatorias 5. Calcular el resultado del modelo según los valores del muestreo (iteración) y registrar el resultado 6. Repetir el proceso hasta tener una muestra estadísticamente representativa 7. Obtener la distribución de frecuencias del resultado de las iteraciones 8. Calcular media, desvío y curva de percentiles acumulados
  • 11. Ley de los Grandes Números (desigualdad de Tschebycheff) Cuanto mayor sea el tamaño de la muestra, mayor será el ajuste entre la distribución muestral y la distribución teórica sobre la que se basa la muestra.
  • 12. Teorema Central del Límite (TCL) La media muestral de un conjunto de n variables muestreadas en forma independiente a partir de una misma distribución f(x) se ajusta a una distribución aprox. Normal con los siguientes parámetros: x = Normal ( mu, sigma / n1/2 ) En otras palabras, la distribución del promedio de un conjunto de variables aleatorias depende tanto de la cantidad de variables aleatorias promediadas como de la incertidumbre aportada por cada variable.
  • 13. Teorema Central del Límite (cont.) La suma de n variables aleatorias independientes da como resultado una distribución aproximadamente Normal, sin importar la forma de la distribución de las variables sumadas (siempre y cuando no haya una variable cuya contribución a la variabilidad total sea dominante). El producto de n variables aleatorias independientes da como resultado una distribución aproximadamente Lognormal, independientemente de la forma de la distribución de las variables intervinientes.
  • 14. Generación de valores muestrales Las computadoras son capaces de generar números aleatorios entre 0 y 1. Los algoritmos para generar números aleatorios comienzan con cualquier valor entre 0 y 1. Todos los números aleatorios que se generen a continuación dependerán de este valor inicial (semilla).
  • 15. Generación de valores muestrales La función de Distribución Acumulada F(x) de una variable aleatoria indica la probabilidad p que la variable X tome un valor menor o igual que x. F(x) = p (X<=x) A toda Función de Probabilidad Acumulada F(x) le corresponde una Función Inversa G (F(x)) = x La Función Inversa indica los valores de x asociados a distintos valores de F(x)
  • 16. Generación de valores muestrales Para generar un valor muestral a partir de una distribución de probabilidad: – 1. Se genera un número aleatorio entre 0 y 1 a partir de una distribución Uniforme – 2. El valor obtenido se usa para alimentar la ecuación correspondiente a la Función Inversa de la distribución de probabilidad muestreada, de modo de generar un valor x para la variable aleatoria.
  • 17. Métodos de Muestreo: MonteCarlo El muestreo MonteCarlo es totalmente aleatorio. Esto implica que si el número de iteraciones no es lo suficientemente elevado, es posible que se sobremuestreen algunos segmentos de la distribución que se quiere replicar y se submuestreen otros segmentos.
  • 18. Métodos de muestreo: Hipercubo Latino Es un método de muestreo estratificado sin reemplazo (muestreo con memoria). – 1. Se segmenta la distribución de probabilidad acumulada F(x) en n intervalos (donde n es el número de iteraciones a realizar) – 2. Se genera un número aleatorio que corresponderá a un determinado segmento de F(x). – 3. Se genera un segundo número aleatorio para determinar el punto preciso del muestreo dentro de ese intervalo F(x).
  • 19. Métodos de muestreo: Hipercubo Latino – 4. Se calcula el valor de x correspondiente a la Función Inversa G (F(x)). – 5. Se repite el proceso en la segunda iteración, pero descartando el segmento ya muestreado. – 6. Se repite el proceso hasta completar el número de iteraciones de la muestra.
  • 20. Intervalo de confianza para el resultado esperado Para un tamaño de muestra n > 30 el intervalo del resultado esperado es: IC 100*(1-alfa) = x +/- t (alfa/2,n-1)*s/(n)1/2 t(alfa,n) es el valor de x tal que P(t>x)=alfa x - t *s/(n)1/2 < x < x + t *s/(n)1/2
  • 21. Tamaño de muestra necesario para lograr estimaciones dentro de tolerancia Si la estimación del valor esperado debe tener una precisión representada por una tolerancia de desvío D en valor absoluto un porcentaje 100*(1-alfa) de las veces, entonces el tamaño de la muestra n necesario es: n = (zalfa/2)2 * (sigma)2 / (D) 2 zalfa = P (z>zalfa ) = alfa
  • 22. Distribuciones de Probabilidad Fuentes de información para cuantificar la incertidumbre en variables aleatorias: – 1. Series de datos – 2. Opinión de expertos Cuando se procura caracterizar a una variable aleatoria a partir de los datos disponibles se parte del supuesto que los datos observados son una muestra aleatoria de una distribución de probabilidad que trataremos de identificar.
  • 23. Distribuciones de Probabilidad Discretas Una variable aleatoria representada mediante una distribución discreta de probabilidad puede tomar un valor de entre un conjunto de valores, cada uno de los cuales tiene asignada una determinada probabilidad de ocurrencia. Ejemplos: Binomial, Geométrica, Poisson, Discreta.
  • 24. Distribuciones de Probabilidad Continuas Una variable aleatoria representada mediante una distribución continua de probabilidad puede tomar cualquier valor dentro de un rango determinado. Ejemplos: Normal, Lognormal, Uniforme, Triangular, Histograma
  • 25. Distribuciones de Probabilidad No Limitadas La variable aleatoria puede tomar valores entre +infinito y -infinito. Ejemplos: Normal, Logística Limitadas Los valores de la variable aleatoria quedan confinados entre dos valores extremos. Ejemplos: Binomial, Beta, Uniforme, Triangular, Histograma Parcialmente Limitadas Los valores de la variable aleatoria quedan limitados en uno de los extremos de la distribución. Ejemplos: Poisson, Exponencial
  • 26. Distribuciones de Probabilidad Paramétricas La distribución de probabilidad se ajusta a la descripción matemática de un proceso aleatorio que cumple con determinados supuestos teóricos. Los parámetros que definen la distribución en general no guardan relación intuitiva con la forma de la distribución. Ejemplos: Normal, Lognormal, Exponencial, Beta.
  • 27. Distribuciones de Probabilidad Paramétricas (cont.) Son de aplicación cuando: – 1. la teoría sobre la que se fundamenta una determinada distribución es aplicable al problema. – 2. se acepta que esa distribución da un buen ajuste de la variable aleatoria aunque no haya una teoría para explicarlo. – 3. la distribución se ajusta aproximadamente a la opinión del experto y no se requiere mucha precisión.
  • 28. Distribuciones de Probabilidad No Paramétricas Los parámetros que se usan para definir estas distribuciones describen la forma de la distribución. No se apoyan en una teoría que describa el proceso de generación de valores aleatorios. Ejemplos: Triangular, Histograma, General, Uniforme, Acumulada
  • 29. Distribuciones de Probabilidad No Paramétricas (cont.) Estas distribuciones en general son más útiles cuando se busca recabar la opinión subjetiva de expertos, con las siguientes excepciones: 1. el experto puede estar muy familiarizado con los parámetros que definen una distribución paramétrica. 2. a veces los parámetros de una distribución paramétrica son intuitivos (p.ej. Binomial)
  • 30. Distribuciones de Probabilidad Subjetivas El uso de estas distribuciones de probabilidad es la única alternativa para describir una variable aleatoria cuando: 1. No hay una base de antecedentes. 2. Los datos del pasado no son relevantes. 3. Los datos son escasos y no cubren todo el rango de posibles valores. 4. Es demasiado caro generar datos. 5. Generar valores llevaría demasiado tiempo
  • 31. Distribuciones de Probabilidad Subjetivas (cont.) En las estimaciones subjetivas hay dos fuentes de incertidumbre: – Variabilidad asociada a la variable aleatoria en sí . – Incertidumbre asociada a la falta de conocimiento sobre el comportamiento de la variable. La distribución subjetiva especificada agrega ambas fuentes de incertidumbre
  • 32. Distribuciones de probabilidad a partir de Opinión de expertos Una técnica básica para obtener distribuciones subjetivas consiste en desagregar el problema en las variables que lo componen: pone en evidencia la estructura lógica del problema de decisión las variables del problema son algo más tangible de estimar que el resultado. la desagregación facilita el reconocimiento de dependencias entre componentes del problema.
  • 33. Distribuciones a partir de Opinión de expertos Desagregación (cont.) el análisis de riesgo es menos dependiente de las estimaciones hechas para cada componente la estimación de la distribución del resultado del modelo a partir de la agregación de los componentes será más precisa que lo que podría haber sido de tratar de estimarla directamente la agregación tendrá en cuenta los efectos del TCL en forma automática.
  • 34. Uniforme Todos los valores dentro del rango factible tienen la misma densidad de probabilidad. Parámetros : Uniform (min,max) Aplicaciones: U(0,1) se usa en la generación de los valores de todas las demás distribuciones de probabilidad en el muestreo aleatorio. Es una aproximación muy cruda para usar como estimación de la incertidumbre percibida de un parámetro
  • 35. Triangular Aplicaciones: estimar subjetivamente la distribución de la variable aleatoria cuando todo lo que puede precisarse de la misma es el valor mínimo, el valor más probable y el valor máximo. Parámetros: Triang (min, +prob, max)
  • 36. Triangular (cont.) Sus propiedades estadísticas se derivan de su forma, no de una teoría subyacente. Es de definición intuitiva y de gran flexibilidad en cuanto a geometrías posibles. La forma de la distribución usualmente lleva a sobreestimar la densidad de las colas y a subestimar la densidad en el “tronco” de la distribución. Se pueden definir el valor mínimo y el valor máximo como umbrales de ocurrencia práctica. En vez de tomarlos como valores absolutos, se los toma como percentiles, dejando “abiertas las colas”.
  • 37. Histograma Aplicaciones: representar la forma de la distribución de una serie de datos o la opinión de un experto acerca de la forma de la distribución de una variable. Parámetros: Histogram (min, max, {pi} Todos los intervalos de la distribución tienen el mismo “ancho”.
  • 38. General Aplicaciones: reflejar la opinión de expertos. Es la más flexible de las distribuciones continuas. Es un histograma “estilizado”. Parámetros: General (min, max, {xi} , {pi} Es posible, aunque no es recomendable, especificar intervalos de distinto “ancho”.
  • 39. Acumulada Aplicaciones: recabar opinión de expertos. Parámetros: Cumulative ({xi},{Pi},min,max) Puede ser de utilidad cuando se procura estimar una variable cuyo rango cubre varios órdenes de magnitud. Desventajas: insensibilidad de la escala de probabilidades. Es más facil representar la variabilidad que se quiere reflejar cuando se trabaja con distribuciones de frecuencia relativa.
  • 40. BetaPert Es una versión de la distribución Beta que usa los mismos supuestos acerca de la media de una variable aleatoria que las redes PERT. Parámetros: BetaPert (a,b,c)
  • 41. BetaPert (cont.) 1. La media de una distribución BetaPert es cuatro veces más sensible al valor medio que a los valores extremos. 2. El desvío standard de una distribución BetaPert es menos sensible a los valores extremos que la distribución Triangular. El desvío standard de una distribución BetaPert es sistemáticamente menor que el de una Triangular, particularmente cuando las distribuciones son sesgadas.
  • 42. Discreta Aplicaciones: 1. Describir una variable aleatoria que puede tomar uno de entre un conjunto de valores discretos. 2. Describir probabilidades condicionales para distintos estados de la naturaleza, donde cada estado de la naturaleza tiene una probabilidad de ocurrencia p. 3. Armar distribuciones de probabilidad compuestas a partir de la opinión de dos o más expertos, donde a la opinión de cada experto se le otorga una ponderación p. Parámetros: Discrete ({xi},{pi}
  • 43. Obtención de distribuciones de probabilidad a partir de opiniones diferentes Definir una distribución Discreta donde {xi} representa la opinión de los expertos y {pi} es la ponderación asignada a cada opinión. Enfoques incorrectos: Tomar la opinión más conservadora (no se usa toda la información disponibles, se genera una distribución sesgada) Promediar los valores de las opiniones: se subestima la variabilidad (recordar TCL)
  • 44. Series de datos: Selección de Distribuciones 1. ¿Se trata de una variable discreta o continua? 2. ¿Es realmente necesario ajustar los datos a una distribución de probabilidad teórica? 3. ¿Hay correspondencia entre el rango teórico de la variable y la distribución a ajustar?
  • 45. Distribuciones empíricas: variables Discretas 1. Si la cantidad de datos no es muy elevada, la frecuencia de datos para cada valor de x puede ser usada directamente para definir una distribución Discreta. 2. Si hay muchos datos, es más fácil ordenar los datos en forma de histograma y definir entonces una distribución Acumulada con parámetros {xi} , {F(xi)} , min , max Se puede reintroducir el caracter discreto de la variable incluyendo la distribución Acumulada dentro de una función ROUND (redondeo)
  • 46. Distribuciones empíricas: variables Continuas 1. Se plotea la frecuencia acumulada de los datos observados. 2. Se hace un ranking de los datos en orden ascendente. 3. Se estima un mínimo y un máximo en forma subjetiva. 4. Se calcula la probabilidad acumulada para cada valor de x según la fórmula: F(xi) = i / (n+1) i = rango del dato observado n = cantidad de datos observados {xi} , {F(xi)} , min , max serán parámetros que se usen para definir una distribución Acumulada
  • 47. Procesos estocásticos Un proceso estocástico es un sistema de eventos que se pueden contar, en el que los eventos ocurren de acuerdo a un proceso aleatorio bien definido.
  • 48. Distribuciones de probabilidad para Procesos Discretos Un Proceso Discreto se caracteriza por una probabilidad p de ocurrencia de un evento discreto en cada prueba. Una vez que se tiene una estimación de p, se pueden estimar: 1. Distribución de la cantidad s de ocurrencia de un evento en n pruebas: Binomial (n,p) 2. Distribución de la cantidad de pruebas hasta que ocurra un evento por primera vez :1 + Geométrica (p) 3. Distribución de la cantidad de pruebas hasta que ocurran s eventos: s + Negbin (s,p)
  • 49. Distribuciones de probabilidad para Procesos Discretos Para que las distribuciones de probabilidad mencionadas sean de aplicación se debe cumplir el supuesto que el sistema a estudiar tiene las características de un Proceso Binomial. Proceso Binomial: la probabilidad de ocurrencia de un evento es constante e independiente de la cantidad o proximidad en el tiempo de eventos ya ocurridos.
  • 50. Beta Aplicaciones: estimar la probabilidad de ocurrencia p de un evento, a partir de la observación de s eventos en n pruebas. Parámetros: Beta (alfa1,alfa2) alfa 1 : s+1 alfa2: n-s+1 La distribución Beta puede tomar muchas formas, según los valores de alfa1 y alfa2. A medida que aumenta n, se gana precisión en la estimación de p (la distribución de p se comprime)
  • 51. Dada la gran variedad de formas que puede asumir según los valores asignados a los parámetros, la distribución Beta también se usa para describir datos empíricos. Si los valores de ambos parámetros son iguales, Beta es simétrica. Si alfa1 es menor que alfa2, la distribución está sesgada hacia la derecha. Si alfa1 es mayor que alfa2, la distribución está sesgada hacia la izquierda
  • 52. Binomial Aplicaciones: estimar la distribución de la cantidad s de ocurrencias de un evento en n pruebas, cuando hay una probabilidad p de ocurrencia del evento en cada prueba. Parámetros: Binomial (n,p) Para n>30 o cuando p es alta, la distribución Binomial puede ser aproximada por una distribución Normal ((np),(npq)1/2 ).
  • 53. Condiciones subyacentes a una distribución Binomial En cada prueba sólo hay dos resultados posibles Las pruebas son independientes (lo que ocurre en la primera prueba no afecta a la segunda, y sucesivamente). La probabilidad de ocurrencia del evento se mantiene constante a través de las pruebas (no hay un proceso de aprendizaje)
  • 54. Geométrica Aplicaciones: estimar la cantidad n de pruebas necesarias hasta la ocurrencia del primer evento, cuando la probabilidad p de ocurrencia de un evento se mantiene constante en el tiempo. Parámetros: n = 1 + Geometric (p) La distribución Geométrica es análoga a la distribución Exponencial: Geométrica se aplica a variables discretas, Exponencial se aplica a variables continuas.
  • 55. Condiciones subyacentes de una distribución Geométrica La cantidad de eventos no está prefijada. Se continúa con las pruebas hasta lograr el primer éxito. La probabilidad de éxito p es constante a través de las pruebas.
  • 56. Binomial Negativa Aplicaciones: estimar la distribución de la cantidad n de pruebas hasta que ocurran s eventos, cuando la probabilidad p de ocurrencia de un evento es constante en el tiempo. Parámetros: n = s + Negbin (s,p) s es el parámetro que le da la forma a la distribución.
  • 57. Condiciones subyacentes de una distribución Binomial Negativa La cantidad de pruebas no está prefijada. Se continúa con las pruebas hasta que se observa la cantidad de eventos (s) buscada. La probabilidad de éxito p es constante de prueba a prueba.
  • 58. Distribución Hipergeométrica Al igual que la distribución Binomial, esta distribución describe la cantidad de ocurrencias de un evento en una cantidad de pruebas. La diferencia con la distribución Binomial es que a medida que se avanza con las pruebas cambia la probabilidad de ocurrencia del evento: pruebas sin reemplazo.
  • 59. Condiciones subyacentes de una distribución Hipergeométrica La cantidad total de elementos de una población es finita. La muestra representa una porción de la población. La probabilidad de ocurrencia del evento en la población es conocida y cambia ligeramente luego de cada prueba.
  • 60. Distribuciones de probabilidad para Procesos Continuos Un Proceso Continuo se caracteriza por un Intervalo Medio de Tiempo entre Eventos (beta). Una vez que se tiene una estimación de beta, se puede estimar también: 1. Distribución de la cantidad de eventos por unidad de tiempo: Poisson (lambda) 2.Distribución de Tiempo hasta la ocurrencia del próximo evento: Exponencial (beta) 3. Distribución de Tiempo hasta que ocurran n eventos: Gamma (n, beta)
  • 61. Distribuciones de probabilidad para Procesos Continuos (cont.) Para que estas distribuciones sean aplicables se debe cumplir el supuesto que el sistema estudiado tiene las características de un Proceso tipo Poisson. Proceso tipo Poisson: la probabilidad de ocurrencia de un evento por unidad de exposición es constante e independiente de la cantidad o proximidad de eventos ocurridos. La unidad de exposición puede ser cualquier variable continua (tiempo, distancia, etc)
  • 62. Estimación del Intervalo Medio de Tiempo entre Eventos (beta) beta es el intervalo de exposición promedio entre n eventos observados. El verdadero valor de beta puede ser estimado a partir de n eventos observados valiéndose del TCL: beta = Normal (t,sigma/(n-1)1/2 ) t = promedio de los n-1 intervalos contiguos sigma = desvío standard de los ti intervalos. La precisión de la estimación de beta aumenta a medida que aumenta n.
  • 63. Poisson Aplicaciones: estimar la cantidad N de ocurrencias de un evento en un intervalo de tiempo T cuando el tiempo medio entre eventos sucesivos (beta) se ajusta a un proceso tipo Poisson. Parámetros: N = Poisson (lambda * t) lambda = 1 / beta Lambda se puede interpretar como la cantidad promedio de ocurrencias del evento por unidad de exposición.
  • 64. Condiciones subyacentes a una distribución Poisson La cantidad de eventos por unidad de exposición no está limitada a un valor discreto. Los eventos son independientes entre sí (el número de eventos en un intervalo de exposición no afecta al número de eventos en otro intervalo de exposición). La cantidad promedio de eventos se mantiene constante de intervalo a intervalo.
  • 65. Exponencial Aplicaciones: estimar la distribución del (tiempo) entre ocurrencias sucesivas de un evento que tiene una probabilidad de ocurrencia p constante por unidad de (tiempo). Parámetros: Expon (beta) Si la probabilidad p de ocurrencia del evento es constante a través del tiempo, la estimación del tiempo que medie hasta la ocurrencia del próximo evento es independiente del tiempo que haya transcurrido desde la última ocurrencia.
  • 66. Gamma Aplicaciones: estimar la distribución del tiempo requerido para la ocurrencia de alfa eventos, cuando los eventos se ajustan a un Proceso tipo Poisson con tiempo medio de ocurrencia entre eventos beta. Esta distribución se usa bastante en meteorología, seguros y teoría de colas. Parámetros: Gamma (alfa, beta)
  • 67. Condiciones subyacentes de una distribución Gamma La cantidad de posibles ocurrencias de un evento en cualquier unidad de medida no está limitada a valores discretos. La ocurrencia de los eventos es independiente entre sí. La cantidad promedio de ocurrencias del evento se mantiene constante entre intervalos sucesivos.
  • 68. Patrones lógicos comunes a Procesos Discretos y Continuos En un Proceso Binomial, el parámetro descriptivo clave es p, probabilidad de ocurrencia del evento en cada prueba, que se asume constante para todas las pruebas En un proceso Poisson, el parámetro descriptivo clave es lambda (cantidad media de eventos que ocurren por unidad de exposición) que se asume es constante sobre el período total de exposición.
  • 69. Weibull La distribución Weibull (alfa,beta) asume que la probabilidad p de ocurrencia del evento cambia con el transcurso del tiempo. – alfa = 1 probabilidad constante (Exponencial) – alfa > 1 probabilidad creciente – alfa < 1 probabilidad decreciente. alfa es el parámetro de forma, beta es el parámetro de ubicación. El parámetro beta permite representar una distribución exponencial con valor mínimo distinto de 0.
  • 70. Normal Aplicaciones: una variedad de situaciones, como se desprende del Teorema Central del Límite. Es útil en finanzas pues la suma o diferencia de distribuciones Normales resulta también en una distribución Normal con parámetros que pueden ser determinados a partir del TCL. Parámetros: Normal (mu,sigma)
  • 71. Estimación subjetiva de los parámetros de una Normal • Media: Valor más probable • Desvío: el intervalo +/- 2*sigma contiene el 95% de los valores, por lo tanto: Sigma: (máximo - más probable) / 2 • La distribución Normal se extiende de -inf a + inf, aunque si CV<1/3 la probabilidad de que ocurra un valor negativo es menor que 0.14%.
  • 72. Lognormal Aplicaciones: modelizar variables que son el producto de una cantidad de otras variables aleatorias que ocurren naturalmente. Generalmente brinda una buena representación de variables que se extienden de 0 a +inf y que tienen un sesgo positivo. Parámetros: Lognormal (mu,sigma) Se usan como parámetros la media aritmética y el desvío standard de los datos disponibles.
  • 73. Condiciones subyacentes de una distribución Lognormal La variable aleatoria puede tomar valores que aumentan sin límites pero no puede tomar valores negativos. La variable aleatoria tiene un sesgo positivo (modo < media) con la mayor parte de los valores cerca del límite inferior. El logaritmo natural de la variable se ajusta a una distribución Normal.
  • 74. Pareto Aplicaciones: modelar cualquier variable que tenga un valor mínimo (que también es el más probable) para la cual la densidad de probabilidad decrece geométricamente hacia cero. Parámetros : Pareto (tita, a) a = valor mínimo y modal
  • 75. Valor Extremo (Gumbel) Se usa para describir valores extremos de una variable en un período de tiempo (caudales, precipitaciones, fuerza de rotura de materiales, etc). Parámetros : modo, parámetro de escala. Los datos usados para ajustar los parámetros de la distribución pueden provenir de una submuestra de tamaño 2 x (n)1/2 que incluya los valores de un extremo de la muestra.
  • 76. Ajuste de los datos a una distribución teórica Los parámetros de la distribución que permitan lograr el mejor ajuste a los datos se determinan usualmente mediante alguno de los siguientes dos métodos: 1. Estimadores de Máxima Verosimilitud: maximizan la probabilidad que la distribución definida con estos parámetros sea capaz de generar los datos observados. 2. Minimización de las diferencias absolutas entre los valores de probabilidad acumulada observados y los derivados de la distribucón teórica (usando programas de optimización)
  • 77. Indicadores de Bondad de Ajuste Los indicadores estadísticos de Bondad de Ajuste más usados son 3: 1. Para distribuciones discretas y continuas, tanto numéricas como no numéricas: Chi cuadrado. Es el indicador menos potente. 2. Para distribuciones continuas: Kolmogorov-Smirnov (K-S). No es muy sensible para detectar discrepancias en las colas de la distribución. 3. Anderson-Darling (versión sofisticada de K-S), pone más énfasis en las colas.
  • 78. Indicadores de Bondad de Ajuste Cuanto menor sea el valor de cada indicador, mayor será el ajuste aparente entre la distribución teórica y los datos observados. Los valores standard de K-S y A-D son de uso limitado para comparar valores críticos cuando hay menos de 30 observaciones. Esto se puede corregir usando K-S y A-D modificados. Hay muchas distribuciones que tienen formas similares y que pueden ser capaces de generar los datos observados.
  • 79. Dependencia y Correlación Una relación de Dependencia ocurre cuando el valor muestreado de una variable (independiente) tiene una relación estadística que determina aproximadamente el valor que va a ser generado para la otra variable (dependiente). La diferencia principal entre Dependencia y Correlación es que la primera presupone una relación causal, mientras que la segunda no (puede haber un factor externo que afecta a ambas variables).
  • 80. Correlación Lineal (Pearson) El coeficiente r da una medida de la covarianza entre dos conjuntos de datos. r puede tomar valores desde -1 a +1 Al dividir por los desvíos standard de cada conjunto de datos se logra un índice de covarianza que no depende de las unidades de medida en que están expresados los datos. Supuestos: la relación entre variables es de tipo lineal.
  • 81. Correlación por orden de rango (Spearman) Es un método no paramétrico para cuantificar la relación entre variables. r puede tomar valores desde -1 a +1 Ventajas: – 1. Las variables se correlacionan de acuerdo al rango de valores generados en cada distribución. Esto significa que todas las distribuciones correlacionadas preservan su forma original. – 2. Como no depende de supuestos acerca de la relación matemática de las variables a correlacionar, puede ser aplicable a cualquier tipo de relación entre distribuciones (lineal, no lineal).
  • 82. El coeficiente de correlación de Pearson mide la intensidad de la relación lineal entre variables. Si dos variables aleatorias no tienen la misma distribución de probabilidad, es improbable que se relacionen en forma lineal, por lo que el coeficiente de correlación tendrá poco significado. Si se toman los valores según rangos y no según valores absolutos, el coeficiente de correlación así calculado tiene sentido incluso para variables con diferentes distribuciones.
  • 83. Desventajas de correlacionar variables mediante el coeficiente Spearman 1. Es difícil estimar el coeficiente de correlación entre dos distribuciones de formas diferentes. 2. El mismo coeficiente de correlación puede resultar en diferentes gráficos de puntos para diferentes distribuciones correlacionadas. Esto puede ser aún más marcado si las distribuciones a correlacionar son diferentes.
  • 84. Recomendaciones respecto al uso de coeficientes de correlación de Spearman 1. Usar estos coeficientes para correlacionar variables que tengan un impacto menor sobre los resultados del modelo. 2. Tratar de restringir su uso a correlacionar distribuciones de geometría similar. 3. Si se correlacionan distribuciones de geometría diferente, antes de aceptar el coeficiente observar el gráfico de puntos resultante. 4. Evitar correlacionar distribuciones cuando no haya una razón lógica que permita suponer una correlación.
  • 85. Matrices de Correlación Permiten correlacionar varias distribuciones de probabilidad mediante coeficientes de Spearman. Como la fórmula de los coeficientes de correlación por orden de rango es simétrica, los elementos de la matriz son simétricos alrededor de la diagonal. Tiene que haber una cierta lógica en los coeficientes ingresados (p.ej. condición transitiva)
  • 86. Efectos de la correlación sobre los resultados del modelo El efecto es función de: Relación entre las variables correlacionadas y el resultado. Forma de las distribuciones correlacionadas.
  • 87. Efecto de la correlación sobre el resultado de la Suma de dos variables correlacionadas (modelos aditivos) El valor esperado del resultado no se ve afectado por la presencia de correlación. El desvío standard del resultado aumenta a medida que aumenta r (si las variables correlacionadas “tiran” el resultado para el mismo lado).
  • 88. Efecto de la correlación sobre el resultado del producto de dos variables correlacionadas (modelos multiplicativos) El valor esperado del resultado aumenta a medida que aumenta r (toda la distribución se desplaza hacia la derecha a medida que aumenta r). No se pueden hacer generalizaciones respecto al desvío standard, aunque en general aumenta a medida que aumenta r.
  • 89. Coeficientes de correlación a partir de la opinión de expertos 1. Determinar la lógica de la relación entre las variables a correlacionar 2. Determinar cuál es la variable independiente 3. Definir la distribución de la variable independiente 4. Seleccionar varios valores de la variable independiente (incluyendo mínimo, máximo y al menos otros dos puntos relevantes)
  • 90. Coeficientes de correlación a partir de la opinión de expertos (cont.) 5. Preguntar al experto por algunos valores de interés de la variable dependiente (mínimos, máximos, más probable) que estima se corresponderían con cada valor de la variable independiente. 6. Plotear estos valores y encontrar las ecuaciones que unan cada conjunto de valores. 7. Usar estas ecuaciones en una distribución Triangular o BetaPert para definir la variable dependiente.
  • 91. Determinación de la contribución relativa de cada variable a la variabilidad del resultado Los coeficientes de correlación entre el resultado y las variables dan una idea de la influencia de cada variable, pero no cuantifican esta influencia.
  • 92. Si el modelo es aditivo, la contribución relativa de cada variable a la variabilidad total puede estimarse de la siguiente manera: – 1. Calcular el coeficiente de correlación entre cada variable y el resultado. – 2. Calcular la suma de estas correlaciones. – 3. Dividir cada coeficiente por la suma. Las fracciones resultantes representan aproximadamente la contribución relativa de cada variable a la variabilidad total.
  • 93. Cuando el modelo no es aditivo y/o las variables no son independientes: – 1. Correr una simulación inicial, con todas las variables especificadas. – 2. Correr luego varias simulaciones, en cada una de las cuales se “congela” una variable en su valor esperado. – 3. Anotar el desvío standard del resultado de cada simulación. – 4. Calcular la reducción en la variabilidad del resultado para cada simulación en la cual se haya “congelado” una variable. – 5. Normalizar dividiendo el valor absoluto de la reducción por la suma de todas las reducciones. Las fracciones resultantes darán una estimación de la

Notas do Editor

  1. Si las probabilidades son subjetivas, entonces deben ser estimadas en última instancia preguntándoselas a alguien. En general la gente tiene dificultades para hacer juicios sobre probabilidades que se ajusten a la realidad. Sin embargo, en la práctica los datos históricos muchas veces son poco relevantes y es necesario recurrir a juicios para obtener probabilidades. El hecho que diferentes individuos asignan probabilidades muy diferentes a una misma expresión demuestra el peligro de usar palabras para comunicar la incertidumbre. Las probabilidades en cambio no son ambiguas. Usar un valor puntual para representar un evento incerto mezcla juicios acerca de incertidumbres con evaluaciones acerca de lo deseable de distintos resultados. Además, dar un valor único no provee información acerca de cuánta variabilidad es posible.
  2. Muchas de estas respuestas al riesgo generan a su vez riesgos secundarios. Se aumenta el compromiso cuando el análisis muestra que se está siendo excesivamente cauteloso. Se busca más información cuando se quiere reducir la incertidumbre. Precauciones adicionales pueden ser medidas tales como un enfoque menos riesgoso o sobredimensionamiento. Se comparten los riesgos con quienes puedan manejar un posible impacto adverso. Los planes de contingencia debieran desarrollarse para manejar riesgos que se identifican pero no se eliminan, de modo de poder reaccionar en forma efectiva en caso que se presente la adversidad. No se hace nada cuando costaría demasiado hacer algo, o no hay nada que pueda razonablemente hacerse, se asume el riesgo.
  3. El análisis de escenarios tiene las siguientes limitaciones: Las combinaciones crecen exponencialmente cuantas más variables aleatorias haya en juego. Definir la aleatoreidad de cada variable como valores con probabilidades discretas ignora la posibilidad que las variables sean de tipo continuo. No tiene en cuenta que los valores más probables tienen una probabilidad de ocurrencia mucho mayor que los extremos. Montecarlo genera una serie de escenarios posibles, pero tiene en cuenta todos los valores que una variable puede tomar y pondera cada escenario por su probabilidad de ocurrencia.
  4. No importa cuántas iteraciones muestreemos, nunca sabremos el valor exacto de los parámetros de la población, pero cuantas más iteraciones corramos mayor va a ser la probabilidad que nuestros estimadores de los parámetros de la población estén dentro de un rango aceptable de los valores verdaderos.
  5. Según el TCL, la suma de n variables aleatorias independientes con idénticas distribuciones de probabilidad se distribuye según una distribución Normal cuando n es suficientemente grande. Si las variables provienen de una distribución Normal (mu,sigma) entonces la suma dará: Normal (n*mu, ((n) 1/2* *sigma) El n necesario para lograr la convergencia a una normal dependerá en parte de la forma de la distribución de las variables intervinientes: Si son Normales, basta con n=1 Si son simétricas aunque no necesariamente normales, n &gt; 10 Si son asimétricas, n &gt; 20 o 30 Si son altamente sesgadas (sesgo &gt; 2) , n &gt; 50. La mayor parte de los modelos son combinaciones de sumas y productos de variables aleatorias que tienen diferentes distribuciones de probabilidad. Por lo tanto, no debiera sorprender que los resultados de los modelos den distribuciones que estén entre Normal y Lognormal. Muchas distribuciones paramétricas pueden ser conceptualizadas como la suma de otras distribuciones idénticas. En general, si la media es mucho mayor que el desvío de estas distribuciones, se pueden aproximar mediante una Normal.
  6. Si se fija el valor semilla, se puede replicar la misma secuencia de números aleatorios en simulaciones sucesivas. Esto puede ser útil cuando se quiere hacer un análisis de sensibilidad: es una manera de asegurar que los cambios en el resultado de cada simulación se deben a cambios en los parámetros de alguna variable y no a la aleatoreidad del muestreo.
  7. F(x) toma valores entre 0 y 1
  8. El valor t(alfa,n) en Excel se puede hallar como: t(alfa,n) = TINV( 2 * alfa, n)
  9. En Excel: z alfa = NORMINV (1-alfa)
  10. Se usan para representar propiedades que son infinitamente divisibles (tiempo, distancia, masa) o variables discretas en las que el intervalo entre valores factibles es irrelevante en la práctica.
  11. Una forma práctica de verificar si se ha logrado un suficiente nivel de desagregación consiste en hacer un análisis de sensibilidad del modelo y mirar si el gráfico Tornado está dominado por uno o dos inputs.
  12. Uniform (0,l/2) se puede usar para estimar la distribución de la distancia entre una filtración y una junta en una cañería. Uniform (0,360) puede usarse para estimar la distribución de una posición angular de descanso de un mecanismo giratorio
  13. Media : (a+b+c)/3 Desvío: ((a 2 +b 2 +c 2 - ab - ac - bc) / 18) 1/2 Por TCL, cuando se suman una cantidad de variables aleatorias, son la media y el desvío de las distribuciones las que tienten el mayor impacto por ser las que determinan la media y el desvío del resultado. La distribución triangular, al dar el mismo peso en la determinación de la media y el desvío de la distribución a los tres parámetros, puede llevar a distorsiones cuando alguno de los valores extremos no está bien definido o toma valores muy altos.
  14. BetaPert (a,b,c) = Beta (alfa1,alfa2) * (c-a) + a mu = (a + 4b + c) / 6 alfa1 = ((mu - a) * (2b-a-c)) / (b-u) * (c-a) alfa2 = alfa1 * (c-mu) / (mu-a)
  15. La distribución Beta es una distribución limitada (valor mínimo igual a 0) que no se basa en supuestos teóricos acerca del proceso de generación de los valores de la variable aleatoria. Los resultados de las distribuciones Binomial, Geométrica y Binomial Negativa modelan variabilidad. La probabilidad p es un parámetro fundamental del sistema Bernouilli y nunca puede ser observada, pero podemos estar progresivamente más seguros acerca de su verdadero valor a medida que contamos con más información. La distribución Beta puede usarse para cuantificar la incertidumbre respecto a este parámetro del sistema.
  16. La distribución Bernouilli es un caso especial de la distribución Binomial cuando n=1. La distribución Binomial se relaciona con la distribución Beta: Binomial estima el número de ocurrencias s en n pruebas cuando hay una probabilidad de éxito p en cada prueba, Beta estima el valor de p dados n y s.
  17. La distribución geométrica es un caso especial de Binomial Negativa, donde s=1. La distribución geométrica está muy sesgada hacia la derecha. p(0) = p, indicando que la probabilidad que no haya fallas es igual a p, lo que es la probabilidad que el primer intento resulte un éxito.
  18. Cuando s=1, la distribución binomial negativa se vuelve una geométrica. A medida que s aumenta y p no asume valores extremos, la Binomial Negativa se aproxima a una Normal
  19. En un proceso Poisson hay una oportunidad continua y constante de que ocurra un evento. En cualquier intervalo de tiempo durante una tormenta hay alguna probabilidad que caiga un rayo. La unidad continua de exposición en este caso es el tiempo. Al igual que en un Proceso Binomial, el Proceso Poisson no tiene memoria. En un proceso Poisson, a diferencia de un Proceso Binomial, como hay un continuo de oportunidad para que ocurra un evento puede haber cualquier valor entre cero e infinito para el número de eventos que ocurran dentro de un período de exposición, y hay una probabilidad de que ocurra el evento sin importar cuán pequeño sea el intervalo de exposición considerado.
  20. Al igual que p para un Proceso Discreto, lambda (1/beta) no es una variable sino un parámetro del sistema. Se usa una distribución de probabilidad para expresar nuestro grado de incertidumbre acerca de su valor. Cuando no se conocen los valores de los intervalos t i sino solamente el número de eventos n que ocurrieron en un intervalo total T , beta se estima como: beta = T/n
  21. A medida que p tiende a 0, un Proceso Binomial se vuelve un Proceso Poisson. Cuando p es baja y n es suficientemente grande (np&lt;1), la distribución Binomial (n,p) puede ser aproximada por una distribución Poisson (lambda*t) (lambda=p, t=n) Binomial (100,2%) = Poisson (0.02*100)
  22. A medida que p tiende a 0, un proceso Binomial se convierte en un proceso Poisson. Con bajos valores de p, se necesita un n elevado para observar el evento. Exponencial (beta) modela el “tiempo” hasta observar el evento por primera vez, Gamma (alfa,beta) el “tiempo” hasta observar alfa eventos. Entonces, cuando p es baja Geomet (p) se puede aproximar con Expon (1/p) Negbin (s,p) se puede aproximar con Gamma (s, 1/p)
  23. Por ejemplo, la distribución del tiempo hasta la ocurrencia de 4 inundaciones cuando el tiempo medio entre inundaciones es de 6 años es Gamma (4,6) Los parámetros de una distribución Gamma se pueden estimar a partir de información histórica: parámetro de forma alfa: mu 2 / sigma 2 parámetro de escala beta: sigma 2 / mu La distribución Erlang es la distribución Gamma cuando alfa toma valores discretos. Gamma se relaciona con la distribución Exponencial: Gamma ( 1,beta ) = Exponencial ( beta ) Las distribuciones Exponencial y Gamma son las únicas que asumen independencia entre tiempo transcurrido y tiempo hasta el próximo evento (proceso sin memoria).
  24. La distribución se usa en estudios de confiabilidad y control de calidad. Los datos a partir de los cuales se ajusta una distribución Weibull se obtienen de pruebas de fatiga y durabilidad.
  25. El sesgo de una distribución Normal es igual a 0. Un valor de sesgo &gt;0 indica una distribución volcada hacia la izquierda (modo &lt; media). Un valor de sesgo &lt;0 indica una distribución volcada hacia la derecha (modo &gt; media). Hay otras distribuciones que convergen a una Normal a medida que sus CV se acercan a 0: Lognormal, t de Student, Binomial, Poisson, Chi cuadrado, Binomial Negativa. Binomial (n,p) puede ser interpretada como la suma de n distribuciones independientes Binomial (1,p) por lo que razonando a partir de TCL se puede aproximar con Normal (np, (npq) 1/2 ) para n alto y p intermedio Poisson (lambda*t) es la suma de t distribuciones independientes Poisson (lambda) por lo que razonando a partir de TCL se puede aproximar con Normal [lambda*t ,(lambda * t) 1/2 ] para lambda * t &gt; 20 Negbin (s,p) es la suma de s distribuciones independientes Negbin (1,p), por lo que razonando a partir de TCL se puede aproximar con Normal {s*(1-p)/p, [s*(1-p)] 1/2 /p} para s &gt; 50 Gamma (alfa,beta) puede interpretarse como la suma de alfa distribuciones independientes Expon (beta), por lo que razonando a partir del TCL Gamma (alfa,beta) se puede aproximar con Normal (alfa * beta, (alfa) 1/2 * beta) La distribución Lognormal se puede aproximar con una Normal cuando mu &gt; 6 * sigma La distribución Beta (alfa1, alfa2) se puede aproximar con una Normal cuando alfa1 y alfa2 son suficientemente grandes (cuando ambas son mayores que 10)
  26. La distribución Normal Truncada muestrea de una distribución Normal con parámetros (mu,sigma) pero no registrará los valores que estén más allá del mínimo y el máximo indicados.
  27. Los precios de las acciones tienen un sesgo positivo porque su valor mínimo no puede ser menor que 0 pero su valor máximo no tiene límite teórico.
  28. Una aplicación podría relacionarse con reclamos de pólizas de seguros. Las pólizas se escriben de modo que no valga la pena reclamar por debajo de un cierto valor (a). Si se asume que la probabilidad de un reclamo mayor que a decrece como una función potencia del monto del reclamo entonces se puede modelar el evento con una distribución Pareto. Una distribución Pareto tiende a ajustar muy bien las colas de las distribuciones de ingreso, pero tiene un pobre ajuste con la distribución de ingresos en su totalidad (a la inversa de una distribución Lognormal).
  29. Para cada distribución posible, se busca el conjunto de parámetros que logre el mayor ajuste entre la distribución de probabilidad y el conjunto de datos. La respuesta no se debe interpretar en términos absolutos, se identifica a la distribución que con mayor probabilidad puede haber generado el conjunto de datos observados. Máxima verosimilitud se usa más cuando se usa una muestra de datos. Mínimos cuadrados se usa con datos en forma de frecuencia acumulada o de frecuencia relativa. Para datos en forma de frecuencia relativa o acumulada, los ajustes se rankean por su valor de error mínimo cuadrado. Es una medida del error cuadrado promedio entre la curva de datos y la curva ajustada. Los valores P indican el nivel de significancia del test. Dan una idea de la probabilidad que un nuevo conjunto de N valores muestreados a partir de la distribución ajustada generen un valor mayor o igual al valor s del indicador en el test. A medida que el valor P se acerca a 1, no hay bases para rechazar la hipótesis que la distribución ajustada haya efectivamente generado el conjunto de datos observados. Otra manera de ver el asunto es mediante valores críticos. Para un determinado nivel de significancia, hay un valor crítico que indica cual es el mayor valor de s que permite considerar que el ajuste es aceptable.
  30. Con el coeficiente de Spearman se pierde alguna información (p.ej. cuando hay valores similares el empate de rango se resuelve arbitrariamente). Los valores generados para cada variable no son cambiados en el muestreo , simplemente se reacomodan de modo de producir la correlación deseada. De esta manera se mantienen las distribuciones originales.
  31. Sigue la lógica bajo la cual el valor de la variable independiente determina estadísticamente el valor de la variable dependiente. Como este método para establecer correlaciones es más trabajoso que hacerlo con el coeficiente de Spearman, se reserva para situaciones en las que una relación de dependencia puede provocar efectos significativos sobre los resultados del modelo.