Ciclo de Brayton

14.358 visualizações

Publicada em

O Ciclo de Brayton é o ciclo termodinâmico na qual as máquinas térmicas, como turbina a gás, operam.

Publicada em: Educação
0 comentários
7 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
14.358
No SlideShare
0
A partir de incorporações
0
Número de incorporações
9
Ações
Compartilhamentos
0
Downloads
430
Comentários
0
Gostaram
7
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Ciclo de Brayton

  1. 1. Universidade Federal de São Paulo ICT – São José dos Campos Ciclo de Brayton Aluno: Bruno Otilio Matéria: Termodinâmica Aplicada
  2. 2. Sumário • Introdução • George Brayton • O Ciclo de Brayton • Aplicações • Uso na Engenharia Biomédica • Conclusão • Bibliografia
  3. 3. Introdução Máquinas térmicas são dispositivos que permitem a conversão de energia térmica em movimento (energia mecânica), produzindo trabalho . E.T Máquina Térmica E.D Trabalho E.T = Energia térmica E.D = Energia Dissipada
  4. 4. A energia térmica é obtida principalmente pela reação química de combustão, na qual o combustível reage com o comburente. CxHy + (x + (y/4))O2 → xCO2 + (y/2)H2O Equação 1 - Fórmula da reação química para a combustão de hidrocarbonetos com oxigênio.
  5. 5. Principias características dos combustibles: • • • • Índice de Cetano (qualidade de ignição) Índice de Octano (resistencia a ignição) Poder calorífico Viscosidade
  6. 6. Imagem 1 - Máquina de Heron, construída no século I d.C. Considerada como a primeira máquina térmica construída. Se baseava na evaporação da água armazenada na esfera, o vapor saia por orifícios situados na mesma direção com sentido opostos, que resultava no movimento do sistema.
  7. 7. Imagem 2 - Máquina de Savery , construída pelo engenheiro militar Thomas Savery desenvolvido em 1698, primeira máquina térmica com aplicação bem sucedida. Tinha por objetivo drenar água ne minas inundadas de carvão, possuía uma eficiência entre 1 - 1,5%.
  8. 8. Ciclos Termodinâmicos Os ciclos termodinâmicos são processos na qual o sistema realiza com objetivo de se obter trabalho ou realizar trabalho. A direção do ciclo indica se o trabalho é produzido (motor) ou consumido (bomba de calor) . Gráfico 1 – Ciclo termodinâmico representado em um diagrama de pressão vs Volume
  9. 9. O trabalho realizado em um ciclo pode ser descrito de duas maneiras: Equação 2 – Trabalho é igual a área resultante do ciclo do diagrama P vs V. Equação 3 – Trabalho é igual a soma do calor absorvido e rejeitado pelo sistema (lembrando que calor consumido por definição é positivo e calor liberado é negativio).
  10. 10. George Brayton Nascido em Rhode Island (EUA), viveu entre 1830 e 1892. Engenheiro mecânico, foi o inventor do primeiro motor de ignição interna de uso comercial, com uso de querosene ou gasolina como combustível. Imagem 3 – George Brayton
  11. 11. • Patenteado em 1872 (Brayton's Ready Motor). • O motor de Brayton foi utilizado com sucesso no primeiro submarino de propulsão chamado de Fieniam Ram. • Foi a base para o desenvolvimento de turbina a gás. • O motor de Nikolaus Otto, inventor alemão, substituiu o de Brayton por ser mais silenciosos e eficiente. Imagem 4 – Propaganda Brayton's Ready Motor do
  12. 12. Ciclo de Brayton As turbinas a gás operam segundo este ciclo, que pode ser utilizado em geração de energia, e empuxo (motores a jato). Imagem 5 – Ciclo de Brayton aberto Imagem 6 – Ciclo de Brayton fechado
  13. 13. Diagramas Imagem 7 – Ciclo de Brayton aberto. Gráfico 2 – Diagrama de Temperatura vs Entropia e diagrama de Pressão vs Volume.
  14. 14. Gráfico 3 – Ciclo de Brayton, indicando que a diferença entre o ciclo real e ideal é que no real há variação de entropia.
  15. 15. O cilco de Brayton é composto por 4 etapas: 1-2 Compressão isentrópica (no compressor) 2-3 Adição de calor com pressão constante (na câmara de combustão) 3-4 Expansão isentrópica (na turbina ) 4-1 Rejeição de calor com pressão constante (exaustor)
  16. 16. Eficiência Gráfico 4 – Diagrama P vs V de um Ciclo de Brayton ideal
  17. 17. Pela 1° Lei temos: Como é um ciclo : Com q1 negativo e sendo um processo isobárico:
  18. 18. Pela definição de entalpia (P = cte) e sendo um gás perfeito: O trabalho líquido é dado por:
  19. 19. A eficiência é dada por: Pela definição de processo isentrópico
  20. 20. Por consequência: Equação 4 – Eficiência do ciclo de Brayton Com: 1/TR = T1/T2 PR = P2/P1 ϒ = Cp/Cv
  21. 21. Turbina a gás Imagem 8 – Ilustração de uma turbina a gás e seus componentes. O ar fornece o oxigênio para a combustão e permite manter a temperatura de certas partes da turbina em um limite de uso seguro.
  22. 22. Imagem 9 – Representação das semelhanças de uma turbina a jato com um motor de cilindro único.
  23. 23. • A primeira turbina a gás foi desenvolvida em 1940, e em 1949 foi instalada em Oklahoma a primeira turbina a gás para geração elétrica. • Tinha em média 17% de eficiência, pela limitação do compressor e da turbina e as limitações térmicas dos materiais da época. • Graças ao desenvolvimento da Engenharia de Materiais, atualmente o gás expelido pode chegar a 1495°C, enquanto em 1940 era expelido a 540°C • Com o incremento de Regeneração e Reaquecimento o rendimento do ciclo de Brayton melhorou VÍDEO
  24. 24. Animação do funcionamento de uma turbina a gás
  25. 25. Métodos utilizados para melhor a eficiência do ciclo.
  26. 26. Regenerador Imagem 10 – Com o calor absorvido pelo ar comprimido, menos combustível é utilizado e por consequência melhor é o rendimento. Em torno de 26% com ciclo aberto e 36% com ciclo com regeneração.
  27. 27. Imagem 11 – Diagrama T vs S do ciclo de Brayton com regeneração.
  28. 28. Imagem 12 – Esquema matemático da eficiência térmica do ciclo de Brayton com regenerador
  29. 29. Reaquecimento Troca o ar quente pobre em O2 por ar frio rico em O2, proporcionando uma queima mais eficiente. Imagem 13 – Atualmente a maioria das turbinas a gás apresenta o ciclo com múltiplos reaquecimentos e regeneração.
  30. 30. Imagem 14 – Diagrama T vs S do ciclo de Brayton com regeneração e reaquecimento múltiplos.
  31. 31. Imagem 15 – Uso Turbofan é o mais utilizados em aviões (como o Boeing 777), baseia-se no principio de maior volume de ar produz uma pressão maior.
  32. 32. Imagem 16 – Turbo jato do Boeing 777.
  33. 33. Ciclo inverso Imagem 17 – Exemplo de um refrigerador operando pelo ciclo de Brayton, na qual o calor é retirado com intermédio da combustão, e o diagrama de T vs S do refrigerador.
  34. 34. Imagem 18 – Esquema de um cilco padrão de um refrigerador e seu respectivo diagrama T vs S
  35. 35. Imagem 19 – Determinação do desempenho de um refrigerador com ciclo de Brayton.
  36. 36. Ciclo de Rankine Se há mudança de fase o ciclo é conhecido como Ciclo de Rankine, devido ao seu inventor William J. M. Rankine (1820 – 1872). Atualmente é o ciclo básico para geração de energia em usinas termoelétricas. Imagem 20 – William Rankine
  37. 37. Imagem 21 – Esquema básico do ciclo de Rankine.
  38. 38. Aplicações Imagem 22 – Exemplos de máquinas que operam sob o ciclo de Brayton, turbina de avião e motor de navios.
  39. 39. E na Engenharia Biomédica? • Principalmente no uso do ciclo reverso para refrigeração de ambiente (área hospitalar); • Produção de energia elétrica
  40. 40. Conclusão O ciclo de Brayton possibilitou o desenvolvimento de grandes tecnologias, e contínua a contribuir ao desenvolvimento da ciência, com uma vasta gama de aplicações. Apresenta eficiência muito menor do que o ciclo de Rankine (~40% e ~60% respectivamente), porém na aviação é o mais eficiente.
  41. 41. Bibliografia Livros: Fundamentos da Termodinâmica; Claus Borgnakke, Richard E. Sonntag; 7° Ed. Americana – SP: Blucher,2009. Publicações: LANE D.; Brayton Cycle: The Ideal Cycle for Gas – Turbine Engines In Relation to Power Plants MENESES E. L.; Uso de Turbina a Gás Para Geração de Energia Elétrica em Plataforma; Graduação – UEZO, 2011. BRAYTON CYCLE: THE IDEAL CYCLE FOR GAS-TURBINE ENGINES <disponivel em: http://www.yildiz.edu.tr/~dagdas/Brayton%20cycle.pdf.
  42. 42. Sites: (acessados em janeiro de 2014) http://www.grc.nasa.gov/WWW/k-12/airplane/brayton.html http://www.if.ufrgs.br/~dschulz/web/ciclos_termodinamicos.htm http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node1 39.html http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node2 7.html http://www.sfu.ca/~mbahrami/ENSC%20461/Notes/Brayton%20Cycle. pdf http://web.me.unr.edu/me372/Spring2001/Brayton%20Cycle.pdf http://www.apsdistribuidora.com.br/conteudotecnico/CURIOSIDADES-DA-WEB/A-Funcao-do-Intercooler http://www.grc.nasa.gov/WWW/k-12/airplane/brayton.html Vídeo: <disponível em: http://www.youtube.com/watch?v=kuvq-X9sdr0>
  43. 43. Obrigado pela atenção General Electric LM2500

×