SlideShare uma empresa Scribd logo
1 de 17
Baixar para ler offline
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 1
1. INTRODUCTION
1.1 Electromagnetic Spectrum
Fig.1.1. Electromagnetic Spectrum
To start with, to know what a spectrum is: when white light is shone through a prism it
is separated out into all the colors of the rainbow; this is the visible spectrum. So white light is
a mixture of all colors. Black is NOT a color; it is what you get when all the light is taken
away. Some physicists pretend that light consists of tiny particles which they call photons.
They travel at the speed of light (what a surprise). The speed of light is about 300,000,000
meters per second. When they hit something they might bounce off, go right through or get
absorbed. What happens depends a bit on how much energy they have. If they bounce off
something and then go into your eye you will "see" the thing they have bounced off. Some
things like glass and Perspex will let them go through; these materials are transparent.
Black objects absorb the photons so you should not be able to see black things: you
will have to think about this one. These poor old physicists get a little bit confused when they
try to explain why some photons go through a leaf, some are reflected, and some are
absorbed. They say that it is because they have different amounts of energy. Other physicists
pretend that light is made of waves. These physicists measure the length of the waves and this
helps them to explain what happens when light hits leaves. The light with the longest
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 2
wavelength (red) is absorbed by the green stuff (chlorophyll) in the leaves. So is the light with
the shortest wavelength (blue). In between these two colors there is green light, this is allowed
to pass right through or is reflected. (Indigo and violet have shorter wavelengths than blue
light.)
Well it is easy to explain some of the properties of light by pretending that it is made
of tiny particles called photons and it is easy to explain other properties of light by pretending
that it is some kind of wave. The visible spectrum is just one small part of the electromagnetic
spectrum. These electromagnetic waves are made up of to two parts. The first part is an
electric field. The second part is a magnetic field. So that is why they are called
electromagnetic waves. The two fields are at right angles to each other.
The "electromagnetic spectrum" of an object has a different meaning, and is instead
the characteristic distribution of electromagnetic radiation emitted or absorbed by that
particular object. The electromagnetic spectrum extends from below the low frequencies used
for modern radio communication to gamma radiation at the short-wavelength (high-
frequency) end, thereby covering wavelengths from thousands of kilometres down to
a fraction of the size of an atom. The limit for long wavelengths is the size of
the universe itself, while it is thought that the short wavelength limit is in the vicinity of
the Planck length, although in principle the spectrum is infinite and continuous.
Most parts of the electromagnetic spectrum are used in science for spectroscopic and
other probing interactions, as ways to study and characterize matter. In addition, radiation
from various parts of the spectrum has found many other uses for communications and
manufacturing
The types of electromagnetic radiation are broadly classified into the following
classes:
1. Gamma radiation
2. X-ray radiation
3. Ultraviolet radiation
4. Visible radiation
5. Infrared radiation
6. Microwave radiation
7. Radio waves
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 3
This classification goes in the increasing order of wavelength, which is characteristic
of the type of radiation. While, in general, the classification scheme is accurate, in reality
there is often some overlap between neighbouring types of electromagnetic energy. For
example, SLF radio waves at 60 Hz may be received and studied by astronomers, or may be
ducted along wires as electric power, although the latter is, in the strict sense, not
electromagnetic radiation at all.
The distinction between X-rays and gamma rays is partly based on sources: the
photons generated from nuclear decay or other nuclear and sub nuclear/particle process, are
always termed gamma rays, whereas X-rays are generated by electronic transitions involving
highly energetic inner atomic electrons. In general, nuclear transitions are much more
energetic than electronic transitions, so gamma-rays are more energetic than X-rays, but
exceptions exist. By analogy to electronic transitions, muonic atom transitions are also said to
produce X-rays, even though their energy may exceed 6 mega electron volts
(0.96 pJ), whereas there are many (77 known to be less than 10 keV (1.6 fJ)) low-energy
nuclear transitions (e.g., the 7.6 eV (1.22 aJ) nuclear transition of thorium-229), and, despite
being one million-fold less energetic than some muonic X-rays, the emitted photons are still
called gamma rays due to their nuclear origin.
The convention that EM radiation that is known to come from the nucleus, is always
called "gamma ray" radiation is the only convention that is universally respected, however.
Many astronomical gamma sources (such as gamma ray bursts) are known to be too energetic
(in both intensity and wavelength) to be of nuclear origin. Quite often, in high energy physics
and in medical radiotherapy, very high energy EMR (in the >10 MeV region) which is of
higher energy than any nuclear gamma ray, is not referred to as either X-ray or gamma-ray,
but instead by the generic term of "high energy photons."
The region of the spectrum in which a particular observed electromagnetic radiation
falls, is reference frame-dependent (due to the Doppler shift for light), so EM radiation that
one observer would say is in one region of the spectrum could appear to an observer moving
at a substantial fraction of the speed of light with respect to the first to be in another part of
the spectrum. For example, consider the cosmic microwave background. It was produced,
when matter and radiation decoupled, by the de-excitation of hydrogen atoms to the ground
state. These photons were from Lyman series transitions, putting them in the ultraviolet (UV)
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 4
part of the electromagnetic spectrum. Now this radiation has undergone enough
cosmological red shift to put it into the microwave region of the spectrum for observers
moving slowly (compared to the speed of light) with respect to the cosmos.
1.2 Microwave Region
Microwave wavelengths range from approximately one millimeter (the thickness of a
pencil lead) to thirty centimeters (about twelve inches). In a microwave oven, the radio waves
generated are tuned to frequencies that can be absorbed by the food. The food absorbs the
energy and gets warmer. The dish holding the food doesn't absorb a significant amount of
energy and stays much cooler. Microwaves are emitted from the Earth, from objects such as
cars and planes, and from the atmosphere. These microwaves can be detected to give
information, such as the temperature of the object that emitted the microwaves.
Microwaves have wavelengths that can be measured in centimeters! The longer
microwaves, those closer to a foot in length, are the waves which heat our food in a
microwave oven. Microwaves are good for transmitting information from one place to
another because microwave energy can penetrate haze, light rain and snow, clouds, and
smoke. Shorter microwaves are used in remote sensing. These microwaves are used for
clouds and smoke, these waves are good for viewing the Earth from space Microwave waves
are used in the communication industry and in the kitchen as a way to cook foods. Microwave
radiation is still associated with energy levels that are usually considered harmless except for
people with pace makers.
Fig.1.2 Microwave region of electromagnetic spectrum
Here we are going to use the S band of the Microwave Spectrum.
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 5
Table 1.2 Microwave spectrum
Designation Frequency range
L Band 1 to 2 GHz
S Band 2 to 4 GHz
C Band 4 to 8 GHz
X Band 8 to 12 GHz
Ku Band 12 to 18 GHz
K Band 18 to 26 GHz
Ka Band 26 to 40 GHz
Q Band 30 to 50 GHz
U Band 40 to 60 GHz
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 6
2. TRANSMITTER SECTION
The transmitter section consists of two parts. They are:
 Magnetron
 Slotted waveguide antenna
2.1 Magnetron
Fig.2.1 Magnetron
Magnetron is the combination of a simple diode vacuum tube with built in cavity
resonators and an extremely powerful permanent magnet. The typical magnet consists of a
circular anode into which has been machined with an even number of resonant cavities. The
diameter of each cavity is equal to a one-half wavelength at the desired operating frequency.
The anode is usually made of copper and is connected to a high-voltage positive direct
current. In the center of the anode, called the interaction chamber, is a circular cathode.
The magnetic fields of the moving electrons interact with the strong field supplied by
the magnet. The result is that the path for the electron flow from the cathode is not directly
to the anode, but instead is curved. By properly adjusting the anode voltage and the strength
of the magnetic field, the electrons can be made to bend that they rarely reach the anode
and cause current flow. The path becomes circular loops. Eventually, the electrons do reach
the anode and cause current flow. By adjusting the dc anode voltage and the strength of the
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 7
magnetic field, the electron path is made circular. In making their circular passes in the
interaction chamber, electrons excite the resonant cavities into oscillation. A magnetron,
therefore, is an oscillator, not an amplifier. A takeoff loop in one cavity provides the output.
Magnetrons are capable if developing extremely high levels of microwave power..
When operated in a pulse mode, magnetron can generate several megawatts of power in the
microwave region. Pulsed magnetrons are commonly used in radar systems. Continuous-wave
magnetrons are also used and can generate hundreds and even thousands of watts of power.
2.2 Slotted Waveguide Antenna
The slotted waveguide is used in an omni-directional role. It is the simplest ways to
get a real 10dB gain over 360 degrees of beam width. The Slotted waveguide antenna is
a Horizontally Polarized type Antenna, light in weight and weather proof.3 Tuning screws are
placed for tweaking the SWR and can be used to adjust the centre frequency downwards from
2320MHz nominal to about 2300 MHz .This antenna is available for different frequencies.
This antenna, called a slotted waveguide, is a very low loss transmission line. It allows
propagating signals to a number of smaller antennas (slots). The signal is coupled into the
waveguide with a simple coaxial probe, and as it travels along the guide, it traverses the slots.
Each of these slots allows a little of the energy to radiate. The slots are in a linear array
pattern. The waveguide antenna transmits almost all of its energy at the horizon, usually
exactly where we want it to go. Its exceptional directivity in the elevation plane gives it quite
high power gain. Additionally, unlike vertical collinear antennas, the slotted waveguide
transmits its energy using horizontal polarization, the best type for distance transmission.
Fig 2.2 Slotted waveguide antenna
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 8
3. RECEIVER SECTION
The basic addition to the mobile phone is going to be the rectenna. A rectenna is a
rectifying antenna, a special type of antenna that is used to directly convert microwave
energy into DC electricity. Its elements are usually arranged in a mesh pattern, giving it a
distinct appearance from most antennae. A simple rectenna can be constructed from a
Schottky diode placed between antenna dipoles. The diode rectifies the current induced in the
antenna by the microwaves. Rectenna are highly efficient at converting microwave energy to
electricity. Some experimentation has been done with inverse rectenna, converting electricity
into microwave energy, but efficiencies are much lower--only in the area of 1%. With the
advent of nanotechnology and MEMS the size of these devices can be brought down to
molecular level. It has been theorized that similar devices, scaled down to the proportions
used in nanotechnology, could be used to convert light into electricity at much greater
efficiencies than what is currently possible with solar cells. This type of device is called an
optical rectenna. Theoretically, high efficiencies can be maintained as the device shrinks, but
experiments funded by the United States National Renewable energy Laboratory have so far
only obtained roughly 1% efficiency while using infrared light. Another important part of our
receiver circuitry is a simple sensor. This is simply used to identify when the mobile phone
user is talking. As our main objective is to charge the mobile phone with the transmitted
microwave after rectifying it by the rectenna, the sensor plays an important role. The whole
setup looks something like this.
Fig 3.1.Block Diagram
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 9
3.1 Sensor Circuit
The sensor circuitry is a simple circuit, which detects if the mobile phone receives any
message signal. This is required, as the phone has to be charged as long as the user is talking.
Thus a simple F to V converter would serve our purpose. In India the operating frequency of
the mobile phone operators is generally 900MHz or 1800MHz for the GSM system for
mobile communication. Thus the usage of simple F to V converters would act as switches to
trigger the rectenna circuit to on.
A simple yet powerful F to V converter is LM2907. Using LM2907 would greatly
serve our purpose. It acts as a switch for triggering the rectenna circuitry. The general block
diagram for the LM2907 is given below.
Fig 3.2.LM2907
Fig 3.3.LM2907 IC
Thus on the reception of the signal the sensor circuitry directs the rectenna circuit to ON
and the mobile phone begins to charge using the microwave power.
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 10
3.2 Rectenna
A rectifying antenna rectifies received microwaves into DC current. A rectenna
comprises of a mesh of dipoles and diodes for absorbing microwave energy from a transmitter
and converting it into electric power. A simple rectenna can be constructed from a Schottky
diode placed between antenna dipoles as shown in Fig.3.4. The diode rectifies the current
induced in the antenna by the microwaves. Rectenna are highly efficient at converting
microwave energy to electricity. In laboratory environments, efficiencies above 90% have
been observed with regularity. In future rectennas will be used to generate large-scale power
from microwave beams delivered from orbiting GPS satellites.
Fig 3.4.Rectification
Fig 3.5 Rectenna Array
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 11
3.4 Process of Rectification
Studies on various microwave power rectifier configurations show that a bridge
configuration is better than a single diode one. But the dimensions and the cost of that kind of
solution do not meet our objective. This study consists in designing and simulating a single
diode power rectifier in “hybrid technology” with improved sensitivity at low power levels.
We achieved good matching between simulation results and measurements thanks to the
optimization of the packaging of the Schottky diode.
Microwave energy transmitted from space to earth apparently has the potential to
provide environmentally clean electric power on a very large scale. The key to improve
transmission efficiency is the rectifying circuit. The aim of this study is to make a low cost
power rectifier for low and high power levels at a frequency of 2.45GHz with good efficiency
of rectifying operation. The objective also is to increase the detection sensitivity at low power
levels of power.
Different configurations can be used to convert the electromagnetic waves into DC
signal. The study done showed that the use of a bridge is better than a single diode, but the
purpose of this study is to achieve a low cost microwave rectifier with single Schottky diode
for low and high power levels that has a good performance.
This study is divided on two kinds of technologies. The first is the hybrid technology
and the second is the monolithic one.
The goal of this investigation is the development of a hybrid microwave rectifier with
single Schottky diode. The first study of this circuit is based on the optimization of the
rectifier in order to have a good matching of the input impedance at the desired frequency
2.45 GHz. Besides the aim of the second study is the increasing of the detection sensitivity at
low levels of power. The efficiency of Schottky diode microwave rectifying circuit is found
to be greater than 90%.
3.3 Brief introduction of Schottky Barrier Diode:
A Schottky barrier diode is different from a common P/N silicon diode. The common
diode is formed by connecting a P type semiconductor with an N type semiconductor, this is
connecting between a semiconductor and another semiconductor; however, a Schottky barrier
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 12
diode is formed by connecting a metal with a semiconductor. When the metal contacts the
semiconductor, there will be a layer of potential barrier (Schottky barrier) formed on the
contact surface of them, which shows a characteristic of rectification. The material of the
semiconductor usually is a semiconductor of n-type (occasionally p-type), and the material of
metal generally is chosen from different metals such as molybdenum, chromium, platinum
and tungsten. Sputtering technique connects the metal and the semiconductor.
A Schottky barrier diode is a majority carrier device, while a common diode is a
minority carrier device. When a common PN diode is turned from electric connecting to
circuit breakage, the redundant minority carrier on the contact surface should be removed to
result in time delay. The Schottky barrier diode itself has no minority carrier, it can quickly
turn from electric connecting to circuit breakage, its speed is much faster than a common P/N
diode, so its reverse recovery time Tr is very short and shorter than 10 ns. And the forward
voltage bias of the Schottky barrier diode is under 0.6V or so, lower than that (about 1.1V) of
the common PN diode. So, The Schottky barrier diode is a comparatively ideal diode, such as
for a 1 ampere limited current PN interface.
Below is the comparison of power consumption between a common diode and a
Schottky barrier diode:
P=0.6*1=0.6W
P=1.1*1=1.1W
It appears that the standards of efficiency differ widely. Besides, the PIV of the Schottky
barrier diode is generally far smaller than that of the PN diode; on the basis of the same unit,
the PIV of the Schottky barrier diode is probably 50V while the PIV of the PN diode may be
as high as 150V. Another advantage of the Schottky barrier diode is a very low noise index
that is very important for a communication receiver; its working scope may reach 20GHz.
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 13
4. ADVANTAGES
1) Charging of mobile phone is done wirelessly
2) We can saving time for charging mobiles
3) Wastage of power is less
4) Better than witricity as the distance the witricity can cover is about 20
meters whereas in this technology we are using base station for transmission
that can cover more area
5) Mobile get charged as we make call even during long journey
Fig.4.1.Mobile charging during journey
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 14
5. DISADVANTAGES
1) Radiation problems may occur
2) Network traffic may cause problems in charging
3) Charging depends on network coverage
4) Rate of charging may be of minute range
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 15
6. APPLICATIONS
As the topics name itself this technology is used for
“Wireless charging of mobile phones”.
Fig.6.1.Mobile getting charged from mobile tower
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 16
7. CONCLUSION
Thus this paper successfully demonstrates a novel method of using the power of
microwave to charge mobile phones without use of wired chargers. It provides great
advantage to mobile phone users to carry their phones anywhere even if the place is devoid of
facilities for charging. It has effect on human beings similar to that from cell phones at
present. The use of rectenna and sensor in mobile phone could provide new dimension in the
revolution of mobile power.
WIRELESS MOBILE PHONE CHARGING
Dept. Of ECE, SIST 17
8. REFERENCES
1. Theodore.S.Rappaport , “Wireless Communications Principles and Practice”
2. www.seminarprojects.com
3. www.seminarsonly.com
4. www.wikipedia.org

Mais conteúdo relacionado

Mais procurados

wireless charging of mobile phones using microwave full seminar report
wireless charging of mobile phones using microwave full seminar reportwireless charging of mobile phones using microwave full seminar report
wireless charging of mobile phones using microwave full seminar report
Harish N Nayak
 
Wireless charging of mobile phones using microwaves ppt
Wireless charging of mobile phones using microwaves pptWireless charging of mobile phones using microwaves ppt
Wireless charging of mobile phones using microwaves ppt
Harish N Nayak
 
Wireless power / Wireless Electricity
Wireless power / Wireless ElectricityWireless power / Wireless Electricity
Wireless power / Wireless Electricity
Muhammad Umair Iqbal
 
Optical fiber communiction
Optical fiber communictionOptical fiber communiction
Optical fiber communiction
Aravind Shaji
 
Robotic monitoring of powersystems by sriharsha
Robotic monitoring of powersystems by sriharshaRobotic monitoring of powersystems by sriharsha
Robotic monitoring of powersystems by sriharsha
Sri Harsha
 

Mais procurados (20)

wireless charging of mobile phones using microwave full seminar report
wireless charging of mobile phones using microwave full seminar reportwireless charging of mobile phones using microwave full seminar report
wireless charging of mobile phones using microwave full seminar report
 
Wireless charging of mobile phones using microwaves ppt
Wireless charging of mobile phones using microwaves pptWireless charging of mobile phones using microwaves ppt
Wireless charging of mobile phones using microwaves ppt
 
Wireless charging
Wireless chargingWireless charging
Wireless charging
 
Wireless Charging in mobiles
Wireless Charging in mobilesWireless Charging in mobiles
Wireless Charging in mobiles
 
Wireless mobile charger
Wireless mobile chargerWireless mobile charger
Wireless mobile charger
 
Sartaj witricity
Sartaj witricitySartaj witricity
Sartaj witricity
 
Wireless electricity
Wireless electricityWireless electricity
Wireless electricity
 
Witricity PPT
Witricity PPTWitricity PPT
Witricity PPT
 
Wireless power / Wireless Electricity
Wireless power / Wireless ElectricityWireless power / Wireless Electricity
Wireless power / Wireless Electricity
 
Optical fiber communiction
Optical fiber communictionOptical fiber communiction
Optical fiber communiction
 
Wireless charging
Wireless chargingWireless charging
Wireless charging
 
wireless charging in phones
wireless charging in phoneswireless charging in phones
wireless charging in phones
 
WiTricity
WiTricityWiTricity
WiTricity
 
Space Based Solar Power
Space Based Solar PowerSpace Based Solar Power
Space Based Solar Power
 
Wireless charging technology ppt
Wireless charging technology pptWireless charging technology ppt
Wireless charging technology ppt
 
Robotic monitoring of powersystems by sriharsha
Robotic monitoring of powersystems by sriharshaRobotic monitoring of powersystems by sriharsha
Robotic monitoring of powersystems by sriharsha
 
Capacitive sensor
Capacitive sensorCapacitive sensor
Capacitive sensor
 
Seminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile ChargerSeminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile Charger
 
About Wireless Charging
About Wireless ChargingAbout Wireless Charging
About Wireless Charging
 
Smart sensors
Smart sensorsSmart sensors
Smart sensors
 

Semelhante a Wireless mobile charging using microwaves full report

Electromagnetic spectrum di_clementegiorgia
Electromagnetic spectrum di_clementegiorgiaElectromagnetic spectrum di_clementegiorgia
Electromagnetic spectrum di_clementegiorgia
GiorgiaDiClemente2
 
Electromagnetic spectrum di_clementegiorgia
Electromagnetic spectrum di_clementegiorgiaElectromagnetic spectrum di_clementegiorgia
Electromagnetic spectrum di_clementegiorgia
GiorgiaDiClemente2
 
Tour ofems booklet_web
Tour ofems booklet_webTour ofems booklet_web
Tour ofems booklet_web
anoop kp
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
Sumant Diwakar
 

Semelhante a Wireless mobile charging using microwaves full report (20)

Emw
EmwEmw
Emw
 
Electro Magnetic Wave Propagation
Electro Magnetic Wave PropagationElectro Magnetic Wave Propagation
Electro Magnetic Wave Propagation
 
4santhosh report
4santhosh report4santhosh report
4santhosh report
 
Electromagnetic spectrum di_clementegiorgia
Electromagnetic spectrum di_clementegiorgiaElectromagnetic spectrum di_clementegiorgia
Electromagnetic spectrum di_clementegiorgia
 
Electromagnetic spectrum di_clementegiorgia
Electromagnetic spectrum di_clementegiorgiaElectromagnetic spectrum di_clementegiorgia
Electromagnetic spectrum di_clementegiorgia
 
Nature of Light
Nature of LightNature of Light
Nature of Light
 
CLIL - The electromagnetic spectrum
CLIL - The electromagnetic spectrumCLIL - The electromagnetic spectrum
CLIL - The electromagnetic spectrum
 
CLIL - The electromagnetic spectrum
CLIL - The electromagnetic spectrumCLIL - The electromagnetic spectrum
CLIL - The electromagnetic spectrum
 
Di luzio sara_clil
Di luzio sara_clilDi luzio sara_clil
Di luzio sara_clil
 
Em spectrum
Em spectrumEm spectrum
Em spectrum
 
The electromagnetic spectrum
The electromagnetic spectrumThe electromagnetic spectrum
The electromagnetic spectrum
 
Unit 32 Electromagnetic Radiation
Unit 32   Electromagnetic RadiationUnit 32   Electromagnetic Radiation
Unit 32 Electromagnetic Radiation
 
ELECTROMAGNETIC WAVES.pptx
ELECTROMAGNETIC WAVES.pptxELECTROMAGNETIC WAVES.pptx
ELECTROMAGNETIC WAVES.pptx
 
orientation ppt emwtl .ppt
orientation ppt emwtl .pptorientation ppt emwtl .ppt
orientation ppt emwtl .ppt
 
F:\Electromagnetic Spectrum
F:\Electromagnetic SpectrumF:\Electromagnetic Spectrum
F:\Electromagnetic Spectrum
 
Tour ofems booklet_web
Tour ofems booklet_webTour ofems booklet_web
Tour ofems booklet_web
 
Radiation and the universe (summary of AQA module)
Radiation and the universe (summary of AQA module)Radiation and the universe (summary of AQA module)
Radiation and the universe (summary of AQA module)
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
050316 week8 c12-electromagnetic_waves
050316 week8 c12-electromagnetic_waves050316 week8 c12-electromagnetic_waves
050316 week8 c12-electromagnetic_waves
 
Role of electromagnetic Radiation in Remote Sensing
Role of electromagnetic Radiation in  Remote SensingRole of electromagnetic Radiation in  Remote Sensing
Role of electromagnetic Radiation in Remote Sensing
 

Último

Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 

Último (20)

Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 

Wireless mobile charging using microwaves full report

  • 1. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 1 1. INTRODUCTION 1.1 Electromagnetic Spectrum Fig.1.1. Electromagnetic Spectrum To start with, to know what a spectrum is: when white light is shone through a prism it is separated out into all the colors of the rainbow; this is the visible spectrum. So white light is a mixture of all colors. Black is NOT a color; it is what you get when all the light is taken away. Some physicists pretend that light consists of tiny particles which they call photons. They travel at the speed of light (what a surprise). The speed of light is about 300,000,000 meters per second. When they hit something they might bounce off, go right through or get absorbed. What happens depends a bit on how much energy they have. If they bounce off something and then go into your eye you will "see" the thing they have bounced off. Some things like glass and Perspex will let them go through; these materials are transparent. Black objects absorb the photons so you should not be able to see black things: you will have to think about this one. These poor old physicists get a little bit confused when they try to explain why some photons go through a leaf, some are reflected, and some are absorbed. They say that it is because they have different amounts of energy. Other physicists pretend that light is made of waves. These physicists measure the length of the waves and this helps them to explain what happens when light hits leaves. The light with the longest
  • 2. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 2 wavelength (red) is absorbed by the green stuff (chlorophyll) in the leaves. So is the light with the shortest wavelength (blue). In between these two colors there is green light, this is allowed to pass right through or is reflected. (Indigo and violet have shorter wavelengths than blue light.) Well it is easy to explain some of the properties of light by pretending that it is made of tiny particles called photons and it is easy to explain other properties of light by pretending that it is some kind of wave. The visible spectrum is just one small part of the electromagnetic spectrum. These electromagnetic waves are made up of to two parts. The first part is an electric field. The second part is a magnetic field. So that is why they are called electromagnetic waves. The two fields are at right angles to each other. The "electromagnetic spectrum" of an object has a different meaning, and is instead the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object. The electromagnetic spectrum extends from below the low frequencies used for modern radio communication to gamma radiation at the short-wavelength (high- frequency) end, thereby covering wavelengths from thousands of kilometres down to a fraction of the size of an atom. The limit for long wavelengths is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length, although in principle the spectrum is infinite and continuous. Most parts of the electromagnetic spectrum are used in science for spectroscopic and other probing interactions, as ways to study and characterize matter. In addition, radiation from various parts of the spectrum has found many other uses for communications and manufacturing The types of electromagnetic radiation are broadly classified into the following classes: 1. Gamma radiation 2. X-ray radiation 3. Ultraviolet radiation 4. Visible radiation 5. Infrared radiation 6. Microwave radiation 7. Radio waves
  • 3. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 3 This classification goes in the increasing order of wavelength, which is characteristic of the type of radiation. While, in general, the classification scheme is accurate, in reality there is often some overlap between neighbouring types of electromagnetic energy. For example, SLF radio waves at 60 Hz may be received and studied by astronomers, or may be ducted along wires as electric power, although the latter is, in the strict sense, not electromagnetic radiation at all. The distinction between X-rays and gamma rays is partly based on sources: the photons generated from nuclear decay or other nuclear and sub nuclear/particle process, are always termed gamma rays, whereas X-rays are generated by electronic transitions involving highly energetic inner atomic electrons. In general, nuclear transitions are much more energetic than electronic transitions, so gamma-rays are more energetic than X-rays, but exceptions exist. By analogy to electronic transitions, muonic atom transitions are also said to produce X-rays, even though their energy may exceed 6 mega electron volts (0.96 pJ), whereas there are many (77 known to be less than 10 keV (1.6 fJ)) low-energy nuclear transitions (e.g., the 7.6 eV (1.22 aJ) nuclear transition of thorium-229), and, despite being one million-fold less energetic than some muonic X-rays, the emitted photons are still called gamma rays due to their nuclear origin. The convention that EM radiation that is known to come from the nucleus, is always called "gamma ray" radiation is the only convention that is universally respected, however. Many astronomical gamma sources (such as gamma ray bursts) are known to be too energetic (in both intensity and wavelength) to be of nuclear origin. Quite often, in high energy physics and in medical radiotherapy, very high energy EMR (in the >10 MeV region) which is of higher energy than any nuclear gamma ray, is not referred to as either X-ray or gamma-ray, but instead by the generic term of "high energy photons." The region of the spectrum in which a particular observed electromagnetic radiation falls, is reference frame-dependent (due to the Doppler shift for light), so EM radiation that one observer would say is in one region of the spectrum could appear to an observer moving at a substantial fraction of the speed of light with respect to the first to be in another part of the spectrum. For example, consider the cosmic microwave background. It was produced, when matter and radiation decoupled, by the de-excitation of hydrogen atoms to the ground state. These photons were from Lyman series transitions, putting them in the ultraviolet (UV)
  • 4. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 4 part of the electromagnetic spectrum. Now this radiation has undergone enough cosmological red shift to put it into the microwave region of the spectrum for observers moving slowly (compared to the speed of light) with respect to the cosmos. 1.2 Microwave Region Microwave wavelengths range from approximately one millimeter (the thickness of a pencil lead) to thirty centimeters (about twelve inches). In a microwave oven, the radio waves generated are tuned to frequencies that can be absorbed by the food. The food absorbs the energy and gets warmer. The dish holding the food doesn't absorb a significant amount of energy and stays much cooler. Microwaves are emitted from the Earth, from objects such as cars and planes, and from the atmosphere. These microwaves can be detected to give information, such as the temperature of the object that emitted the microwaves. Microwaves have wavelengths that can be measured in centimeters! The longer microwaves, those closer to a foot in length, are the waves which heat our food in a microwave oven. Microwaves are good for transmitting information from one place to another because microwave energy can penetrate haze, light rain and snow, clouds, and smoke. Shorter microwaves are used in remote sensing. These microwaves are used for clouds and smoke, these waves are good for viewing the Earth from space Microwave waves are used in the communication industry and in the kitchen as a way to cook foods. Microwave radiation is still associated with energy levels that are usually considered harmless except for people with pace makers. Fig.1.2 Microwave region of electromagnetic spectrum Here we are going to use the S band of the Microwave Spectrum.
  • 5. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 5 Table 1.2 Microwave spectrum Designation Frequency range L Band 1 to 2 GHz S Band 2 to 4 GHz C Band 4 to 8 GHz X Band 8 to 12 GHz Ku Band 12 to 18 GHz K Band 18 to 26 GHz Ka Band 26 to 40 GHz Q Band 30 to 50 GHz U Band 40 to 60 GHz
  • 6. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 6 2. TRANSMITTER SECTION The transmitter section consists of two parts. They are:  Magnetron  Slotted waveguide antenna 2.1 Magnetron Fig.2.1 Magnetron Magnetron is the combination of a simple diode vacuum tube with built in cavity resonators and an extremely powerful permanent magnet. The typical magnet consists of a circular anode into which has been machined with an even number of resonant cavities. The diameter of each cavity is equal to a one-half wavelength at the desired operating frequency. The anode is usually made of copper and is connected to a high-voltage positive direct current. In the center of the anode, called the interaction chamber, is a circular cathode. The magnetic fields of the moving electrons interact with the strong field supplied by the magnet. The result is that the path for the electron flow from the cathode is not directly to the anode, but instead is curved. By properly adjusting the anode voltage and the strength of the magnetic field, the electrons can be made to bend that they rarely reach the anode and cause current flow. The path becomes circular loops. Eventually, the electrons do reach the anode and cause current flow. By adjusting the dc anode voltage and the strength of the
  • 7. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 7 magnetic field, the electron path is made circular. In making their circular passes in the interaction chamber, electrons excite the resonant cavities into oscillation. A magnetron, therefore, is an oscillator, not an amplifier. A takeoff loop in one cavity provides the output. Magnetrons are capable if developing extremely high levels of microwave power.. When operated in a pulse mode, magnetron can generate several megawatts of power in the microwave region. Pulsed magnetrons are commonly used in radar systems. Continuous-wave magnetrons are also used and can generate hundreds and even thousands of watts of power. 2.2 Slotted Waveguide Antenna The slotted waveguide is used in an omni-directional role. It is the simplest ways to get a real 10dB gain over 360 degrees of beam width. The Slotted waveguide antenna is a Horizontally Polarized type Antenna, light in weight and weather proof.3 Tuning screws are placed for tweaking the SWR and can be used to adjust the centre frequency downwards from 2320MHz nominal to about 2300 MHz .This antenna is available for different frequencies. This antenna, called a slotted waveguide, is a very low loss transmission line. It allows propagating signals to a number of smaller antennas (slots). The signal is coupled into the waveguide with a simple coaxial probe, and as it travels along the guide, it traverses the slots. Each of these slots allows a little of the energy to radiate. The slots are in a linear array pattern. The waveguide antenna transmits almost all of its energy at the horizon, usually exactly where we want it to go. Its exceptional directivity in the elevation plane gives it quite high power gain. Additionally, unlike vertical collinear antennas, the slotted waveguide transmits its energy using horizontal polarization, the best type for distance transmission. Fig 2.2 Slotted waveguide antenna
  • 8. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 8 3. RECEIVER SECTION The basic addition to the mobile phone is going to be the rectenna. A rectenna is a rectifying antenna, a special type of antenna that is used to directly convert microwave energy into DC electricity. Its elements are usually arranged in a mesh pattern, giving it a distinct appearance from most antennae. A simple rectenna can be constructed from a Schottky diode placed between antenna dipoles. The diode rectifies the current induced in the antenna by the microwaves. Rectenna are highly efficient at converting microwave energy to electricity. Some experimentation has been done with inverse rectenna, converting electricity into microwave energy, but efficiencies are much lower--only in the area of 1%. With the advent of nanotechnology and MEMS the size of these devices can be brought down to molecular level. It has been theorized that similar devices, scaled down to the proportions used in nanotechnology, could be used to convert light into electricity at much greater efficiencies than what is currently possible with solar cells. This type of device is called an optical rectenna. Theoretically, high efficiencies can be maintained as the device shrinks, but experiments funded by the United States National Renewable energy Laboratory have so far only obtained roughly 1% efficiency while using infrared light. Another important part of our receiver circuitry is a simple sensor. This is simply used to identify when the mobile phone user is talking. As our main objective is to charge the mobile phone with the transmitted microwave after rectifying it by the rectenna, the sensor plays an important role. The whole setup looks something like this. Fig 3.1.Block Diagram
  • 9. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 9 3.1 Sensor Circuit The sensor circuitry is a simple circuit, which detects if the mobile phone receives any message signal. This is required, as the phone has to be charged as long as the user is talking. Thus a simple F to V converter would serve our purpose. In India the operating frequency of the mobile phone operators is generally 900MHz or 1800MHz for the GSM system for mobile communication. Thus the usage of simple F to V converters would act as switches to trigger the rectenna circuit to on. A simple yet powerful F to V converter is LM2907. Using LM2907 would greatly serve our purpose. It acts as a switch for triggering the rectenna circuitry. The general block diagram for the LM2907 is given below. Fig 3.2.LM2907 Fig 3.3.LM2907 IC Thus on the reception of the signal the sensor circuitry directs the rectenna circuit to ON and the mobile phone begins to charge using the microwave power.
  • 10. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 10 3.2 Rectenna A rectifying antenna rectifies received microwaves into DC current. A rectenna comprises of a mesh of dipoles and diodes for absorbing microwave energy from a transmitter and converting it into electric power. A simple rectenna can be constructed from a Schottky diode placed between antenna dipoles as shown in Fig.3.4. The diode rectifies the current induced in the antenna by the microwaves. Rectenna are highly efficient at converting microwave energy to electricity. In laboratory environments, efficiencies above 90% have been observed with regularity. In future rectennas will be used to generate large-scale power from microwave beams delivered from orbiting GPS satellites. Fig 3.4.Rectification Fig 3.5 Rectenna Array
  • 11. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 11 3.4 Process of Rectification Studies on various microwave power rectifier configurations show that a bridge configuration is better than a single diode one. But the dimensions and the cost of that kind of solution do not meet our objective. This study consists in designing and simulating a single diode power rectifier in “hybrid technology” with improved sensitivity at low power levels. We achieved good matching between simulation results and measurements thanks to the optimization of the packaging of the Schottky diode. Microwave energy transmitted from space to earth apparently has the potential to provide environmentally clean electric power on a very large scale. The key to improve transmission efficiency is the rectifying circuit. The aim of this study is to make a low cost power rectifier for low and high power levels at a frequency of 2.45GHz with good efficiency of rectifying operation. The objective also is to increase the detection sensitivity at low power levels of power. Different configurations can be used to convert the electromagnetic waves into DC signal. The study done showed that the use of a bridge is better than a single diode, but the purpose of this study is to achieve a low cost microwave rectifier with single Schottky diode for low and high power levels that has a good performance. This study is divided on two kinds of technologies. The first is the hybrid technology and the second is the monolithic one. The goal of this investigation is the development of a hybrid microwave rectifier with single Schottky diode. The first study of this circuit is based on the optimization of the rectifier in order to have a good matching of the input impedance at the desired frequency 2.45 GHz. Besides the aim of the second study is the increasing of the detection sensitivity at low levels of power. The efficiency of Schottky diode microwave rectifying circuit is found to be greater than 90%. 3.3 Brief introduction of Schottky Barrier Diode: A Schottky barrier diode is different from a common P/N silicon diode. The common diode is formed by connecting a P type semiconductor with an N type semiconductor, this is connecting between a semiconductor and another semiconductor; however, a Schottky barrier
  • 12. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 12 diode is formed by connecting a metal with a semiconductor. When the metal contacts the semiconductor, there will be a layer of potential barrier (Schottky barrier) formed on the contact surface of them, which shows a characteristic of rectification. The material of the semiconductor usually is a semiconductor of n-type (occasionally p-type), and the material of metal generally is chosen from different metals such as molybdenum, chromium, platinum and tungsten. Sputtering technique connects the metal and the semiconductor. A Schottky barrier diode is a majority carrier device, while a common diode is a minority carrier device. When a common PN diode is turned from electric connecting to circuit breakage, the redundant minority carrier on the contact surface should be removed to result in time delay. The Schottky barrier diode itself has no minority carrier, it can quickly turn from electric connecting to circuit breakage, its speed is much faster than a common P/N diode, so its reverse recovery time Tr is very short and shorter than 10 ns. And the forward voltage bias of the Schottky barrier diode is under 0.6V or so, lower than that (about 1.1V) of the common PN diode. So, The Schottky barrier diode is a comparatively ideal diode, such as for a 1 ampere limited current PN interface. Below is the comparison of power consumption between a common diode and a Schottky barrier diode: P=0.6*1=0.6W P=1.1*1=1.1W It appears that the standards of efficiency differ widely. Besides, the PIV of the Schottky barrier diode is generally far smaller than that of the PN diode; on the basis of the same unit, the PIV of the Schottky barrier diode is probably 50V while the PIV of the PN diode may be as high as 150V. Another advantage of the Schottky barrier diode is a very low noise index that is very important for a communication receiver; its working scope may reach 20GHz.
  • 13. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 13 4. ADVANTAGES 1) Charging of mobile phone is done wirelessly 2) We can saving time for charging mobiles 3) Wastage of power is less 4) Better than witricity as the distance the witricity can cover is about 20 meters whereas in this technology we are using base station for transmission that can cover more area 5) Mobile get charged as we make call even during long journey Fig.4.1.Mobile charging during journey
  • 14. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 14 5. DISADVANTAGES 1) Radiation problems may occur 2) Network traffic may cause problems in charging 3) Charging depends on network coverage 4) Rate of charging may be of minute range
  • 15. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 15 6. APPLICATIONS As the topics name itself this technology is used for “Wireless charging of mobile phones”. Fig.6.1.Mobile getting charged from mobile tower
  • 16. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 16 7. CONCLUSION Thus this paper successfully demonstrates a novel method of using the power of microwave to charge mobile phones without use of wired chargers. It provides great advantage to mobile phone users to carry their phones anywhere even if the place is devoid of facilities for charging. It has effect on human beings similar to that from cell phones at present. The use of rectenna and sensor in mobile phone could provide new dimension in the revolution of mobile power.
  • 17. WIRELESS MOBILE PHONE CHARGING Dept. Of ECE, SIST 17 8. REFERENCES 1. Theodore.S.Rappaport , “Wireless Communications Principles and Practice” 2. www.seminarprojects.com 3. www.seminarsonly.com 4. www.wikipedia.org