SlideShare uma empresa Scribd logo
1 de 5
Baixar para ler offline
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
Electric Springs—A New Smart Grid Technology 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
ABSTRACT: 
The scientific principle of “mechanical springs” was described by the British physicist Robert 
Hooke in the 1660’s. Since then, there has not been any further development of the Hooke’s law 
in the electric regime. In this paper, this technological gap is filled by the development of 
“electric springs.” The scientific principle, the operating modes, the limitations, and the practical 
realization of the electric springs are reported. It is discovered that such novel concept has huge 
potential in stabilizing future power systems with substantial penetration of intermittent 
renewable energy sources. This concept has been successfully demonstrated in a practical power 
system setup fed by an ac power source with a fluctuating wind energy source. The electric 
spring is found to be effective in regulating the mains voltage despite the fluctuation caused by 
the intermittent nature of wind power. Electric appliances with the electric springs embedded can 
be turned into a new generation of smart loads, which have their power demand following the 
power generation profile. It is envisaged that electric springs, when distributed over the power 
grid, will offer a new form of power system stability solution that is independent of information 
and communication technology. 
KEYWORDS: 
1. Distributed power systems 
2. Smart loads 
3. Stability 
SOFTWARE: MATLAB/SIMULINK
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
BLOCK DIAGRAM: 
Fig. 1. The experimental setup for the electric spring (with control block diagram). 
EXPECTED SIMULATION RESULTS: 
Fig. 2. Measured steady-state electric spring waveforms under “neutral” mode. . Va=4.5vac QES=17.5 var, . 
[Electric spring voltage is near zero.]
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
Fig. 3. Measured steady-state electric spring waveforms under “capacitive” mode. Va=97.9vac QES=-349.9 var 
Fig. 4. Measured steady-state electric spring waveforms under “inductive” mode. Va=94.3vac QES=348.4 var. 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
CONCLUSION: 
The Hooke’s law on mechanical springs has been developed into an electric spring concept with 
new scientific applications for modern society. The scientific principles, operating modes and 
limits of the electric spring are explained. An electric spring has been practically tested for both 
voltage support and suppression, and for shaping load demand (of about 2.5 kW) to follow the 
fluctuating wind power profile in a 10 kVA power system fed by an ac power source and a wind 
power simulator. The electric springs can be incorporated into many existing noncritical electric 
loads such as water heaters and road lighting systems [26] to form a new generation of smart 
loads that are adaptive to the power grid. If many noncritical loads are equipped with such 
electric springs and distributed over the power grid, these electric springs (similar to the spring 
array in Fig. 1) will provide a highly reliable and effective solution for distributed energy 
storage, voltage regulation and damping functions for future power systems. Such stability 
measures are also independent of information and communication technology (ICT). This 
discovery based on the three-century-old Hooke’s law offers a practical solution to the new 
control paradigm that the load demand should follow the power generation in future power grid 
with substantial renewable energy sources. Unlike traditional reactive power compensation 
methods, electric springs offer both reactive power compensation and real power variation in the 
noncritical loads. With many countries determined to de-carbonize electric power generation for 
reducing global warming by increasing renewable energy up to 20% of the total electrical power 
output by 2020 [22]–[25], electric spring is a novel concept that enables human society to use 
renewable energy as nature provides. The Hooke’s law developed in the 17th century has laid 
down the foundation for stability control of renewable power systems in the 21st century.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
REFERENCES: 
[1] Hooke’s law—Britannica Encyclopedia [Online]. Available: 
http://www.britannica.com/EBchecked/topic/271336/Hookes-law 
[2] A. M. Wahl, Mechanical Springs, 2nd ed. New York: McGraw-Hill, 1963. 
[3] W. S. Slaughter, The Linearized Theory of Elasticity. Boston, MA: Birkhauser, 2002. 
[4] K. Symon, Mechanics. ISBN 0-201-07392-7. Reading, MA: Addison- Wesley, Reading,1971. 
[5] R. Hooke, De Potentia Restitutiva, or of Spring Explaining the Power of Springing Bodies. 
London, U.K.: John Martyn, vol. 1678, p. 23.

Mais conteúdo relacionado

Mais procurados

Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Asoka Technologies
 
At245 seven level shunt active power filter
At245 seven level shunt active power filterAt245 seven level shunt active power filter
At245 seven level shunt active power filter
Asoka Technologies
 
Power Management in PV-Battery-Hydro Based Standalone Microgrid
Power Management in PV-Battery-Hydro Based Standalone MicrogridPower Management in PV-Battery-Hydro Based Standalone Microgrid
Power Management in PV-Battery-Hydro Based Standalone Microgrid
Asoka Technologies
 

Mais procurados (20)

A Simple Active and Reactive Power Control for Applications of Single-Phase E...
A Simple Active and Reactive Power Control for Applications of Single-Phase E...A Simple Active and Reactive Power Control for Applications of Single-Phase E...
A Simple Active and Reactive Power Control for Applications of Single-Phase E...
 
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
 
The Application of Electric Spring in Grid-Connected Photovoltaic System
The Application of Electric Spring in Grid-Connected Photovoltaic SystemThe Application of Electric Spring in Grid-Connected Photovoltaic System
The Application of Electric Spring in Grid-Connected Photovoltaic System
 
Grid interactive solar pv based water pumping using bldc motor drive
Grid interactive solar pv based water pumping using bldc motor driveGrid interactive solar pv based water pumping using bldc motor drive
Grid interactive solar pv based water pumping using bldc motor drive
 
Solar wind hybrid system
Solar wind hybrid systemSolar wind hybrid system
Solar wind hybrid system
 
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
 
New academic final year projects for btech and mtech
New academic final year projects for btech and mtechNew academic final year projects for btech and mtech
New academic final year projects for btech and mtech
 
GCNP Commercial Case Study (2)
GCNP Commercial Case Study (2)GCNP Commercial Case Study (2)
GCNP Commercial Case Study (2)
 
Untitled 1
Untitled 1Untitled 1
Untitled 1
 
At245 seven level shunt active power filter
At245 seven level shunt active power filterAt245 seven level shunt active power filter
At245 seven level shunt active power filter
 
Control oriented concentrated solar power plant model
Control oriented concentrated solar power plant modelControl oriented concentrated solar power plant model
Control oriented concentrated solar power plant model
 
Electricity Storage
Electricity StorageElectricity Storage
Electricity Storage
 
Rural electrification through solar and wind hybrid system
Rural electrification through solar and wind hybrid systemRural electrification through solar and wind hybrid system
Rural electrification through solar and wind hybrid system
 
57 Solar Energy Terms You Should Know
57 Solar Energy Terms You Should Know57 Solar Energy Terms You Should Know
57 Solar Energy Terms You Should Know
 
Simulation of MPPT Algorithm Based Hybrid Wind-Solar-Fuel Cell Energy System
Simulation of MPPT Algorithm Based Hybrid Wind-Solar-Fuel  Cell Energy SystemSimulation of MPPT Algorithm Based Hybrid Wind-Solar-Fuel  Cell Energy System
Simulation of MPPT Algorithm Based Hybrid Wind-Solar-Fuel Cell Energy System
 
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)} Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
 
P3 ELECTRICAL POWER
P3 ELECTRICAL POWERP3 ELECTRICAL POWER
P3 ELECTRICAL POWER
 
Model predictive control of pv sources in a smart dc distribution system maxi...
Model predictive control of pv sources in a smart dc distribution system maxi...Model predictive control of pv sources in a smart dc distribution system maxi...
Model predictive control of pv sources in a smart dc distribution system maxi...
 
Power Management in PV-Battery-Hydro Based Standalone Microgrid
Power Management in PV-Battery-Hydro Based Standalone MicrogridPower Management in PV-Battery-Hydro Based Standalone Microgrid
Power Management in PV-Battery-Hydro Based Standalone Microgrid
 

Semelhante a Electric Springs A New Smart Grid Technology

New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...
Asoka Technologies
 
Micro Wind Power Generator with Battery Energy Storage for Critical Load
Micro Wind Power Generator with Battery Energy Storage for Critical LoadMicro Wind Power Generator with Battery Energy Storage for Critical Load
Micro Wind Power Generator with Battery Energy Storage for Critical Load
Asoka Technologies
 
Micro wind power generator with battery
Micro wind power generator with batteryMicro wind power generator with battery
Micro wind power generator with battery
Asoka Technologies
 

Semelhante a Electric Springs A New Smart Grid Technology (20)

Stability enhancement of wind power system by using energy capacitor system
Stability enhancement of wind power system by using energy capacitor systemStability enhancement of wind power system by using energy capacitor system
Stability enhancement of wind power system by using energy capacitor system
 
New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...
 
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
 
Permanent Magnet Synchronous Generator-Based Standalone Wind Energy Supply Sy...
Permanent Magnet Synchronous Generator-Based Standalone Wind Energy Supply Sy...Permanent Magnet Synchronous Generator-Based Standalone Wind Energy Supply Sy...
Permanent Magnet Synchronous Generator-Based Standalone Wind Energy Supply Sy...
 
A three phase grid tied spv system with adaptive dc link voltage for cpi volt...
A three phase grid tied spv system with adaptive dc link voltage for cpi volt...A three phase grid tied spv system with adaptive dc link voltage for cpi volt...
A three phase grid tied spv system with adaptive dc link voltage for cpi volt...
 
Micro Wind Power Generator with Battery Energy Storage for Critical Load
Micro Wind Power Generator with Battery Energy Storage for Critical LoadMicro Wind Power Generator with Battery Energy Storage for Critical Load
Micro Wind Power Generator with Battery Energy Storage for Critical Load
 
Micro wind power generator with battery
Micro wind power generator with batteryMicro wind power generator with battery
Micro wind power generator with battery
 
A Management of power flow for DC Microgrid with Solar and Wind Energy Sources
A Management of power flow for DC Microgrid with Solar and Wind Energy SourcesA Management of power flow for DC Microgrid with Solar and Wind Energy Sources
A Management of power flow for DC Microgrid with Solar and Wind Energy Sources
 
Control strategy for power flow management in a pv system supplying dc loads
Control strategy for power flow management in a pv system supplying dc loadsControl strategy for power flow management in a pv system supplying dc loads
Control strategy for power flow management in a pv system supplying dc loads
 
Real time implementation of a packed u-cell seven-level
Real time implementation of a packed u-cell seven-levelReal time implementation of a packed u-cell seven-level
Real time implementation of a packed u-cell seven-level
 
Design and Control of Wind integrated Shunt Active Power Filter to Improve Po...
Design and Control of Wind integrated Shunt Active Power Filter to Improve Po...Design and Control of Wind integrated Shunt Active Power Filter to Improve Po...
Design and Control of Wind integrated Shunt Active Power Filter to Improve Po...
 
Control of a Three-Phase Hybrid Converter for a PV Charging Station
Control of a Three-Phase Hybrid Converter for a PV Charging StationControl of a Three-Phase Hybrid Converter for a PV Charging Station
Control of a Three-Phase Hybrid Converter for a PV Charging Station
 
Performance enhancement of actively controlled hybrid dc microgrid incorporat...
Performance enhancement of actively controlled hybrid dc microgrid incorporat...Performance enhancement of actively controlled hybrid dc microgrid incorporat...
Performance enhancement of actively controlled hybrid dc microgrid incorporat...
 
Study on PWM Rectifier without Grid Voltage Sensor Based on Virtual Flux Dela...
Study on PWM Rectifier without Grid Voltage Sensor Based on Virtual Flux Dela...Study on PWM Rectifier without Grid Voltage Sensor Based on Virtual Flux Dela...
Study on PWM Rectifier without Grid Voltage Sensor Based on Virtual Flux Dela...
 
Power Quality Analysis and Enhancement of Grid Connected Solar Energy System
Power Quality Analysis and Enhancement of Grid Connected Solar Energy SystemPower Quality Analysis and Enhancement of Grid Connected Solar Energy System
Power Quality Analysis and Enhancement of Grid Connected Solar Energy System
 
Single-phase solar PV system with battery and exchange of power in grid-conne...
Single-phase solar PV system with battery and exchange of power in grid-conne...Single-phase solar PV system with battery and exchange of power in grid-conne...
Single-phase solar PV system with battery and exchange of power in grid-conne...
 
A New Circuit of Modular Multilevel Inverter for Grid-Connected Photovoltaic ...
A New Circuit of Modular Multilevel Inverter for Grid-Connected Photovoltaic ...A New Circuit of Modular Multilevel Inverter for Grid-Connected Photovoltaic ...
A New Circuit of Modular Multilevel Inverter for Grid-Connected Photovoltaic ...
 
New control strategy for three phase grid-connected lcl inverters without a p...
New control strategy for three phase grid-connected lcl inverters without a p...New control strategy for three phase grid-connected lcl inverters without a p...
New control strategy for three phase grid-connected lcl inverters without a p...
 
Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...
 
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
 

Mais de Asoka Technologies

A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
Asoka Technologies
 
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
Asoka Technologies
 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
Asoka Technologies
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Asoka Technologies
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Asoka Technologies
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Asoka Technologies
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
Asoka Technologies
 

Mais de Asoka Technologies (20)

Novel symmetric modular hybrid multilevel inverter with reduced number of sem...
Novel symmetric modular hybrid multilevel inverter with reduced number of sem...Novel symmetric modular hybrid multilevel inverter with reduced number of sem...
Novel symmetric modular hybrid multilevel inverter with reduced number of sem...
 
A Variable DC Link based Novel Multilevel Inverter Topology for Low Voltage A...
A Variable DC Link based Novel Multilevel Inverter Topology for Low Voltage A...A Variable DC Link based Novel Multilevel Inverter Topology for Low Voltage A...
A Variable DC Link based Novel Multilevel Inverter Topology for Low Voltage A...
 
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
 
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
 
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
 
A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...
 
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
 
Reliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV systemReliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV system
 
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
 
Power optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehiclePower optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehicle
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
 
Power flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipcPower flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipc
 
Multifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlMultifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms control
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
 
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
 
High step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converterHigh step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converter
 
Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...
 

Último

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

Electric Springs A New Smart Grid Technology

  • 1. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Electric Springs—A New Smart Grid Technology For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 ABSTRACT: The scientific principle of “mechanical springs” was described by the British physicist Robert Hooke in the 1660’s. Since then, there has not been any further development of the Hooke’s law in the electric regime. In this paper, this technological gap is filled by the development of “electric springs.” The scientific principle, the operating modes, the limitations, and the practical realization of the electric springs are reported. It is discovered that such novel concept has huge potential in stabilizing future power systems with substantial penetration of intermittent renewable energy sources. This concept has been successfully demonstrated in a practical power system setup fed by an ac power source with a fluctuating wind energy source. The electric spring is found to be effective in regulating the mains voltage despite the fluctuation caused by the intermittent nature of wind power. Electric appliances with the electric springs embedded can be turned into a new generation of smart loads, which have their power demand following the power generation profile. It is envisaged that electric springs, when distributed over the power grid, will offer a new form of power system stability solution that is independent of information and communication technology. KEYWORDS: 1. Distributed power systems 2. Smart loads 3. Stability SOFTWARE: MATLAB/SIMULINK
  • 2. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 BLOCK DIAGRAM: Fig. 1. The experimental setup for the electric spring (with control block diagram). EXPECTED SIMULATION RESULTS: Fig. 2. Measured steady-state electric spring waveforms under “neutral” mode. . Va=4.5vac QES=17.5 var, . [Electric spring voltage is near zero.]
  • 3. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 3. Measured steady-state electric spring waveforms under “capacitive” mode. Va=97.9vac QES=-349.9 var Fig. 4. Measured steady-state electric spring waveforms under “inductive” mode. Va=94.3vac QES=348.4 var. For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245
  • 4. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CONCLUSION: The Hooke’s law on mechanical springs has been developed into an electric spring concept with new scientific applications for modern society. The scientific principles, operating modes and limits of the electric spring are explained. An electric spring has been practically tested for both voltage support and suppression, and for shaping load demand (of about 2.5 kW) to follow the fluctuating wind power profile in a 10 kVA power system fed by an ac power source and a wind power simulator. The electric springs can be incorporated into many existing noncritical electric loads such as water heaters and road lighting systems [26] to form a new generation of smart loads that are adaptive to the power grid. If many noncritical loads are equipped with such electric springs and distributed over the power grid, these electric springs (similar to the spring array in Fig. 1) will provide a highly reliable and effective solution for distributed energy storage, voltage regulation and damping functions for future power systems. Such stability measures are also independent of information and communication technology (ICT). This discovery based on the three-century-old Hooke’s law offers a practical solution to the new control paradigm that the load demand should follow the power generation in future power grid with substantial renewable energy sources. Unlike traditional reactive power compensation methods, electric springs offer both reactive power compensation and real power variation in the noncritical loads. With many countries determined to de-carbonize electric power generation for reducing global warming by increasing renewable energy up to 20% of the total electrical power output by 2020 [22]–[25], electric spring is a novel concept that enables human society to use renewable energy as nature provides. The Hooke’s law developed in the 17th century has laid down the foundation for stability control of renewable power systems in the 21st century.
  • 5. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 REFERENCES: [1] Hooke’s law—Britannica Encyclopedia [Online]. Available: http://www.britannica.com/EBchecked/topic/271336/Hookes-law [2] A. M. Wahl, Mechanical Springs, 2nd ed. New York: McGraw-Hill, 1963. [3] W. S. Slaughter, The Linearized Theory of Elasticity. Boston, MA: Birkhauser, 2002. [4] K. Symon, Mechanics. ISBN 0-201-07392-7. Reading, MA: Addison- Wesley, Reading,1971. [5] R. Hooke, De Potentia Restitutiva, or of Spring Explaining the Power of Springing Bodies. London, U.K.: John Martyn, vol. 1678, p. 23.