SlideShare uma empresa Scribd logo
1 de 16
EE445S Real-Time Digital Signal Processing Lab   Fall 2012


Quadrature Amplitude Modulation
      (QAM) Transmitter


                Prof. Brian L. Evans
   Dept. of Electrical and Computer Engineering
         The University of Texas at Austin

                         Lecture 15
Introduction
• Digital Pulse Amplitude Modulation (PAM)
  Modulates digital information onto amplitude of pulse
  May be later upconverted (e.g. to radio frequency)
• Digital Quadrature Amplitude Modulation (QAM)
  Two-dimensional extension of digital PAM
  Baseband signal requires sinusoidal amplitude modulation
  May be later upconverted (e.g. to radio frequency)
• Digital QAM modulates digital information onto
  pulses that are modulated onto
  Amplitudes of a sine and a cosine, or equivalently
  Amplitude and phase of single sinusoid
                                                          15 - 2
Review

 Amplitude Modulation by Cosine
• Example: y(t) = f(t) cos(ωc t)
  Assume f(t) is an ideal lowpass signal with bandwidth ω1
  Assume ω1 < ωc
  Y(ω) is real-valued if F(ω) is real-valued
F(ω) 1                ½F(ω + ωc)      Y(ω)     ½F(ω − ωc)
                                                       ½

                   ω                                                                    ω
 -ω1   0   ω1          -ωc - ω1         -ωc + ω1   0       ωc - ω1        ωc + ω1
                                  −ωc                                ωc
 Baseband signal                            Upconverted signal

• Demodulation: modulation then lowpass filtering
• Similar for modulation with sin(ω0 t) shown next
                                                                               15 - 3
Review

   Amplitude Modulation by Sine
• Example: y(t) = f(t) sin(ωc t)
   Assume f(t) is an ideal lowpass signal with bandwidth ω1
   Assume ω1 < ωc
  Y(ω) is imaginary-valued if F(ω) is real-valued
 F(ω) 1               j ½F(ω + ωc)    Y(ω)     -j ½F(ω − ωc)
                                                     j   ½
                                                                            ωc
                                                                  ωc - ω1        ωc + ω1
                   ω                                                                       ω
  -ω1   0   ω1         -ωc - ω1         -ωc + ω1
                                  −ωc
                                                         -j   ½
 Baseband signal                           Upconverted signal

• Demodulation: modulation then lowpass filtering
                                             15 - 4
Baseband Digital QAM Transmitter
  • Continuous-time filtering and upconversion
                                                 Impulse         gT(t)
                                  i[n]          modulator
                    Index                                   Pulse shapers
Bits                                                         (FIR filters)                Delay            s(t)
         Serial/                                                              Local
                                Map to 2-D
  1
         parallel
                        J       constellation                                Oscillator           +
        converter                                                                          90o


                Q                q[n]            Impulse         gT(t)
                                                modulator
          d

   -d               d                    Delay matches delay through 90o phase shifter
                            I
         -d                              Delay required but often omitted in diagrams
 4-level QAM
                                                                                                  15 - 5
 Constellation
Phase Shift by 90 Degrees
• 90o phase shift performed by Hilbert transformer
                                          1               1
   cosine => sine       cos(2π f 0 t ) ⇒ δ ( f + f 0 ) + δ ( f − f 0 )
                                          2               2
                                          j              j
   sine => – cosine     sin( 2π f 0 t ) ⇒ δ ( f + f 0 ) − δ ( f − f 0 )
                                         2               2
• Frequency response H ( f ) = − j sgn( f )
    Magnitude Response                    Phase Response
        | H( f )|                              ∠H ( f )
                                                      90o
                          f                                       f
                                               -90o
  All-pass except at origin
                                                                   15 - 6
Hilbert Transformer
• Continuous-time ideal                • Discrete-time ideal
  Hilbert transformer                    Hilbert transformer
  H ( f ) = − j sgn( f )                 H (ω ) = − j sgn(ω )
               1/(π t) if t ≠ 0                     2 sin 2 (πn / 2)   if n≠0
  h(t) =                                            π        n
                                         h[n] =
                  0     if t = 0                           0           if n=0

        h(t)                                 h[n]

                                   t                                    n
                                                             Even-indexed
                                                           samples are7 zero
                                                                    15 -
Discrete-Time Hilbert Transformer
• Approximate by odd-length linear phase FIR filter
  Truncate response to 2 L + 1 samples: L samples left of
    origin, L samples right of origin, and origin
  Shift truncated impulse response by L samples to right to
    make it causal
  L is odd because every other sample of impulse response is 0
• Linear phase FIR filter of length N has same phase
  response as an ideal delay of length (N-1)/2
  (N-1)/2 is an integer when N is odd (here N = 2 L + 1)
• Matched delay block on slide 15-5 would be an
  ideal delay of L samples
                                                           15 - 8
Baseband Digital QAM Transmitter
                                             Impulse           gT(t)
                              i[n]          modulator
                    Index                               Pulse shapers
 Bits                                                    (FIR filters)                  Delay                    s(t)
         Serial/                                                            Local
                            Map to 2-D
   1
         parallel
                      J     constellation                                  Oscillator                  +
        converter                                                                         90o


                             q[n]            Impulse           gT(t)
                                            modulator


100% discrete time            i[n]
                                                L             gT[m]
                    Index
 Bits                                                                                               s[m]
         Serial/
                            Map to 2-D                    Pulse shapers                                            s(t)
         parallel                                                             cos(ω0 m)         +          D/A
   1                  J     constellation                  (FIR filters)
        converter                                                             sin(ω0 m)

   L samples/symbol          q[n]               L             gT[m]
  (upsampling factor)                                                                                  15 - 9
Performance Analysis of PAM
• If we sample matched filter output at correct time
  instances, nTsym, without any ISI, received signal
   x(nTsym ) = s (nTsym ) + v(nTsym )   v(nT) ~ N(0; σ 2/Tsym)
   where the signal component is
                                                                      3d
   s (nTsym ) = an = (2i − 1)d for i = -M/2+1, …, M/2
                                                                      d
   v(t) output of matched filter Gr(ω) for input of
                                                                  −d
      channel additive white Gaussian noise N(0; σ2)
   Gr(ω) passes frequencies from -ωsym/2 to ωsym/2 ,              −3 d
      where ωsym = 2 π fsym = 2π / Tsym                 4-level PAM
                                                        Constellation
• Matched filter has impulse response gr(t)
                                                            15 - 10
Performance Analysis of PAM
  • Decision error                                           d        
                           PI (e) = P ( v(nTsym ) > d ) = 2 Q    Tsym 
    for inner points                                         σ        
  • Decision error                                           d        
                           PO− (e) = P (v(nTsym ) > d ) = Q      Tsym 
    for outer points                                         σ        
                                                           d        
    PO+ (e) = P(v(nTsym ) < −d ) = P(v(nTsym ) > d ) = Q       Tsym 
                                                           σ        
  • Symbol error probability
         M −2          1           1           2( M − 1)  d      
P (e ) =      PI (e) +   PO+ (e) +   PO− (e) =          Q   Tsym 
          M            M           M              M      σ       
                   O-      I    I      I      I      I     I     O+
  8-level PAM
  Constellation   -7d     -5d   -3d    -d     d     3d    5d      7d
                                                                15 - 11
Performance Analysis of QAM
                                                                   Q
• Received QAM signal
                                                           d
  x(nTsym ) = s (nTsym ) + v(nTsym )
                                                      -d               d   I
• Information signal s(nTsym)                              -d
  s (nTsym ) = an + j bn = (2i − 1)d + j (2k − 1)d
                                                     4-level QAM
   where i,k ∈ { -1, 0, 1, 2 } for 16-QAM            Constellation
• Noise, vI(nTsym) and vQ(nTsym) are independent
  Gaussian random variables ~ N(0; σ 2/Tsym)
  v(nTsym ) = vI (nTsym ) + j vQ (nTsym )

• Decision regions must span entire I-Q plane
                                                                15 - 12
Performance Analysis of 16-QAM
                                                                                  Q
• Type 1 correct detection                                                3      2     2      3


P (c) = P( vI (nTsym ) < d & vQ (nTsym ) < d )
 1                                                                        2
                                                                                 1     1
                                                                                              2
                                                                                                    I

           (                     ) (
     = P vI (nTsym ) < d P vQ (nTsym ) < d               )                2
                                                                                 1     1
                                                                                              2




       (       (                       )) (   (
     = 1 − P vI (nTsym ) > d 1 − P vQ (nTsym ) > d                ))      3      2     2      3

                                                                                      16-QAM
                          d                              d
                   2Q (     T)                    2Q (     T)
                          σ                              σ

                                   2
             d      
     = 1 − 2Q
                Tsym  
                        
             σ                                                  1 - interior decision region
                                                                2 - edge region but not corner
                                                                               3 - corner -region
                                                                                        15 13
Performance Analysis of 16-QAM
                                                                    Q
 • Type 2 correct detection                                 3      2     2      3

P2 (c) = P(vI (nTsym ) < d & vQ (nTsym ) < d )                     1     1
                                                            2                   2
                                                                                    I
      = P (vI (nTsym ) < d ) P ( vQ (nTsym ) < d )
                                                            2                   2
              d             d                              1     1
      = 1 − Q 
                 Tsym  1 − 2Q
                                  Tsym  
                                           
              σ             σ                       3                   3
                                                                   2     2


 • Type 3 correct detection                                             16-QAM
P3 (c) = P(vI (nTsym ) < d & vQ (nTsym ) > −d )
      = P(vI (nTsym ) < d ) P (vQ (nTsym ) > − d )
                             2
              d                                      1 - interior decision region
      = 1 − Q 
                 Tsym  
                                                    2 - edge region but not corner
              σ      
                                                                    3 - corner -region
                                                                             15 14
Performance Analysis of 16-QAM
• Probability of correct detection
                              2                       2
         4     d         4     d      
  P(c) = 1 − 2Q  Tsym   + 1 − Q  Tsym  
        16 
               σ
                              
                          16     σ      
                                              

             8       d             d      
        +      1 − Q   Tsym  1 − 2Q  Tsym  
            16 
                     σ
                                
                                     σ      
                                                  

              d       9 d         
      = 1 − 3Q  Tsym  + Q 2  Tsym 
              σ       4 σ         

• Symbol error probability
                        d       9 d         
  P (e) = 1 − P (c) = 3Q  Tsym  − Q 2  Tsym 
                        σ       4 σ         

• What about other QAM constellations?
                                                          15 - 15
Average Power Analysis
                                                                      3d
• Assume each symbol is equally likely                                d
• Assume energy in pulse shape is 1                                   -d
• 4-PAM constellation
                                                                      -3 d
  Amplitudes are in set { -3d, -d, d, 3d }
  Total power 9 d2 + d2 + d2 + 9 d2 = 20 d2                4-level PAM
  Average power per symbol 5 d2                            Constellation
• 4-QAM constellation points                                          Q
  Points are in set { -d – jd, -d + jd, d + jd, d – jd }         d
  Total power 2d2 + 2d2 + 2d2 + 2d2 = 8d2                   -d             d   I
  Average power per symbol 2d2
                                                                 -d

                                                           4-level QAM
                                                                 15 - 16
                                                           Constellation

Mais conteúdo relacionado

Mais procurados

Nyquist criterion for zero ISI
Nyquist criterion for zero ISINyquist criterion for zero ISI
Nyquist criterion for zero ISIGunasekara Reddy
 
Quadrature amplitude modulation
Quadrature amplitude modulationQuadrature amplitude modulation
Quadrature amplitude modulationAanchalKumari4
 
Eye diagram in Communication
Eye diagram in CommunicationEye diagram in Communication
Eye diagram in CommunicationSivanesh M
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterionsrkrishna341
 
Digital communication system
Digital communication systemDigital communication system
Digital communication systembabak danyal
 
PAM4 Analysis and Measurement Webinar Slidedeck
PAM4 Analysis and Measurement Webinar SlidedeckPAM4 Analysis and Measurement Webinar Slidedeck
PAM4 Analysis and Measurement Webinar Slidedeckteledynelecroy
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDMPei-Che Chang
 
Sampling Theorem, Quantization Noise and its types, PCM, Channel Capacity, Ny...
Sampling Theorem, Quantization Noise and its types, PCM, Channel Capacity, Ny...Sampling Theorem, Quantization Noise and its types, PCM, Channel Capacity, Ny...
Sampling Theorem, Quantization Noise and its types, PCM, Channel Capacity, Ny...Waqas Afzal
 
matlab code for channel estimation for ofdm
matlab code for channel estimation for ofdmmatlab code for channel estimation for ofdm
matlab code for channel estimation for ofdmGyana Ranjan Mati
 
WDM &amp; Optical Amplifiers
WDM &amp; Optical AmplifiersWDM &amp; Optical Amplifiers
WDM &amp; Optical AmplifiersEng_Ahmad
 
Traveling Wave Antenna
Traveling Wave Antenna  Traveling Wave Antenna
Traveling Wave Antenna Abdelaziz Said
 
Dpcm ( Differential Pulse Code Modulation )
Dpcm ( Differential Pulse Code Modulation )Dpcm ( Differential Pulse Code Modulation )
Dpcm ( Differential Pulse Code Modulation )Mohammed Abdullah
 

Mais procurados (20)

Nyquist criterion for zero ISI
Nyquist criterion for zero ISINyquist criterion for zero ISI
Nyquist criterion for zero ISI
 
Quadrature amplitude modulation
Quadrature amplitude modulationQuadrature amplitude modulation
Quadrature amplitude modulation
 
Pulse shaping
Pulse shapingPulse shaping
Pulse shaping
 
Eye diagram in Communication
Eye diagram in CommunicationEye diagram in Communication
Eye diagram in Communication
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
 
Digital communication system
Digital communication systemDigital communication system
Digital communication system
 
PAM4 Analysis and Measurement Webinar Slidedeck
PAM4 Analysis and Measurement Webinar SlidedeckPAM4 Analysis and Measurement Webinar Slidedeck
PAM4 Analysis and Measurement Webinar Slidedeck
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
Dc unit iii final ppt
Dc unit iii final pptDc unit iii final ppt
Dc unit iii final ppt
 
Chapter4
Chapter4Chapter4
Chapter4
 
Sampling Theorem, Quantization Noise and its types, PCM, Channel Capacity, Ny...
Sampling Theorem, Quantization Noise and its types, PCM, Channel Capacity, Ny...Sampling Theorem, Quantization Noise and its types, PCM, Channel Capacity, Ny...
Sampling Theorem, Quantization Noise and its types, PCM, Channel Capacity, Ny...
 
wave-guides
wave-guideswave-guides
wave-guides
 
Rake Receiver
Rake ReceiverRake Receiver
Rake Receiver
 
Diplexer duplexer
Diplexer duplexerDiplexer duplexer
Diplexer duplexer
 
matlab code for channel estimation for ofdm
matlab code for channel estimation for ofdmmatlab code for channel estimation for ofdm
matlab code for channel estimation for ofdm
 
WDM &amp; Optical Amplifiers
WDM &amp; Optical AmplifiersWDM &amp; Optical Amplifiers
WDM &amp; Optical Amplifiers
 
Traveling Wave Antenna
Traveling Wave Antenna  Traveling Wave Antenna
Traveling Wave Antenna
 
Delta Modulation
Delta ModulationDelta Modulation
Delta Modulation
 
Mimo
MimoMimo
Mimo
 
Dpcm ( Differential Pulse Code Modulation )
Dpcm ( Differential Pulse Code Modulation )Dpcm ( Differential Pulse Code Modulation )
Dpcm ( Differential Pulse Code Modulation )
 

Destaque (20)

Quadrature amplitude modulation
Quadrature amplitude modulationQuadrature amplitude modulation
Quadrature amplitude modulation
 
QAM (Quadratur Amplitude Modulation)
QAM (Quadratur Amplitude Modulation)QAM (Quadratur Amplitude Modulation)
QAM (Quadratur Amplitude Modulation)
 
What is 16 qam modulation
What is 16 qam modulationWhat is 16 qam modulation
What is 16 qam modulation
 
QAM Presentation
QAM PresentationQAM Presentation
QAM Presentation
 
Performance Evaluation of Different QAM Techniques Using Matlab/Simulink full...
Performance Evaluation of Different QAM Techniques Using Matlab/Simulink full...Performance Evaluation of Different QAM Techniques Using Matlab/Simulink full...
Performance Evaluation of Different QAM Techniques Using Matlab/Simulink full...
 
Digital Modulation Unit 3
Digital Modulation Unit 3Digital Modulation Unit 3
Digital Modulation Unit 3
 
ASk,FSK,PSK
ASk,FSK,PSKASk,FSK,PSK
ASk,FSK,PSK
 
Qam64
Qam64Qam64
Qam64
 
Modulation of digital and analog data
Modulation of digital and analog dataModulation of digital and analog data
Modulation of digital and analog data
 
Rake demodulator
Rake demodulatorRake demodulator
Rake demodulator
 
Ofdm &amp; qam
Ofdm &amp; qamOfdm &amp; qam
Ofdm &amp; qam
 
Ae11 sol
Ae11 solAe11 sol
Ae11 sol
 
Lecture 3 : (Physic Layer) Outline
Lecture 3 : (Physic Layer) OutlineLecture 3 : (Physic Layer) Outline
Lecture 3 : (Physic Layer) Outline
 
Paper
PaperPaper
Paper
 
Symbol Error Rate of Star QAM
Symbol Error Rate of Star QAMSymbol Error Rate of Star QAM
Symbol Error Rate of Star QAM
 
I011136673
I011136673I011136673
I011136673
 
M qam
M qamM qam
M qam
 
Li-Fi Seminar Report
Li-Fi Seminar ReportLi-Fi Seminar Report
Li-Fi Seminar Report
 
Digital Communications 3rd Quarter
Digital Communications 3rd QuarterDigital Communications 3rd Quarter
Digital Communications 3rd Quarter
 
Qudrature Amplitude Modulation
Qudrature Amplitude Modulation Qudrature Amplitude Modulation
Qudrature Amplitude Modulation
 

Semelhante a Quadrature amplitude modulation qam transmitter

Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandyLoren Schwappach
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Designtaha25
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level codingsrkrishna341
 
Dissertation Slides
Dissertation SlidesDissertation Slides
Dissertation SlidesSanghui Ahn
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptStefan Oprea
 
Pulse Code Modulation
Pulse Code Modulation Pulse Code Modulation
Pulse Code Modulation ZunAib Ali
 
Analog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfAnalog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfShreyaLathiya
 
Introduction and types of signals and its charachteristics
Introduction and types of signals and its charachteristicsIntroduction and types of signals and its charachteristics
Introduction and types of signals and its charachteristicsSushmit8
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Jyothirmaye Suneel
 
디지털통신 7
디지털통신 7디지털통신 7
디지털통신 7KengTe Liao
 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulationVishal kakade
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)gudeyi
 

Semelhante a Quadrature amplitude modulation qam transmitter (20)

Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandy
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
Hilbert
HilbertHilbert
Hilbert
 
Dissertation Slides
Dissertation SlidesDissertation Slides
Dissertation Slides
 
Filter dengan-op-amp
Filter dengan-op-ampFilter dengan-op-amp
Filter dengan-op-amp
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.ppt
 
Pulse Code Modulation
Pulse Code Modulation Pulse Code Modulation
Pulse Code Modulation
 
00e isi
00e isi00e isi
00e isi
 
DSP-UNIT-V-PPT-1.pptx
DSP-UNIT-V-PPT-1.pptxDSP-UNIT-V-PPT-1.pptx
DSP-UNIT-V-PPT-1.pptx
 
Matched filter
Matched filterMatched filter
Matched filter
 
Analog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfAnalog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdf
 
Introduction and types of signals and its charachteristics
Introduction and types of signals and its charachteristicsIntroduction and types of signals and its charachteristics
Introduction and types of signals and its charachteristics
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15
 
디지털통신 7
디지털통신 7디지털통신 7
디지털통신 7
 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulation
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
PAM
PAMPAM
PAM
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)
 

Quadrature amplitude modulation qam transmitter

  • 1. EE445S Real-Time Digital Signal Processing Lab Fall 2012 Quadrature Amplitude Modulation (QAM) Transmitter Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin Lecture 15
  • 2. Introduction • Digital Pulse Amplitude Modulation (PAM) Modulates digital information onto amplitude of pulse May be later upconverted (e.g. to radio frequency) • Digital Quadrature Amplitude Modulation (QAM) Two-dimensional extension of digital PAM Baseband signal requires sinusoidal amplitude modulation May be later upconverted (e.g. to radio frequency) • Digital QAM modulates digital information onto pulses that are modulated onto Amplitudes of a sine and a cosine, or equivalently Amplitude and phase of single sinusoid 15 - 2
  • 3. Review Amplitude Modulation by Cosine • Example: y(t) = f(t) cos(ωc t) Assume f(t) is an ideal lowpass signal with bandwidth ω1 Assume ω1 < ωc Y(ω) is real-valued if F(ω) is real-valued F(ω) 1 ½F(ω + ωc) Y(ω) ½F(ω − ωc) ½ ω ω -ω1 0 ω1 -ωc - ω1 -ωc + ω1 0 ωc - ω1 ωc + ω1 −ωc ωc Baseband signal Upconverted signal • Demodulation: modulation then lowpass filtering • Similar for modulation with sin(ω0 t) shown next 15 - 3
  • 4. Review Amplitude Modulation by Sine • Example: y(t) = f(t) sin(ωc t) Assume f(t) is an ideal lowpass signal with bandwidth ω1 Assume ω1 < ωc Y(ω) is imaginary-valued if F(ω) is real-valued F(ω) 1 j ½F(ω + ωc) Y(ω) -j ½F(ω − ωc) j ½ ωc ωc - ω1 ωc + ω1 ω ω -ω1 0 ω1 -ωc - ω1 -ωc + ω1 −ωc -j ½ Baseband signal Upconverted signal • Demodulation: modulation then lowpass filtering 15 - 4
  • 5. Baseband Digital QAM Transmitter • Continuous-time filtering and upconversion Impulse gT(t) i[n] modulator Index Pulse shapers Bits (FIR filters) Delay s(t) Serial/ Local Map to 2-D 1 parallel J constellation Oscillator + converter 90o Q q[n] Impulse gT(t) modulator d -d d Delay matches delay through 90o phase shifter I -d Delay required but often omitted in diagrams 4-level QAM 15 - 5 Constellation
  • 6. Phase Shift by 90 Degrees • 90o phase shift performed by Hilbert transformer 1 1 cosine => sine cos(2π f 0 t ) ⇒ δ ( f + f 0 ) + δ ( f − f 0 ) 2 2 j j sine => – cosine sin( 2π f 0 t ) ⇒ δ ( f + f 0 ) − δ ( f − f 0 ) 2 2 • Frequency response H ( f ) = − j sgn( f ) Magnitude Response Phase Response | H( f )| ∠H ( f ) 90o f f -90o All-pass except at origin 15 - 6
  • 7. Hilbert Transformer • Continuous-time ideal • Discrete-time ideal Hilbert transformer Hilbert transformer H ( f ) = − j sgn( f ) H (ω ) = − j sgn(ω ) 1/(π t) if t ≠ 0 2 sin 2 (πn / 2) if n≠0 h(t) = π n h[n] = 0 if t = 0 0 if n=0 h(t) h[n] t n Even-indexed samples are7 zero 15 -
  • 8. Discrete-Time Hilbert Transformer • Approximate by odd-length linear phase FIR filter Truncate response to 2 L + 1 samples: L samples left of origin, L samples right of origin, and origin Shift truncated impulse response by L samples to right to make it causal L is odd because every other sample of impulse response is 0 • Linear phase FIR filter of length N has same phase response as an ideal delay of length (N-1)/2 (N-1)/2 is an integer when N is odd (here N = 2 L + 1) • Matched delay block on slide 15-5 would be an ideal delay of L samples 15 - 8
  • 9. Baseband Digital QAM Transmitter Impulse gT(t) i[n] modulator Index Pulse shapers Bits (FIR filters) Delay s(t) Serial/ Local Map to 2-D 1 parallel J constellation Oscillator + converter 90o q[n] Impulse gT(t) modulator 100% discrete time i[n] L gT[m] Index Bits s[m] Serial/ Map to 2-D Pulse shapers s(t) parallel cos(ω0 m) + D/A 1 J constellation (FIR filters) converter sin(ω0 m) L samples/symbol q[n] L gT[m] (upsampling factor) 15 - 9
  • 10. Performance Analysis of PAM • If we sample matched filter output at correct time instances, nTsym, without any ISI, received signal x(nTsym ) = s (nTsym ) + v(nTsym ) v(nT) ~ N(0; σ 2/Tsym) where the signal component is 3d s (nTsym ) = an = (2i − 1)d for i = -M/2+1, …, M/2 d v(t) output of matched filter Gr(ω) for input of −d channel additive white Gaussian noise N(0; σ2) Gr(ω) passes frequencies from -ωsym/2 to ωsym/2 , −3 d where ωsym = 2 π fsym = 2π / Tsym 4-level PAM Constellation • Matched filter has impulse response gr(t) 15 - 10
  • 11. Performance Analysis of PAM • Decision error d  PI (e) = P ( v(nTsym ) > d ) = 2 Q Tsym  for inner points σ  • Decision error d  PO− (e) = P (v(nTsym ) > d ) = Q Tsym  for outer points σ  d  PO+ (e) = P(v(nTsym ) < −d ) = P(v(nTsym ) > d ) = Q Tsym  σ  • Symbol error probability M −2 1 1 2( M − 1)  d  P (e ) = PI (e) + PO+ (e) + PO− (e) = Q Tsym  M M M M σ  O- I I I I I I O+ 8-level PAM Constellation -7d -5d -3d -d d 3d 5d 7d 15 - 11
  • 12. Performance Analysis of QAM Q • Received QAM signal d x(nTsym ) = s (nTsym ) + v(nTsym ) -d d I • Information signal s(nTsym) -d s (nTsym ) = an + j bn = (2i − 1)d + j (2k − 1)d 4-level QAM where i,k ∈ { -1, 0, 1, 2 } for 16-QAM Constellation • Noise, vI(nTsym) and vQ(nTsym) are independent Gaussian random variables ~ N(0; σ 2/Tsym) v(nTsym ) = vI (nTsym ) + j vQ (nTsym ) • Decision regions must span entire I-Q plane 15 - 12
  • 13. Performance Analysis of 16-QAM Q • Type 1 correct detection 3 2 2 3 P (c) = P( vI (nTsym ) < d & vQ (nTsym ) < d ) 1 2 1 1 2 I ( ) ( = P vI (nTsym ) < d P vQ (nTsym ) < d ) 2 1 1 2 ( ( )) ( ( = 1 − P vI (nTsym ) > d 1 − P vQ (nTsym ) > d )) 3 2 2 3 16-QAM d d 2Q ( T) 2Q ( T) σ σ 2  d  = 1 − 2Q  Tsym     σ  1 - interior decision region 2 - edge region but not corner 3 - corner -region 15 13
  • 14. Performance Analysis of 16-QAM Q • Type 2 correct detection 3 2 2 3 P2 (c) = P(vI (nTsym ) < d & vQ (nTsym ) < d ) 1 1 2 2 I = P (vI (nTsym ) < d ) P ( vQ (nTsym ) < d ) 2 2  d   d  1 1 = 1 − Q   Tsym  1 − 2Q  Tsym     σ   σ  3 3 2 2 • Type 3 correct detection 16-QAM P3 (c) = P(vI (nTsym ) < d & vQ (nTsym ) > −d ) = P(vI (nTsym ) < d ) P (vQ (nTsym ) > − d ) 2  d  1 - interior decision region = 1 − Q   Tsym    2 - edge region but not corner  σ  3 - corner -region 15 14
  • 15. Performance Analysis of 16-QAM • Probability of correct detection 2 2 4 d  4 d  P(c) = 1 − 2Q Tsym   + 1 − Q Tsym   16   σ     16  σ   8 d   d  + 1 − Q  Tsym  1 − 2Q Tsym   16   σ    σ   d  9 d  = 1 − 3Q Tsym  + Q 2  Tsym  σ  4 σ  • Symbol error probability d  9 d  P (e) = 1 − P (c) = 3Q Tsym  − Q 2  Tsym  σ  4 σ  • What about other QAM constellations? 15 - 15
  • 16. Average Power Analysis 3d • Assume each symbol is equally likely d • Assume energy in pulse shape is 1 -d • 4-PAM constellation -3 d Amplitudes are in set { -3d, -d, d, 3d } Total power 9 d2 + d2 + d2 + 9 d2 = 20 d2 4-level PAM Average power per symbol 5 d2 Constellation • 4-QAM constellation points Q Points are in set { -d – jd, -d + jd, d + jd, d – jd } d Total power 2d2 + 2d2 + 2d2 + 2d2 = 8d2 -d d I Average power per symbol 2d2 -d 4-level QAM 15 - 16 Constellation