Prof. Milton Araújo cursoanpad@gmail.com1
1) Realizou-se uma pesquisa com 57 estudantes, cuja pergunta central era: “Se vo...
Prof. Milton Araújo cursoanpad@gmail.com2
• cada casal deve permanecer junto.
Considerando essas regras, quantas fotos dis...
Prof. Milton Araújo cursoanpad@gmail.com3
• 50 são administradores e contadores,
• 60 são advogados e administradores,
• 3...
Prof. Milton Araújo cursoanpad@gmail.com4
350,00. Até o vencimento da segunda parcela, esse saldo devedor será novamente a...
Prof. Milton Araújo cursoanpad@gmail.com5
6 x 120
inversa direta
Com uma simplificação entre os elementos de mesma coluna,...
Prof. Milton Araújo cursoanpad@gmail.com6
Sabendo-se que cada 2
m de grama cortada pesa 100 gramas, quantos quilogramas sã...
Prof. Milton Araújo cursoanpad@gmail.com7
Quando a caixa está com 600 litros o reabastecimento é acionado. Com a vazão de ...
Prof. Milton Araújo cursoanpad@gmail.com8
Supondo-se que as unidades nos eixos horizontal e vertical estão em metros, que ...
Próximos SlideShares
Carregando em…5
×

Anpad fev 2007-rq_resolvida

2.361 visualizações

Publicada em

0 comentários
2 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
2.361
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
146
Comentários
0
Gostaram
2
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Anpad fev 2007-rq_resolvida

  1. 1. Prof. Milton Araújo cursoanpad@gmail.com1 1) Realizou-se uma pesquisa com 57 estudantes, cuja pergunta central era: “Se você tivesse camiseta, tênis ou boné, qual(is) peça(s) você usaria para sair à noite?”. Analisando as resposta, constatou-se que: • 15 pessoas usariam tênis; • 18 usariam boné; • 3 usariam camiseta e tênis; • 6 usariam tênis e boné; • 4 usariam boné e camiseta; • 1 usaria as três peças; e • 15 pessoas não usariam nenhuma dessas três peças. Quantos estudantes usariam somente camiseta, sem boné e sem tênis? a) 21 b) 18 c) 15 d) 12 e) 9 Solução: Inicia-se o preenchimento dos valores no diagrama acima pela região hachurada em amarelo, a seguir, passa-se às regiões em azul, e, após, as regiões na cor cinza. Como até agora se contam, no total, 42 elementos no diagrama acima, conclui-se que a área em verde (que contém os elementos que usam somente camiseta) deverá conter 15 elementos Resposta: letra c. 2) A matriz X , composta por números reais, de ordem 3 × 3, é igual a           −− 211 2 121 2 aa . Para quais valores de a não se pode determinar a inversa dessa matriz X ? a) 2=a e 1=a b) 1−=a e 2−=a c) 0=a e 1−=a d) 1−=a e 2=a e) 2=a e 1−=a Solução: Regra: toda matriz quadrada só admite inversa se o determinante da matriz for não-nulo. A melhor forma de resolver a questão sem precisar calcular o determinante da matriz, é observando os valores sugeridos nas alternativas... Se 1−=a , tem-se que a segunda linha é igual ao produto da terceira por -1. Uma das propriedades dos determinantes diz o seguinte: “o determinante de uma matriz quadrada será nulo se uma fila (linha ou coluna) for um múltiplo da outra”. Assim, para 1−=a o determinante da matriz será nulo e esta não terá inversa. O mesmo raciocínio se aplica para 2−=a . Resposta: letra b. 3) Um grupo de sete pessoas é formado por dois irmãos, dois casais e um padre. Esse grupo deseja tirar uma foto, obedecendo às seguintes regras: • todos os membros do grupo devem se posicionar lado a lado (perfilados); • o padre deve se posicionar em um extremo, no lado direito ou no lado esquerdo;
  2. 2. Prof. Milton Araújo cursoanpad@gmail.com2 • cada casal deve permanecer junto. Considerando essas regras, quantas fotos distintas podem ser tiradas pelo grupo, ,ou seja, quantas combinações de posicionamento dos membros do grupo podem ser geradas para tirar diferentes fotos? a) 84 b) 92 c) 96 d) 192 e) 5040 Solução: Há dois modos de se posicionar o padre e também há dois modos de se posicionar cada casal. Como os casais devem permanecer juntos, então, para cada posição do padre, teremos uma permutação dos outros 4 (dois irmãos mais dois casais). Daí a solução: 192248222 4 =×=××× P Resposta: letra d. 4) O custo fixo mensal para produzir até 1.000 unidades de um determinado produto é de R$ 300,00, e o custo variável para produzir cada unidade do mesmo produto é de R$ 2,00. O custo fixo mensal existirá independentemente da quantidade produzida no mês, desde que não ultrapasse o limite de 1.000 unidades. O custo variável unitário, por sua vez, existirá apenas para cada unidade produzida, desde que o limite de 1.000 unidades também não seja ultrapassado. Sabendo- se que cada unidade do referido produto é vendida por R$ 3,00, o número mínimo de unidades que devem ser produzidas e vendidas para que todos os custos sejam pagos é de a) 700 peças b) 600 peças c) 500 peças d) 400 peças e) 300 peças Solução: Pelo enunciado, pode-se determinar a função custo como sendo: ( ) xxC 2300 += Onde x é a quantidade de unidades produzidas e 10000 ≤≤ x . Se cada unidade será vendida por R$ 3,00, então o número de unidades que deverão ser vendidas (faturamento igual a x3 ) para cobrir o custo é dado pela expressão: xx 23003 += , onde 300=x Resposta: letra e. 5) Se as arestas de um sólido de um dado material M, em forma de cubo, aumentam em 50% devido à dilatação desse material, pode-se dizer que o volume desse cubo aumentará em a) 50,5% b) 75,5% c) 126,5% d) 150,5% e) 237,5% Solução: O fator multiplicativo da aresta é igual a 1,5. Como se trata de um cubo, o fator multiplicativo do volume é dado por ( ) 375,35,1 3 = . A taxa de acréscimo é obtida multiplicando-se esse fator por 100 e subtraindo-se 100, o que resulta em 237,5% Resposta: letra e. 6) O número de anagramas que podem ser feitos com a palavra ADMINISTRADOR, de modo que as consoantes sejam mantidas em suas respectivas posições, é a) 120 b) 56 c) 30 d) 20 e) 10 Solução: Como as consoantes serão mantidas em suas respectivas posições, a solução se dá pela permutação (com repetição das letras a e i) das 5 vogais contidas na palavra. Então... 30 4 120 !2!2 !5 == ⋅ Resposta: letra c. 7) Em uma empresa trabalham 1.000 pessoas, todas com curso superior. Nenhuma dessas pessoas tem mais do que dois cursos superiores, e • 200 são apenas engenheiros, • 250 são contadores, • 230 são advogados, • 100 são apenas bacharéis em computação, • 300 são administradores,
  3. 3. Prof. Milton Araújo cursoanpad@gmail.com3 • 50 são administradores e contadores, • 60 são advogados e administradores, • 30 são contadores e advogados, e • 60 têm outras profissões. A probabilidade de, numa escolha aleatória, a pessoa escolhida ser somente administrador é de a) 0,3 b) 0,25 c) 0,24 d) 0,20 e) 0,19 Solução: Como não há pessoas com mais de dois cursos superiores, então o número de pessoas que têm somente o curso de Administração é dado por: 300 – 50 – 60 = 190. A probabilidade de uma pessoa escolhida aleatoriamente ser somente administrador é dada por: 190/1000 = 0,19 Resposta: letra e. 8) Os pontos nos quais a função ( ) 1242 −−= xxxf toca o eixo x e o vértice desta parábola formam um triângulo. A área do triângulo formado, em unidades de área (u. a.) é a) 128 u. a. b) 64 u. a. c) 32 u. a. d) 16 u. a. e) 8 u. a. Solução: Os zeros da função dada podem ser facilmente obtidos, observando-se que o produto das raízes da equação 01242 =−− xx é -12 e a soma das raízes é 4. Então, as raízes são: -2 e 6 (a base do triângulo é 8). Como a abscissa do vértice é o ponto médio dos zeros da função do segundo grau, tem-se, para abscissa do vértice o valor 2. Substituindo-se o valor de 2=x na função dada, tem-se a ordenada do vértice (que é a altura do triângulo e vale 16 unidades de comprimento). A área do triângulo é dada pela metade do produto da base pela altura: 64 2 168 = × =A Resposta: letra b. 9) Um baralho tem quatro naipes, sendo que cada naipe tem 12 cartas. A probabilidade de se retirar, sem reposição, três cartas do mesmo naipe desse baralho e a) 4324 55 b) 1081 55 c) 48 3 d) 24 3 e) 12 3 Solução: A probabilidade de se retirar desse baralho uma carta do mesmo naipe é dada por ( ) 48 12 =AP , onde A representa o evento “carta do mesmo naipe”. Nas retiradas sucessivas, os eventos são independentes, devendo-se, portanto, multiplicar as probabilidades de ocorrência de cada evento: ( ) 1081 55 46 10 47 11 48 12 =⋅⋅=AAAP Resposta: letra b. 10) Hoje, o agiota Furtado concedeu um empréstimo de R$ 500,00 ao Sr. Inocêncio e adotou o sistema de juros compostos a uma taxa de 10% a.m. Sabendo-se que o Sr. Inocêncio paga R$ 200,00 a cada mês (desde o primeiro mês), e que esse valor é abatido do montante da dívida, pode- se afirmar que, após três meses, a) o Sr. Inocêncio ainda deve R$ 3,50 ao agiota. b) o Sr. Inocêncio ainda deve R$ 42,30 ao agiota. c) o Sr. Inocêncio ainda deve R$ 38,00 ao agiota. d) o agiota deve R$ 35,00 ao Sr. Inocêncio. e) a dívida está liquidada. Solução: Como o número de parcelas é pequeno (apenas três) o cálculo pode ser efetuado mês a mês, do seguinte modo: Até o vencimento da primeira parcela, o valor inicial da dívida será acrescido de 10%, ficando em R$ 550,00. Com o pagamento dos R$ 200,00 da primeira parcela, o “saldo devedor” será de R$
  4. 4. Prof. Milton Araújo cursoanpad@gmail.com4 350,00. Até o vencimento da segunda parcela, esse saldo devedor será novamente acrescido de 10%, ficando em R$ 385,00. Com o pagamento dos R$ 200,00 da segunda parcela, o novo saldo devedor será de R$ 185,00. Até o pagamento da terceira parcela, esse saldo devedor sofrerá novo acréscimo de 10%, ficando o novo saldo devedor em R$ 203,50. Com o pagamento da terceira e última parcela de R$ 200,00, o saldo do Sr. Inocêncio ainda será de R$ 3,50. Resposta: letra a. 11) Analise a veracidade das seguintes proposições. I. O valor de       2 7 cos π é 1. II. A imagem da função senxy 2= é o intervalo [-2, 2]. III. O gráfico das funções xy ln= e x ey = são simétricos em relação à reta yx = . Sobre a veracidade dessas proposições, pode-se afirmar que são verdadeiras as afirmações a) II, apenas b) III, apenas c) I e III, apenas d) II e III, apenas e) I, II e III Solução: I. Falso: o valor do cosseno de 2 π é zero, bem como todos os múltiplos positivos desse arco; II. Verdadeiro: o intervalo de variação da imagem da função seno é [-1, 1], logo, o intervalo da função ( )xseny 2= é [-2, 2]; III. Verdadeiro: as funções são inversas uma da outra, o que torna o gráfico simétrico em relação à reta xy = Resposta: letra d. 12) Foi realizado um levantamento em relação ao peso de 10 estudantes universitários do curso de administração. Obteve-se o seguinte resultado (em kg): 61, 66, 66, 67, 71, 72, 72, 72, 77, 78. Assim, a mediana e a média aritmética desse conjunto são, respectivamente, a) 71,5 e 70,2 b) 71,5 e 71,5 c) 71 e 70,2 d) 70,2 e 71,5 e) 72 e 70,2 Solução: A posição da mediana para dados não agrupados é dada por: 2 1+n , onde n é o número de elementos da distribuição. Desse modo, a mediana do conjunto dado está entre o 5º e o 6º termos, devendo ser calculada pela média aritmética desses elementos: 5,71 2 7271 = + . O candidato poderá observar que a resposta da questão só pode ser a da alternativa a, visto que a série dada não apresenta uma perfeita simetria em torno da mediana. Mas, caso fosse calcular o valor da média, seria útil lembrar-se de uma importante propriedade da média, que diz que “ao somarmos ou subtrairmos uma constante de cada elemento da distribuição, sua média ficará somada ou subtraída dessa mesma constante”. Vamos, então, subtrair 70 unidades de cada um dos elementos, resultando no seguinte conjunto (sabemos que a média calculada estará subtraída de 70 unidades): -9, -4, -4, -3, 1, 2, 2, 2, 7, 8 cuja média aritmética é 0,2. Acrescentando-se 70, tem-se a média do conjunto original, que é 70,2. Resposta: letra a. 13) Em uma fábrica, três costureiras, em oito horas de trabalho, produzem 48 calças. Como aumentou a demanda pelos produtos dessa fábrica, foram contratadas mais três costureiras, que apresentaram o mesmo desempenho das funcionárias veteranas. Se o último pedido é de 120 calças, qual o tempo necessário de trabalho para que as seis costureiras produzam tal quantidade? a) 8 horas b) 10 horas c) 12 horas d) 16 horas e) 24 horas Solução: Por regra de três... costureiras horas calças 3 8 48
  5. 5. Prof. Milton Araújo cursoanpad@gmail.com5 6 x 120 inversa direta Com uma simplificação entre os elementos de mesma coluna, os cálculos serão mais rápidos. A regra de três fica assim: costureiras horas calças 1 8 2 2 x 5 inversa direta 10 22 518 = × ×× =x (Veja o arquivo regras de três passo-a-passo na área de arquivos do plantão eletrônico de dúvidas) Resposta: letra b. 14) Em uma lanchonete, são gastos R$ 6,00 para se comprar três pastéis, dois copos de refrigerante e uma porção de batatas fritas. Sabe-se que a mesma quantia de dinheiro é gasta para se comprar dois pastéis, um copo de refrigerante e três porções de batatas fritas. Logo, pode-se concluir que a) um pastel mais um copo de refrigerante custam o mesmo que duas porções de batatas fritas. b) um pastel, um copo de refrigerante e uma porção de batatas fritas custam R$ 4,00. c) um pastel, um copo de refrigerante e uma porção de batatas fritas custam R$ 6,00. d) um pastel custa R$ 2,00 e um copo de refrigerante custa R$ 1,50. e) todos custam menos de R$ 1,00. Solução: Com os dados da questão, tem-se:    =++ =++ 6312 623 brp brp . A solução é obtida rapidamente pela subtração das duas equações membro-a- membro: 0211 =−+ brp , de onde retiramos: brp 211 =+ Resposta: letra a. 15) Um comerciante pretende fazer um investimento na modernização de sua loja no valor de X reais. Esse investimento permitirá uma redução nos custos operacionais de sua loja no valor mensal de Y reais por um período de n meses. Essa redução começa exatamente um mês após o investimento. Considerando-se que, nesses n meses, a taxa de juros é de 1,5% a.m., a relação que mostra como o comerciante pode avaliar se vale a pena efetuar o investimento na modernização de sua loja é a) ( ) YX n i i >∑=1 015,1 1 b) ( ) XY n i i >∑=1 015,1 1 c) ( ) 1 015,1 + > n XnY d) ( )n XnY 015,1> e) ( )n YnX 015,1> Solução: Nas alternativas de investimentos, os economistas e financistas alertam que o investimento só será viável se o Valor Presente Líquido (VPL ) for superior a zero. Como o VPL é dado pela diferença entre o retorno do investimento (que, neste caso, será dado pelo valor atual das n parcelas de valor Y ) e o valor investido ( X ), pode-se escrever a seguinte equação: ( ) 0 015,1 1 1 >−⋅∑= XY n i i , onde o somatório representa o fator de atualização de capital. Resposta: letra b. 16) Alberto mora em um terreno quadrado de 40 metros de frente. Sua casa fica bem no centro do terreno, cercada por um gramado. Ele dispõe de uma máquina de cortar grama que possui um cabo elétrico original com 12 metros de comprimento. A máquina é ligada na única esquina da casa que apresenta tomada externa. A residência, por sua vez, tem uma base quadrada de 8 metros de lado, como está exposto neste desenho:
  6. 6. Prof. Milton Araújo cursoanpad@gmail.com6 Sabendo-se que cada 2 m de grama cortada pesa 100 gramas, quantos quilogramas são obtidos após o uso dessa máquina para cortar toda a grama possível utilizando apenas seu cabo elétrico original? (utilize 3=π ) a) 34,8 kg b) 43,2 kg c) 64 kg d) 348 kg e) 432 kg Solução: Tem-se uma semicircunferência de raio 12 (A1 no desenho abaixo) mais um quarto de circunferência de raio 12 (A2 no desenho abaixo) e mais dois quartos de circunferência de raio 4 (A3 no desenho abaixo). Podemos escrever, então: ( ) ( ) ( ) 3488144 4 3 4 2 1 12 4 1 12 2 1 222 =⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅ πππππ metros quadrados. Como cada metro quadrado “pesa” 100 gramas, ter-se-á um “peso” total de 34,8 kg de grama cortada. Resposta: letra a. 17) Uma caixa d’água tem um escoamento constante de 200 litros de água por hora. Sabe-se que quando o nível da caixa atinge 100 litros, um reabastecimento – com vazão constante de 205 litros de água por hora – é acionado automaticamente até que a caixa atinja seu nível máximo. Se a capacidade total da caixa é de 600 litros e o reabastecimento foi acionado nesse momento, ele será acionado novamente daqui a a) 2 horas e 30 minutos b) 2 horas e 24 minutos c) 4 dias e 4 horas. d) 4 dias, 6 horas e 30 minutos e) 4 dias, 6 horas e 50 minutos Solução:
  7. 7. Prof. Milton Araújo cursoanpad@gmail.com7 Quando a caixa está com 600 litros o reabastecimento é acionado. Com a vazão de 200 litros por hora, até chegar a 100 litros (ocasião em que o reabastecimento entra em ação), demora 2 horas e meia. A partir desse ponto (quando a caixa atinge 100 litros), a válvula entra em ação, despejando 205 litros por hora, ou seja, na primeira hora ter-se-á 100 – 200 + 205 =105. Na segunda hora, serão 105 – 200 + 205 = 110 litros. Em outras palavras, a cada hora, haverá um superávit de 5 litros por hora. Como se tem 500 litros para completar a capacidade da caixa, serão necessárias 100 horas para enchê-la. Somando-se as 2,5 horas iniciais (para a caixa ir dos 600 litros para 100 litros), o total de horas para que a caixa esteja completamente cheia novamente é de 102,5 horas, ou 4 dias, 6 horas e 30 minutos. Resposta: letra d. 18) Dada a seqüência de números 1, 20, 6, 15, 11, 10, ..., o décimo primeiro e o décimo segundo termos (dessa seqüência) são, respectivamente, a) 60 e 30 b) 31 e -10 c) 26 e -5 d) 16 e 5 e) 21 e 0 Solução: Há duas seqüências alternadas na série de números dada. Na primeira seqüência, tem-se: 1, 6, 11, ... (que é uma progressão aritmética de razão igual a 5) Na segunda seqüência, tem-se: 20, 15, 10, ... (que é uma progressão aritmética de razão igual a -5). Desse modo, encontram-se, facilmente, o décimo-primeiro e o décimo-segundo termos da seqüência: 26 e -5. Resposta: letra c. 19) Dois postos de gasolina, A e B, apresentavam o mesmo preço de combustível. Devido ao aumento de preços repassado pelos distribuidores, ambos os postos reajustaram seus preços aos consumidores finais. Cada posto realizou os aumentos de uma forma particular. O posto A reajustou três vezes os seus preços: 6% logo de imediato, 4% após dois meses e 5% após quatro meses. O posto B, por sua vez, reajustou seus preços duas vezes: o primeiro reajuste foi de 8% e coincidiu com a data do primeiro aumento do posto A, o segundo reajuste foi de 15% e ocorreu após três meses. Sabendo-se que a gasolina em ambos os postos sempre apresenta a mesma qualidade, a seqüência que indica o posto com o preço mais vantajoso para o consumidor final em cada um desses seis meses é: a) Posto A, Posto A, Posto B, Posto A, Posto A, Posto B. b) Posto A, Posto B, Posto A, Posto B, Posto A, Posto B. c) Posto A, Posto A, Posto B, Posto A, Posto B, Posto B. d) Posto A, Posto A, Posto A, Posto A, Posto A, Posto A. e) Posto A, Posto A, Posto B, Posto A, Posto A, Posto A. Solução: Outra questão de fácil solução. Observe a tabela abaixo (arbitrou-se o valor fictício de 100 unidades monetárias para o ponto de partida, a fim de simplificar os cálculos): 0 1º mês 2º mês 3º mês 4º mês 5º mês 6º mês POSTO A 106 106 110 110 116 116 116 POSTO B 108 108 108 124 124 124 124 Os centavos foram desprezados. Os valores marcados em negrito acima, mostram em qual posto o preço é mais vantajoso para o consumidor final, ao longo dos 6 meses. Resposta: letra e. 20) O mapa abaixo representa três quadras da cidade Imaginópolis, onde as ruas A, B, C e D são paralelas entre si, assim como as ruas E e F. Essas ruas delimitam quadras de mesma dimensão.
  8. 8. Prof. Milton Araújo cursoanpad@gmail.com8 Supondo-se que as unidades nos eixos horizontal e vertical estão em metros, que os vértices da quadra Q1 são os pontos (40, 10), (82, 20), (40, 60) e (82, 70) e que cada 2 m está avaliado em R$ 25,00,então o preço cobrado pelas três quadras é a) R$ 52.500,00 b) R$ 87.500,00 c) R$ 157.500,00 d) R$ 175.500,00 e) R$ 262.500,00 Solução: O paralelogramo Q1 tem as seguintes medidas (ver figura): Base = 50 metros; Altura = 42 metros. Assim, sua área é: A = 50 × 42 = 2100 metros quadrados. Como há três terrenos iguais e cada metro quadrado custa R$ 25,00, o preço final a ser pago pelas três quadras é: 3 × 25 × 2100 = 157500 Resposta: letra c.

×