SlideShare uma empresa Scribd logo
1 de 113
A Practical Approach to
  Assay Design for qPCR
 Overcoming Difficult Assays, Designs and
Optimization while Conforming to the MIQE
               Guidelines


             Francisco Bizouarn
             International Field Application Specialist
             Gene Expression Division
             Bio-Rad Laboratories
A new beginning.
AMPLIFICATION




                www.bio-rad.com/genomics/pcrsupport
What is MIQE?              It’s a Checklist
AMPLIFICATION




                                  •    qPCR community driven
                                       guidelines for essential and
                                       desired information in litterature;
                                        –   Experimental Design
                                        –   Sample Information
                                        –   Nucleic Acid Extraction
                                        –   Reverse Transcription
                                        –   qPCR Target Information
                                        –   qPCR Oligonucleotides
                                        –   qPCR Protocol
                                        –   qPCR Validation
                                        –   Data Analysis




                www.bio-rad.com/genomics/pcrsupport
Generating a good assay is easy
AMPLIFICATION




                               •    Following a few simple steps:
                                     – Design assay

                                     – Run a gradient

                                     – Run a dilution series to validate
                                       assay dynamic range

                               •    Meeting MIQE guidelines requires
                                    very little additional effort.
                                     – Target Information

                                     – Oligonucleotide information
                                     – Protocol

                                     – qPCR Protocolalidation


                www.bio-rad.com/genomics/pcrsupport
What is MIQE?                It’s a Checklist
AMPLIFICATION




                                  •    qPCR community driven
                                       guidelines for essential and
                                       desired information in litterature;
                                        –   Experimental Design
                                        –   Sample Information
                                        –   Nucleic Acid Extraction
                                        –   Reverse Transcription
                                        –   qPCR Target Information
                                        –   qPCR Oligonucleotides
                                        –   qPCR Protocol
                                        –   qPCR Validation
                                        –   Data Analysis




                www.bio-rad.com/genomics/pcrsupport
Assay design
AMPLIFICATION




           • Often oversimplified by the use of software or by
             many companies that offer design services.

           • Design a critical parameter.

           • Following a few simple steps will increase the
             chances of designing a successful assay.

           • Let’s use an example: target CCL26 in HUVEC cells



                             www.bio-rad.com/genomics/pcrsupport
CCL26 cDNA sequence
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT




                                   www.bio-rad.com/genomics/pcrsupport
Sequence Alignment (BLAST)
AMPLIFICATION




                                          •   Prior to designing primers, it’s
                                              a good idea to run a
                                              sequence homology analysis.
                                              (BLAST)

                                          •   This allows the identification
                                              of sequences that may co-
                                              amplify or interfere with our
                                              intended target.

                                          •   The data is freely available,
                                              so why not make use of it.




                                          •   http://blast.ncbi.nlm.nih.gov


                www.bio-rad.com/genomics/pcrsupport
CCL26 with homologous sequences
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT




                                   www.bio-rad.com/genomics/pcrsupport
CCL26 with homologous sequences
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT




                                   www.bio-rad.com/genomics/pcrsupport
2nd structure analysis of CCL26
AMPLIFICATION




                                          •   DNA is often seen as a linear
                                              polymer.

                                          •   In it’s single stranded state
                                              (cDNA) regions that have
                                              complimentary sequences will
                                              tend to hybridize generating
                                              hairpins that may inhibit
                                              primer annealing.

                                          •   Avoiding these sequences
                                              when possible will improve
                                              amplification effiecency.



                                          •   http://mfold.bioinfo.rpi.edu/cgi-bin/dna-
                                              form1.cgi




                www.bio-rad.com/genomics/pcrsupport
CCL26 with 2nd structures
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT




                                   www.bio-rad.com/genomics/pcrsupport
CCL26 with 2nd structures
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT




                                   www.bio-rad.com/genomics/pcrsupport
Amplicon size
AMPLIFICATION




           •    Classic qPCR rules dictate that amplification products be
                between 75 and 200 bp in length.

           •    These limits are not absolute. It is better to design a larger
                amplicon than to risk target specificity and primer annealing
                issues

           •    New “ultra fast” reagents allow much larger amplicons to be
                used in qPCR.




                                    www.bio-rad.com/genomics/pcrsupport
Design primers
AMPLIFICATION




                                          •    Some primer design packages will
                                               take both sequence homology and
                                               secondary structure issues into
                                               account when designing assays.

                                          •    Due to the restrictions imposed on
                                               the design software, they can fail.

                                          •    Although not recommended,
                                               designing assays by “thumb” can be
                                               performed.
    GCGGAATCTT TTCTGAAGGC TACATGGACC
                                          •    There are also databases of freely
                                               available primers and probes that
                                               have been previously tested.


                            www.bio-rad.com/genomics/pcrsupport
qPCR Target Information
AMPLIFICATION




                www.bio-rad.com/genomics/pcrsupport
qPCR Oligonucleotides
AMPLIFICATION




                www.bio-rad.com/genomics/pcrsupport
CCL26 primer design
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT




                                   www.bio-rad.com/genomics/pcrsupport
Using Thermal Gradients
AMPLIFICATION




           •    Thermal optimization is often the first parameter an individual
                using PCR will test to get the optimal reaction conditions.

           •    Unfortunately many qPCR users often ignore this parameter, as
                though antiquated, in favor of more elaborate primer design
                software packages.

           •    Finding the correct annealing temperature at which to run an
                assay is critical.




                                   www.bio-rad.com/genomics/pcrsupport
Using Thermal Gradients
AMPLIFICATION




    •     40 wells @ 5 ul each                          •    Prepare a master-mix for 40
                                                             wells


    •     100 ul       2X Supermix                      •    Primer concentration typically
                                                             between 200 and 500nM
    •           ul    forward primer (300nM)
    •           ul    reverse primer (300nM)
    •           ul    DNA or cDNA                       •    Critical parameter: amount of
                                                             DNA or cDNA used. Use as little
    •           ul    H20                                    as possible.
          ---------
    •     200 ul          total


                             Vortex!
                                     www.bio-rad.com/genomics/pcrsupport
Assay optimization
AMPLIFICATION




                               For 1             Rev 1
                   5’                                                                    3’
                                                              For 2              Rev 2

                                       For 1   For 2
                                       Rev 1   Rev 2




          10o above
           design
                           {
                5o below
                 design



                                           www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQTM SYBR® Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                                 www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Gradient analysis
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Optimal Annealing Range
AMPLIFICATION




                CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis


                                              www.bio-rad.com/genomics/pcrsupport
Effect of Annealing Temp on C(t)
AMPLIFICATION




                                                            C(t) vs Annealing Temp

                                      72

                                      70

                                      68

                                      66
                     Annealing Temp




                                      64

                                      62

                                      60

                                      58

                                      56

                                      54

                                      52
                                           25   30          35              40               45              50              55
                                                                           C(q)


            CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis




                                                     www.bio-rad.com/genomics/pcrsupport
Different reagents behave very differently
AMPLIFICATION




                                                  C(t) vs Annealing Temp                                                               C(t) vs Annealing Temp

                                   72                                                                                   72

                                   70                                                                                   70

                                   68                                                                                   68

                                   66                                                                                   66
                  Annealing Temp




                                                                                                       Annealing Temp
                                   64                                                                                   64

                                   62                                                                                   62

                                   60                                                                                   60

                                   58                                                                                   58

                                   56                                                                                   56

                                   54                                                                                   54

                                   52                                                                                   52
                                        25   30   35          40           45       50    55                                 25   30   35          40           45   50   55
                                                             C(q)                                                                                 C(q)


                CCl26 amplified using Bio-Rad Sso Fast EVA Green Supermix:                           CCl26 amplified using Other Reagent A: 5ul Assay
                5ul Assay98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt                            95oC 5min / 50x 95oC 15 sec 55-70oC 60 sec / melt analysis
                analysis


                                                  C(t) vs Annealing Temp                                                               C(t) vs Annealing Temp

                                   72                                                                                   72

                                   70                                                                                   70

                                   68                                                                                   68

                                   66                                                                                   66
                  Annealing Temp




                                                                                                       Annealing Temp
                                   64                                                                                   64

                                   62                                                                                   62

                                   60                                                                                   60

                                   58                                                                                   58

                                   56                                                                                   56

                                   54                                                                                   54

                                   52                                                                                   52
                                        25   30   35          40           45       50    55                                 25   30   35          40           45   50   55
                                                             C(q)                                                                                 C(q)


                CCl26 amplified using Other Reagent B: 5 ul Assay                                    CCl26 amplified using Other Reagent C: 5ul Assay
                95oC 20sec / 50x 95oC 3 sec 55-70oC 30 sec / melt analysis                           95oC 20sec / 50x 95oC 3 sec 55-70oC 30 sec / melt analysis

                                                                                www.bio-rad.com/genomics/pcrsupport
CCL26 primer design
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT




                                   www.bio-rad.com/genomics/pcrsupport
How did they fare?
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFastTM EVAGreen® Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
CCL26 primer design
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT




                                   www.bio-rad.com/genomics/pcrsupport
Assay Validation
AMPLIFICATION




           •    Assays must be validated to ensure target specificity, dynamic
                range and sensitivity.

           •    Specificity can be initially established using melt curve analysis
                but subsequently need to be confirmed using sequencing or
                another confirmatory tool.

           •    Dynamic range should cover the real life experimental range the
                assay will cover.

           •    If an assay needs to discriminate small differences, the assay’s
                capability to do so must be demonstrated.

           •    Additionally, very low copy and detection assays need to be
                validated using tools such as Poisson distribution analysis.


                                    www.bio-rad.com/genomics/pcrsupport
Validation of dynamic range and sensitivity
AMPLIFICATION




                                   •    Confirming dynamic range of an
                                        assay is as simple as generating
                                        a sequential dilution series and
                                        generating a standard curve.

                                   •    Dynamic range of assay should
                                        encompass the range of interest.

                                   •    There is very little use in having
                                        standard curve with a dynamic
                                        range spanning 8 orders when all
                                        the samples are within 10 fold of
                                        one another.




                www.bio-rad.com/genomics/pcrsupport
Large dynamic range
AMPLIFICATION




                        1/10      1/10         1/10       1/10      1/10     1/10          1/10     1/10
                                                                                                                      Blank




                10^9 copies            10^7 copies          10^5 copies            10^3 copies            10 copies

                         10^8 copies             10^6 copies         10^4 copies             100 copies




                                                     www.bio-rad.com/genomics/pcrsupport
Large dynamic range
AMPLIFICATION




           GAPDH amplified using Bio-Rad SsoFast EVAGreen Supermix: 20ul Assay   98oC 30sec / 50x 95oC 1 sec 60oC 1 sec / melt analysis




                                                   www.bio-rad.com/genomics/pcrsupport
High sensitivity assay
AMPLIFICATION




                          1/2         1/2       1/2       1/2        1/2      1/2        1/2        1/2
                                                                                                                    Blank




                25 ng / well          6.25 ng / well      1.56 ng / well       390 fg / well         98 fg / well

                          12.5 ng / well        3.13 ng / well      781 pg / well         195 fg / well




                                                www.bio-rad.com/genomics/pcrsupport
High sensitivity assay
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 58oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
High sensitivity assay
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 58oC 5 sec / melt analysis




                                                    www.bio-rad.com/genomics/pcrsupport
Standard Curve
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 58oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
qPCR Protocol
AMPLIFICATION




                www.bio-rad.com/genomics/pcrsupport
qPCR Validation
AMPLIFICATION




                www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




                                   •    Successful assay Design



                                   •    Conformance with MIQE
                                        guidelines

                                   •    Confidently move forward
                                        with experiments




                www.bio-rad.com/genomics/pcrsupport
Parameters for Consideration
AMPLIFICATION




          Sometimes a little additional optimization is
          required
                •   Primer concentration
                •   2nd structures on template
                •   AT rich regions
                •   Multiple assays on plate
                •   Amplicon Size
                •   Sequence homology
                •   Inhibitors




                              www.bio-rad.com/genomics/pcrsupport
Primer Titration
AMPLIFICATION




           •    Primer concentration plays an important role in qPCR
                amplification.

           •    Typical concentrations go from 200nM to 500nM but can vary
                from 50nM to 800nM and sometimes higher.

           •    High primer concentrations dramatically increase the incidence
                of non specific amplification and primer-dimers.

           •    Reasonably well designed assays work best at normal primer
                concentrations




                                  www.bio-rad.com/genomics/pcrsupport
100nM each Primer
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
100nM each Primer
AMPLIFICATION




                                                                                        Replicates Mean C(t) : 27.24

                                                                                         Standard Deviation : 0.284




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM each Primer
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM each Primer
AMPLIFICATION




                                                                                        Replicates Mean C(t) : 26.59

                                                                                         Standard Deviation : 0.184




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
300nM each Primer
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
300nM each Primer
AMPLIFICATION




                                                                                        Replicates Mean C(t) : 26.54

                                                                                         Standard Deviation : 0.185




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
400nM each Primer
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
400nM each Primer
AMPLIFICATION




                                                                                        Replicates Mean C(t) : 26.51

                                                                                         Standard Deviation : 0.269




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
600nM each Primer
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
600nM each Primer
AMPLIFICATION




                                                                                        Replicates Mean C(t) : 26.49

                                                                                         Standard Deviation : 0.233




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
800nM each Primer
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
800nM each Primer
AMPLIFICATION




                                                                                        Replicates Mean C(t) : 26.58

                                                                                         Standard Deviation : 0.193




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
300nM each Primer - Optimal
AMPLIFICATION




                                                                                        Replicates Mean C(t) : 26.54

                                                                                         Standard Deviation : 0.185




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
Melt curve
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
2nd Structures on template
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA       AAGACCCCAG      GGCCGTCTCA    GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG       TTTGGGAGAA      ACCTGAGAAG    GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC       TCCTTGGCCT      CTGCTGTGCT    CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG       AACTGCCACA      CGTGGGAGTG    ACATATCCAA
                GACCTGCTGC   TTCCAATACA       GCCACAAGCC      CCTTCCCTGG    ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT       AACAGCTGCT      CCCAGCGGGC    TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA       AGTCTGTACC      CATCCAAGGA    AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC       TGAAAACTCC      GAAACAATTG    TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC       TTGGACCCCG      CTCTTGGCTC    TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT       TTCTGAAGGC      TACATGGACC    CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG       AGTTACTTTA      ATAAAGGTTG    TTCATAGAGT
                TGACTTGTTC   AT

           Maintain forward primer at 200nM               Titer reverse primer



                                     www.bio-rad.com/genomics/pcrsupport
200nM forward -- 100nM reverse
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 100nM reverse
AMPLIFICATION




                                                                                     Replicates Mean C(t) : 35.91

                                                                                       Standard Deviation : 0.540




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 200nM reverse
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 200nM reverse
AMPLIFICATION




                                                                                     Replicates Mean C(t) : 31.13

                                                                                       Standard Deviation : 0.200




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 300nM reverse
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 300nM reverse
AMPLIFICATION




                                                                                     Replicates Mean C(t) : 29.33

                                                                                       Standard Deviation : 0.209




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 400nM reverse
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 400nM reverse
AMPLIFICATION




                                                                                     Replicates Mean C(t) : 28.20

                                                                                       Standard Deviation : 0.168




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 600nM reverse
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 600nM reverse
AMPLIFICATION




                                                                                     Replicates Mean C(t) : 27.19

                                                                                       Standard Deviation : 0.104




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 800nM reverse
AMPLIFICATION




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
200nM forward -- 800nM reverse
AMPLIFICATION




                                                                                     Replicates Mean C(t) : 26.95

                                                                                       Standard Deviation : 0.062




           CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay   98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis



                                                    www.bio-rad.com/genomics/pcrsupport
2nd Structures on template
AMPLIFICATION




           •    When working with a region of DNA known to have a secondary
                structure; it can be advantageous to increase the concentration
                of that primer, all the while maintaining the normal primer at
                regular levels.

           •    Caution must be used when using high primer concentrations to
                avoid nonspecific amplifications.

           •    When working with sequences rich in secondary structures,
                designing primers with higher annealing temperatures, 65oC and
                above, should be considered as the higher temperatures will
                help dissociate some of the structures.



                                  www.bio-rad.com/genomics/pcrsupport
AT rich sequences on template
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA       AAGACCCCAG      GGCCGTCTCA    GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG       TTTGGGAGAA      ACCTGAGAAG    GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC       TCCTTGGCCT      CTGCTGTGCT    CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG       AACTGCCACA      CGTGGGAGTG    ACATATCCAA
                GACCTGCTGC   TTCCAATACA       GCCACAAGCC      CCTTCCCTGG    ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT       AACAGCTGCT      CCCAGCGGGC    TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA       AGTCTGTACC      CATCCAAGGA    AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC       TGAAAACTCC      GAAACAATTG    TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC       TTGGACCCCG      CTCTTGGCTC    TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT       TTCTGAAGGC      TACATGGACC    CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG       AGTTACTTTA      ATAAAGGTTG    TTCATAGAGT
                TGACTTGTTC   AT

           Maintain forward primer at 200nM               Titer reverse primer



                                     www.bio-rad.com/genomics/pcrsupport
Running Multiple assays on the same plate
AMPLIFICATION




           • There is often a need to run multiple different assays
             on the same plate.

           • Assays should run under optimal conditions; with the
             proper annealing conditions.

           •     Adjusting primers and conditions can help solve
                these issues.




                                www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




    Different sized primers targeting same amplicon



                     16                                         16




                30                                                   30




                          www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




          Primer length – 16 bases

                                     www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




          Primer length – 18 bases

                                     www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




          Primer length – 20 bases

                                     www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




          Primer length – 22 bases

                                     www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




          Primer length – 24 bases

                                     www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




          Primer length – 26 bases

                                     www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




          Primer length – 28 bases

                                     www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




          Primer length – 30 bases

                                     www.bio-rad.com/genomics/pcrsupport
Running Multiple assays on the same plate
AMPLIFICATION




           •    Primer size can affect annealing dynamics.

           •    When annealing range is too low, primer concentration can be
                increased, or primer size can be increased.

           •    When annealing range is too high, primer size can be reduced.

           •    When increasing primer concentrations, as always specificity for
                the target must be evaluated.




                                   www.bio-rad.com/genomics/pcrsupport
Large amplicons
AMPLIFICATION




           •    Classic qPCR rules dictate that amplification products be
                between 75 and 200 bp in length.

           •    New “ultra fast” reagents allow much larger amplicons to be
                used in qPCR.

           •    Extending the size of the amplicon should be considered when
                trying to circumvent secondary structures, sequence homology
                and unfavorable regions.

           •    Proper validation is required.




                                    www.bio-rad.com/genomics/pcrsupport
Large amplicons – dynamic range
AMPLIFICATION




                                                         •B-Actin 1076 pb amplicon from plasmid

                                                         •109 to 10 copy per well 10 fold dilution
                109 copies                                 series

                                                         •5 ul asay run on CFX384 using Bio-
                                                           Rad’s SsoFast EVA Green Supermix
                                          10 copies
                                                         •Protocol : 98oC 3 min
                                                                     45 x 95oC 1 sec 66oC 5 sec
                                                                     melt curve




                             www.bio-rad.com/genomics/pcrsupport
Large amplicons - sensitivity
AMPLIFICATION




                                                          •B-Actin 1076 pb amplicon from plasmid

                                                          •105 to 200 copy per well 2 fold dilution
                                                            series
                105 copies
                                                          •5 ul asay run on CFX384 using Bio-
                                                           Rad’s SsoFast EVA Green Supermix
                                  200 copies
                                                          •Protocol : 98oC 3 min
                                                                      45 x 95oC 1 sec 66oC 5 sec
                                                                      melt curve




                             www.bio-rad.com/genomics/pcrsupport
Sequence Homology
AMPLIFICATION




           • Designing primers on a region of template sequence
             homologous to another gene should be avoided if
             possible.




                            www.bio-rad.com/genomics/pcrsupport
CCL26 with homologous sequences
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT



                             Poor specify is likely outcome

                                   www.bio-rad.com/genomics/pcrsupport
CCL26 with homologous sequences
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT



                                    Increased specify

                                   www.bio-rad.com/genomics/pcrsupport
CCL26 with homologous sequences
AMPLIFICATION




                CTGGAATTGA   GGCTGAGCCA   AAGACCCCAG        GGCCGTCTCA   GTCTCATAAA
                AGGGGATCAG   GCAGGAGGAG   TTTGGGAGAA        ACCTGAGAAG   GGCCTGATTT
                GCAGCATCAT   GATGGGCCTC   TCCTTGGCCT        CTGCTGTGCT   CCTGGCCTCC
                CTCCTGAGTC   TCCACCTTGG   AACTGCCACA        CGTGGGAGTG   ACATATCCAA
                GACCTGCTGC   TTCCAATACA   GCCACAAGCC        CCTTCCCTGG   ACCTGGGTGC
                GAAGCTATGA   ATTCACCAGT   AACAGCTGCT        CCCAGCGGGC   TGTGATATTC
                ACTACCAAAA   GAGGCAAGAA   AGTCTGTACC        CATCCAAGGA   AAAAATGGGT
                GCAAAAATAC   ATTTCTTTAC   TGAAAACTCC        GAAACAATTG   TGACTCAGCT
                GAATTTTCAT   CCGAGGACGC   TTGGACCCCG        CTCTTGGCTC   TGCAGCCCTC
                TGGGGAGCCT   GCGGAATCTT   TTCTGAAGGC        TACATGGACC   CGCTGGGGAG
                GAGAGGGTGT   TTCCTCCCAG   AGTTACTTTA        ATAAAGGTTG   TTCATAGAGT
                TGACTTGTTC   AT



                                With very difficult targets

                                   www.bio-rad.com/genomics/pcrsupport
Sequence Homology
AMPLIFICATION




           •    Designing primers on a region of template sequence
                homologous to another gene should be avoided if possible.

           •    When inevitable, a single primer can be designed to anneal on a
                homologous region for a series of genes. The other primer
                should be annealing on a clean region or one that has no
                homology with genes annealed by the first primer.

           •    Multiple primers should be designed and tested.

           •    If a single primer anneals multiple to targets, it will generate a
                linear amplification of DNA, where as, if both primers anneal, the
                amplification will be exponential.

                                   www.bio-rad.com/genomics/pcrsupport
Inhibitors
AMPLIFICATION




           •    PCR although a routine process, is an elegant dance, comprised
                of a series of complex processes and interactions between
                enzymes, primers, nucleotides, template DNA and buffer
                components.

           •    Inhibition can be caused by various chemicals, solvents, ions and
                peptides (to name a few).

           •    Since their presence is never uniformly distributed in samples,
                they cannot easily be corrected for in the reaction mix. They
                should be removed from the sample (as possible), or a supermix
                that can withstand this inhibitory effect should be used.



                                   www.bio-rad.com/genomics/pcrsupport
Blood Serum
AMPLIFICATION




                                                                                     <2.5 %

                                                                                     10 %



                CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay
                98oC 30sec / 50x95oC 1 sec 60oC 5 sec / melt analysis




                                  www.bio-rad.com/genomics/pcrsupport
Blood Serum
AMPLIFICATION




                                                              <0.0098 %
                                                              0.039 %                                                                <0.0089%


                                                                                                                                     0.039%



    CCl26 amplified using Bio-Rad iQ SYBR Green Supermix:                  CCl26 amplified using Other Reagent A: 5ul Assay
    5ul Assay 95oC 3 min / 50x 95oC 10 sec 60oC 60 sec / melt              95oC 5min / 50x 95oC 15 sec 60oC 60 sec / melt analysis




                                                                <0.0089%
                                                                                                                                     <0.0089%
                                                                0.039%
                                                                                                                                     0.039%


    CCl26 amplified using Other Reagent B: 5ul Assay                       CCl26 amplified using Other Reagent C: 5ul Assay
    95oC 20sec / 50x 95oC 3 sec 60oC 30 sec / melt analysis                95oC 20sec / 50x 95oC 3 sec 60oC 30 sec / melt analysis


                                                      www.bio-rad.com/genomics/pcrsupport
Understanding your assay
AMPLIFICATION




                www.bio-rad.com/genomics/pcrsupport
Speed - SsoFast
AMPLIFICATION




                                   SsoFast EvaGreen Supermix

                                   Sso7d from Sulfolobus solfataricus
                                         –   7kD, 63 aa.
                                         –   Thermostable (Tm >90°C)
                                         –   No sequence preference
                                         –   Binds to dsDNA (3-6 bp/protein molecule)
                                         –   Monomeric



                                   •   Minimal inhibition of PCR by use of
                                       EvaGreen

                                   •   Higher activity

                                   •   Tolerant to PCR inhibitors



                www.bio-rad.com/genomics/pcrsupport
Throughput
AMPLIFICATION




                               •   The CFX384 real-time PCR
                                   detection system brings flexibility
                                   and ease of use to researchers
                                   performing high-throughput real-
                                   time PCR in a 384-well format.

                               •   With up to 4-target detection,
                                   unsurpassed thermal cycler
                                   performance, and powerful, yet
                                   easy-to-use software, the CFX384
                                   system has been designed for the
                                   way you work.
                                     – FAST – shorten the time from
                                       experiment setup to results
                                     – FRIENDLY – a new standard for
                                       ease of use, delivering data you
                                       can trust with no maintenance
                                     – FLEXIBLE – customize a set up
                                       that fits individual laboratory needs



                www.bio-rad.com/genomics/pcrsupport
Conclusions
AMPLIFICATION




           •    The key to successful qPCR experiments lie with proper design,
                optimization and validation.

           •    qPCR assay optimization and dynamic range validation require
                very little time and effort and help guarantee that the results will
                be reproducible and comparable form experiment to experiment.

           •    Implementation of MIQE guidelines is almost seamless.

           •    If potentially interfering elements are discovered at the design
                and optimization phases, they can be accounted for and
                possibly corrected.

           •    Designing good assays does not have to be a “chore”, it can be
                quite fun!


                                    www.bio-rad.com/genomics/pcrsupport
AMPLIFICATION




           • Thank You!



                          • Questions?




                           www.bio-rad.com/genomics/pcrsupport

Mais conteúdo relacionado

Mais procurados

Critical Factors for Successful Real-Time PCR: Multiplex PCR
Critical Factors for Successful Real-Time PCR: Multiplex PCRCritical Factors for Successful Real-Time PCR: Multiplex PCR
Critical Factors for Successful Real-Time PCR: Multiplex PCRQIAGEN
 
Understanding Melt Curves for Improved SYBR® Green Assay Analysis and Trouble...
Understanding Melt Curves for Improved SYBR® Green Assay Analysis and Trouble...Understanding Melt Curves for Improved SYBR® Green Assay Analysis and Trouble...
Understanding Melt Curves for Improved SYBR® Green Assay Analysis and Trouble...Integrated DNA Technologies
 
Accurate detection of low frequency genetic variants using novel, molecular t...
Accurate detection of low frequency genetic variants using novel, molecular t...Accurate detection of low frequency genetic variants using novel, molecular t...
Accurate detection of low frequency genetic variants using novel, molecular t...Integrated DNA Technologies
 
Characterizing Alzheimer’s Disease candidate genes and transcripts with targe...
Characterizing Alzheimer’s Disease candidate genes and transcripts with targe...Characterizing Alzheimer’s Disease candidate genes and transcripts with targe...
Characterizing Alzheimer’s Disease candidate genes and transcripts with targe...Integrated DNA Technologies
 
1073958 wp guide-develop-pcr_primers_1012
1073958 wp guide-develop-pcr_primers_10121073958 wp guide-develop-pcr_primers_1012
1073958 wp guide-develop-pcr_primers_1012Elsa von Licy
 
Investigate the Molecular Basis of Disease
Investigate the Molecular Basis of DiseaseInvestigate the Molecular Basis of Disease
Investigate the Molecular Basis of DiseaseQIAGEN
 
Advanced miRNA Expression Analysis: miRNA and its Role in Human Disease Webin...
Advanced miRNA Expression Analysis: miRNA and its Role in Human Disease Webin...Advanced miRNA Expression Analysis: miRNA and its Role in Human Disease Webin...
Advanced miRNA Expression Analysis: miRNA and its Role in Human Disease Webin...QIAGEN
 
Overcoming the challenges of designing efficient and specific CRISPR gRNAs
Overcoming the challenges of designing efficient and specific CRISPR gRNAsOvercoming the challenges of designing efficient and specific CRISPR gRNAs
Overcoming the challenges of designing efficient and specific CRISPR gRNAsIntegrated DNA Technologies
 
High throughput qPCR: tips for analysis across multiple plates
High throughput qPCR: tips for analysis across multiple platesHigh throughput qPCR: tips for analysis across multiple plates
High throughput qPCR: tips for analysis across multiple platesIntegrated DNA Technologies
 
SNP genotyping on qPCR platforms: Troubleshooting for amplification and clust...
SNP genotyping on qPCR platforms: Troubleshooting for amplification and clust...SNP genotyping on qPCR platforms: Troubleshooting for amplification and clust...
SNP genotyping on qPCR platforms: Troubleshooting for amplification and clust...Integrated DNA Technologies
 
New Progress in Pyrosequencing for DNA Methylation
New Progress in Pyrosequencing for DNA MethylationNew Progress in Pyrosequencing for DNA Methylation
New Progress in Pyrosequencing for DNA MethylationQIAGEN
 
High efficiency qPCR with PrimeTime® Gene Expression Master Mix from IDT
High efficiency qPCR with PrimeTime® Gene Expression Master Mix from IDTHigh efficiency qPCR with PrimeTime® Gene Expression Master Mix from IDT
High efficiency qPCR with PrimeTime® Gene Expression Master Mix from IDTIntegrated DNA Technologies
 
SEQme qPCR Course 2017_ENG-SlideShare
SEQme qPCR Course 2017_ENG-SlideShareSEQme qPCR Course 2017_ENG-SlideShare
SEQme qPCR Course 2017_ENG-SlideShareRichard Nadvornik
 
The Importance of Quality Control Steps in Experiments
The Importance of Quality Control Steps in ExperimentsThe Importance of Quality Control Steps in Experiments
The Importance of Quality Control Steps in ExperimentsQIAGEN
 
rhAmp™ SNP Genotyping: A novel approach for improving PCR-based SNP genotyping
rhAmp™ SNP Genotyping: A novel approach for improving PCR-based SNP genotypingrhAmp™ SNP Genotyping: A novel approach for improving PCR-based SNP genotyping
rhAmp™ SNP Genotyping: A novel approach for improving PCR-based SNP genotypingIntegrated DNA Technologies
 
The importance of controls and novel solutions for successful real-time qPCR
The importance of controls and novel solutions for successful real-time qPCRThe importance of controls and novel solutions for successful real-time qPCR
The importance of controls and novel solutions for successful real-time qPCRQIAGEN
 
RT2 Profiler PCR Arrays: Pathway-focused Gene Expression Profiling with qRT-P...
RT2 Profiler PCR Arrays: Pathway-focused Gene Expression Profiling with qRT-P...RT2 Profiler PCR Arrays: Pathway-focused Gene Expression Profiling with qRT-P...
RT2 Profiler PCR Arrays: Pathway-focused Gene Expression Profiling with qRT-P...QIAGEN
 
Chipqpcrpresentation
ChipqpcrpresentationChipqpcrpresentation
ChipqpcrpresentationElsa von Licy
 

Mais procurados (20)

Critical Factors for Successful Real-Time PCR: Multiplex PCR
Critical Factors for Successful Real-Time PCR: Multiplex PCRCritical Factors for Successful Real-Time PCR: Multiplex PCR
Critical Factors for Successful Real-Time PCR: Multiplex PCR
 
Understanding Melt Curves for Improved SYBR® Green Assay Analysis and Trouble...
Understanding Melt Curves for Improved SYBR® Green Assay Analysis and Trouble...Understanding Melt Curves for Improved SYBR® Green Assay Analysis and Trouble...
Understanding Melt Curves for Improved SYBR® Green Assay Analysis and Trouble...
 
Curso de Genómica - UAT (VHIR) 2012 - Análisis de datos de RT-qPCR
Curso de Genómica - UAT (VHIR) 2012 - Análisis de datos de RT-qPCRCurso de Genómica - UAT (VHIR) 2012 - Análisis de datos de RT-qPCR
Curso de Genómica - UAT (VHIR) 2012 - Análisis de datos de RT-qPCR
 
Accurate detection of low frequency genetic variants using novel, molecular t...
Accurate detection of low frequency genetic variants using novel, molecular t...Accurate detection of low frequency genetic variants using novel, molecular t...
Accurate detection of low frequency genetic variants using novel, molecular t...
 
PrimeTime® qPCR products for gene expression
PrimeTime® qPCR products for gene expressionPrimeTime® qPCR products for gene expression
PrimeTime® qPCR products for gene expression
 
Characterizing Alzheimer’s Disease candidate genes and transcripts with targe...
Characterizing Alzheimer’s Disease candidate genes and transcripts with targe...Characterizing Alzheimer’s Disease candidate genes and transcripts with targe...
Characterizing Alzheimer’s Disease candidate genes and transcripts with targe...
 
1073958 wp guide-develop-pcr_primers_1012
1073958 wp guide-develop-pcr_primers_10121073958 wp guide-develop-pcr_primers_1012
1073958 wp guide-develop-pcr_primers_1012
 
Investigate the Molecular Basis of Disease
Investigate the Molecular Basis of DiseaseInvestigate the Molecular Basis of Disease
Investigate the Molecular Basis of Disease
 
Advanced miRNA Expression Analysis: miRNA and its Role in Human Disease Webin...
Advanced miRNA Expression Analysis: miRNA and its Role in Human Disease Webin...Advanced miRNA Expression Analysis: miRNA and its Role in Human Disease Webin...
Advanced miRNA Expression Analysis: miRNA and its Role in Human Disease Webin...
 
Overcoming the challenges of designing efficient and specific CRISPR gRNAs
Overcoming the challenges of designing efficient and specific CRISPR gRNAsOvercoming the challenges of designing efficient and specific CRISPR gRNAs
Overcoming the challenges of designing efficient and specific CRISPR gRNAs
 
High throughput qPCR: tips for analysis across multiple plates
High throughput qPCR: tips for analysis across multiple platesHigh throughput qPCR: tips for analysis across multiple plates
High throughput qPCR: tips for analysis across multiple plates
 
SNP genotyping on qPCR platforms: Troubleshooting for amplification and clust...
SNP genotyping on qPCR platforms: Troubleshooting for amplification and clust...SNP genotyping on qPCR platforms: Troubleshooting for amplification and clust...
SNP genotyping on qPCR platforms: Troubleshooting for amplification and clust...
 
New Progress in Pyrosequencing for DNA Methylation
New Progress in Pyrosequencing for DNA MethylationNew Progress in Pyrosequencing for DNA Methylation
New Progress in Pyrosequencing for DNA Methylation
 
High efficiency qPCR with PrimeTime® Gene Expression Master Mix from IDT
High efficiency qPCR with PrimeTime® Gene Expression Master Mix from IDTHigh efficiency qPCR with PrimeTime® Gene Expression Master Mix from IDT
High efficiency qPCR with PrimeTime® Gene Expression Master Mix from IDT
 
SEQme qPCR Course 2017_ENG-SlideShare
SEQme qPCR Course 2017_ENG-SlideShareSEQme qPCR Course 2017_ENG-SlideShare
SEQme qPCR Course 2017_ENG-SlideShare
 
The Importance of Quality Control Steps in Experiments
The Importance of Quality Control Steps in ExperimentsThe Importance of Quality Control Steps in Experiments
The Importance of Quality Control Steps in Experiments
 
rhAmp™ SNP Genotyping: A novel approach for improving PCR-based SNP genotyping
rhAmp™ SNP Genotyping: A novel approach for improving PCR-based SNP genotypingrhAmp™ SNP Genotyping: A novel approach for improving PCR-based SNP genotyping
rhAmp™ SNP Genotyping: A novel approach for improving PCR-based SNP genotyping
 
The importance of controls and novel solutions for successful real-time qPCR
The importance of controls and novel solutions for successful real-time qPCRThe importance of controls and novel solutions for successful real-time qPCR
The importance of controls and novel solutions for successful real-time qPCR
 
RT2 Profiler PCR Arrays: Pathway-focused Gene Expression Profiling with qRT-P...
RT2 Profiler PCR Arrays: Pathway-focused Gene Expression Profiling with qRT-P...RT2 Profiler PCR Arrays: Pathway-focused Gene Expression Profiling with qRT-P...
RT2 Profiler PCR Arrays: Pathway-focused Gene Expression Profiling with qRT-P...
 
Chipqpcrpresentation
ChipqpcrpresentationChipqpcrpresentation
Chipqpcrpresentation
 

Destaque

Introduction to High Resolution Melt Analysis
Introduction to High Resolution Melt AnalysisIntroduction to High Resolution Melt Analysis
Introduction to High Resolution Melt AnalysisAmerican Biotechnologist
 
Tissue Microarray presentation
Tissue Microarray presentationTissue Microarray presentation
Tissue Microarray presentationFolio Bio
 
Introduction to Real Time PCR (Q-PCR/qPCR/qrt-PCR): qPCR Technology Webinar S...
Introduction to Real Time PCR (Q-PCR/qPCR/qrt-PCR): qPCR Technology Webinar S...Introduction to Real Time PCR (Q-PCR/qPCR/qrt-PCR): qPCR Technology Webinar S...
Introduction to Real Time PCR (Q-PCR/qPCR/qrt-PCR): qPCR Technology Webinar S...QIAGEN
 
126 micro array study for gene expression
126 micro array study for gene expression126 micro array study for gene expression
126 micro array study for gene expressionSHAPE Society
 
Molecular Methods for Diagnosis of Genetic Diseases
Molecular Methods for Diagnosis of Genetic DiseasesMolecular Methods for Diagnosis of Genetic Diseases
Molecular Methods for Diagnosis of Genetic DiseasesMohammad Al-Haggar
 
Troubleshooting qPCR: What Are My Amplification Curves Telling Me?
Troubleshooting qPCR: What Are My Amplification Curves Telling Me?Troubleshooting qPCR: What Are My Amplification Curves Telling Me?
Troubleshooting qPCR: What Are My Amplification Curves Telling Me?Integrated DNA Technologies
 
Troubleshooting qPCR: What are my amplification curves telling me?
Troubleshooting qPCR: What are my amplification curves telling me?Troubleshooting qPCR: What are my amplification curves telling me?
Troubleshooting qPCR: What are my amplification curves telling me?Integrated DNA Technologies
 

Destaque (10)

Pcr & dna microarray
Pcr & dna microarrayPcr & dna microarray
Pcr & dna microarray
 
Introduction to High Resolution Melt Analysis
Introduction to High Resolution Melt AnalysisIntroduction to High Resolution Melt Analysis
Introduction to High Resolution Melt Analysis
 
Tissue Microarray presentation
Tissue Microarray presentationTissue Microarray presentation
Tissue Microarray presentation
 
Introduction to Real Time PCR (Q-PCR/qPCR/qrt-PCR): qPCR Technology Webinar S...
Introduction to Real Time PCR (Q-PCR/qPCR/qrt-PCR): qPCR Technology Webinar S...Introduction to Real Time PCR (Q-PCR/qPCR/qrt-PCR): qPCR Technology Webinar S...
Introduction to Real Time PCR (Q-PCR/qPCR/qrt-PCR): qPCR Technology Webinar S...
 
126 micro array study for gene expression
126 micro array study for gene expression126 micro array study for gene expression
126 micro array study for gene expression
 
Microarray
MicroarrayMicroarray
Microarray
 
Molecular Methods for Diagnosis of Genetic Diseases
Molecular Methods for Diagnosis of Genetic DiseasesMolecular Methods for Diagnosis of Genetic Diseases
Molecular Methods for Diagnosis of Genetic Diseases
 
Troubleshooting qPCR: What Are My Amplification Curves Telling Me?
Troubleshooting qPCR: What Are My Amplification Curves Telling Me?Troubleshooting qPCR: What Are My Amplification Curves Telling Me?
Troubleshooting qPCR: What Are My Amplification Curves Telling Me?
 
Troubleshooting qPCR: What are my amplification curves telling me?
Troubleshooting qPCR: What are my amplification curves telling me?Troubleshooting qPCR: What are my amplification curves telling me?
Troubleshooting qPCR: What are my amplification curves telling me?
 
miRNA
miRNAmiRNA
miRNA
 

Semelhante a A practical approach to assay design for qPCR

Amplicon sequencing slides - Trina McMahon - MEWE 2013
Amplicon sequencing slides - Trina McMahon - MEWE 2013Amplicon sequencing slides - Trina McMahon - MEWE 2013
Amplicon sequencing slides - Trina McMahon - MEWE 2013mcmahonUW
 
Somatic mutation webinar
Somatic mutation webinarSomatic mutation webinar
Somatic mutation webinarElsa von Licy
 
I psc and stem cell 2013
I psc and stem cell 2013I psc and stem cell 2013
I psc and stem cell 2013Elsa von Licy
 
Full-length cDNA Sequencing.pdf
Full-length cDNA Sequencing.pdfFull-length cDNA Sequencing.pdf
Full-length cDNA Sequencing.pdfATPowr
 
Massively Parallel Sequencing - integrating the Ion PGM™ sequencer into your ...
Massively Parallel Sequencing - integrating the Ion PGM™ sequencer into your ...Massively Parallel Sequencing - integrating the Ion PGM™ sequencer into your ...
Massively Parallel Sequencing - integrating the Ion PGM™ sequencer into your ...Thermo Fisher Scientific
 
Biochain PCR Products
Biochain PCR ProductsBiochain PCR Products
Biochain PCR Productsbiochain
 
Research Program Genetic Gains (RPGG) Review Meeting 2021: Forward Breeding: ...
Research Program Genetic Gains (RPGG) Review Meeting 2021: Forward Breeding: ...Research Program Genetic Gains (RPGG) Review Meeting 2021: Forward Breeding: ...
Research Program Genetic Gains (RPGG) Review Meeting 2021: Forward Breeding: ...ICRISAT
 
Recombinant dna technology
Recombinant dna technologyRecombinant dna technology
Recombinant dna technologyDr. Armaan Singh
 
GCP and Conduct in Clinical Research - FINAL
GCP and Conduct in Clinical Research - FINALGCP and Conduct in Clinical Research - FINAL
GCP and Conduct in Clinical Research - FINALSamuel May
 
DNA Analysis - Basic Research : A Case Study
DNA Analysis - Basic Research : A Case StudyDNA Analysis - Basic Research : A Case Study
DNA Analysis - Basic Research : A Case StudyQIAGEN
 
160628 giab for festival of genomics
160628 giab for festival of genomics160628 giab for festival of genomics
160628 giab for festival of genomicsGenomeInABottle
 
HIV Vaccines Process Development & Manufacturing - Pitfalls & Possibilities
HIV Vaccines Process Development & Manufacturing - Pitfalls & PossibilitiesHIV Vaccines Process Development & Manufacturing - Pitfalls & Possibilities
HIV Vaccines Process Development & Manufacturing - Pitfalls & PossibilitiesKBI Biopharma
 
2012 10-24 - ngs webinar
2012 10-24 - ngs webinar2012 10-24 - ngs webinar
2012 10-24 - ngs webinarElsa von Licy
 

Semelhante a A practical approach to assay design for qPCR (20)

Amplicon sequencing slides - Trina McMahon - MEWE 2013
Amplicon sequencing slides - Trina McMahon - MEWE 2013Amplicon sequencing slides - Trina McMahon - MEWE 2013
Amplicon sequencing slides - Trina McMahon - MEWE 2013
 
Somatic mutation webinar
Somatic mutation webinarSomatic mutation webinar
Somatic mutation webinar
 
Molecular markers
Molecular markersMolecular markers
Molecular markers
 
I psc and stem cell 2013
I psc and stem cell 2013I psc and stem cell 2013
I psc and stem cell 2013
 
Full-length cDNA Sequencing.pdf
Full-length cDNA Sequencing.pdfFull-length cDNA Sequencing.pdf
Full-length cDNA Sequencing.pdf
 
2023 GIAB AMP Update
2023 GIAB AMP Update2023 GIAB AMP Update
2023 GIAB AMP Update
 
Massively Parallel Sequencing - integrating the Ion PGM™ sequencer into your ...
Massively Parallel Sequencing - integrating the Ion PGM™ sequencer into your ...Massively Parallel Sequencing - integrating the Ion PGM™ sequencer into your ...
Massively Parallel Sequencing - integrating the Ion PGM™ sequencer into your ...
 
Biochain PCR Products
Biochain PCR ProductsBiochain PCR Products
Biochain PCR Products
 
Research Program Genetic Gains (RPGG) Review Meeting 2021: Forward Breeding: ...
Research Program Genetic Gains (RPGG) Review Meeting 2021: Forward Breeding: ...Research Program Genetic Gains (RPGG) Review Meeting 2021: Forward Breeding: ...
Research Program Genetic Gains (RPGG) Review Meeting 2021: Forward Breeding: ...
 
Recombinant dna technology
Recombinant dna technologyRecombinant dna technology
Recombinant dna technology
 
GCP and Conduct in Clinical Research - FINAL
GCP and Conduct in Clinical Research - FINALGCP and Conduct in Clinical Research - FINAL
GCP and Conduct in Clinical Research - FINAL
 
DNA Analysis - Basic Research : A Case Study
DNA Analysis - Basic Research : A Case StudyDNA Analysis - Basic Research : A Case Study
DNA Analysis - Basic Research : A Case Study
 
Submitted sequence (strains)
Submitted sequence (strains)Submitted sequence (strains)
Submitted sequence (strains)
 
Snapgene
SnapgeneSnapgene
Snapgene
 
Dario Lijtmaer - PCR Amplification
Dario Lijtmaer - PCR AmplificationDario Lijtmaer - PCR Amplification
Dario Lijtmaer - PCR Amplification
 
Abrf 2017 hadfield j
Abrf 2017 hadfield jAbrf 2017 hadfield j
Abrf 2017 hadfield j
 
Mutation pp
Mutation ppMutation pp
Mutation pp
 
160628 giab for festival of genomics
160628 giab for festival of genomics160628 giab for festival of genomics
160628 giab for festival of genomics
 
HIV Vaccines Process Development & Manufacturing - Pitfalls & Possibilities
HIV Vaccines Process Development & Manufacturing - Pitfalls & PossibilitiesHIV Vaccines Process Development & Manufacturing - Pitfalls & Possibilities
HIV Vaccines Process Development & Manufacturing - Pitfalls & Possibilities
 
2012 10-24 - ngs webinar
2012 10-24 - ngs webinar2012 10-24 - ngs webinar
2012 10-24 - ngs webinar
 

Último

ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 

Último (20)

ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 

A practical approach to assay design for qPCR

  • 1. A Practical Approach to Assay Design for qPCR Overcoming Difficult Assays, Designs and Optimization while Conforming to the MIQE Guidelines Francisco Bizouarn International Field Application Specialist Gene Expression Division Bio-Rad Laboratories
  • 2. A new beginning. AMPLIFICATION www.bio-rad.com/genomics/pcrsupport
  • 3. What is MIQE? It’s a Checklist AMPLIFICATION • qPCR community driven guidelines for essential and desired information in litterature; – Experimental Design – Sample Information – Nucleic Acid Extraction – Reverse Transcription – qPCR Target Information – qPCR Oligonucleotides – qPCR Protocol – qPCR Validation – Data Analysis www.bio-rad.com/genomics/pcrsupport
  • 4. Generating a good assay is easy AMPLIFICATION • Following a few simple steps: – Design assay – Run a gradient – Run a dilution series to validate assay dynamic range • Meeting MIQE guidelines requires very little additional effort. – Target Information – Oligonucleotide information – Protocol – qPCR Protocolalidation www.bio-rad.com/genomics/pcrsupport
  • 5. What is MIQE? It’s a Checklist AMPLIFICATION • qPCR community driven guidelines for essential and desired information in litterature; – Experimental Design – Sample Information – Nucleic Acid Extraction – Reverse Transcription – qPCR Target Information – qPCR Oligonucleotides – qPCR Protocol – qPCR Validation – Data Analysis www.bio-rad.com/genomics/pcrsupport
  • 6. Assay design AMPLIFICATION • Often oversimplified by the use of software or by many companies that offer design services. • Design a critical parameter. • Following a few simple steps will increase the chances of designing a successful assay. • Let’s use an example: target CCL26 in HUVEC cells www.bio-rad.com/genomics/pcrsupport
  • 7. CCL26 cDNA sequence AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT www.bio-rad.com/genomics/pcrsupport
  • 8. Sequence Alignment (BLAST) AMPLIFICATION • Prior to designing primers, it’s a good idea to run a sequence homology analysis. (BLAST) • This allows the identification of sequences that may co- amplify or interfere with our intended target. • The data is freely available, so why not make use of it. • http://blast.ncbi.nlm.nih.gov www.bio-rad.com/genomics/pcrsupport
  • 9. CCL26 with homologous sequences AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT www.bio-rad.com/genomics/pcrsupport
  • 10. CCL26 with homologous sequences AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT www.bio-rad.com/genomics/pcrsupport
  • 11. 2nd structure analysis of CCL26 AMPLIFICATION • DNA is often seen as a linear polymer. • In it’s single stranded state (cDNA) regions that have complimentary sequences will tend to hybridize generating hairpins that may inhibit primer annealing. • Avoiding these sequences when possible will improve amplification effiecency. • http://mfold.bioinfo.rpi.edu/cgi-bin/dna- form1.cgi www.bio-rad.com/genomics/pcrsupport
  • 12. CCL26 with 2nd structures AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT www.bio-rad.com/genomics/pcrsupport
  • 13. CCL26 with 2nd structures AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT www.bio-rad.com/genomics/pcrsupport
  • 14. Amplicon size AMPLIFICATION • Classic qPCR rules dictate that amplification products be between 75 and 200 bp in length. • These limits are not absolute. It is better to design a larger amplicon than to risk target specificity and primer annealing issues • New “ultra fast” reagents allow much larger amplicons to be used in qPCR. www.bio-rad.com/genomics/pcrsupport
  • 15. Design primers AMPLIFICATION • Some primer design packages will take both sequence homology and secondary structure issues into account when designing assays. • Due to the restrictions imposed on the design software, they can fail. • Although not recommended, designing assays by “thumb” can be performed. GCGGAATCTT TTCTGAAGGC TACATGGACC • There are also databases of freely available primers and probes that have been previously tested. www.bio-rad.com/genomics/pcrsupport
  • 16. qPCR Target Information AMPLIFICATION www.bio-rad.com/genomics/pcrsupport
  • 17. qPCR Oligonucleotides AMPLIFICATION www.bio-rad.com/genomics/pcrsupport
  • 18. CCL26 primer design AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT www.bio-rad.com/genomics/pcrsupport
  • 19. Using Thermal Gradients AMPLIFICATION • Thermal optimization is often the first parameter an individual using PCR will test to get the optimal reaction conditions. • Unfortunately many qPCR users often ignore this parameter, as though antiquated, in favor of more elaborate primer design software packages. • Finding the correct annealing temperature at which to run an assay is critical. www.bio-rad.com/genomics/pcrsupport
  • 20. Using Thermal Gradients AMPLIFICATION • 40 wells @ 5 ul each • Prepare a master-mix for 40 wells • 100 ul 2X Supermix • Primer concentration typically between 200 and 500nM • ul forward primer (300nM) • ul reverse primer (300nM) • ul DNA or cDNA • Critical parameter: amount of DNA or cDNA used. Use as little • ul H20 as possible. --------- • 200 ul total Vortex! www.bio-rad.com/genomics/pcrsupport
  • 21. Assay optimization AMPLIFICATION For 1 Rev 1 5’ 3’ For 2 Rev 2 For 1 For 2 Rev 1 Rev 2 10o above design { 5o below design www.bio-rad.com/genomics/pcrsupport
  • 22. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQTM SYBR® Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 23. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 24. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 25. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 26. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 27. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 28. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 29. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 30. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 31. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 32. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 33. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 34. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 35. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 36. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 37. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 38. Gradient analysis AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 39. Optimal Annealing Range AMPLIFICATION CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 40. Effect of Annealing Temp on C(t) AMPLIFICATION C(t) vs Annealing Temp 72 70 68 66 Annealing Temp 64 62 60 58 56 54 52 25 30 35 40 45 50 55 C(q) CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: 5ul Assay 95oC 60sec / 50x95oC 10 sec 55-70oC 60 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 41. Different reagents behave very differently AMPLIFICATION C(t) vs Annealing Temp C(t) vs Annealing Temp 72 72 70 70 68 68 66 66 Annealing Temp Annealing Temp 64 64 62 62 60 60 58 58 56 56 54 54 52 52 25 30 35 40 45 50 55 25 30 35 40 45 50 55 C(q) C(q) CCl26 amplified using Bio-Rad Sso Fast EVA Green Supermix: CCl26 amplified using Other Reagent A: 5ul Assay 5ul Assay98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt 95oC 5min / 50x 95oC 15 sec 55-70oC 60 sec / melt analysis analysis C(t) vs Annealing Temp C(t) vs Annealing Temp 72 72 70 70 68 68 66 66 Annealing Temp Annealing Temp 64 64 62 62 60 60 58 58 56 56 54 54 52 52 25 30 35 40 45 50 55 25 30 35 40 45 50 55 C(q) C(q) CCl26 amplified using Other Reagent B: 5 ul Assay CCl26 amplified using Other Reagent C: 5ul Assay 95oC 20sec / 50x 95oC 3 sec 55-70oC 30 sec / melt analysis 95oC 20sec / 50x 95oC 3 sec 55-70oC 30 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 42. CCL26 primer design AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT www.bio-rad.com/genomics/pcrsupport
  • 43. How did they fare? AMPLIFICATION CCl26 amplified using Bio-Rad SsoFastTM EVAGreen® Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 44. CCL26 primer design AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT www.bio-rad.com/genomics/pcrsupport
  • 45. Assay Validation AMPLIFICATION • Assays must be validated to ensure target specificity, dynamic range and sensitivity. • Specificity can be initially established using melt curve analysis but subsequently need to be confirmed using sequencing or another confirmatory tool. • Dynamic range should cover the real life experimental range the assay will cover. • If an assay needs to discriminate small differences, the assay’s capability to do so must be demonstrated. • Additionally, very low copy and detection assays need to be validated using tools such as Poisson distribution analysis. www.bio-rad.com/genomics/pcrsupport
  • 46. Validation of dynamic range and sensitivity AMPLIFICATION • Confirming dynamic range of an assay is as simple as generating a sequential dilution series and generating a standard curve. • Dynamic range of assay should encompass the range of interest. • There is very little use in having standard curve with a dynamic range spanning 8 orders when all the samples are within 10 fold of one another. www.bio-rad.com/genomics/pcrsupport
  • 47. Large dynamic range AMPLIFICATION 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 Blank 10^9 copies 10^7 copies 10^5 copies 10^3 copies 10 copies 10^8 copies 10^6 copies 10^4 copies 100 copies www.bio-rad.com/genomics/pcrsupport
  • 48. Large dynamic range AMPLIFICATION GAPDH amplified using Bio-Rad SsoFast EVAGreen Supermix: 20ul Assay 98oC 30sec / 50x 95oC 1 sec 60oC 1 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 49. High sensitivity assay AMPLIFICATION 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 Blank 25 ng / well 6.25 ng / well 1.56 ng / well 390 fg / well 98 fg / well 12.5 ng / well 3.13 ng / well 781 pg / well 195 fg / well www.bio-rad.com/genomics/pcrsupport
  • 50. High sensitivity assay AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 58oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 51. High sensitivity assay AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 58oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 52. Standard Curve AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 58oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 53. qPCR Protocol AMPLIFICATION www.bio-rad.com/genomics/pcrsupport
  • 54. qPCR Validation AMPLIFICATION www.bio-rad.com/genomics/pcrsupport
  • 55. AMPLIFICATION • Successful assay Design • Conformance with MIQE guidelines • Confidently move forward with experiments www.bio-rad.com/genomics/pcrsupport
  • 56. Parameters for Consideration AMPLIFICATION Sometimes a little additional optimization is required • Primer concentration • 2nd structures on template • AT rich regions • Multiple assays on plate • Amplicon Size • Sequence homology • Inhibitors www.bio-rad.com/genomics/pcrsupport
  • 57. Primer Titration AMPLIFICATION • Primer concentration plays an important role in qPCR amplification. • Typical concentrations go from 200nM to 500nM but can vary from 50nM to 800nM and sometimes higher. • High primer concentrations dramatically increase the incidence of non specific amplification and primer-dimers. • Reasonably well designed assays work best at normal primer concentrations www.bio-rad.com/genomics/pcrsupport
  • 58. 100nM each Primer AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 59. 100nM each Primer AMPLIFICATION Replicates Mean C(t) : 27.24 Standard Deviation : 0.284 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 60. 200nM each Primer AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 61. 200nM each Primer AMPLIFICATION Replicates Mean C(t) : 26.59 Standard Deviation : 0.184 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 62. 300nM each Primer AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 63. 300nM each Primer AMPLIFICATION Replicates Mean C(t) : 26.54 Standard Deviation : 0.185 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 64. 400nM each Primer AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 65. 400nM each Primer AMPLIFICATION Replicates Mean C(t) : 26.51 Standard Deviation : 0.269 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 66. 600nM each Primer AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 67. 600nM each Primer AMPLIFICATION Replicates Mean C(t) : 26.49 Standard Deviation : 0.233 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 68. 800nM each Primer AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 69. 800nM each Primer AMPLIFICATION Replicates Mean C(t) : 26.58 Standard Deviation : 0.193 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 70. 300nM each Primer - Optimal AMPLIFICATION Replicates Mean C(t) : 26.54 Standard Deviation : 0.185 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 71. Melt curve AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 72. 2nd Structures on template AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT Maintain forward primer at 200nM Titer reverse primer www.bio-rad.com/genomics/pcrsupport
  • 73. 200nM forward -- 100nM reverse AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 74. 200nM forward -- 100nM reverse AMPLIFICATION Replicates Mean C(t) : 35.91 Standard Deviation : 0.540 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 75. 200nM forward -- 200nM reverse AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 76. 200nM forward -- 200nM reverse AMPLIFICATION Replicates Mean C(t) : 31.13 Standard Deviation : 0.200 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 77. 200nM forward -- 300nM reverse AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 78. 200nM forward -- 300nM reverse AMPLIFICATION Replicates Mean C(t) : 29.33 Standard Deviation : 0.209 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 79. 200nM forward -- 400nM reverse AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 80. 200nM forward -- 400nM reverse AMPLIFICATION Replicates Mean C(t) : 28.20 Standard Deviation : 0.168 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 81. 200nM forward -- 600nM reverse AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 82. 200nM forward -- 600nM reverse AMPLIFICATION Replicates Mean C(t) : 27.19 Standard Deviation : 0.104 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 83. 200nM forward -- 800nM reverse AMPLIFICATION CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 84. 200nM forward -- 800nM reverse AMPLIFICATION Replicates Mean C(t) : 26.95 Standard Deviation : 0.062 CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x 95oC 1 sec 55-70oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 85. 2nd Structures on template AMPLIFICATION • When working with a region of DNA known to have a secondary structure; it can be advantageous to increase the concentration of that primer, all the while maintaining the normal primer at regular levels. • Caution must be used when using high primer concentrations to avoid nonspecific amplifications. • When working with sequences rich in secondary structures, designing primers with higher annealing temperatures, 65oC and above, should be considered as the higher temperatures will help dissociate some of the structures. www.bio-rad.com/genomics/pcrsupport
  • 86. AT rich sequences on template AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT Maintain forward primer at 200nM Titer reverse primer www.bio-rad.com/genomics/pcrsupport
  • 87. Running Multiple assays on the same plate AMPLIFICATION • There is often a need to run multiple different assays on the same plate. • Assays should run under optimal conditions; with the proper annealing conditions. • Adjusting primers and conditions can help solve these issues. www.bio-rad.com/genomics/pcrsupport
  • 88. AMPLIFICATION Different sized primers targeting same amplicon 16 16 30 30 www.bio-rad.com/genomics/pcrsupport
  • 89. AMPLIFICATION Primer length – 16 bases www.bio-rad.com/genomics/pcrsupport
  • 90. AMPLIFICATION Primer length – 18 bases www.bio-rad.com/genomics/pcrsupport
  • 91. AMPLIFICATION Primer length – 20 bases www.bio-rad.com/genomics/pcrsupport
  • 92. AMPLIFICATION Primer length – 22 bases www.bio-rad.com/genomics/pcrsupport
  • 93. AMPLIFICATION Primer length – 24 bases www.bio-rad.com/genomics/pcrsupport
  • 94. AMPLIFICATION Primer length – 26 bases www.bio-rad.com/genomics/pcrsupport
  • 95. AMPLIFICATION Primer length – 28 bases www.bio-rad.com/genomics/pcrsupport
  • 96. AMPLIFICATION Primer length – 30 bases www.bio-rad.com/genomics/pcrsupport
  • 97. Running Multiple assays on the same plate AMPLIFICATION • Primer size can affect annealing dynamics. • When annealing range is too low, primer concentration can be increased, or primer size can be increased. • When annealing range is too high, primer size can be reduced. • When increasing primer concentrations, as always specificity for the target must be evaluated. www.bio-rad.com/genomics/pcrsupport
  • 98. Large amplicons AMPLIFICATION • Classic qPCR rules dictate that amplification products be between 75 and 200 bp in length. • New “ultra fast” reagents allow much larger amplicons to be used in qPCR. • Extending the size of the amplicon should be considered when trying to circumvent secondary structures, sequence homology and unfavorable regions. • Proper validation is required. www.bio-rad.com/genomics/pcrsupport
  • 99. Large amplicons – dynamic range AMPLIFICATION •B-Actin 1076 pb amplicon from plasmid •109 to 10 copy per well 10 fold dilution 109 copies series •5 ul asay run on CFX384 using Bio- Rad’s SsoFast EVA Green Supermix 10 copies •Protocol : 98oC 3 min 45 x 95oC 1 sec 66oC 5 sec melt curve www.bio-rad.com/genomics/pcrsupport
  • 100. Large amplicons - sensitivity AMPLIFICATION •B-Actin 1076 pb amplicon from plasmid •105 to 200 copy per well 2 fold dilution series 105 copies •5 ul asay run on CFX384 using Bio- Rad’s SsoFast EVA Green Supermix 200 copies •Protocol : 98oC 3 min 45 x 95oC 1 sec 66oC 5 sec melt curve www.bio-rad.com/genomics/pcrsupport
  • 101. Sequence Homology AMPLIFICATION • Designing primers on a region of template sequence homologous to another gene should be avoided if possible. www.bio-rad.com/genomics/pcrsupport
  • 102. CCL26 with homologous sequences AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT Poor specify is likely outcome www.bio-rad.com/genomics/pcrsupport
  • 103. CCL26 with homologous sequences AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT Increased specify www.bio-rad.com/genomics/pcrsupport
  • 104. CCL26 with homologous sequences AMPLIFICATION CTGGAATTGA GGCTGAGCCA AAGACCCCAG GGCCGTCTCA GTCTCATAAA AGGGGATCAG GCAGGAGGAG TTTGGGAGAA ACCTGAGAAG GGCCTGATTT GCAGCATCAT GATGGGCCTC TCCTTGGCCT CTGCTGTGCT CCTGGCCTCC CTCCTGAGTC TCCACCTTGG AACTGCCACA CGTGGGAGTG ACATATCCAA GACCTGCTGC TTCCAATACA GCCACAAGCC CCTTCCCTGG ACCTGGGTGC GAAGCTATGA ATTCACCAGT AACAGCTGCT CCCAGCGGGC TGTGATATTC ACTACCAAAA GAGGCAAGAA AGTCTGTACC CATCCAAGGA AAAAATGGGT GCAAAAATAC ATTTCTTTAC TGAAAACTCC GAAACAATTG TGACTCAGCT GAATTTTCAT CCGAGGACGC TTGGACCCCG CTCTTGGCTC TGCAGCCCTC TGGGGAGCCT GCGGAATCTT TTCTGAAGGC TACATGGACC CGCTGGGGAG GAGAGGGTGT TTCCTCCCAG AGTTACTTTA ATAAAGGTTG TTCATAGAGT TGACTTGTTC AT With very difficult targets www.bio-rad.com/genomics/pcrsupport
  • 105. Sequence Homology AMPLIFICATION • Designing primers on a region of template sequence homologous to another gene should be avoided if possible. • When inevitable, a single primer can be designed to anneal on a homologous region for a series of genes. The other primer should be annealing on a clean region or one that has no homology with genes annealed by the first primer. • Multiple primers should be designed and tested. • If a single primer anneals multiple to targets, it will generate a linear amplification of DNA, where as, if both primers anneal, the amplification will be exponential. www.bio-rad.com/genomics/pcrsupport
  • 106. Inhibitors AMPLIFICATION • PCR although a routine process, is an elegant dance, comprised of a series of complex processes and interactions between enzymes, primers, nucleotides, template DNA and buffer components. • Inhibition can be caused by various chemicals, solvents, ions and peptides (to name a few). • Since their presence is never uniformly distributed in samples, they cannot easily be corrected for in the reaction mix. They should be removed from the sample (as possible), or a supermix that can withstand this inhibitory effect should be used. www.bio-rad.com/genomics/pcrsupport
  • 107. Blood Serum AMPLIFICATION <2.5 % 10 % CCl26 amplified using Bio-Rad SsoFast EVAGreen Supermix: 5ul Assay 98oC 30sec / 50x95oC 1 sec 60oC 5 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 108. Blood Serum AMPLIFICATION <0.0098 % 0.039 % <0.0089% 0.039% CCl26 amplified using Bio-Rad iQ SYBR Green Supermix: CCl26 amplified using Other Reagent A: 5ul Assay 5ul Assay 95oC 3 min / 50x 95oC 10 sec 60oC 60 sec / melt 95oC 5min / 50x 95oC 15 sec 60oC 60 sec / melt analysis <0.0089% <0.0089% 0.039% 0.039% CCl26 amplified using Other Reagent B: 5ul Assay CCl26 amplified using Other Reagent C: 5ul Assay 95oC 20sec / 50x 95oC 3 sec 60oC 30 sec / melt analysis 95oC 20sec / 50x 95oC 3 sec 60oC 30 sec / melt analysis www.bio-rad.com/genomics/pcrsupport
  • 109. Understanding your assay AMPLIFICATION www.bio-rad.com/genomics/pcrsupport
  • 110. Speed - SsoFast AMPLIFICATION SsoFast EvaGreen Supermix Sso7d from Sulfolobus solfataricus – 7kD, 63 aa. – Thermostable (Tm >90°C) – No sequence preference – Binds to dsDNA (3-6 bp/protein molecule) – Monomeric • Minimal inhibition of PCR by use of EvaGreen • Higher activity • Tolerant to PCR inhibitors www.bio-rad.com/genomics/pcrsupport
  • 111. Throughput AMPLIFICATION • The CFX384 real-time PCR detection system brings flexibility and ease of use to researchers performing high-throughput real- time PCR in a 384-well format. • With up to 4-target detection, unsurpassed thermal cycler performance, and powerful, yet easy-to-use software, the CFX384 system has been designed for the way you work. – FAST – shorten the time from experiment setup to results – FRIENDLY – a new standard for ease of use, delivering data you can trust with no maintenance – FLEXIBLE – customize a set up that fits individual laboratory needs www.bio-rad.com/genomics/pcrsupport
  • 112. Conclusions AMPLIFICATION • The key to successful qPCR experiments lie with proper design, optimization and validation. • qPCR assay optimization and dynamic range validation require very little time and effort and help guarantee that the results will be reproducible and comparable form experiment to experiment. • Implementation of MIQE guidelines is almost seamless. • If potentially interfering elements are discovered at the design and optimization phases, they can be accounted for and possibly corrected. • Designing good assays does not have to be a “chore”, it can be quite fun! www.bio-rad.com/genomics/pcrsupport
  • 113. AMPLIFICATION • Thank You! • Questions? www.bio-rad.com/genomics/pcrsupport