SlideShare uma empresa Scribd logo
1 de 84
Linear Equations I
Back to Algebra–Ready Review Content.
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
Recall example A from the section on expressions.(–Link this)
Linear Equations I
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24,
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
In symbols, we've the equation 3x + 10 = 34,
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
In symbols, we've the equation 3x + 10 = 34,
backtrack-calculation: 3x + 10 = 34 subtract 10
–10 –10
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
In symbols, we've the equation 3x + 10 = 34,
backtrack-calculation: 3x + 10 = 34 subtract 10
–10 –10
so 3x = 24
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
In symbols, we've the equation 3x + 10 = 34,
backtrack-calculation: 3x + 10 = 34 subtract 10
–10 –10
so 3x = 24 divide by 3
so x = 8 (pizzas)
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
Linear Equations I
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
Linear Equations I
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
Linear Equations I
We want to solve equations, i.e. we want to find the value
(or values) for the variable x such that it makes both sides
equal.
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
Linear Equations I
We want to solve equations, i.e. we want to find the value
(or values) for the variable x such that it makes both sides
equal. Such a value is called a solution of the equation.
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
In the example above 3x + 10 = 34 is an equations and
x = 8 is the solution for this equations because 3(8) + 10 is 34.
Linear Equations I
We want to solve equations, i.e. we want to find the value
(or values) for the variable x such that it makes both sides
equal. Such a value is called a solution of the equation.
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
Linear Equations I
We want to solve equations, i.e. we want to find the value
(or values) for the variable x such that it makes both sides
equal. Such a value is called a solution of the equation.
Where as we use an expression to calculate future outcomes,
we use an equation to help us to backtrack from known
outcomes to the original input x, the solution for the equation.
In the example above 3x + 10 = 34 is an equations and
x = 8 is the solution for this equations because 3(8) + 10 is 34.
Linear Equations I
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is.
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
x – 3 = 12,
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
x – 3 = 12,
12 = x + 3,
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
x – 3 = 12,
12 = x + 3,
3*x = 12,
12 =
all four equation are one-step equations.
x
3
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
x – 3 = 12,
12 = x + 3,
3*x = 12,
12 =
all four equation are one-step equations.
x
3
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
12 = x – 3,
x + 3 = 12,
12 = 3*x,
x/3 = 12
These equations are the same,
i.e. it doesn’t matter it’s
A = B or B = A. Both versions
will lead to the answer for x.
Basic principle for solving one- step-equations:
Linear Equations I
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Linear Equations I
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
b. x + 3 = –12
c. 3x = 15
Linear Equations I
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15
b. x + 3 = –12
c. 3x = 15
Linear Equations I
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
3x
3
15
3
=
c. 3x = 15 Both sides divided by 3
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
3x
3
15
3
=
x = 5
c. 3x = 15 Both sides divided by 3
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
3x
3
15
3
=
x = 5 check: 3(5) = 15
c. 3x = 15 Both sides divided by 3
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
3x
3
15
3
=
x = 5 check: 3(5) = 15
c. 3x = 15 Both sides divided by 3
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
15 = 15 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
x
3
–12=d.
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
+6+6
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
+6+6
4x = 36
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
+6+6
4x = 36
4 4
Divide both sides by 4
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
+6+6
x = 9
4x = 36
(Check this is the right answer.)
4 4
Divide both sides by 4
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–6 2x=
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2 Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Example D. To make a cheese sandwich, we use two slices of
bread each having 70 calories and slices of cheeses with
cheese where each slices of cheese is 90 calories
a. How many calories are there in the sandwich with 2 slices of
cheese?
Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Example D. To make a cheese sandwich, we use two slices of
bread each having 70 calories and slices of cheeses with
cheese where each slices of cheese is 90 calories
a. How many calories are there in the sandwich with 2 slices of
cheese?
There are 140 cal in the bread and 2 * 90 = 180 cal to make a
total of 140 + 180 = 320 calories in the cheese.
Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Example D. To make a cheese sandwich, we use two slices of
bread each having 70 calories and slices of cheeses with
cheese where each slices of cheese is 90 calories
a. How many calories are there in the sandwich with 2 slices of
cheese?
There are 140 cal in the bread and 2 * 90 = 180 cal to make a
total of 140 + 180 = 320 calories in the cheese.
b. What is the expression that calculate the number of calories
of a sandwich with x slices of cheese?
Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Example D. To make a cheese sandwich, we use two slices of
bread each having 70 calories and slices of cheeses with
cheese where each slices of cheese is 90 calories
a. How many calories are there in the sandwich with 2 slices of
cheese?
There are 140 cal in the bread and 2 * 90 = 180 cal to make a
total of 140 + 180 = 320 calories in the cheese.
b. What is the expression that calculate the number of calories
of a sandwich with x slices of cheese?
There are 140 + 90x calories in the sandwich.
Divide by 2
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
The total calories 14 + 90x is 500,
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number.
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number. We solve it by following steps:
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number. We solve it by following steps:
1. Add or subtract to move the x-term to one side of the
equation and get: #x ± # = # or # = #x ± #
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number. We solve it by following steps:
1. Add or subtract to move the x-term to one side of the
equation and get: #x ± # = # or # = #x ± #
2. Add or subtract the # to separate the number-term from the
x-term to get: #x = # or # = #x.
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number. We solve it by following steps:
1. Add or subtract to move the x-term to one side of the
equation and get: #x ± # = # or # = #x ± #
2. Add or subtract the # to separate the number-term from the
x-term to get: #x = # or # = #x.
3. Divide or multiply to get x:
x = solution or solution = x
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Example E.
Solve 3x – 4 = 5x + 2
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
subtract 3x to remove
the x from one side.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
subtract 3x to remove
the x from one side.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
– 6 = 2x
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
– 6 = 2x
2
–6
2
2x
=
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
divide by 2 get x.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
– 6 = 2x
2
–6
2
2x
=
–3 = x
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
divide by 2 get x.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
– 6 = 2x
2
–6
2
2x
=
–3 = x
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
divide by 2 get x.
Linear Equations I
Exercise
A. Solve in one step by addition or subtraction .
Linear Equations I
1. x + 2 = 3 2. x – 1 = –3 3. –3 = x –5
4. x + 8 = –15 5. x – 2 = –1/2 6. = x –
3
2
2
1
B. Solve in one step by multiplication or division.
7. 2x = 3 8. –3x = –1 9. –3 = –5x
10. 8 x = –15 11. –4 =
2
x 12. 7 =
3
–x
13. = –4
3
–x
14. 7 = –x 15. –x = –7
C. Solve by collecting the x’s to one side first. (Remember to
keep the x’s positive.)
16. x + 2 = 5 – 2x 17. 2x – 1 = – x –7 18. –x = x – 8
19. –x = 3 – 2x 20. –5x = 6 – 3x 21. –x + 2 = 3 + 2x
22. –3x – 1= 3 – 6x 23. –x + 7 = 3 – 3x 24. –2x + 2 = 9 + x

Mais conteúdo relacionado

Mais procurados

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equationsalg1testreview
 
1 s5 variables and evaluation
1 s5 variables and evaluation1 s5 variables and evaluation
1 s5 variables and evaluationmath123a
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equationsmath123b
 
2 6 inequalities
2 6 inequalities2 6 inequalities
2 6 inequalitiesmath123a
 
24 variables and evaluation
24 variables and evaluation24 variables and evaluation
24 variables and evaluationalg1testreview
 
2 4linear word problems
2 4linear word problems2 4linear word problems
2 4linear word problemsmath123a
 
1 expressions x
1 expressions x1 expressions x
1 expressions xTzenma
 
5 2factoring trinomial i
5 2factoring trinomial i5 2factoring trinomial i
5 2factoring trinomial imath123a
 
2 3linear equations ii
2 3linear equations ii2 3linear equations ii
2 3linear equations iimath123a
 
1 f1 prime numbers and factors
1 f1 prime numbers and factors1 f1 prime numbers and factors
1 f1 prime numbers and factorsmath123a
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractionsmath123a
 
3 5linear word problems ii
3 5linear word problems ii3 5linear word problems ii
3 5linear word problems iimath123a
 
82 systems of linear equations 2
82 systems of linear equations 282 systems of linear equations 2
82 systems of linear equations 2math126
 
Expresiones algebraicas.
Expresiones algebraicas.Expresiones algebraicas.
Expresiones algebraicas.BiancaAlvarez13
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressionsalg1testreview
 

Mais procurados (20)

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equations
 
41 expressions
41 expressions41 expressions
41 expressions
 
1 s5 variables and evaluation
1 s5 variables and evaluation1 s5 variables and evaluation
1 s5 variables and evaluation
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
2 6 inequalities
2 6 inequalities2 6 inequalities
2 6 inequalities
 
24 variables and evaluation
24 variables and evaluation24 variables and evaluation
24 variables and evaluation
 
2 4linear word problems
2 4linear word problems2 4linear word problems
2 4linear word problems
 
1 expressions x
1 expressions x1 expressions x
1 expressions x
 
11 arith operations
11 arith operations11 arith operations
11 arith operations
 
5 2factoring trinomial i
5 2factoring trinomial i5 2factoring trinomial i
5 2factoring trinomial i
 
2 3linear equations ii
2 3linear equations ii2 3linear equations ii
2 3linear equations ii
 
1 f1 prime numbers and factors
1 f1 prime numbers and factors1 f1 prime numbers and factors
1 f1 prime numbers and factors
 
41 expressions
41 expressions41 expressions
41 expressions
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
 
3 5linear word problems ii
3 5linear word problems ii3 5linear word problems ii
3 5linear word problems ii
 
3 linear equations
3 linear equations3 linear equations
3 linear equations
 
82 systems of linear equations 2
82 systems of linear equations 282 systems of linear equations 2
82 systems of linear equations 2
 
Expresiones algebraicas.
Expresiones algebraicas.Expresiones algebraicas.
Expresiones algebraicas.
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
 
0911 ch 9 day 11
0911 ch 9 day 110911 ch 9 day 11
0911 ch 9 day 11
 

Semelhante a 42 linear equations

2 expressions and linear expressions
2 expressions and linear expressions2 expressions and linear expressions
2 expressions and linear expressionselem-alg-sample
 
2 solving equations nat-e
2 solving equations nat-e2 solving equations nat-e
2 solving equations nat-emath260
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations ymath260
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equationsmath260
 
Systems of linear equations in three variables
Systems of linear equations in three variablesSystems of linear equations in three variables
Systems of linear equations in three variablesRose Mary Tania Arini
 
Tutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitiesTutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitieskhyps13
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making listsmath260
 
LINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESLINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESManah Chhabra
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variablemisey_margarette
 
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...Mathslearning.com
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions ymath266
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions ymath260
 
presentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxpresentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxJennilynBalusdan3
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions ymath260
 
Simplifying Expressions and Solving Linear Equations
Simplifying Expressions and Solving Linear EquationsSimplifying Expressions and Solving Linear Equations
Simplifying Expressions and Solving Linear Equationswbgillamjr
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i xTzenma
 

Semelhante a 42 linear equations (20)

2 expressions and linear expressions
2 expressions and linear expressions2 expressions and linear expressions
2 expressions and linear expressions
 
2 solving equations nat-e
2 solving equations nat-e2 solving equations nat-e
2 solving equations nat-e
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations y
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equations
 
Systems of linear equations in three variables
Systems of linear equations in three variablesSystems of linear equations in three variables
Systems of linear equations in three variables
 
Tutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitiesTutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalities
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making lists
 
LINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESLINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLES
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
 
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
 
Linear equations
Linear equationsLinear equations
Linear equations
 
Just equations
Just equationsJust equations
Just equations
 
Solving equations
Solving equationsSolving equations
Solving equations
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
 
presentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxpresentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptx
 
linear_equation
linear_equationlinear_equation
linear_equation
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
 
Simplifying Expressions and Solving Linear Equations
Simplifying Expressions and Solving Linear EquationsSimplifying Expressions and Solving Linear Equations
Simplifying Expressions and Solving Linear Equations
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
 

Mais de alg-ready-review

54 the rectangular coordinate system
54 the rectangular coordinate system54 the rectangular coordinate system
54 the rectangular coordinate systemalg-ready-review
 
52 pythagorean theorem and square roots
52 pythagorean theorem and square roots52 pythagorean theorem and square roots
52 pythagorean theorem and square rootsalg-ready-review
 
51 basic geometrical shapes and formulas
51 basic geometrical shapes and formulas51 basic geometrical shapes and formulas
51 basic geometrical shapes and formulasalg-ready-review
 
34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentages34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentagesalg-ready-review
 
32 multiplication and division of decimals
32 multiplication and division of decimals32 multiplication and division of decimals
32 multiplication and division of decimalsalg-ready-review
 
31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimals31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimalsalg-ready-review
 
25 variables and evaluation
25 variables and evaluation25 variables and evaluation
25 variables and evaluationalg-ready-review
 
23 multiplication and division of signed numbers
23 multiplication and division of signed numbers23 multiplication and division of signed numbers
23 multiplication and division of signed numbersalg-ready-review
 
22 addition and subtraction of signed numbers
22 addition and subtraction of signed numbers22 addition and subtraction of signed numbers
22 addition and subtraction of signed numbersalg-ready-review
 
16 on cross multiplication
16 on cross multiplication16 on cross multiplication
16 on cross multiplicationalg-ready-review
 
15 addition and subtraction of fractions
15 addition and subtraction of fractions15 addition and subtraction of fractions
15 addition and subtraction of fractionsalg-ready-review
 
13 multiplication and division of fractions
13 multiplication and division of fractions13 multiplication and division of fractions
13 multiplication and division of fractionsalg-ready-review
 
11 prime numbers and factors
11 prime numbers and factors11 prime numbers and factors
11 prime numbers and factorsalg-ready-review
 

Mais de alg-ready-review (20)

Algebra ready-sample-test
Algebra ready-sample-testAlgebra ready-sample-test
Algebra ready-sample-test
 
54 the rectangular coordinate system
54 the rectangular coordinate system54 the rectangular coordinate system
54 the rectangular coordinate system
 
53 the real line
53 the real line53 the real line
53 the real line
 
52 pythagorean theorem and square roots
52 pythagorean theorem and square roots52 pythagorean theorem and square roots
52 pythagorean theorem and square roots
 
51 basic geometrical shapes and formulas
51 basic geometrical shapes and formulas51 basic geometrical shapes and formulas
51 basic geometrical shapes and formulas
 
44 ratio proportion
44 ratio proportion44 ratio proportion
44 ratio proportion
 
43exponents
43exponents43exponents
43exponents
 
34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentages34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentages
 
33 percentages
33 percentages33 percentages
33 percentages
 
32 multiplication and division of decimals
32 multiplication and division of decimals32 multiplication and division of decimals
32 multiplication and division of decimals
 
31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimals31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimals
 
25 variables and evaluation
25 variables and evaluation25 variables and evaluation
25 variables and evaluation
 
24 order of operations
24 order of operations24 order of operations
24 order of operations
 
23 multiplication and division of signed numbers
23 multiplication and division of signed numbers23 multiplication and division of signed numbers
23 multiplication and division of signed numbers
 
22 addition and subtraction of signed numbers
22 addition and subtraction of signed numbers22 addition and subtraction of signed numbers
22 addition and subtraction of signed numbers
 
16 on cross multiplication
16 on cross multiplication16 on cross multiplication
16 on cross multiplication
 
15 addition and subtraction of fractions
15 addition and subtraction of fractions15 addition and subtraction of fractions
15 addition and subtraction of fractions
 
13 multiplication and division of fractions
13 multiplication and division of fractions13 multiplication and division of fractions
13 multiplication and division of fractions
 
12 fractions
12 fractions12 fractions
12 fractions
 
11 prime numbers and factors
11 prime numbers and factors11 prime numbers and factors
11 prime numbers and factors
 

Último

Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 

Último (20)

Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 

42 linear equations

  • 1. Linear Equations I Back to Algebra–Ready Review Content.
  • 2. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? Recall example A from the section on expressions.(–Link this) Linear Equations I
  • 3. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. Recall example A from the section on expressions.(–Link this) Linear Equations I
  • 4. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I
  • 5. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order?
  • 6. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24,
  • 7. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas.
  • 8. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas. In symbols, we've the equation 3x + 10 = 34,
  • 9. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas. In symbols, we've the equation 3x + 10 = 34, backtrack-calculation: 3x + 10 = 34 subtract 10 –10 –10
  • 10. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas. In symbols, we've the equation 3x + 10 = 34, backtrack-calculation: 3x + 10 = 34 subtract 10 –10 –10 so 3x = 24
  • 11. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas. In symbols, we've the equation 3x + 10 = 34, backtrack-calculation: 3x + 10 = 34 subtract 10 –10 –10 so 3x = 24 divide by 3 so x = 8 (pizzas)
  • 12. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. Linear Equations I
  • 13. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS Linear Equations I
  • 14. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS Linear Equations I We want to solve equations, i.e. we want to find the value (or values) for the variable x such that it makes both sides equal.
  • 15. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS Linear Equations I We want to solve equations, i.e. we want to find the value (or values) for the variable x such that it makes both sides equal. Such a value is called a solution of the equation.
  • 16. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS In the example above 3x + 10 = 34 is an equations and x = 8 is the solution for this equations because 3(8) + 10 is 34. Linear Equations I We want to solve equations, i.e. we want to find the value (or values) for the variable x such that it makes both sides equal. Such a value is called a solution of the equation.
  • 17. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS Linear Equations I We want to solve equations, i.e. we want to find the value (or values) for the variable x such that it makes both sides equal. Such a value is called a solution of the equation. Where as we use an expression to calculate future outcomes, we use an equation to help us to backtrack from known outcomes to the original input x, the solution for the equation. In the example above 3x + 10 = 34 is an equations and x = 8 is the solution for this equations because 3(8) + 10 is 34.
  • 18. Linear Equations I A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 19. Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 20. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 21. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 22. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, x – 3 = 12, Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 23. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, x – 3 = 12, 12 = x + 3, Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 24. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, x – 3 = 12, 12 = x + 3, 3*x = 12, 12 = all four equation are one-step equations. x 3 Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 25. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, x – 3 = 12, 12 = x + 3, 3*x = 12, 12 = all four equation are one-step equations. x 3 Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6. 12 = x – 3, x + 3 = 12, 12 = 3*x, x/3 = 12 These equations are the same, i.e. it doesn’t matter it’s A = B or B = A. Both versions will lead to the answer for x.
  • 26. Basic principle for solving one- step-equations: Linear Equations I
  • 27. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Linear Equations I
  • 28. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I
  • 29. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 30. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 b. x + 3 = –12 c. 3x = 15 Linear Equations I This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 31. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 b. x + 3 = –12 c. 3x = 15 Linear Equations I This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 32. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I ? This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 33. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 34. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 35. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 36. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 37. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 38. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 39. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 40. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 3x 3 15 3 = c. 3x = 15 Both sides divided by 3 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 41. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 3x 3 15 3 = x = 5 c. 3x = 15 Both sides divided by 3 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 42. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 3x 3 15 3 = x = 5 check: 3(5) = 15 c. 3x = 15 Both sides divided by 3 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 43. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 3x 3 15 3 = x = 5 check: 3(5) = 15 c. 3x = 15 Both sides divided by 3 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? 15 = 15 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 44. x 3 –12=d. Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x.
  • 45. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x.
  • 46. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x.
  • 47. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x.
  • 48. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution.
  • 49. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution.
  • 50. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution.
  • 51. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution. +6+6
  • 52. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution. +6+6 4x = 36
  • 53. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution. +6+6 4x = 36 4 4 Divide both sides by 4
  • 54. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution. +6+6 x = 9 4x = 36 (Check this is the right answer.) 4 4 Divide both sides by 4
  • 55. Linear Equations I Example C. Solve for x b. x – 6 = 3x
  • 56. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x
  • 57. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –6 2x=
  • 58. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 Divide by 2
  • 59. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Divide by 2
  • 60. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Example D. To make a cheese sandwich, we use two slices of bread each having 70 calories and slices of cheeses with cheese where each slices of cheese is 90 calories a. How many calories are there in the sandwich with 2 slices of cheese? Divide by 2
  • 61. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Example D. To make a cheese sandwich, we use two slices of bread each having 70 calories and slices of cheeses with cheese where each slices of cheese is 90 calories a. How many calories are there in the sandwich with 2 slices of cheese? There are 140 cal in the bread and 2 * 90 = 180 cal to make a total of 140 + 180 = 320 calories in the cheese. Divide by 2
  • 62. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Example D. To make a cheese sandwich, we use two slices of bread each having 70 calories and slices of cheeses with cheese where each slices of cheese is 90 calories a. How many calories are there in the sandwich with 2 slices of cheese? There are 140 cal in the bread and 2 * 90 = 180 cal to make a total of 140 + 180 = 320 calories in the cheese. b. What is the expression that calculate the number of calories of a sandwich with x slices of cheese? Divide by 2
  • 63. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Example D. To make a cheese sandwich, we use two slices of bread each having 70 calories and slices of cheeses with cheese where each slices of cheese is 90 calories a. How many calories are there in the sandwich with 2 slices of cheese? There are 140 cal in the bread and 2 * 90 = 180 cal to make a total of 140 + 180 = 320 calories in the cheese. b. What is the expression that calculate the number of calories of a sandwich with x slices of cheese? There are 140 + 90x calories in the sandwich. Divide by 2
  • 64. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich?
  • 65. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? The total calories 14 + 90x is 500,
  • 66. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 67. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 68. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 69. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 70. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 71. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 72. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. We solve it by following steps: So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 73. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. We solve it by following steps: 1. Add or subtract to move the x-term to one side of the equation and get: #x ± # = # or # = #x ± # So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 74. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. We solve it by following steps: 1. Add or subtract to move the x-term to one side of the equation and get: #x ± # = # or # = #x ± # 2. Add or subtract the # to separate the number-term from the x-term to get: #x = # or # = #x. So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 75. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. We solve it by following steps: 1. Add or subtract to move the x-term to one side of the equation and get: #x ± # = # or # = #x ± # 2. Add or subtract the # to separate the number-term from the x-term to get: #x = # or # = #x. 3. Divide or multiply to get x: x = solution or solution = x So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 76. Example E. Solve 3x – 4 = 5x + 2 Linear Equations I
  • 77. Example E. Solve 3x – 4 = 5x + 2 –3x –3x subtract 3x to remove the x from one side. Linear Equations I
  • 78. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 subtract 3x to remove the x from one side. Linear Equations I
  • 79. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. Linear Equations I
  • 80. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 – 6 = 2x subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. Linear Equations I
  • 81. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 – 6 = 2x 2 –6 2 2x = subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. divide by 2 get x. Linear Equations I
  • 82. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 – 6 = 2x 2 –6 2 2x = –3 = x subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. divide by 2 get x. Linear Equations I
  • 83. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 – 6 = 2x 2 –6 2 2x = –3 = x subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. divide by 2 get x. Linear Equations I
  • 84. Exercise A. Solve in one step by addition or subtraction . Linear Equations I 1. x + 2 = 3 2. x – 1 = –3 3. –3 = x –5 4. x + 8 = –15 5. x – 2 = –1/2 6. = x – 3 2 2 1 B. Solve in one step by multiplication or division. 7. 2x = 3 8. –3x = –1 9. –3 = –5x 10. 8 x = –15 11. –4 = 2 x 12. 7 = 3 –x 13. = –4 3 –x 14. 7 = –x 15. –x = –7 C. Solve by collecting the x’s to one side first. (Remember to keep the x’s positive.) 16. x + 2 = 5 – 2x 17. 2x – 1 = – x –7 18. –x = x – 8 19. –x = 3 – 2x 20. –5x = 6 – 3x 21. –x + 2 = 3 + 2x 22. –3x – 1= 3 – 6x 23. –x + 7 = 3 – 3x 24. –2x + 2 = 9 + x