Mmc e mdc

4.267 visualizações

Publicada em

Publicada em: Educação, Tecnologia, Negócios
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
4.267
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
148
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Mmc e mdc

  1. 1. Mínimo múltiplo comum
  2. 2. Publicidade na rádio O “spot” publicitário do “café da D. Paula” passa na rádio de 6 em 6 horas, enquanto que o do “Clube de vídeo de S. Lucas” passa de 9 em 9 horas. Na publicidade das 0 horas foram ouvidos dois anúncios em conjunto. Quando acontecerá isso novamente? Para resolver o problema vamos fazer um esquema. 0 Café 0 Clube de vídeo Observações:  A publicidade referente ao café, será ouvida novamente, às 6 da manhã; depois ao meio-dia; seguidamente às 18 horas (6 da tarde);…  Como o 0 é múltiplo de qualquer número não o vamos considerar, nem faria sentido, relativamente ao problema em causa. O menor dos múltiplos comuns de 6 e 9, diferente de 0, é 18. O que se pretende no problema?! R .: Os dois anúncios serão ouvidos de novo, em conjunto, às 18 horas. 6 18 24 18 9 27  múltiplos de 9  múltiplos de 6 … … 30 36 36 45 18 18 Mínimo múltiplo comum 12 Outro exemplo para estudares em casa
  3. 3. Podemos então concluir: 0 0 6 18 24 18 9 27 Múltiplos de 9  Múltiplos de 6  … … 30 36 36 45 O Mínimo Múltiplo Comum de dois ou mais números naturais é o menor múltiplo comum a todos eles . ( excluindo o zero) Escreve-se m.m.c. (a, b).   m.m.c. (6,9)=18 m.m.c. (7,8) = ? Múltiplos de 7 Múltiplos de 8 Vamos praticar… m.m.c.(7,8) = 56 Então: Mínimo múltiplo comum = { 1, 2, 3, 4, 5, ... }
  4. 4. Máximo divisor comum
  5. 5. Passatempo na rádio Num programa de rádio vai ser feito um passatempo em que serão oferecidos a cada concorrente vencedor CDs e cassetes. Há 30 CDs e 25 cassetes para oferecer. Se todos os prémios forem iguais, quantos ouvintes poderão ganhar? Quantos CDs e cassetes recebem cada um? Assim, para resolver o problema, vamos determinar os divisores de 30 e de 25. CDs 1, 2, 3, 5 , 6, 10, 15, 30  divisores de 30 Cassetes 1, 5 , 25  divisores de 25 O maior divisor comum de 25 e 30 é 5 e escreve-se, m.d.c. (25, 30) = 5 R.: O número máximo de ouvintes que poderão ganhar o prémio é 5 e cada ouvinte vencedor receberá 5 cassetes e 6 CDs. Observação: Para que cada ouvinte receba o mesmo número de CDs e cassetes, o nº de ouvintes premiados tem de ser um divisor comum de 25 e 30. O que se pretende no problema?! Outro exemplo para estudares em casa.
  6. 6. Máximo divisor comum Qual o maior divisor comum a 20 e 24? Para responder à questão precisamos de… R.: O maior divisor comum é o 4. O máximo divisor comum de dois ou mais números naturais é o maior dos divisores comuns a todos eles . Escreve-se: m.d.c. (a, b).   m.d.c. (20, 24) = 4.
  7. 7. Existem outros processos mais práticos para encontrar o m.m.c e o m.d.c de dois ou mais números, utilizando a decomposição de um número em factores primos . Observemos um desses processos
  8. 8. 6 2 3 3 1 9 3 3 3 1 Qual o m.m.c. e o m.d.c. dos números 6 e 9? E dos números 84 e 120? 1.º- Decompor ambos os números num produto de factores primos , utilizando, por exemplo, a “regra do traço”. Produto dos factores comuns e não comuns de maior expoente. 120 2 60 2 1 84 2 21 2 1 2 30 15 3 42 5 5 3 7 7 2.º- Produto dos factores comuns de menor expoente.
  9. 9. O mínimo múltiplo comum de dois ou mais números decompostos em factores primos é igual ao produto dos factores comuns e não comuns de maior expoente . Definição: O máximo divisor comum de dois ou mais números decompostos em factores primos é igual ao produto dos factores comuns de menor expoente . Definição:
  10. 10. Determina Dois ou mais números são primos entre si se e só se o seu máximo divisor comum é 1. Não existem factores comuns, logo: Neste caso diz-se que os números 18 e 25 são primos entre si. Relembra… 1 é divisor de todos os números
  11. 11. Exercício: Ao decompor um certo número, N, em factores primos, obteve-se a seguinte resposta: N =2x3 2 x5 a) O número N é divisível por 15? Qual é o quociente? b) Escreve todos os divisores do número N . 2x3 2 x5 = 90 = N R.: O número N é divisível por 15. O quociente da divisão de N por 15 é 6. Para encontrar os divisores de N procuram-se todos os produtos diferentes que se podem obter com os factores da decomposição. Não esquecendo que 1 é divisor de todos os números. C.A R.: Ensinar truque
  12. 12. O mínimo múltiplo comum além de permitir a resolução rápida de alguns problemas, facilita também , o cálculo da soma de dois números representados por fracções com denominadores diferentes, bem como, a comparação de números. Calcula-se o m.m.c. dos denominadores O novo denominador é o m.m.c. dos denominadores. Exercício:
  13. 13. Utiliza o m.m.c. para comparar os n ú meros e . Então : Logo, é maior o n ú mero . . Exercício:
  14. 14. O m.d.c. al é m de facultar a resolu ç ão de alguns problemas tamb é m permite a simplifica ç ão de frac ç ões tornando-as irredut í veis. Por exemplo: . Calcula-se o m.d.c.(42, 60) m.d.c. (42, 60) = 6 Dividem-se os termos da fracção pelo m.d.c.
  15. 15. Problema para T.P.C. <ul><li>Num anúncio de jornal, o Sr. João leu: “Vende-se terreno rectangular de medidas inteiras (quase quadrado) com 1326 m 2 .” Quais são as dimensões do terreno? </li></ul>
  16. 16. Problemas 1. O ressonar dos porquinhos A mãe “ porquinha ” ressona de 5 em 5 segundos. O filho “ porquinho ” ressona de 3 em 3 segundos. Se num determinado momento ressonam ao mesmo tempo, quanto tempo ter á de decorrer de modo a ressonarem outra vez em comum? Partiram juntos. Quanto tempo decorrer á at é que voltem a estar lado a lado? 2. O Pedro d á uma volta à pista em 8 minutos e o Ant ó nio em 6 minutos.
  17. 17. Exercícios a resolver… Todos os exercícios das páginas 92, 93, 96, 97 e 99. T.P.C férias Terminar os exercícios do manual e resolver os problemas da ficha de trabalho. Prazo final para entrega do trabalho de investigação sobre Pitágoras - 17/12/2010
  18. 18. Problema: O Eduardo colecciona berlindes. Para arrumar a sua colecção comprou no supermercado caixas que lhe permitem colocar 4 berlindes, outras para 6 berlindes e ainda outras para 8 berlindes. Já em casa verificou que podia arrumar todos os seus berlindes nas caixas de 4 ficando estas completas, mas mesmo acontecia com as caixas de 6 e as de 8. Quantos berlindes pode ter o Eduardo? Resolução: O número de berlindes tem de ser múltiplo de 4, 6 e 8. Múltiplos de 4 0, 4, 8, 12, 16, 20, 24, 28,... Múltiplos de 6 0, 6, 12, 18, 24, 30, 36, 42,... Múltiplos de 8 0, 8, 16, 24, 32, 40, 48,... O menor dos múltiplos comuns de 4, 6 e 8, diferente de zero, é 24. m.m.c.(4,6,8) = 24. R.: O Eduardo terá no mínimo 24 berlindes. m.m.c
  19. 19. O Artur, o Bernardo e a Catarina compraram barras de chocolate de comprimento e sabores diferentes para levar numa visita de estudo. O Artur comprou uma barra de chocolate branco de 18 cm . O Bernardo comprou outra com amêndoas mas com 30 cm . A barra da Catarina tem 12 cm e é com avelã. Durante a visita decidiram dividir os chocolates em bocados com o mesmo comprimento. Qual é o maior comprimento que pode ter cada parte? Visita de estudo Para que os chocolates fiquem divididos em partes iguais, temos de encontrar os divisores de cada um dos números. Divisores de 18 = {1,2,3,6,9,18} Divisores de 30 = {1,2,3,5,6,10,15,30} Divisores de 12 = {1,2,3,4,6,12} Observando o conjunto dos divisores verificamos que existem vários números comuns. Como neste caso pretende-se obter partes com maior comprimento possível consideramos então o Máximo (maior) Divisor Comum entre 12, 18 e 30, o número 6, ou seja: m.d.c mais um exemplo

×