SlideShare uma empresa Scribd logo
1 de 23
Baixar para ler offline
UNIVERSIDAD NACIONAL EXPERIMENTAL 
“FRANCISCO DE MIRANDA” 
ÁREA DE TECNOLOGÍA 
DEPARTAMENTO DE HIDRÁULICA 
U.C MECÁNICA DE FLUIDOS 
SANTA DE CORO; OCTUBRE 2014 
PROF. ALBERTO GUERRA
Un fluido en movimiento corresponde a un medio en el cual la posición relativa de los elementos que lo forman varía en función del tiempo. La cinemática se preocupa en describir este movimiento. La cinemática de los líquidos trata del movimiento de sus partículas, sin considerar la masa ni las fuerzas que actúan, en base al conocimiento de las magnitudes cinemáticas: velocidad, aceleración y rotación.
CAMPO DE FLUJO. Un campo de flujo es cualquier región en el espacio donde hay un fluido en movimiento, a condición de que la región o subregión del flujo quede ocupada por fluido. 
En cada punto del campo de flujo es posible determinar o especificar una serie de magnitudes físicas, ya sea escalares o vectoriales, que forman a su vez campos independientes o dependientes dentro del flujo. En un campo escalar se define por la magnitud que adquiere la cantidad física. Un campo vectorial, además de la magnitud, se necesita definir una dirección y un sentido para la cantidad física a la que corresponde. 
Las magnitudes físicas de los campos escalares y vectoriales de un campo de flujo son funciones de punto y del tiempo, ya que su magnitud puede variar no solo de un punto a otro sino también de un instante a otro.
TUBO DE CORRIENTE. Es un tubo cuyas paredes están formadas por líneas de corriente. Esto representa un tubo de donde las partículas no pueden salir ya que la velocidad en las paredes es paralela a ellas. La noción del tubo de corriente tiene un particular interés en mecánica de fluidos ya que con el se pueden representar casos prácticos, como por ejemplo el flujo en una tubería, de la cual no pueden salir el flujo, por lo tanto se puede considerar como un tubo de corriente.
LÍNEAS DE CORRIENTE. Son líneas imaginarias continuas que se dibuja de manera que la dirección de la velocidad instantánea de una partícula en un punto cualquiera sea tangente a la línea de flujo que pasa por dicho punto. 
Las líneas de corriente están fijas y coinciden con la trayectoria de las partículas de fluido solo si el flujo es estacionario. En flujo no estacionario las líneas de corriente cambia a medida que transcurre el tiempo. 
TRAYECTORIA. Lugar geométrico de las posiciones que describe una misma partícula en el transcurso del tiempo.
SEGÚN LA VISCOSIDAD 
FLUJO IDEAL 
FLUJO REAL 
Es un fluido carente de fricción. Es decir es no viscoso por lo tanto su viscosidad es nula 
Fluidos cuya viscosidad es distinta de cero.
SEGÚN LA DENSIDAD 
FLUJO INCOMPRESIBLE 
FLUJO COMPRESIBLE 
Cuando no hay variaciones de densidad en función de la posición. Generalmente el flujo de los líquidos es incompresible 
La densidad del fluido varía de punto a punto, en general es una función de las coordenadas.
SEGÚN LA VELOCIDAD ANGULAR 
FLUJO ROTACIONAL 
FLUJO IRROTACIONAL 
Cuando cualquier partícula del fluido no posee velocidad 
Cuando la velocidad angular neta del elemento de fluido es igual a cero. 
La velocidad angular es una medida de la velocidad de rotación. Se define como el ángulo girado por una unidad de tiempo y se designa mediante la letra griega ω.
SEGÚN SUS DIMENSIONES 
UNIDIMENSIONAL 
TRIDIMENSIONAL 
Cuando todos los vectores de velocidad son paralelos y de igual magnitud, es decir sólo depende de una variable espacial 
Es un flujo en el que el vector velocidad, solo depende de dos variables espaciales. En éste se supone que todas las partículas fluyen sobre planos paralelos a lo largo de trayectorias 
BIDIMENSIONAL 
El vector velocidad depende de tres coordenadas espaciales, es el caso mas general en que las componentes de la velocidad en tres direcciones mutuamente perpendiculares son función de las coordenadas espaciales x, y, z.
CON RESPECTO A LA POSICIÓN 
FLUJO UNIFORME 
FLUJO NO UNIFORME 
Cuando el vector velocidad en todos los puntos es idéntico tanto en magnitud como en dirección para un instante dado. Este tipo de flujo es poco común. 
En este flujo es todo lo contrario al flujo Uniforme, aquí el vector velocidad varía con respecto a la posición en un tiempo dado.
CON RESPECTO AL TIEMPO 
FLUJO PERMANENTE 
FLUJO NO PERMANENTE 
Este tipo de flujo se caracteriza porque las condiciones de velocidad en cualquier punto no cambian con el tiempo. No existen cambios en la densidad, presión o temperatura con el tiempo. También se conocen como estacionarios. 
En este flujo es todo lo contrario al flujo Permanente, aquí el vector velocidad varía con respecto al tiempo. Se conoce también como no estacionarios.
SEGÚN SU RÉGIMEN 
TRANSICIÓN 
LAMINAR 
TURBULENTO 
Las partículas del líquido se mueven siempre a lo largo de trayectorias uniformes, en capas o láminas, con el mismo sentido, dirección y magnitud 
Las partículas se mueven siguiendo trayectorias erráticas, desordenadas, con formación de torbellinos. Cuando aumenta la velocidad del flujo, la tendencia al desorden crece 
A medida que aumenta la velocidad, se produce una transición del régimen laminar al turbulento 
NÚMERO DE REYNOLDS
Osborne Reynolds (1842–1912), publicó en 1883 su clásico experimento mediante el que estableció el Número de Reynolds, el cual es un número adimensional que relaciona las fuerzas inerciales con las fuerzas viscosas y da como resultado el régimen del flujo. Éste varía al modificar la velocidad y/o la viscosidad del flujo.
FLUJO LAMINAR 
FLUJO TRANSICIÓN 
FLUJO TURBULENTO 
NR<2000 
NR>4000 
2000≤NR≤4000
Es la cantidad de flujo que circula en un sistema por unidad de tiempo, se puede definir también como caudal o gasto. Y se puede expresar mediante los tres términos siguientes: 
M La rapidez de flujo de masa, es la masa de fluido que circula por una sección por unidad de tiempo. 
W La rapidez de flujo de peso, es el peso de fluido que circula por una sección por unidad de tiempo. 
Q La rapidez de flujo de volumen, es el volumen de fluido que pasa por una sección por unidad de tiempo. 
V: Velocidad 
A: Área
1.- “Principio de Continuidad”. Conservación de la materia. 
2.- Segunda Ley de Newton. Impulso y Cantidad de movimiento. 
3.- Primera Ley de la Termodinámica. Conservación de la energía. 
4.- Segunda Ley de la Termodinámica.
La ecuación de continuidad no es más que un caso particular del principio de conservación de la masa. Se basa en que el caudal (Q) del fluido ha de permanecer constante a lo largo de toda la conducción. Dado que el caudal es el producto de la superficie de una sección del conducto por la velocidad con que fluye el fluido, tendremos que en dos puntos de una misma tubería se debe cumplir que: 
Para flujos incompresibles y permanentes:
EJEMPLO: En la figura se muestra la bifurcación de un tubo que tiene los diámetros indicados. El agua que circula dentro del tubo entra en A y sale en C y D. Si la velocidad media en B es de 0,60 m/s y en D es de 2,70 m/s. Calcule las velocidades en A y en C, el gasto total y el gasto en cada rama de la tubería. 
A 
B 
C 
D 
ØA = 0,15 m 
ØB = 0,30 m
La energía ni se crea ni se destruye, se transforma en otra. Este enunciado es de la Ley de Conservación de energía.
La ecuación de Bernoulli o de conservación de la energía, indica que en un fluido en movimiento sometido a la acción de la gravedad, la suma de las alturas geométrica, manométrica y cinética es constante para los diversos puntos de una línea de corriente.
El fluido tendrá las siguientes formas de energía: 
Energía potencial: es debido a su elevación. Ep=z 
Energía cinética o de velocidad: es debido a su velocidad Ec= V2/2g 
Energía de presión: en ocasiones conocida como energía del flujo o trabajo de flujo. Ef= p/γ 
Para flujos ideales e incompresibles
Cinematica de fluidos

Mais conteúdo relacionado

Mais procurados

Flujo a presion
Flujo a presionFlujo a presion
Flujo a presion
FRANCAIS9
 
Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)
1clemente1
 
Perdidas por friccion y locales
Perdidas por friccion y localesPerdidas por friccion y locales
Perdidas por friccion y locales
Dan Niel
 
Teoría presión hidrostatica sobre superficies
Teoría presión hidrostatica sobre superficiesTeoría presión hidrostatica sobre superficies
Teoría presión hidrostatica sobre superficies
Universidad Libre
 
M fluidos problemas
M fluidos problemasM fluidos problemas
M fluidos problemas
mabeni
 
Texto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameTexto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelame
erslide71
 

Mais procurados (20)

Ejercicios de tuberías y redes
Ejercicios de tuberías y redesEjercicios de tuberías y redes
Ejercicios de tuberías y redes
 
Flujo a presion
Flujo a presionFlujo a presion
Flujo a presion
 
Energia específica
Energia específicaEnergia específica
Energia específica
 
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
 
Estatica de fluidos fic 2013 i
Estatica de fluidos  fic 2013 iEstatica de fluidos  fic 2013 i
Estatica de fluidos fic 2013 i
 
Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)
 
Resistencia de materiales_i_practicas_y
Resistencia de materiales_i_practicas_yResistencia de materiales_i_practicas_y
Resistencia de materiales_i_practicas_y
 
Texto+de+ejerciciosresueltos+de+hidraulica+1 nelame (3)
Texto+de+ejerciciosresueltos+de+hidraulica+1 nelame (3)Texto+de+ejerciciosresueltos+de+hidraulica+1 nelame (3)
Texto+de+ejerciciosresueltos+de+hidraulica+1 nelame (3)
 
Mécanica de fluídos
Mécanica de fluídosMécanica de fluídos
Mécanica de fluídos
 
Perdidas por friccion y locales
Perdidas por friccion y localesPerdidas por friccion y locales
Perdidas por friccion y locales
 
Cavitacion
CavitacionCavitacion
Cavitacion
 
Teoría presión hidrostatica sobre superficies
Teoría presión hidrostatica sobre superficiesTeoría presión hidrostatica sobre superficies
Teoría presión hidrostatica sobre superficies
 
FLUJO UNIFORME informe de fluidos II
FLUJO UNIFORME  informe de fluidos II FLUJO UNIFORME  informe de fluidos II
FLUJO UNIFORME informe de fluidos II
 
Capitulo v hidraulica_de_tuberias_5.1_co
Capitulo v hidraulica_de_tuberias_5.1_coCapitulo v hidraulica_de_tuberias_5.1_co
Capitulo v hidraulica_de_tuberias_5.1_co
 
informe de laboratorio resuelto de mecánica de los fluidos, Perdidas de energ...
informe de laboratorio resuelto de mecánica de los fluidos, Perdidas de energ...informe de laboratorio resuelto de mecánica de los fluidos, Perdidas de energ...
informe de laboratorio resuelto de mecánica de los fluidos, Perdidas de energ...
 
Ejercicios 2daunidad
Ejercicios 2daunidadEjercicios 2daunidad
Ejercicios 2daunidad
 
208226847 problemas-resueltos-2
208226847 problemas-resueltos-2208226847 problemas-resueltos-2
208226847 problemas-resueltos-2
 
M fluidos problemas
M fluidos problemasM fluidos problemas
M fluidos problemas
 
Texto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameTexto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelame
 
Mecanica de materiales hibeler- octava edicion
Mecanica de materiales   hibeler- octava edicionMecanica de materiales   hibeler- octava edicion
Mecanica de materiales hibeler- octava edicion
 

Destaque (6)

Arturo rocha libro fluidos
Arturo rocha libro fluidosArturo rocha libro fluidos
Arturo rocha libro fluidos
 
Hidraulica basica
Hidraulica basicaHidraulica basica
Hidraulica basica
 
Tema2 Cinemática de fluidos
Tema2 Cinemática de fluidosTema2 Cinemática de fluidos
Tema2 Cinemática de fluidos
 
Power point-hidraulica overall
Power point-hidraulica overallPower point-hidraulica overall
Power point-hidraulica overall
 
Mecánica de fluidos i
Mecánica de fluidos iMecánica de fluidos i
Mecánica de fluidos i
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 

Semelhante a Cinematica de fluidos

Presentación de flujos, tipos flujos corrientes
Presentación de flujos, tipos flujos corrientesPresentación de flujos, tipos flujos corrientes
Presentación de flujos, tipos flujos corrientes
HolaBastardo
 
Clasificaciondeflujos
ClasificaciondeflujosClasificaciondeflujos
Clasificaciondeflujos
onsepulvedas
 
Instituto tecnológico de mexicali
Instituto tecnológico de mexicaliInstituto tecnológico de mexicali
Instituto tecnológico de mexicali
Stephanyvm
 

Semelhante a Cinematica de fluidos (20)

TEMA 3. Cinemática de fluidos
TEMA 3. Cinemática de fluidos TEMA 3. Cinemática de fluidos
TEMA 3. Cinemática de fluidos
 
Dinámica y Flujo de Fluidos Aplicación de conservación de masa y energía en f...
Dinámica y Flujo de Fluidos Aplicación de conservación de masa y energía en f...Dinámica y Flujo de Fluidos Aplicación de conservación de masa y energía en f...
Dinámica y Flujo de Fluidos Aplicación de conservación de masa y energía en f...
 
Presentación de flujos, tipos flujos corrientes
Presentación de flujos, tipos flujos corrientesPresentación de flujos, tipos flujos corrientes
Presentación de flujos, tipos flujos corrientes
 
Material de apoyo Unidad II
Material de apoyo Unidad IIMaterial de apoyo Unidad II
Material de apoyo Unidad II
 
Clasificaciondeflujos
ClasificaciondeflujosClasificaciondeflujos
Clasificaciondeflujos
 
Fisica. fluidos
Fisica. fluidosFisica. fluidos
Fisica. fluidos
 
Semana 3 hidrodinámica
Semana 3 hidrodinámicaSemana 3 hidrodinámica
Semana 3 hidrodinámica
 
Dinamica de fluidos 24 a Lineas corrientes.pptx
Dinamica de fluidos 24 a Lineas corrientes.pptxDinamica de fluidos 24 a Lineas corrientes.pptx
Dinamica de fluidos 24 a Lineas corrientes.pptx
 
Tema 3 cinematica version 3
Tema 3 cinematica version 3Tema 3 cinematica version 3
Tema 3 cinematica version 3
 
Unidad V mediciones de flujo
Unidad V mediciones de flujoUnidad V mediciones de flujo
Unidad V mediciones de flujo
 
Hidraúlica
HidraúlicaHidraúlica
Hidraúlica
 
Hidrodinamica
HidrodinamicaHidrodinamica
Hidrodinamica
 
INFORME #11 PROCESOS 2.pdf
INFORME #11 PROCESOS 2.pdfINFORME #11 PROCESOS 2.pdf
INFORME #11 PROCESOS 2.pdf
 
La hidrodinamica
La hidrodinamicaLa hidrodinamica
La hidrodinamica
 
La hidrodinamica
La hidrodinamicaLa hidrodinamica
La hidrodinamica
 
Medicion de Fluido
Medicion de Fluido Medicion de Fluido
Medicion de Fluido
 
Electiva 20% 2do corte
Electiva 20% 2do corteElectiva 20% 2do corte
Electiva 20% 2do corte
 
96983098 informe-fluidos
96983098 informe-fluidos96983098 informe-fluidos
96983098 informe-fluidos
 
Instituto tecnológico de mexicali
Instituto tecnológico de mexicaliInstituto tecnológico de mexicali
Instituto tecnológico de mexicali
 
DESARROLLO FORO N° 03 - BERNOULLI - DARCY - CONTINUIDAD.pdf
DESARROLLO FORO N° 03 - BERNOULLI - DARCY - CONTINUIDAD.pdfDESARROLLO FORO N° 03 - BERNOULLI - DARCY - CONTINUIDAD.pdf
DESARROLLO FORO N° 03 - BERNOULLI - DARCY - CONTINUIDAD.pdf
 

Último

INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
evercoyla
 
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
Ricardo705519
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
gustavoiashalom
 

Último (20)

TIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfTIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
 
Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo process
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptx
 
Desigualdades e inecuaciones-convertido.pdf
Desigualdades e inecuaciones-convertido.pdfDesigualdades e inecuaciones-convertido.pdf
Desigualdades e inecuaciones-convertido.pdf
 
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
 
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
 
Controladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y VentajasControladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y Ventajas
 
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfCONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
 
Trazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptxTrazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptx
 
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfAnálisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
 
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUQUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
 
Presentación Instrumentos de Medicion Electricos.pptx
Presentación Instrumentos de Medicion Electricos.pptxPresentación Instrumentos de Medicion Electricos.pptx
Presentación Instrumentos de Medicion Electricos.pptx
 
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosFicha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
 
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docx
 
PostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCDPostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCD
 
Maquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdfMaquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdf
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 

Cinematica de fluidos

  • 1. UNIVERSIDAD NACIONAL EXPERIMENTAL “FRANCISCO DE MIRANDA” ÁREA DE TECNOLOGÍA DEPARTAMENTO DE HIDRÁULICA U.C MECÁNICA DE FLUIDOS SANTA DE CORO; OCTUBRE 2014 PROF. ALBERTO GUERRA
  • 2. Un fluido en movimiento corresponde a un medio en el cual la posición relativa de los elementos que lo forman varía en función del tiempo. La cinemática se preocupa en describir este movimiento. La cinemática de los líquidos trata del movimiento de sus partículas, sin considerar la masa ni las fuerzas que actúan, en base al conocimiento de las magnitudes cinemáticas: velocidad, aceleración y rotación.
  • 3. CAMPO DE FLUJO. Un campo de flujo es cualquier región en el espacio donde hay un fluido en movimiento, a condición de que la región o subregión del flujo quede ocupada por fluido. En cada punto del campo de flujo es posible determinar o especificar una serie de magnitudes físicas, ya sea escalares o vectoriales, que forman a su vez campos independientes o dependientes dentro del flujo. En un campo escalar se define por la magnitud que adquiere la cantidad física. Un campo vectorial, además de la magnitud, se necesita definir una dirección y un sentido para la cantidad física a la que corresponde. Las magnitudes físicas de los campos escalares y vectoriales de un campo de flujo son funciones de punto y del tiempo, ya que su magnitud puede variar no solo de un punto a otro sino también de un instante a otro.
  • 4. TUBO DE CORRIENTE. Es un tubo cuyas paredes están formadas por líneas de corriente. Esto representa un tubo de donde las partículas no pueden salir ya que la velocidad en las paredes es paralela a ellas. La noción del tubo de corriente tiene un particular interés en mecánica de fluidos ya que con el se pueden representar casos prácticos, como por ejemplo el flujo en una tubería, de la cual no pueden salir el flujo, por lo tanto se puede considerar como un tubo de corriente.
  • 5. LÍNEAS DE CORRIENTE. Son líneas imaginarias continuas que se dibuja de manera que la dirección de la velocidad instantánea de una partícula en un punto cualquiera sea tangente a la línea de flujo que pasa por dicho punto. Las líneas de corriente están fijas y coinciden con la trayectoria de las partículas de fluido solo si el flujo es estacionario. En flujo no estacionario las líneas de corriente cambia a medida que transcurre el tiempo. TRAYECTORIA. Lugar geométrico de las posiciones que describe una misma partícula en el transcurso del tiempo.
  • 6. SEGÚN LA VISCOSIDAD FLUJO IDEAL FLUJO REAL Es un fluido carente de fricción. Es decir es no viscoso por lo tanto su viscosidad es nula Fluidos cuya viscosidad es distinta de cero.
  • 7. SEGÚN LA DENSIDAD FLUJO INCOMPRESIBLE FLUJO COMPRESIBLE Cuando no hay variaciones de densidad en función de la posición. Generalmente el flujo de los líquidos es incompresible La densidad del fluido varía de punto a punto, en general es una función de las coordenadas.
  • 8. SEGÚN LA VELOCIDAD ANGULAR FLUJO ROTACIONAL FLUJO IRROTACIONAL Cuando cualquier partícula del fluido no posee velocidad Cuando la velocidad angular neta del elemento de fluido es igual a cero. La velocidad angular es una medida de la velocidad de rotación. Se define como el ángulo girado por una unidad de tiempo y se designa mediante la letra griega ω.
  • 9. SEGÚN SUS DIMENSIONES UNIDIMENSIONAL TRIDIMENSIONAL Cuando todos los vectores de velocidad son paralelos y de igual magnitud, es decir sólo depende de una variable espacial Es un flujo en el que el vector velocidad, solo depende de dos variables espaciales. En éste se supone que todas las partículas fluyen sobre planos paralelos a lo largo de trayectorias BIDIMENSIONAL El vector velocidad depende de tres coordenadas espaciales, es el caso mas general en que las componentes de la velocidad en tres direcciones mutuamente perpendiculares son función de las coordenadas espaciales x, y, z.
  • 10. CON RESPECTO A LA POSICIÓN FLUJO UNIFORME FLUJO NO UNIFORME Cuando el vector velocidad en todos los puntos es idéntico tanto en magnitud como en dirección para un instante dado. Este tipo de flujo es poco común. En este flujo es todo lo contrario al flujo Uniforme, aquí el vector velocidad varía con respecto a la posición en un tiempo dado.
  • 11. CON RESPECTO AL TIEMPO FLUJO PERMANENTE FLUJO NO PERMANENTE Este tipo de flujo se caracteriza porque las condiciones de velocidad en cualquier punto no cambian con el tiempo. No existen cambios en la densidad, presión o temperatura con el tiempo. También se conocen como estacionarios. En este flujo es todo lo contrario al flujo Permanente, aquí el vector velocidad varía con respecto al tiempo. Se conoce también como no estacionarios.
  • 12. SEGÚN SU RÉGIMEN TRANSICIÓN LAMINAR TURBULENTO Las partículas del líquido se mueven siempre a lo largo de trayectorias uniformes, en capas o láminas, con el mismo sentido, dirección y magnitud Las partículas se mueven siguiendo trayectorias erráticas, desordenadas, con formación de torbellinos. Cuando aumenta la velocidad del flujo, la tendencia al desorden crece A medida que aumenta la velocidad, se produce una transición del régimen laminar al turbulento NÚMERO DE REYNOLDS
  • 13. Osborne Reynolds (1842–1912), publicó en 1883 su clásico experimento mediante el que estableció el Número de Reynolds, el cual es un número adimensional que relaciona las fuerzas inerciales con las fuerzas viscosas y da como resultado el régimen del flujo. Éste varía al modificar la velocidad y/o la viscosidad del flujo.
  • 14. FLUJO LAMINAR FLUJO TRANSICIÓN FLUJO TURBULENTO NR<2000 NR>4000 2000≤NR≤4000
  • 15. Es la cantidad de flujo que circula en un sistema por unidad de tiempo, se puede definir también como caudal o gasto. Y se puede expresar mediante los tres términos siguientes: M La rapidez de flujo de masa, es la masa de fluido que circula por una sección por unidad de tiempo. W La rapidez de flujo de peso, es el peso de fluido que circula por una sección por unidad de tiempo. Q La rapidez de flujo de volumen, es el volumen de fluido que pasa por una sección por unidad de tiempo. V: Velocidad A: Área
  • 16.
  • 17. 1.- “Principio de Continuidad”. Conservación de la materia. 2.- Segunda Ley de Newton. Impulso y Cantidad de movimiento. 3.- Primera Ley de la Termodinámica. Conservación de la energía. 4.- Segunda Ley de la Termodinámica.
  • 18. La ecuación de continuidad no es más que un caso particular del principio de conservación de la masa. Se basa en que el caudal (Q) del fluido ha de permanecer constante a lo largo de toda la conducción. Dado que el caudal es el producto de la superficie de una sección del conducto por la velocidad con que fluye el fluido, tendremos que en dos puntos de una misma tubería se debe cumplir que: Para flujos incompresibles y permanentes:
  • 19. EJEMPLO: En la figura se muestra la bifurcación de un tubo que tiene los diámetros indicados. El agua que circula dentro del tubo entra en A y sale en C y D. Si la velocidad media en B es de 0,60 m/s y en D es de 2,70 m/s. Calcule las velocidades en A y en C, el gasto total y el gasto en cada rama de la tubería. A B C D ØA = 0,15 m ØB = 0,30 m
  • 20. La energía ni se crea ni se destruye, se transforma en otra. Este enunciado es de la Ley de Conservación de energía.
  • 21. La ecuación de Bernoulli o de conservación de la energía, indica que en un fluido en movimiento sometido a la acción de la gravedad, la suma de las alturas geométrica, manométrica y cinética es constante para los diversos puntos de una línea de corriente.
  • 22. El fluido tendrá las siguientes formas de energía: Energía potencial: es debido a su elevación. Ep=z Energía cinética o de velocidad: es debido a su velocidad Ec= V2/2g Energía de presión: en ocasiones conocida como energía del flujo o trabajo de flujo. Ef= p/γ Para flujos ideales e incompresibles