SlideShare uma empresa Scribd logo
1 de 26
Unit-I Electronic Components
Electronic Components
The main components used in electronics are of two general types: passive and
active.
(i) Active components
Components required to be powered in some way to make them work i.e. rely on a source of energy
Examples: Active components include amplifying components such as Vacuum Tubes, Transistors, Integrated
Circuits, etc
(ii) Passive components
Doesn't rely on a source of power.
Examples: Passive components include components such as resistors, capacitors, and inductors.
Resistor
Resistors decrease the intensity of the electric current flowing through a circuit. Resistors do not block
electricity. Instead, they convert a percentage of the electric current into heat energy, which is transmitted into
an area around the device.
Resistance: The ability of the material to oppose current.
The amount of electric current absorbed by a resistor is called "resistance," and is measured in "ohm" units
Ohm: an ohm is defined as the electrical resistance between two points of a
conductor when a constant potential difference applied between these points produces a
current of one ampere
R = V / I
A simple analogy with a hydraulic system. Notice that the flow of electricity resembles the flow of water
from a point of high potential energy (high voltage) to a point of low potential energy (low voltage). In
this simple analogy water is compared to electrical current, the voltage Difference is compared to the
head difference between two water reservoirs, and finally the valve resisting the flow of water is
compared to the resistor limiting the flow of current.
There won’t be any flow of current between 2 points if there is no potential difference between them.
In other words, for a flow of current to exist, there must be a voltage difference between two points.
The electric current in a conductor will increase with the decrease of the resistance, exactly as the rate
of flow of water will increase with the decrease of the resistance of the valve.
A lot more deductions are based on this simple analogy, but those rules are summarized in
the most fundamental equations of electronics: Ohm's law.
Ohm's law states that, at constant temperature the current through a conductor between two
points is directly proportional to the potential difference or voltage across the two points,
and inversely proportional to the resistance between them.
The mathematical equation that describes this relationship is: R = V / I
Where
I is the current through the conductor in unit of ampere,
V is the potential difference measured across the conductor in unit of volt,
R is the resistance of the conductor in unit of ohm.
Note: Problem to be solved.
Resistor colour code
Four band resistor colour code
• 1st band provides the first digit of the
Code
• 2nd band provides the second digit of
the code
• 3rd band is the multiplier
• 4th band indicates the tolerance value
Resistance colour code chart
Resistors
Resistor colour code calculation
• The first band red has a value of 2
• The second band violet has a value of
7
• The third band has a multiplier of x
10
• The last band indicates a tolerance
value of +/-5%
• Resistance value is 270Ω +/-5%
2
7
x10
+/-5%
Small value resistors (less than 10 ohm)
The standard colour code cannot show values of less than 10 . To show these
small values two special colours are used for the third band:
gold which means 0.1 and
Silver which means 0.01.
The first and second bands represent the digits as normal.
For example:
red, violet, gold bands represent 27 0.1 = 2.7Ώ
green, blue, silver bands represent 56 0.01 = 0.56 Ώ
Tolerance of resistors (fourth band of colour code)
The tolerance of a resistor is shown by the fourth band of the colour code.
Tolerance is the amount of resistance that may vary within the acceptable range and it is given as a
percentage.
A special colour code is used for the fourth band tolerance: Silver 10% ,Gold 5%
For example :
A 390 Ώ resistor with a tolerance of 10% will have a value within 10% of 390 Ώ , between 390 Ώ - 39
Ώ = 351 Ώ and 390 Ώ + 39 Ώ = 429 Ώ (39 Ώ is 10% of 390 Ώ).
Stages in manufacturing process of Resistor
(i) Substrate preparation
(ii) Preparation of resistive elements
(iii) Fixation of terminals
(iv) Protective coating
(v) Colour coding
Types of Resistors
Resistors can be either fixed or variable in value
Fixed resistors come in a variety of different shapes, sizes and forms
Axial lead resistors have the value of resistance printed on them or as a colour code
Surface mount resistors have a Alphanumeric code indicating a value.
All resistors have a tolerance value
Resistors
• Variable resistors are called
potentiometers
• There is a fixed value of resistance
between two terminals
• The moving part of the potentiometer
is called the wiper
Fixed value Resistors
The value of resistance remains constant and cannot be varied by the user
The major types of fixed resistors are
(i) Carbon composition resistor
(ii) wire wound resistor
(iii) Carbon film resistor
(iv) Metal film resistor
Choice of resistor for a desired application depends upon the value of resistance, size,
shape, leads, power rating, tolerance, maximum operating voltage ,etc.
CARBON COMPOSITION RESISTOR
Resistance element: mixture of powdered
carbon and powdered insulator.
The resistance element are solidified by a
bonding compound and the mixture is
extruded into desired shape and size by
forcing it through a die.
The process is achieved by sintering in the
presence of hydrogen or nitrogen at 1400ºC.
Specifications:
Resistance range: 2Ώ to20MΏ
Tolerance: 5% to 10%
Power rating: 0.125W to 2W
Operating Voltage: 125V to 800V
Operating temperature: -55ºC to150ºC
Uses: General purpose electronic instruments
Wire-wound resistors
Wire-wound resistors are fixed resistors that are made by winding a piece
of resistive wire around a cylindrical ceramic core. These are used when a
high power rating is required.
The wire is preferred according to its resistivity.
The required resistance can be achieved by varying the thickness and
length of the resistive wire during winding process.
The resistive wire has to be tightly wound to the ceramic substrate.
The entire setup is covered by an enamel to prevent it from moisture.
Specifications:
Resistance range: 0.1Ώ to1MΏ
Tolerance: 0.1% to 5%
Power rating: 10W to 75W
Operating Voltage: <150V
Operating temperature: 55ºC to375ºC
Applications: Low resistance, low noise, higher power handling capacity in small size.
A thin film of pure carbon is deposited onto a small ceramic
rod(substrate) by thermal decomposition at 1000ºC.
 The resistive coating is spiralled away in an automatic
machine until the resistance between the two ends of the rod is
as close as possible to the correct value.
Metal leads and end caps are added, the resistor is covered
with an insulating coating and finally painted with coloured
bands to indicate the resistor value.
Carbon film resistor
Specifications:
Resistance range: 1Ώ to10MΏ
Tolerance: 1% to 5%
Power rating: 5W
Operating Voltage: 500V
Applications: used in measuring instruments where close tolerances are required.
Carbon film resistors posses better stability than carbon composition resistors, but are of relatively larger size compared
to carbon composition resistors . Carbon film resistors cannot withstand electric overloads.
Metal film resistor
Metal film resistors are axial resistors with a thin metal film(Ni) as resistive element. The thin film is deposited
on usually a ceramic body(substrate).
Specifications:
Resistance range: 0.5Ώ to10KΏ
Tolerance: 2% to 3%
Power rating: 5W
Operating Voltage: 300V
Working temperature: -40 to 150ºC
Stable, reliable and capable of handling overload for
short time.
Applications: electronic instruments.
Variable resistors
Variable resistors can change their value over a specific range. A potentiometer is a variable resistor with
three terminals. A rheostat has only two terminals.
A potentiometer is a three terminal variable resistor used to divide voltage
A rheostat is a variable resistor used to control current
Potentiometers work on the principle that longer lengths of resistance material have greater
resistance.
The closer the wiper is to the end terminal it is connected to, the less resistance there is. This is because
the current will not have to travel as far. The further away the wiper moves from the terminal it is wired
with, the greater the resistance will be.
Potentiometers usually have three connecting points. Two are connected to the ends of the resistance
material and the third is connected to the central sliding contact. The slider can either slide in a straight
line or around a curve
Types of variable resistors
(i) Carbon composition potentiometer
(ii) Wire wound resistor
(iii) Wire wound solenoid
(iv) Helical wound POT
Characteristics of Variable resistor:
(i) resistance law: relation between change in R and movement of wiper
(ii) Tolerance
(iii) Insulation resistance(high)
(iv) Speed of operation
(v) Life time
(vi) Ruggedness
CARBON COMPOSITION POTENTIOMETER(POT)
(i) Coated film Carbon composition potentiometer
Resistance element: mixture of carbon, silica and binder
Substrate: ring shaped insulating material
End terminals: brass or phosphor bronze
The resistance element is coated on the ring shaped insulating material.
Applications: Preset POT in T.V brightness and contrast control, radio and measuring instruments.
Specifications:
Range:100 to 10 7 Ώ;
power :0.5W to 2.25W;
tolerance: 20% for 1 to 10 6 Ώ
30% for> 10 6Ώ
(ii) Moulded type Carbon composition potentiometer: the resistance material is moulded into a cavity in a
plastic base(substrate).
Wiper( moving contact): carbon brush.
ON& OFF switch can be incorporated in this type of POT
Applications: Computers, Industrial and defence . Also used in HF applications as associated inductive and
capacitive effects are low.
Wire wound rotary POT
Resistance element: Nichrome
Substrate: Bakelite or paper
Fabrication:
The resistance element is wound on the flat Bakelite strip with uniform gap between each turn.
The strip is bent in form of arc and fixed to a bakelite mould with end plates and screws.
The wiper can slide on the resistance element.
The former is made up of aluminium for high power applications.
Applications: Volume control for radio and TV
Wire wound Solenoid
Resistance element: oxidised form of Nickel,
copper
Former: ceramic or steel in hexagonal or
circular shape
Brush: copper or graphite.
Resistance element is wound on the former.
Range:500 to 10KΏ.
Current :0.1 to 20A
Applications: industries and laboratories
where large power has to be dissipated.
Helical wound variable resistor
Resistance element is wound on the helical former .
Range: 1 to 125K Ώ.
tolerance: 2%
Power rating: 100W to 200W
Summary
1.Resistors are used in two main applications: as voltage dividers and to limit the flow of current in a circuit.
2.The value of fixed resistors cannot be changed.
3.There are several types of fixed resistors such as composition carbon, metal film, and wire-wound.
4.Carbon resistors change their resistance with age or if overheated.
5.Metal film resistors never change their value, but are more expensive than carbon resistors.
6.The advantage of wire-wound resistors is their high power ratings.
7.Resistors often have bands of color to indicate their resistance value and tolerance.
8.Resistors are produced in standard values. The number of values between 0 and 100 Ω is determined by the
tolerance.
9.Variable resistors can change their value within the limit of their full value.
10.A potentiometer is a variable resistor used as a voltage divider.

Mais conteúdo relacionado

Mais procurados

Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital convertershrutishreya14
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifiersrirenga
 
Cro cathode ray oscilloscope working and applications
Cro cathode ray oscilloscope working and applicationsCro cathode ray oscilloscope working and applications
Cro cathode ray oscilloscope working and applicationsEdgefxkits & Solutions
 
Resistor capacitor inductor
Resistor capacitor inductorResistor capacitor inductor
Resistor capacitor inductorManish Kumar
 
basic-analog-electronics
basic-analog-electronicsbasic-analog-electronics
basic-analog-electronicsATTO RATHORE
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)Kausik das
 
Introduction to Basic Electronics
Introduction to Basic ElectronicsIntroduction to Basic Electronics
Introduction to Basic ElectronicsCiel Rampen
 
Transducers,Active Transducers and Passive Transducers
Transducers,Active Transducers and Passive TransducersTransducers,Active Transducers and Passive Transducers
Transducers,Active Transducers and Passive TransducersAL- AMIN
 
Basic electrical measuring instruments
Basic electrical measuring instrumentsBasic electrical measuring instruments
Basic electrical measuring instrumentsPramod A
 
Basic electronics
Basic electronics Basic electronics
Basic electronics arunavasava
 
Basics of amplifier.ppt
Basics of amplifier.pptBasics of amplifier.ppt
Basics of amplifier.pptVijay Togadiya
 

Mais procurados (20)

Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
Capacitor
CapacitorCapacitor
Capacitor
 
Basics of amplifier
Basics of amplifierBasics of amplifier
Basics of amplifier
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
 
Cro cathode ray oscilloscope working and applications
Cro cathode ray oscilloscope working and applicationsCro cathode ray oscilloscope working and applications
Cro cathode ray oscilloscope working and applications
 
resistors
resistorsresistors
resistors
 
Resistors - Basics
Resistors - BasicsResistors - Basics
Resistors - Basics
 
Resistor capacitor inductor
Resistor capacitor inductorResistor capacitor inductor
Resistor capacitor inductor
 
Inductors
InductorsInductors
Inductors
 
basic-analog-electronics
basic-analog-electronicsbasic-analog-electronics
basic-analog-electronics
 
resistor
resistorresistor
resistor
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
Introduction to Basic Electronics
Introduction to Basic ElectronicsIntroduction to Basic Electronics
Introduction to Basic Electronics
 
Transducers,Active Transducers and Passive Transducers
Transducers,Active Transducers and Passive TransducersTransducers,Active Transducers and Passive Transducers
Transducers,Active Transducers and Passive Transducers
 
Basic electrical measuring instruments
Basic electrical measuring instrumentsBasic electrical measuring instruments
Basic electrical measuring instruments
 
Ditial to Analog Converter
Ditial to Analog ConverterDitial to Analog Converter
Ditial to Analog Converter
 
Basic electronics
Basic electronics Basic electronics
Basic electronics
 
Digital multimeter
Digital multimeterDigital multimeter
Digital multimeter
 
Basics of amplifier.ppt
Basics of amplifier.pptBasics of amplifier.ppt
Basics of amplifier.ppt
 
Basic electronics
Basic electronicsBasic electronics
Basic electronics
 

Semelhante a Lecture 1 resistors

Semelhante a Lecture 1 resistors (20)

Electronics and Communication Engineering
Electronics and Communication EngineeringElectronics and Communication Engineering
Electronics and Communication Engineering
 
Electrical Engineering
Electrical EngineeringElectrical Engineering
Electrical Engineering
 
Basic_Electronics_2_Res_Cap.pptx
Basic_Electronics_2_Res_Cap.pptxBasic_Electronics_2_Res_Cap.pptx
Basic_Electronics_2_Res_Cap.pptx
 
Electric current and ohms law
Electric current and ohms lawElectric current and ohms law
Electric current and ohms law
 
1. Resistors .pptx
1. Resistors .pptx1. Resistors .pptx
1. Resistors .pptx
 
Lesson 2 resistor
Lesson 2 resistorLesson 2 resistor
Lesson 2 resistor
 
CH5 electric components.pptx
CH5 electric components.pptxCH5 electric components.pptx
CH5 electric components.pptx
 
RESISTANCE.pptx
RESISTANCE.pptxRESISTANCE.pptx
RESISTANCE.pptx
 
Components resistors
Components   resistorsComponents   resistors
Components resistors
 
My Presentation on Rc-Circuit
My Presentation on Rc-CircuitMy Presentation on Rc-Circuit
My Presentation on Rc-Circuit
 
5729265.ppt
5729265.ppt5729265.ppt
5729265.ppt
 
Electronic Devices and Circuits Manual
Electronic Devices and Circuits ManualElectronic Devices and Circuits Manual
Electronic Devices and Circuits Manual
 
EST130 BASIC ELECTRICAL & ELECTRONICS.pptx
EST130 BASIC ELECTRICAL & ELECTRONICS.pptxEST130 BASIC ELECTRICAL & ELECTRONICS.pptx
EST130 BASIC ELECTRICAL & ELECTRONICS.pptx
 
Electronic passive components
Electronic passive componentsElectronic passive components
Electronic passive components
 
3.ppt
3.ppt3.ppt
3.ppt
 
Analog digital corse
Analog digital corseAnalog digital corse
Analog digital corse
 
Resistivity.ppt
Resistivity.pptResistivity.ppt
Resistivity.ppt
 
Resistors
ResistorsResistors
Resistors
 
Passive circuit elements
Passive circuit elementsPassive circuit elements
Passive circuit elements
 
1.Resistors_new NOTE.pdf
1.Resistors_new NOTE.pdf1.Resistors_new NOTE.pdf
1.Resistors_new NOTE.pdf
 

Último

Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 

Último (20)

Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 

Lecture 1 resistors

  • 1. Unit-I Electronic Components Electronic Components The main components used in electronics are of two general types: passive and active. (i) Active components Components required to be powered in some way to make them work i.e. rely on a source of energy Examples: Active components include amplifying components such as Vacuum Tubes, Transistors, Integrated Circuits, etc (ii) Passive components Doesn't rely on a source of power. Examples: Passive components include components such as resistors, capacitors, and inductors.
  • 2. Resistor Resistors decrease the intensity of the electric current flowing through a circuit. Resistors do not block electricity. Instead, they convert a percentage of the electric current into heat energy, which is transmitted into an area around the device. Resistance: The ability of the material to oppose current. The amount of electric current absorbed by a resistor is called "resistance," and is measured in "ohm" units Ohm: an ohm is defined as the electrical resistance between two points of a conductor when a constant potential difference applied between these points produces a current of one ampere R = V / I
  • 3. A simple analogy with a hydraulic system. Notice that the flow of electricity resembles the flow of water from a point of high potential energy (high voltage) to a point of low potential energy (low voltage). In this simple analogy water is compared to electrical current, the voltage Difference is compared to the head difference between two water reservoirs, and finally the valve resisting the flow of water is compared to the resistor limiting the flow of current.
  • 4. There won’t be any flow of current between 2 points if there is no potential difference between them. In other words, for a flow of current to exist, there must be a voltage difference between two points. The electric current in a conductor will increase with the decrease of the resistance, exactly as the rate of flow of water will increase with the decrease of the resistance of the valve.
  • 5. A lot more deductions are based on this simple analogy, but those rules are summarized in the most fundamental equations of electronics: Ohm's law. Ohm's law states that, at constant temperature the current through a conductor between two points is directly proportional to the potential difference or voltage across the two points, and inversely proportional to the resistance between them. The mathematical equation that describes this relationship is: R = V / I Where I is the current through the conductor in unit of ampere, V is the potential difference measured across the conductor in unit of volt, R is the resistance of the conductor in unit of ohm. Note: Problem to be solved.
  • 6. Resistor colour code Four band resistor colour code • 1st band provides the first digit of the Code • 2nd band provides the second digit of the code • 3rd band is the multiplier • 4th band indicates the tolerance value
  • 8. Resistors Resistor colour code calculation • The first band red has a value of 2 • The second band violet has a value of 7 • The third band has a multiplier of x 10 • The last band indicates a tolerance value of +/-5% • Resistance value is 270Ω +/-5% 2 7 x10 +/-5%
  • 9. Small value resistors (less than 10 ohm) The standard colour code cannot show values of less than 10 . To show these small values two special colours are used for the third band: gold which means 0.1 and Silver which means 0.01. The first and second bands represent the digits as normal. For example: red, violet, gold bands represent 27 0.1 = 2.7Ώ green, blue, silver bands represent 56 0.01 = 0.56 Ώ
  • 10. Tolerance of resistors (fourth band of colour code) The tolerance of a resistor is shown by the fourth band of the colour code. Tolerance is the amount of resistance that may vary within the acceptable range and it is given as a percentage. A special colour code is used for the fourth band tolerance: Silver 10% ,Gold 5% For example : A 390 Ώ resistor with a tolerance of 10% will have a value within 10% of 390 Ώ , between 390 Ώ - 39 Ώ = 351 Ώ and 390 Ώ + 39 Ώ = 429 Ώ (39 Ώ is 10% of 390 Ώ).
  • 11. Stages in manufacturing process of Resistor (i) Substrate preparation (ii) Preparation of resistive elements (iii) Fixation of terminals (iv) Protective coating (v) Colour coding
  • 12. Types of Resistors Resistors can be either fixed or variable in value Fixed resistors come in a variety of different shapes, sizes and forms Axial lead resistors have the value of resistance printed on them or as a colour code Surface mount resistors have a Alphanumeric code indicating a value. All resistors have a tolerance value
  • 13. Resistors • Variable resistors are called potentiometers • There is a fixed value of resistance between two terminals • The moving part of the potentiometer is called the wiper
  • 14.
  • 15. Fixed value Resistors The value of resistance remains constant and cannot be varied by the user The major types of fixed resistors are (i) Carbon composition resistor (ii) wire wound resistor (iii) Carbon film resistor (iv) Metal film resistor Choice of resistor for a desired application depends upon the value of resistance, size, shape, leads, power rating, tolerance, maximum operating voltage ,etc.
  • 16. CARBON COMPOSITION RESISTOR Resistance element: mixture of powdered carbon and powdered insulator. The resistance element are solidified by a bonding compound and the mixture is extruded into desired shape and size by forcing it through a die. The process is achieved by sintering in the presence of hydrogen or nitrogen at 1400ºC. Specifications: Resistance range: 2Ώ to20MΏ Tolerance: 5% to 10% Power rating: 0.125W to 2W Operating Voltage: 125V to 800V Operating temperature: -55ºC to150ºC Uses: General purpose electronic instruments
  • 17. Wire-wound resistors Wire-wound resistors are fixed resistors that are made by winding a piece of resistive wire around a cylindrical ceramic core. These are used when a high power rating is required. The wire is preferred according to its resistivity. The required resistance can be achieved by varying the thickness and length of the resistive wire during winding process. The resistive wire has to be tightly wound to the ceramic substrate. The entire setup is covered by an enamel to prevent it from moisture. Specifications: Resistance range: 0.1Ώ to1MΏ Tolerance: 0.1% to 5% Power rating: 10W to 75W Operating Voltage: <150V Operating temperature: 55ºC to375ºC Applications: Low resistance, low noise, higher power handling capacity in small size.
  • 18. A thin film of pure carbon is deposited onto a small ceramic rod(substrate) by thermal decomposition at 1000ºC.  The resistive coating is spiralled away in an automatic machine until the resistance between the two ends of the rod is as close as possible to the correct value. Metal leads and end caps are added, the resistor is covered with an insulating coating and finally painted with coloured bands to indicate the resistor value. Carbon film resistor Specifications: Resistance range: 1Ώ to10MΏ Tolerance: 1% to 5% Power rating: 5W Operating Voltage: 500V Applications: used in measuring instruments where close tolerances are required. Carbon film resistors posses better stability than carbon composition resistors, but are of relatively larger size compared to carbon composition resistors . Carbon film resistors cannot withstand electric overloads.
  • 19. Metal film resistor Metal film resistors are axial resistors with a thin metal film(Ni) as resistive element. The thin film is deposited on usually a ceramic body(substrate). Specifications: Resistance range: 0.5Ώ to10KΏ Tolerance: 2% to 3% Power rating: 5W Operating Voltage: 300V Working temperature: -40 to 150ºC Stable, reliable and capable of handling overload for short time. Applications: electronic instruments.
  • 20. Variable resistors Variable resistors can change their value over a specific range. A potentiometer is a variable resistor with three terminals. A rheostat has only two terminals. A potentiometer is a three terminal variable resistor used to divide voltage A rheostat is a variable resistor used to control current
  • 21. Potentiometers work on the principle that longer lengths of resistance material have greater resistance. The closer the wiper is to the end terminal it is connected to, the less resistance there is. This is because the current will not have to travel as far. The further away the wiper moves from the terminal it is wired with, the greater the resistance will be. Potentiometers usually have three connecting points. Two are connected to the ends of the resistance material and the third is connected to the central sliding contact. The slider can either slide in a straight line or around a curve
  • 22. Types of variable resistors (i) Carbon composition potentiometer (ii) Wire wound resistor (iii) Wire wound solenoid (iv) Helical wound POT Characteristics of Variable resistor: (i) resistance law: relation between change in R and movement of wiper (ii) Tolerance (iii) Insulation resistance(high) (iv) Speed of operation (v) Life time (vi) Ruggedness
  • 23. CARBON COMPOSITION POTENTIOMETER(POT) (i) Coated film Carbon composition potentiometer Resistance element: mixture of carbon, silica and binder Substrate: ring shaped insulating material End terminals: brass or phosphor bronze The resistance element is coated on the ring shaped insulating material. Applications: Preset POT in T.V brightness and contrast control, radio and measuring instruments. Specifications: Range:100 to 10 7 Ώ; power :0.5W to 2.25W; tolerance: 20% for 1 to 10 6 Ώ 30% for> 10 6Ώ (ii) Moulded type Carbon composition potentiometer: the resistance material is moulded into a cavity in a plastic base(substrate). Wiper( moving contact): carbon brush. ON& OFF switch can be incorporated in this type of POT Applications: Computers, Industrial and defence . Also used in HF applications as associated inductive and capacitive effects are low.
  • 24. Wire wound rotary POT Resistance element: Nichrome Substrate: Bakelite or paper Fabrication: The resistance element is wound on the flat Bakelite strip with uniform gap between each turn. The strip is bent in form of arc and fixed to a bakelite mould with end plates and screws. The wiper can slide on the resistance element. The former is made up of aluminium for high power applications. Applications: Volume control for radio and TV
  • 25. Wire wound Solenoid Resistance element: oxidised form of Nickel, copper Former: ceramic or steel in hexagonal or circular shape Brush: copper or graphite. Resistance element is wound on the former. Range:500 to 10KΏ. Current :0.1 to 20A Applications: industries and laboratories where large power has to be dissipated. Helical wound variable resistor Resistance element is wound on the helical former . Range: 1 to 125K Ώ. tolerance: 2% Power rating: 100W to 200W
  • 26. Summary 1.Resistors are used in two main applications: as voltage dividers and to limit the flow of current in a circuit. 2.The value of fixed resistors cannot be changed. 3.There are several types of fixed resistors such as composition carbon, metal film, and wire-wound. 4.Carbon resistors change their resistance with age or if overheated. 5.Metal film resistors never change their value, but are more expensive than carbon resistors. 6.The advantage of wire-wound resistors is their high power ratings. 7.Resistors often have bands of color to indicate their resistance value and tolerance. 8.Resistors are produced in standard values. The number of values between 0 and 100 Ω is determined by the tolerance. 9.Variable resistors can change their value within the limit of their full value. 10.A potentiometer is a variable resistor used as a voltage divider.