SlideShare a Scribd company logo
1 of 41
Download to read offline
ทฤษฎีเซตเบื้องตนทฤษฎีเซตเบื้องตนทฤษฎีเซตเบื้องตนทฤษฎีเซตเบื้องตนทฤษฎีเซตเบื้องตนทฤษฎีเซตเบื้องตนทฤษฎีเซตเบื้องตนทฤษฎีเซตเบื้องตน
((((((((EEEEEEEElllllllleeeeeeeemmmmmmmmeeeeeeeennnnnnnnttttttttaaaaaaaarrrrrrrryyyyyyyy SSSSSSSSeeeeeeeetttttttt TTTTTTTThhhhhhhheeeeeeeeoooooooorrrrrrrryyyyyyyy))))))))
F
ก
““““ F F”””” F 2
F
F F F F . . 2537
www.thai-mathpaper.net
F F ก F F ˈ F F 2 15 F
F F F ˈ ก ก ก F ก F F (Modern
Mathematics) F ก F ก ก ก F F ˈ F F
Fก F F F ก ก F F ˈ F F
F
8 ก . . 2549
ก 1
ก F F F F ก F ก ก
F F ʿก ˈ ก F F F F ก ˈ F
ก F F F F F กก F
F
22 . . 2549
ก 2
ก F 2 F F F ก ก F F
ก F ˈ ก ก F F F F
ก ก Fก F F F
F
1 . . 2550
1 1 23
1.1 1
1.2 F 2
1.3 ก 4
1.4 ก ก 7
1.5 ก 11
1.6 F F 15
1.7 F ก ก F 17
1.8 F F ก ก F 22
2 ก F 25 31
2.1 F 26
2.2 ก F 28
ก 33
1
ก ก
กF F F ก F F F F F 1 1
ก F F F F F F F ก ก F F F
1.1
(Sets) ˈ (undefined term) ก F F ก F F
F ก ˈ 2 ก
1) ก (Finite sets) ก ˈ ก F
2) F (Infinite Sets) F F ก
ก ก ก ก F ก ก F F (Empty set)
F ก F {} φ
ก F (Relative universe) ก F ก F Fก F
ก ก ก ก
F F F Fก F ˈ F F F ก F ˈ
ก
ก F 2 ก
1) ก ก ก F ก ก F ก ก
2) ก ก F ก ก ˈ ก F ก ก
F F
F 1.1 ก F A = {1, 3, 5, 7, 9}, B = {1, 3, 5, } ก F F A ˈ ก ˈ ก
ก ก F F B ก F F ˈ F F F ก ก F F
F F F ก F ก ก ก
2 F
1.1
F A B ˈ F F F ก F F A ˈ F B ก F ก
ก A F ก ˈ ก B F
ก ก ก ก F F A B F ก F F ก F
A = {x | x = 2n + 1, n ∈ N n < 5} B = {y | y = 2k + 1, k ∈ N}
1.2 F (Subset)
ก 1.1 ก F ก F F
ˈ F F F ก F ⊂ F F F
ก F ⊆ ˈ F F ⊂ ˈ F F
F 1.2 ก F A = {1, 3, 5, 7, 9}, B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, C = {2, 4, 6, 8, 10, 12}
F A ⊆ B F A  C B  C
ก 1.2 ก F ก F F
1.2
F A B ˈ F F F ก F F A ˈ F F B ก F
A ˈ F B F B F ˈ F A
A ⊂ B ‹ ∀x [x ∈ A fl ∃x(x ∈ B fl x ∉ A)]
A ⊆ B ‹ ∀x [x ∈ A fl x ∈ B]
F F 3
F ก F ก 2
F 1.3 ก F A = {2, 3, 5}, B = {2, 4, 6}, C = {2, 3, 5} ก F F A = C ก F
A ⊆ C C ⊆ A F B ≠ C ก F ก B F F ˈ ก C
ก ก ก C F F ˈ ก B
F F ก F 1.1 (1) (2)
(1) F ก F φ ⊆ A
F ก F F (contrapositive)
ก φ ⊆ A F F ก F ก F F
φ ⊆ A ‹ ∀x [x ∈ φ fl x ∈ A] ‹ ∀x [x ∉ A fl x ∉ φ]
F x ˈ ก ก F F x ∉ A F x ∉ A ก
ˈ F ก x ∈ U ก F F x ∉ φ ก F
F ก F F φ ⊆ A F ก
(2) F ก F A ⊆ A
F ก F ก F (direct proof)
F x ∈ A F F F x ∈ A
ก F F ก F F ∀x [x ∈ A fl x ∈ A] F F F
ก F ˈ (Idempotence) F F A ⊆ A
1.1 (3) F F F F ˈ ʿก
1.1 F A ˈ , U ˈ ก F
1) φ ⊆ A
2) A ⊆ A
3) A ⊆ U
1.3
F A B ˈ F F F ก F F A = B ก F A ˈ F B B ˈ
F A
4 F
ʿก 1.2
F 1.1 (3)
1.3 ก (Power set)
F ก ก ก ก ˈ F
F 1.4 ก F A = {0, 1, 2} P(A)
ก A = {0, 1, 2} F F {0}, {1}, {2}, {0, 1}, {0, 2}, {0, 1, 2}, φ ˈ F A
1.4 F F P(A) = {{0}, {1}, {2}, {0, 1}, {0, 2}, {0, 1, 2}, φ}
F 1.5 ก F A = {0, 1}, B = {2, 3} P(A) ∪ P(B), P(A ∪ B), P(A) ∩ P(B)
P(A ∩ B)
ก A = {0, 1}, B = {2, 3} F F P(A) = {{0}, {1}, {0, 1}, φ}
P(B) = {{2}, {3}, {2, 3}, φ}
P(A) ∪ P(B) = {{0}, {1}, {0, 1}, φ} ∪ {{2}, {3}, {2, 3}, φ}
= {{0}, {1}, {2}, {3}, {0, 1}, {2, 3}, φ}
P(A) ∩ P(B) = {{0}, {1}, {0, 1}, φ} ∩ {{2}, {3}, {2, 3}, φ} = {φ}
ก A ∪ B = {0, 1, 2, 3} A ∩ B = φ F F
P(A ∪ B) = {{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {0, 1, 2}, {0, 1, 3},
{0, 2, 3}, {1, 2,3 }, {0, 1, 2, 3}, φ}
P(A ∩ B) = P(φ) = {φ}
1.4
ก A F P(A)
P(A) = {B | B ⊆ A}
F F 5
F ก F ก ก
F 1) F ก F F A ⊆ B F P(A) ⊆ P(B)
F A ⊆ B
ก F C ∈ P(A) F F C ⊆ A
ก A ⊆ B F F C ⊆ B
C ∈ P(B)
P(A) ⊆ P(B)
2) F ก F P(A) ∪ P(B) ⊆ P(A ∪ B)
ก F C ∈ P(A) ∪ P(B)
F F C ∈ P(A) C ∈ P(B)
ก C ∈ P(A) F F C ⊆ A
ก C ∈ P(B) F F C ⊆ B
C ⊆ A ∪ B
C ∈ P(A ∪ B)
P(A) ∪ P(B) ⊆ P(A ∪ B) F ก
3) F ก F P(A) ∩ P(B) = P(A ∩ B)
(⊆) F C ∈ P(A) ∩ P(B)
F F C ∈ P(A) C ∈ P(B)
C ⊆ A C ⊆ B
C ⊆ A ∩ B
C ∈ P(A ∩ B)
P(A) ∩ P(B) ⊆ P(A ∩ B)
(⊇) F C ∈ P(A ∩ B)
F F C ⊆ A ∩ B
C ⊆ A C ⊆ B
C ∈ P(A) C ∈ P(B)
1.2 F A, B ˈ F F
1) F A ⊆ B F P(A) ⊆ P(B)
2) P(A) ∪ P(B) ⊆ P(A ∪ B)
3) P(A) ∩ P(B) = P(A ∩ B)
6 F
C ∈ P(A) ∩ P(B)
P(A ∩ B) ⊆ P(A) ∩ P(B)
ก F F P(A) ∩ P(B) = P(A ∩ B)
ก F 1.2 F F ก ก ก ก F F F
ก ก ก ก ก F 1.4 กF F F ก
F F 1.2 F
ʿก 1.3
1. F A = {1, 2, {1}, {2}, {1, 2}}
2. ก F F P(A ∪ B) ⊈ P(A) ∪ P(B)
3. ก F A, B ˈ F ˈ F ก F U F B ⊂ A
F P(A B) = P(A) P(B) F F ˈ F F F F F F ก F F
4. ก F A, B ˈ F ˈ F ก F U A ⊆ B
P(A) ⊗ P(B) = {C1 ∩ C2 | C1 ∩ C2 ≠ φ, C1 ∈ P(A) C2 ∈ P(B)}
F P(A) ⊗ P(B) ⊆ P(B)
F F 7
1.4 ก ก
ก ก ก ˈ F F F
4 F กF
1)
2) F ก
3) F (complement of set)
4) F
F ก ก F ก F
F 1.4 ก F A = {1, 2, 3, 4}, B = {1, 3, 5}, C = {2, 4, 6} A ∪ B, A ∪ C, B ∪ C,
A ∩ B, B ∩ C, A ∩ C, A ∪ B ∪ C A ∩ B ∩ C
ก F F F A ∪ B = {1, 2, 3, 4} ∪ {1, 3, 5} = {1, 2, 3, 4, 5}
A ∪ C = {1, 2, 3, 4} ∪ {2, 4, 6} = {1, 2, 3, 4, 6}
B ∪ C = {1, 3, 5} ∪ {2, 4, 6} = {1, 2, 3, 4, 5, 6}
A ∩ B = {1, 2, 3, 4} ∩ {1, 3, 5} = {1, 3}
B ∩ C = {1, 3, 5} ∩ {2, 4, 6} = φ
A ∩ C = {1, 2, 3, 4} ∩ {2, 4, 6} = {2, 4}
1.4 F A, B ˈ U ˈ ก F
1) ก A B F A ∪ B ก F ก
A B A ∪ B = {x | x ∈ A x ∈ B}
F ก ʽ ∀x [x ∈ A ∪ B ‹ x ∈ A / x ∈ B]
2) F ก A B F A ∩ B ก F
ก A B A ∩ B = {x | x ∈ A x ∈ B} F
ก ʽ ∀x [x ∈ A ∩ B ‹ x ∈ A - x ∈ B]
3) F A F A F A′ ก F
ก U F ˈ ก A A′ = {x | x ∈ U x ∉ A}
F ก ʽ ∀x [x ∈ A′ ‹ x ∈ U - x ∉ A]
4) F A B F A B F A ∩ B′
ก F ก A F F ˈ ก B
A B = A ∩ B′ = {x | x ∈ A x ∉ B} F ก
ʽ ∀x [x ∈ A B ‹ x ∈ A - x ∉ B]
8 F
A ∪ B ∪ C = {1, 2, 3, 4} ∪ {1, 3, 5} ∪ {2, 4, 6} = {1, 2, 3, 4, 5, 6}
A ∩ B ∩ C = {1, 2, 3, 4} ∩ {1, 3, 5} ∩ {2, 4, 6} = φ
F ˈ F ก ก ก ก
F ก F A, B, C ˈ
1) (⊆) F x ∈ A ∪ A
F F x ∈ A x ∈ A
x ∈ A F ก
(⊇) F ก ⊆
A ∪ A = A
2) F F F F ˈ ʿก
3) (⊆) F x ∈ A ∪ B
F F x ∈ A x ∈ B
x ∈ B x ∈ A
x ∈ B ∪ A
(⊇) F ก ⊆
4) F F F F ˈ ʿก
5) (⊆) F x ∈ (A ∪ B) ∪ C
1.3 ก F F A, B, C ˈ ก F U
1) A ∪ A = A
2) A ∩ A = A
3) A ∪ B = B ∪ A
4) A ∩ B = B ∩ A
5) (A ∪ B) ∪ C = A ∪ (B ∪ C)
6) (A ∩ B) ∩ C = A ∩ (B ∩ C)
7) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
8) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
9) φ′ = U U′ = φ
10) (A′)′ = A
11) (A ∪ B)′ = A′ ∩ B′
12) (A ∩ B)′ = A′ ∪ B′
13) F A ⊆ B F B′ ⊆ A′
F F 9
F F x ∈ A ∪ B x ∈ C
x ∈ A x ∈ B ∪ C
x ∈ A ∪ (B ∪ C)
(⊇) F ก ⊆
6) F F F F ˈ ʿก
7) (⊆) F x ∈ A ∪ (B ∩ C)
F F x ∈ A x ∈ B ∩ C
x ∈ A x ∈ B x ∈ C
x ∈ A x ∈ B x ∈ A x ∈ C
x ∈ A ∪ B x ∈ A ∪ C
F F x ∈ (A ∪ B) ∩ (A ∪ C)
(⊇) F ก ⊆
8) F F F ˈ ʿก
9) F F F ˈ ʿก
10) (⊆) F x ∈ (A′)′
F F x ∉ A′
x ∈ A
(⊇) F ก ⊆
11) (⊆) F x ∈ (A ∪ B)′
F F x ∉ A ∪ B
x ∉ A x ∉ B
x ∈ A′ x ∈ B′
x ∈ A′ ∩ B′
(⊇) F ก ⊆
12) F F F ˈ ʿก
13) F A ⊆ B B′  A′
F x ∈ B′ ก B′  A′ F F x ∉ A′
x ∈ A F F x ∈ B ( ก F )
x ∉ B′ F F F ก F ก
F A ⊆ B F B′ ⊆ A′ F ก
10 F
1) 2.3 (7) (8) F กก ก Fก (De Morgan s Law)
2) ก F 1.3 F F ก F F ก F ก F F F F F
ˈ ʿก
F ก ก ก 2
3 ก F ก F F
F F ก F 2.4 (1) 2.4 (2) F F
ก F F F F ˈ ʿก
F ก F F F F (Venn Euler s Diagram)
ก F ก F ก ˈ 3 F F F ก
F A ∪ B F กF F ก F F F ก
A ∪ B ( F n(A ∪ B)) F F ก n(A) + n(B) A ∩ B F กF F ˈ F F
ก A ∩ B F ก ก F ก ก
A ∩ B ( F n(A ∩ B)) F ก A B
ก ก F ก A ∩ B ก F F
n(A ∪ B) = n(A) + n(B) n(A ∩ B) F ก
1.4 ก F A, B, C ˈ ก ก F F n(A), n(B), n(C) ˈ
ก A, B, C F F F
1) n(A ∪ B) = n(A) + n(B) n(A ∩ B)
2) n(A ∪ B ∪ C) = n(A) + n(B) + n(C) n(A ∩ B) n(A ∩ C) n(B ∩ C) + n(A ∩ B ∩ C)
F F 11
ʿก 1.4
1. F 1.3 F F F F
2. F F F A F F ก 2n(A)
n(A) ˈ ก A
1.5 ก
F F F ก ˈ ก F
F F ก ก ก ˈ F ˈ F
ก ก ก ก กF
ก 1.5 ˈ ก F ก F F
A = {Aa | a ∈ K}
F 1.5 ก F K = {1, 5, 6} F a ∈ K ก F Aa = {1, 2, 3, , a}
F F
1) A
2) A1
3) A5
4) A6
5) A1 ∪ A6
6) A5 ∩ A6
1) ก A = {Aa | a ∈ K}
F 1, 5, 6 ∈ K
A = {A1, A5, A6}
2) ก Aa = {1, 2, 3, , a} F F A1 = {1}
3) ก Aa = {1, 2, 3, , a} F F A5 = {1, 2, 3, 4, 5}
1.5
ก F K ˈ F a ∈ K F Aa ⊆ U ก K F ˈ ก A
ˈ Aa a ∈ K F (family of sets)
12 F
4) ก Aa = {1, 2, 3, , a} F F A6 = {1, 2, 3, 4, 5, 6}
5) A1 ∪ A6 = {1} ∪ {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4, 5, 6} = A6
6) A5 ∩ A6 = {1, 2, 3, 4, 5} ∩ {1, 2, 3, 4, 5, 6}
F F A5 ∩ A6 = {1, 2, 3, 4, 5} = A5
ก F F
F 1.6 ก F 1.5 F a
a K
A
∈
∪ a
a K
A
∈
∩
a
a K
A
∈
∪ = A1 ∪ A5 ∪ A6 = A6 = {1, 2, 3, 4, 5, 6}
a
a K
A
∈
∩ = A1 ∩ A5 ∩ A6 = A1 = {1}
1.6
ก F K ≠ φ ˈ A = {Aa | a ∈ K} ˈ F ก ก
A ก ก F
a
a K
A
∈
∪ = {x | x ∈ Aa a ∈ K}
1.7
ก F K ≠ φ ˈ A = {Aa | a ∈ K} ˈ F ก
A ก ก F
a
a K
A
∈
∩ = {x | x ∈ Aa ก a ∈ K}
F F 13
ก F ก F
F F ก F F 1) F 3) F F F F F ˈ ʿก
ก F K ˈ A = {Aa | a ∈ K} ˈ B ˈ
1) (⊆) F x ∈ B ∪ a
a K
A
∈
 
 
 
∪
F F x ∈ B x ∈ a
a K
A
∈
∪
ก x ∈ a
a K
A
∈
∪ F F x ∈Aa a ∈ K
x ∈ B x ∈ Aa a ∈ K
ก x ∈ B ∪ Aa a ∈ K
x ∈ ( )a
a K
B A
∈
∪∪
(⊇) F y ∈ ( )a
a K
B A
∈
∪∪
F F y ∈ B ∪ Aa a ∈ K
y ∈ B y ∈ Aa a ∈ K
F F y ∈ B y ∈ a
a K
A
∈
∪
1.5
ก F A = {Aa | a ∈ K} ˈ B ˈ F F F
1) B ∪ a
a K
A
∈
 
 
 
∪ = ( )a
a K
B A
∈
∪∪
2) B ∩ a
a K
A
∈
 
 
 
∩ = ( )a
a K
B A
∈
∩∩
3) B ∩ a
a K
A
∈
 
 
 
∪ = ( )a
a K
B A
∈
∩∪
4) B ∪ a
a K
A
∈
 
 
 
∩ = ( )a
a K
B A
∈
∪∩
5) a
a K
A
∈
′ 
 
 
∪ = ( )a
a K
A
∈
′∩
14 F
y ∈ B ∪ a
a K
A
∈
 
 
 
∪
B ∪ a
a K
A
∈
 
 
 
∪ = ( )a
a K
B A
∈
∪∪ F ก
3) (⊆) F x ∈ B ∩ a
a K
A
∈
 
 
 
∪
F F x ∈ B x ∈ a
a K
A
∈
∪
ก x ∈ a
a K
A
∈
∪ F F x ∈Aa a ∈ K
x ∈ B x ∈ Aa a ∈ K
ก x ∈ B ∩ Aa a ∈ K
x ∈ ( )a
a K
B A
∈
∩∪
(⊇) F y ∈ ( )a
a K
B A
∈
∩∪
F F y ∈ B ∩ Aa a ∈ K
y ∈ B y ∈ Aa a ∈ K
F F y ∈ B y ∈ a
a K
A
∈
∪
y ∈ B ∩ a
a K
A
∈
 
 
 
∪
B ∩ a
a K
A
∈
 
 
 
∪ = ( )a
a K
B A
∈
∩∪ F ก
ʿก 1.5
1. ก ก F F
1) 1 1
n n- ,   ก n
2) ( ε, ε) ก ε
2. ก F 1.5 F F F F
F F 15
1.6 F F
F F (Venn Euler Diagram) ˈ F F F ˈ
F ก F
F F ˈ ก กF ก F 2 F F F
(John Venn, 1834 1923) F F (Leonard Euler, 1707 1783)
F F ก F F F ก F ก
F ก F ˈ F ก F
F 1.7 ก F U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {3, 4, 5, 6, 9} U
A ก F ก F
F 1.8 ก F U ˈ ก F A, B ˈ F ก F
F F ก F F
1) A ∪ B
2) A ∩ B
1)
F F กF A ∪ B
1 2 3 4
5 6 7 8 9
U
3 4 5
6 9
U
16 F
2)
F F กF A ∩ B
ʿก 1.6
1. F F ก F F
1) A = B
2) A B F ก F ก
3) A ˈ F F B
2. F A B = {2, 4, 6}, B A = {0, 1, 3}
A ∪ B = {0, 1, 2, 3, 4, 5, 6, 7, 8}
F A ∩ B ˈ F F F
1) {0, 1, 4, 5, 6, 7}
2) {1, 2, 4, 5, 6, 8}
3) {0, 1, 3, 5, 7, 8}
4) {0, 2, 4, 5, 6, 8}
U
F F 17
1.7 F ก ก F
F ˈ ก F ˆ F ก ก F ˈ F F
F ʾ F
F 1.9 A B F F
1) F A ∩ B = φ F A ⊆ B′ B ⊆ A′
2) A (A ∩ B) = A B
3) (A ∪ B) A = B
4) F A ∩ B = A F A ⊆ B
1) ก F ( F F F ˈ ʿก )
2) ก A (A ∩ B) = A ∩ (A ∩ B)′
= A ∩ (A′ ∪ B′)
= (A ∩ A′) ∪ (A ∩ B′)
= (A A) ∪ (A B)
= φ∪ (A B)
= A B
F 2 ก F
3) ก (A ∪ B) A = (A ∪ B) ∩ A′
= (A ∩ A′) ∪ (B ∩ A′)
= φ∪ (B A)
= B A
≠ B
F 3
4) F A ∩ B = A
F x ∈ A ∩ B
x ∈ A
ก x ∈ A ∩ B
F x ∈ A x ∈ B
A ⊆ B
F 4 ก F
F 3 F ก F
18 F
F 1.10 F A = {1, 2, 3, , 9}
S = {B | B ⊆ A (1 ∈ B 9 ∈ B)}
F ก S F ก F
ก S Fก F F S ก F F B A 1, 9 ∈ A
ก F B1 = {B | B ⊆ A 1 ∈ B}, B2 = {B | B ⊆ A 9 ∈ B}
F S = B1 ∪ B2
n(S) = n(B1 ∪ B2) = n(B1) + n(B2) n(B1 ∩ B2) -----(1.6.1)
ก n(B1) = 1 ⋅ 29 1
= 1 ⋅ 28
ก F F n(B2) = 1 ⋅ 28
n(B1 ∩ B2) = 1 ⋅ 29 2
= 1 ⋅ 27
F F n(S) = 1 ⋅ 28
+ 1 ⋅ 28
1 ⋅ 27
= 2 ⋅ 28 81
2 2⋅
= 83
2 2⋅
= 384
F 1.11 ก F S = {n ∈ I+
| n ≤ 1000, . . . n 100 F ก 1} ก
S F ก F
(n, 100) = 1
ก 100 = 22
⋅ 52
F n F F 2 5 ˈ ก
n F F 2 ⋅ 5 = 10 F ก F
F ก n ≤ 1000 F 10 F ก 1000
10 = 100
ก n ≤ 1000 F 10 F F ก 1000 100 = 900----(1.6.2)
F ก n ≤ 1000 F 2 F F ก 1000 500 = 500----(1.6.3)
F ก n ≤ 1000 F 5 F F ก 1000 200 = 800----(1.6.4)
n(S) = 800 + 500 900 = 400
F 1.12 ก F ก F U = {1, 2, 3, 4, 5} A, B, C ˈ F
n(A) = n(B) = n(C) = 3 n(A ∩ B) = n(B ∩ C) = n(A ∩ C) = 2
F A ∪ B ∪ C = U F F F
1) n(A ∪ B) = 4 2) n(A ∪ (B ∩ C)) = 3
3) n(A ∩ (B ∪ C)) = 2 4) n(A ∩ B ∩ C) = 1
F F 19
ก n(A ∪ B ∪ C) = n(A) + n(B) + n(C) n(A ∩ B) n(A ∩ C) n(B ∩ C)
+ n(A ∩ B ∩ C)
F F 5 = 3 + 3 + 3 2 2 2 + n(A ∩ B ∩ C)
n(A ∩ B ∩ C) = 5 (3 + 3 + 3) + (2 + 2 + 2) = 2 F F 4
F 1.13 F A, B C ˈ n(A ∪ B) = 16, n(A) = 8, n(B) = 14, n(C) = 5
n(A ∩ B ∩ C) = 2 F n((A ∩ B) × (C A)) ˈ F F ก F F
1) 6 2) 12
3) 18 4) 24
ก ก n(A ∪ B) = n(A) + n(B) n(A ∩ B)
F F F n(A ∩ B) = (8 + 14) 16 = 6
n((A ∩ B) × (C A)) = n(A ∩ B) ⋅ n(C A)
= 6 ⋅ n(C A)
= 6 ⋅ (n(C) n(A ∩ C))
= 6 ⋅ (5 n(A ∩ C)) -----(1.6.5)
ก F F ก F F ก (1.6.5) F F ก F
F ก F 5 n(A ∩ C) F n(A ∩ C) F F F F ˈ F F
F F ก 0, 1, 2, 3, 4 F
F F F F F F x = n(A ∩ C)
ก F F F F F F x ≥ 2
F n(A ∩ C) F ก 2
F n((A ∩ B) × (C A)) F ก 6 ⋅ (5 2) = 18
U
A
B
C
2
4
x 2
20 F
F 1.14 ก F A, B, C ˈ F n(B) = 42, n(C) = 28, n(A ∩ C) = 8, n(A ∩ B ∩ C) = 3
n(A ∩ B ∩ C′) = 2, n(A ∩ B′ ∩ C′) = 20 n(A ∪ B ∪ C) = 80 F n(A′ ∩ B ∩ C)
F ก F F
1) 5
2) 7
3) 10
4) 13
F F F F F F F
ก F x = n(A′ ∩ B ∩ C)
F F 80 = 20 + 2 + 3 + 5 + (37 x) + x + (20 x)
= 87 x
x = 87 80 = 7
F F F
ก F F F F F F n(A′ ∩ B ∩ C) = 7
U
A
B
C
3
5
2
x
20 37 x
20 x
U
A
B
C
3
5
2
7
20 30
13
F F 21
F 1.15 ก F A, B, C ˈ A ∩ B ⊆ B ∩ C F n(A) = 25, n(C) = 23, n(B ∩ C) = 7
n(A ∩ C) = 10 n(A ∪ B ∪ C) = 49 F n(B) F ก F F
1) 11
2) 14
3) 15
4) 18
F F F F
F n(A ∩ B ∩ C) = x n(A ∩ B ∩ C′) = y
ก n(A ∪ B ∪ C) = n(A) + n(B) + n(C) n(A ∩ B) n(A ∩ C) n(B ∩ C)
+ n(A ∩ B ∩ C) -----(1.6.6)
F F ก F F ก (1.6.6) F F
49 = 25 + n(B) + 23 (x + y) 10 7 + x
= 31 y + n(B)
n(B) = 49 31 + y = y + 18 -----(1.6.7)
ก A ∩ B ⊆ B ∩ C
F (A ∩ B) (B ∩ C) = φ
n((A ∩ B) (B ∩ C)) = n(φ) = 0
ก n(A ∩ B) n(A ∩ B ∩ C) = 0
n(A ∩ B) = n(A ∩ B ∩ C) = x
ก F F F F x + y = x y = 0
F y = 0 ก (1.6.7) F F n(B) = 0 + 18 = 18
U
A
B
C
x
7 x10 x
y
15 y
6 + x
22 F
1.8 F F ก ก F
Fก F F ก ก F ก F
F ก F ก F
F 1.16 F p - p, p / p F F F ก ก p ก F
(Idempotent) F A F
A ∪ A A ∩ A F ก F ก A F ก ก ˈ ก ก
F 1.17 ก ก (commutative law) ก ก F ก ก ก ก
F กF A ∪ B = B ∪ A, A ∩ B = B ∩ A, A ∪ (B ∪ C) = (A ∪ B) ∪ C
ก Fก F ก
F 1.18 ก Fก F A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∩ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (B ∩ C) ก Fก ก Fก
ก F ก F
F 1.19 F F A ก F F
(A′)′ = A ก Fก ก F F F ∼(∼p) ≡ p
ก F F F F ก ก F F
ก F
∪ /
∩ -
= ‹
′ ∼
F ก
ก fl F ก ก F F F
ก fl F F F F F F
ก ก F p fl q ≡ ∼p / q F ก fl F ก ก
ก ′ ก ก ∪
F F 23
ʿก 1.8
1. F F p, q, r ก A, B, C
2. ก ก F ก ก ก F
3. ก Fก ก F
4. ก Fก ก F
2
ก F
ก F F F ก ˈ ก F ก F F ก F ˈ
2 ก (finite sets) F (infinite sets) ก F ก ก
ก ก ก ก F Fก ก F ก
ก ก F F กก F F (countable sets) ก F F F
(uncountable sets) F ก F F F ก F ˈ ก ก
F F F F ก F ˈ
F F ก F F
ก ก F F F Fก F F F ก F ก
ก F ก ก
F F F ก F F 5 F ˆ กF
F F F ก F ก F ก F กF ก F F
F 2.1 ก F A = {1, 2, 3, , 10}, B = {1, 3, 5, 7, 9}, C = {1, 2, 3, } ก F F A ˈ
ก ก ก ก ก B ˈ ก F C
ˈ F ก ก F ก F F ก ก F F
C ˈ F F (countable infinite set) F
F 2.2 ก F D = {x | x ∈ I 2|x}, E = {x | x ∈ Q}, F = {x | x ∈ R} ก F F D ˈ
F F E F F ก ˈ F F F
26 F
2.1 F
F 2.3 ก F A = {1, 2, 3} B = {a, b, c} F F A ∼ B
ก F f = {(1, a), (2, b), (3, c)}
F F
1. f ˈ ˆ กF F ( F F F ˈ ʿก )
2. f ˈ ˆ กF ก A B
F F F Rf ⊆ B B ⊆ Rf
ก Rf ⊆ B ˈ F F F F B ⊆ Rf ก F
F y ∈ B
y = a y = b y = c
ก y = a F F x = 1 ∈ A (1, a) ∈ f a ∈ Rf
ก F F b, c ∈ Rf F F y ∈ Rf
B ⊆ Rf
2.1 F F A ∼ B
ก ก ก F F F ก F ก F ˈ
F ก F F F F
F 2.4 F = ˈ F (R)
ก F a, b, c ∈ R F F = F 2.2
1) ก a = a = F F
2) ก a = b F b = a = F
2.1
ก F A B ˈ ก F F A ก B ( F ก F A ∼ B) ก F
F (one to one correspondence) ก A B
2.2
F (equivalent relation) F F
1) F (reflexivity)
2) (symmetry)
3) F (transitivity)
F F 27
3) F a = b
F F a b = 0
ก b = c a c = 0
a = c
= F F
ก F 1) 3) F F = ˈ F
F 1. ∼ F (reflexivity)
ก F A ∈ X
ก IA : A → A F
F F A ∼ A
∼ F X
2. ∼ (symmetry)
( F F F ˈ ʿก )
3. ∼ F (transitivity)
ก F A, B, C ∈ X A ∼ B B ∼ C
F f : A → B, g : B → C
ก 2.2 F F 5 F F gof : A → C
A ∼ C F ∼ F X
ก F 1 3 F F ∼ ˈ F X F ก
ʿก 2.1
1. ก F ก F F F F F F F F
2 F
2. ก F X ˈ (family of sets) A, B ∈ X F F ∼
X
3. ก F N = ก Z =
F N ∼ Z
2.1
ก F X ˈ (family of sets) F ∼ ˈ F X
28 F
2.2 ก F
F F Fก F ก F F F
F F F ก ก ก Fก Fก F F
กก F ก ก ก F ก ʽ F F F ก F
ก ก
ก 2.2 ก F F F F A ˈ F F A ก 0 F A F ˈ F F
A ก n
F 2.4 ก F A = {1, 2, 3, , 10} F A ˈ ก F ก A
2.2 F F F F A ∼ {1, 2, 3, , 10}
ก F IA : A → {1, 2, 3, , 10}
A ∼ {1, 2, 3, , 10} F F A ก 10
F 2.5 ก F A, B ˈ A ∼ B F F F A ˈ ก F B ˈ
ก
ก F A, B ˈ A ∼ B
F A ˈ ก
2.2 F F ก n F A ∼ {1, 2, 3, , n}
2.1 F f: A → {1, 2, 3, , n}
ก A ∼ B F F g: A → B
ก g ˈ ˆ กF F
2.3 F F 5 F F g 1
: B → A
ก g 1
ˈ ˆ กF F A
F f ˈ ˆ กF F {1, 2, 3, , n}
2.2 F F 5 F F fog 1
: B → {1, 2, 3, , n}
ก fog 1
ˈ ˆ กF F {1, 2, 3, , n}
F F B ∼ {1, 2, 3, , n} ก n B ˈ ก
2.2
ก F A ˈ F A ˈ F F A ∼ {1, 2, 3, , n} ก n
F ก F F A ˈ ก
F F 29
ก F F F F A ˈ F F B F ˈ F F
F ˈ ก ก ก ก
2.2 F ก F F ก F F ก ก
F F ก F ก ก F F
ก ก ก ก F F ก F F F ก F ˈ
F 2.6 ก F A = {1, 2, 3} f : A → {1, 2, 3} f ˈ ˆ กF F
{1, 2, 3} F F F F B A F กF {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, φ F F F F B F ˆ กF F
{1, 2, 3} F ( ?) F ˆ กF F
{1, 2, 3, , m} ก m m < n F
B = {1} F h : {1} → {1} F F 1 < 3
B = {2} F h : {2} → {1} F F 1 < 3
B = {3} F h : {3} → {1} F F 1 < 3
B = {1, 2} F h : {1, 2} → {1, 2} F F 2 < 3
B = {1, 3} F h : {1, 3} → {1, 2} F F 2 < 3
B = {2, 3} F h : {2, 3} → {1, 2} F F 2 < 3
B = φ F h : φ→ φ F F 0 < 3
F ก F B ˈ F F A F F f : A → B
ก A ˈ ก F F A ∼ {1, 2, 3, , n} ก n
F g : A → {1, 2, 3, , n}
F gof 1
: B → {1, 2, 3, , n} ˈ F {1, 2, 3, , n}
F F F ก 2.2 F F F ก F ˈ
2.2
ก F A ˈ F f : A → {1, 2, 3, , n} ก n F
B ˈ F F A F F F F F g : B → {1, 2, 3, , n} F F B ≠ φ F
F h : B → {1, 2, 3, , m} ก m m < n
2.3 F A ˈ ก F A F F ก F F
30 F
ˆ F ก ก ก Fก ˆ
ก F F F F
F ก F m, n ˈ ก A m ≠ n F m < n
F F f : A → {1, 2, 3, , m} g : A → {1, 2, 3, , n}
F F gof 1
: {1, 2, 3, , m} → {1, 2, 3, , n} ˈ ˆ กF F
{1, 2, 3, , n} F F F {1, 2, 3, , m} ⊂ {1, 2, 3, , n} gof 1
ก F ˈ
ˆ กF F ก F F ก F ก 2.2
F F F F ⊂ ˈ F F
2.5 ก F F F ก F F F F F ก
ก ก ก F F ก F F F
F 2.7 C F 2.1 ˈ F
F 2.8 D, E, F F 2.2 ˈ F
F Fก F F F
ก F A ≠ φ ˈ F A ˈ ก F ก F B ˈ ก
F A ˈ ก
F f : A → {1, 2, 3, , n} ก n
2.4 ก A F
2.3
ก F F ก ก F F
2.5
ก F B ≠ φ n ˈ ก F F F ก
1) ˆ กF f : {1, 2, 3, , n} → B
2) ˆ กF F g : B → {1, 2, 3, , n}
3) B ˈ ก ก ก n
2.6
ก F A ≠ φ ˈ F B ˈ F B ⊆ A F A ˈ F
F F 31
ก B ⊆ A f : B → {1, 2, 3, , n} ก n
F F B ˈ ก
F F F F A ˈ F F ก
ʿก 2.2
1. F F F ก ก F ˈ ก
2. F F A ∪ B ˈ ก ก F A B F ก ˈ ก
3. F F N ˈ F
F F 33
ก
ก ก ก ก F. ก F. F 2. ก : ก F , 2542.
. F Ent 47. ก : F F ก F, 2547.
ˆ ก F F . ก ก F 1 ก F
F ˅ 2001. ก : , 2544.
F . ก ก F 1 ก F
F ˅ 2004. ก : , 2547.
. F. F 1. ก : ก F, 2533.
ก . ก F .4 ( 011, 012). F ก. ก : ʽ ก F F, 2539.

More Related Content

What's hot

01บทนำ
01บทนำ01บทนำ
01บทนำDoc Edu
 
Applied statistics and probability for engineers solution montgomery && runger
Applied statistics and probability for engineers solution   montgomery && rungerApplied statistics and probability for engineers solution   montgomery && runger
Applied statistics and probability for engineers solution montgomery && rungerAnkit Katiyar
 
คณิตศาสตร์ เพิ่มเติม 9
คณิตศาสตร์ เพิ่มเติม 9คณิตศาสตร์ เพิ่มเติม 9
คณิตศาสตร์ เพิ่มเติม 9saman1
 
ข้อสอบ Pat 1 + เฉลย
ข้อสอบ Pat 1 +  เฉลยข้อสอบ Pat 1 +  เฉลย
ข้อสอบ Pat 1 + เฉลยAunJan
 
3人ゲームの混合戦略ナッシュ均衡を求める ゲーム理論 BASIC 演習1の補足
3人ゲームの混合戦略ナッシュ均衡を求める ゲーム理論 BASIC 演習1の補足3人ゲームの混合戦略ナッシュ均衡を求める ゲーム理論 BASIC 演習1の補足
3人ゲームの混合戦略ナッシュ均衡を求める ゲーム理論 BASIC 演習1の補足ssusere0a682
 
Set language and notation
Set language and notationSet language and notation
Set language and notationAon Narinchoti
 
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ssusere0a682
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )iosrjce
 

What's hot (14)

01บทนำ
01บทนำ01บทนำ
01บทนำ
 
Biseccion
BiseccionBiseccion
Biseccion
 
DMRC JE Electronics paper-I (2016)
DMRC JE Electronics paper-I (2016)DMRC JE Electronics paper-I (2016)
DMRC JE Electronics paper-I (2016)
 
DMRC JE Electrical paper_I (2016)
DMRC JE Electrical paper_I (2016)DMRC JE Electrical paper_I (2016)
DMRC JE Electrical paper_I (2016)
 
Applied statistics and probability for engineers solution montgomery && runger
Applied statistics and probability for engineers solution   montgomery && rungerApplied statistics and probability for engineers solution   montgomery && runger
Applied statistics and probability for engineers solution montgomery && runger
 
คณิตศาสตร์ เพิ่มเติม 9
คณิตศาสตร์ เพิ่มเติม 9คณิตศาสตร์ เพิ่มเติม 9
คณิตศาสตร์ เพิ่มเติม 9
 
ข้อสอบ Pat 1 + เฉลย
ข้อสอบ Pat 1 +  เฉลยข้อสอบ Pat 1 +  เฉลย
ข้อสอบ Pat 1 + เฉลย
 
3人ゲームの混合戦略ナッシュ均衡を求める ゲーム理論 BASIC 演習1の補足
3人ゲームの混合戦略ナッシュ均衡を求める ゲーム理論 BASIC 演習1の補足3人ゲームの混合戦略ナッシュ均衡を求める ゲーム理論 BASIC 演習1の補足
3人ゲームの混合戦略ナッシュ均衡を求める ゲーム理論 BASIC 演習1の補足
 
Set language and notation
Set language and notationSet language and notation
Set language and notation
 
X std maths - Relations and functions (ex 1.1)
X std maths - Relations and functions  (ex 1.1)X std maths - Relations and functions  (ex 1.1)
X std maths - Relations and functions (ex 1.1)
 
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
 
Alg2 lesson 7-8
Alg2 lesson 7-8Alg2 lesson 7-8
Alg2 lesson 7-8
 
Alg2 lesson 7-8
Alg2 lesson 7-8Alg2 lesson 7-8
Alg2 lesson 7-8
 

Viewers also liked

PMIフォーラム2014 プロジェクト型演習における最適なチーム構成とは?学びの過程はどのようなものか?~早稲田大学情報理工学科の実践~
PMIフォーラム2014 プロジェクト型演習における最適なチーム構成とは?学びの過程はどのようなものか?~早稲田大学情報理工学科の実践~PMIフォーラム2014 プロジェクト型演習における最適なチーム構成とは?学びの過程はどのようなものか?~早稲田大学情報理工学科の実践~
PMIフォーラム2014 プロジェクト型演習における最適なチーム構成とは?学びの過程はどのようなものか?~早稲田大学情報理工学科の実践~Hironori Washizaki
 
Apresentacao Milennium!
Apresentacao Milennium!Apresentacao Milennium!
Apresentacao Milennium!Erick Batista
 
Sectional view of profile for extruded heat sinks
Sectional view of profile for extruded heat sinksSectional view of profile for extruded heat sinks
Sectional view of profile for extruded heat sinksSara Huang
 
Portafolioelectrnico4697926004 1207616238353934-8[1]
Portafolioelectrnico4697926004 1207616238353934-8[1]Portafolioelectrnico4697926004 1207616238353934-8[1]
Portafolioelectrnico4697926004 1207616238353934-8[1]Avila Claudia
 
德川家康的二條城!
德川家康的二條城!德川家康的二條城!
德川家康的二條城!Jaing Lai
 

Viewers also liked (9)

PMIフォーラム2014 プロジェクト型演習における最適なチーム構成とは?学びの過程はどのようなものか?~早稲田大学情報理工学科の実践~
PMIフォーラム2014 プロジェクト型演習における最適なチーム構成とは?学びの過程はどのようなものか?~早稲田大学情報理工学科の実践~PMIフォーラム2014 プロジェクト型演習における最適なチーム構成とは?学びの過程はどのようなものか?~早稲田大学情報理工学科の実践~
PMIフォーラム2014 プロジェクト型演習における最適なチーム構成とは?学びの過程はどのようなものか?~早稲田大学情報理工学科の実践~
 
Jornal MAIS SISEJUFE - Aposentados
Jornal MAIS SISEJUFE - AposentadosJornal MAIS SISEJUFE - Aposentados
Jornal MAIS SISEJUFE - Aposentados
 
Apresentacao Milennium!
Apresentacao Milennium!Apresentacao Milennium!
Apresentacao Milennium!
 
Tomas 6177
Tomas 6177Tomas 6177
Tomas 6177
 
07 Death Note
07 Death Note07 Death Note
07 Death Note
 
Sectional view of profile for extruded heat sinks
Sectional view of profile for extruded heat sinksSectional view of profile for extruded heat sinks
Sectional view of profile for extruded heat sinks
 
Frango congelado
Frango congeladoFrango congelado
Frango congelado
 
Portafolioelectrnico4697926004 1207616238353934-8[1]
Portafolioelectrnico4697926004 1207616238353934-8[1]Portafolioelectrnico4697926004 1207616238353934-8[1]
Portafolioelectrnico4697926004 1207616238353934-8[1]
 
德川家康的二條城!
德川家康的二條城!德川家康的二條城!
德川家康的二條城!
 

Similar to sets

Similar to sets (20)

1
11
1
 
1
11
1
 
Key pat1 1-53
Key pat1 1-53Key pat1 1-53
Key pat1 1-53
 
Key pat1 3-52
Key pat1 3-52Key pat1 3-52
Key pat1 3-52
 
Math
MathMath
Math
 
Math
MathMath
Math
 
Math
MathMath
Math
 
Math
MathMath
Math
 
14
1414
14
 
6
66
6
 
Key pat2 3_53ps
Key pat2 3_53psKey pat2 3_53ps
Key pat2 3_53ps
 
11
1111
11
 
On Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating TypeOn Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating Type
 
18
1818
18
 
7 วิชา คณิต the brain
7 วิชา คณิต   the brain7 วิชา คณิต   the brain
7 วิชา คณิต the brain
 
ข้อสอบคณิตศาสตร์
ข้อสอบคณิตศาสตร์ข้อสอบคณิตศาสตร์
ข้อสอบคณิตศาสตร์
 
7
77
7
 
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-
 
เลขยกกำลังชุด1
เลขยกกำลังชุด1เลขยกกำลังชุด1
เลขยกกำลังชุด1
 
ข้อสอบอัจฉริยภาพ ทางวิทยาศาสตร์ ป.6 2552
ข้อสอบอัจฉริยภาพ ทางวิทยาศาสตร์  ป.6 2552ข้อสอบอัจฉริยภาพ ทางวิทยาศาสตร์  ป.6 2552
ข้อสอบอัจฉริยภาพ ทางวิทยาศาสตร์ ป.6 2552
 

Recently uploaded

THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 

Recently uploaded (20)

THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 

sets

  • 2.
  • 3. F F ก F F ˈ F F 2 15 F F F F ˈ ก ก ก F ก F F (Modern Mathematics) F ก F ก ก ก F F ˈ F F Fก F F F ก ก F F ˈ F F F 8 ก . . 2549
  • 4.
  • 5. ก 1 ก F F F F ก F ก ก F F ʿก ˈ ก F F F F ก ˈ F ก F F F F F กก F F 22 . . 2549 ก 2 ก F 2 F F F ก ก F F ก F ˈ ก ก F F F F ก ก Fก F F F F 1 . . 2550
  • 6.
  • 7. 1 1 23 1.1 1 1.2 F 2 1.3 ก 4 1.4 ก ก 7 1.5 ก 11 1.6 F F 15 1.7 F ก ก F 17 1.8 F F ก ก F 22 2 ก F 25 31 2.1 F 26 2.2 ก F 28 ก 33
  • 8.
  • 9. 1 ก ก กF F F ก F F F F F 1 1 ก F F F F F F F ก ก F F F 1.1 (Sets) ˈ (undefined term) ก F F ก F F F ก ˈ 2 ก 1) ก (Finite sets) ก ˈ ก F 2) F (Infinite Sets) F F ก ก ก ก ก F ก ก F F (Empty set) F ก F {} φ ก F (Relative universe) ก F ก F Fก F ก ก ก ก F F F Fก F ˈ F F F ก F ˈ ก ก F 2 ก 1) ก ก ก F ก ก F ก ก 2) ก ก F ก ก ˈ ก F ก ก F F F 1.1 ก F A = {1, 3, 5, 7, 9}, B = {1, 3, 5, } ก F F A ˈ ก ˈ ก ก ก F F B ก F F ˈ F F F ก ก F F F F F ก F ก ก ก
  • 10. 2 F 1.1 F A B ˈ F F F ก F F A ˈ F B ก F ก ก A F ก ˈ ก B F ก ก ก ก F F A B F ก F F ก F A = {x | x = 2n + 1, n ∈ N n < 5} B = {y | y = 2k + 1, k ∈ N} 1.2 F (Subset) ก 1.1 ก F ก F F ˈ F F F ก F ⊂ F F F ก F ⊆ ˈ F F ⊂ ˈ F F F 1.2 ก F A = {1, 3, 5, 7, 9}, B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, C = {2, 4, 6, 8, 10, 12} F A ⊆ B F A  C B  C ก 1.2 ก F ก F F 1.2 F A B ˈ F F F ก F F A ˈ F F B ก F A ˈ F B F B F ˈ F A A ⊂ B ‹ ∀x [x ∈ A fl ∃x(x ∈ B fl x ∉ A)] A ⊆ B ‹ ∀x [x ∈ A fl x ∈ B]
  • 11. F F 3 F ก F ก 2 F 1.3 ก F A = {2, 3, 5}, B = {2, 4, 6}, C = {2, 3, 5} ก F F A = C ก F A ⊆ C C ⊆ A F B ≠ C ก F ก B F F ˈ ก C ก ก ก C F F ˈ ก B F F ก F 1.1 (1) (2) (1) F ก F φ ⊆ A F ก F F (contrapositive) ก φ ⊆ A F F ก F ก F F φ ⊆ A ‹ ∀x [x ∈ φ fl x ∈ A] ‹ ∀x [x ∉ A fl x ∉ φ] F x ˈ ก ก F F x ∉ A F x ∉ A ก ˈ F ก x ∈ U ก F F x ∉ φ ก F F ก F F φ ⊆ A F ก (2) F ก F A ⊆ A F ก F ก F (direct proof) F x ∈ A F F F x ∈ A ก F F ก F F ∀x [x ∈ A fl x ∈ A] F F F ก F ˈ (Idempotence) F F A ⊆ A 1.1 (3) F F F F ˈ ʿก 1.1 F A ˈ , U ˈ ก F 1) φ ⊆ A 2) A ⊆ A 3) A ⊆ U 1.3 F A B ˈ F F F ก F F A = B ก F A ˈ F B B ˈ F A
  • 12. 4 F ʿก 1.2 F 1.1 (3) 1.3 ก (Power set) F ก ก ก ก ˈ F F 1.4 ก F A = {0, 1, 2} P(A) ก A = {0, 1, 2} F F {0}, {1}, {2}, {0, 1}, {0, 2}, {0, 1, 2}, φ ˈ F A 1.4 F F P(A) = {{0}, {1}, {2}, {0, 1}, {0, 2}, {0, 1, 2}, φ} F 1.5 ก F A = {0, 1}, B = {2, 3} P(A) ∪ P(B), P(A ∪ B), P(A) ∩ P(B) P(A ∩ B) ก A = {0, 1}, B = {2, 3} F F P(A) = {{0}, {1}, {0, 1}, φ} P(B) = {{2}, {3}, {2, 3}, φ} P(A) ∪ P(B) = {{0}, {1}, {0, 1}, φ} ∪ {{2}, {3}, {2, 3}, φ} = {{0}, {1}, {2}, {3}, {0, 1}, {2, 3}, φ} P(A) ∩ P(B) = {{0}, {1}, {0, 1}, φ} ∩ {{2}, {3}, {2, 3}, φ} = {φ} ก A ∪ B = {0, 1, 2, 3} A ∩ B = φ F F P(A ∪ B) = {{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2,3 }, {0, 1, 2, 3}, φ} P(A ∩ B) = P(φ) = {φ} 1.4 ก A F P(A) P(A) = {B | B ⊆ A}
  • 13. F F 5 F ก F ก ก F 1) F ก F F A ⊆ B F P(A) ⊆ P(B) F A ⊆ B ก F C ∈ P(A) F F C ⊆ A ก A ⊆ B F F C ⊆ B C ∈ P(B) P(A) ⊆ P(B) 2) F ก F P(A) ∪ P(B) ⊆ P(A ∪ B) ก F C ∈ P(A) ∪ P(B) F F C ∈ P(A) C ∈ P(B) ก C ∈ P(A) F F C ⊆ A ก C ∈ P(B) F F C ⊆ B C ⊆ A ∪ B C ∈ P(A ∪ B) P(A) ∪ P(B) ⊆ P(A ∪ B) F ก 3) F ก F P(A) ∩ P(B) = P(A ∩ B) (⊆) F C ∈ P(A) ∩ P(B) F F C ∈ P(A) C ∈ P(B) C ⊆ A C ⊆ B C ⊆ A ∩ B C ∈ P(A ∩ B) P(A) ∩ P(B) ⊆ P(A ∩ B) (⊇) F C ∈ P(A ∩ B) F F C ⊆ A ∩ B C ⊆ A C ⊆ B C ∈ P(A) C ∈ P(B) 1.2 F A, B ˈ F F 1) F A ⊆ B F P(A) ⊆ P(B) 2) P(A) ∪ P(B) ⊆ P(A ∪ B) 3) P(A) ∩ P(B) = P(A ∩ B)
  • 14. 6 F C ∈ P(A) ∩ P(B) P(A ∩ B) ⊆ P(A) ∩ P(B) ก F F P(A) ∩ P(B) = P(A ∩ B) ก F 1.2 F F ก ก ก ก F F F ก ก ก ก ก F 1.4 กF F F ก F F 1.2 F ʿก 1.3 1. F A = {1, 2, {1}, {2}, {1, 2}} 2. ก F F P(A ∪ B) ⊈ P(A) ∪ P(B) 3. ก F A, B ˈ F ˈ F ก F U F B ⊂ A F P(A B) = P(A) P(B) F F ˈ F F F F F F ก F F 4. ก F A, B ˈ F ˈ F ก F U A ⊆ B P(A) ⊗ P(B) = {C1 ∩ C2 | C1 ∩ C2 ≠ φ, C1 ∈ P(A) C2 ∈ P(B)} F P(A) ⊗ P(B) ⊆ P(B)
  • 15. F F 7 1.4 ก ก ก ก ก ˈ F F F 4 F กF 1) 2) F ก 3) F (complement of set) 4) F F ก ก F ก F F 1.4 ก F A = {1, 2, 3, 4}, B = {1, 3, 5}, C = {2, 4, 6} A ∪ B, A ∪ C, B ∪ C, A ∩ B, B ∩ C, A ∩ C, A ∪ B ∪ C A ∩ B ∩ C ก F F F A ∪ B = {1, 2, 3, 4} ∪ {1, 3, 5} = {1, 2, 3, 4, 5} A ∪ C = {1, 2, 3, 4} ∪ {2, 4, 6} = {1, 2, 3, 4, 6} B ∪ C = {1, 3, 5} ∪ {2, 4, 6} = {1, 2, 3, 4, 5, 6} A ∩ B = {1, 2, 3, 4} ∩ {1, 3, 5} = {1, 3} B ∩ C = {1, 3, 5} ∩ {2, 4, 6} = φ A ∩ C = {1, 2, 3, 4} ∩ {2, 4, 6} = {2, 4} 1.4 F A, B ˈ U ˈ ก F 1) ก A B F A ∪ B ก F ก A B A ∪ B = {x | x ∈ A x ∈ B} F ก ʽ ∀x [x ∈ A ∪ B ‹ x ∈ A / x ∈ B] 2) F ก A B F A ∩ B ก F ก A B A ∩ B = {x | x ∈ A x ∈ B} F ก ʽ ∀x [x ∈ A ∩ B ‹ x ∈ A - x ∈ B] 3) F A F A F A′ ก F ก U F ˈ ก A A′ = {x | x ∈ U x ∉ A} F ก ʽ ∀x [x ∈ A′ ‹ x ∈ U - x ∉ A] 4) F A B F A B F A ∩ B′ ก F ก A F F ˈ ก B A B = A ∩ B′ = {x | x ∈ A x ∉ B} F ก ʽ ∀x [x ∈ A B ‹ x ∈ A - x ∉ B]
  • 16. 8 F A ∪ B ∪ C = {1, 2, 3, 4} ∪ {1, 3, 5} ∪ {2, 4, 6} = {1, 2, 3, 4, 5, 6} A ∩ B ∩ C = {1, 2, 3, 4} ∩ {1, 3, 5} ∩ {2, 4, 6} = φ F ˈ F ก ก ก ก F ก F A, B, C ˈ 1) (⊆) F x ∈ A ∪ A F F x ∈ A x ∈ A x ∈ A F ก (⊇) F ก ⊆ A ∪ A = A 2) F F F F ˈ ʿก 3) (⊆) F x ∈ A ∪ B F F x ∈ A x ∈ B x ∈ B x ∈ A x ∈ B ∪ A (⊇) F ก ⊆ 4) F F F F ˈ ʿก 5) (⊆) F x ∈ (A ∪ B) ∪ C 1.3 ก F F A, B, C ˈ ก F U 1) A ∪ A = A 2) A ∩ A = A 3) A ∪ B = B ∪ A 4) A ∩ B = B ∩ A 5) (A ∪ B) ∪ C = A ∪ (B ∪ C) 6) (A ∩ B) ∩ C = A ∩ (B ∩ C) 7) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 8) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 9) φ′ = U U′ = φ 10) (A′)′ = A 11) (A ∪ B)′ = A′ ∩ B′ 12) (A ∩ B)′ = A′ ∪ B′ 13) F A ⊆ B F B′ ⊆ A′
  • 17. F F 9 F F x ∈ A ∪ B x ∈ C x ∈ A x ∈ B ∪ C x ∈ A ∪ (B ∪ C) (⊇) F ก ⊆ 6) F F F F ˈ ʿก 7) (⊆) F x ∈ A ∪ (B ∩ C) F F x ∈ A x ∈ B ∩ C x ∈ A x ∈ B x ∈ C x ∈ A x ∈ B x ∈ A x ∈ C x ∈ A ∪ B x ∈ A ∪ C F F x ∈ (A ∪ B) ∩ (A ∪ C) (⊇) F ก ⊆ 8) F F F ˈ ʿก 9) F F F ˈ ʿก 10) (⊆) F x ∈ (A′)′ F F x ∉ A′ x ∈ A (⊇) F ก ⊆ 11) (⊆) F x ∈ (A ∪ B)′ F F x ∉ A ∪ B x ∉ A x ∉ B x ∈ A′ x ∈ B′ x ∈ A′ ∩ B′ (⊇) F ก ⊆ 12) F F F ˈ ʿก 13) F A ⊆ B B′  A′ F x ∈ B′ ก B′  A′ F F x ∉ A′ x ∈ A F F x ∈ B ( ก F ) x ∉ B′ F F F ก F ก F A ⊆ B F B′ ⊆ A′ F ก
  • 18. 10 F 1) 2.3 (7) (8) F กก ก Fก (De Morgan s Law) 2) ก F 1.3 F F ก F F ก F ก F F F F F ˈ ʿก F ก ก ก 2 3 ก F ก F F F F ก F 2.4 (1) 2.4 (2) F F ก F F F F ˈ ʿก F ก F F F F (Venn Euler s Diagram) ก F ก F ก ˈ 3 F F F ก F A ∪ B F กF F ก F F F ก A ∪ B ( F n(A ∪ B)) F F ก n(A) + n(B) A ∩ B F กF F ˈ F F ก A ∩ B F ก ก F ก ก A ∩ B ( F n(A ∩ B)) F ก A B ก ก F ก A ∩ B ก F F n(A ∪ B) = n(A) + n(B) n(A ∩ B) F ก 1.4 ก F A, B, C ˈ ก ก F F n(A), n(B), n(C) ˈ ก A, B, C F F F 1) n(A ∪ B) = n(A) + n(B) n(A ∩ B) 2) n(A ∪ B ∪ C) = n(A) + n(B) + n(C) n(A ∩ B) n(A ∩ C) n(B ∩ C) + n(A ∩ B ∩ C)
  • 19. F F 11 ʿก 1.4 1. F 1.3 F F F F 2. F F F A F F ก 2n(A) n(A) ˈ ก A 1.5 ก F F F ก ˈ ก F F F ก ก ก ˈ F ˈ F ก ก ก ก กF ก 1.5 ˈ ก F ก F F A = {Aa | a ∈ K} F 1.5 ก F K = {1, 5, 6} F a ∈ K ก F Aa = {1, 2, 3, , a} F F 1) A 2) A1 3) A5 4) A6 5) A1 ∪ A6 6) A5 ∩ A6 1) ก A = {Aa | a ∈ K} F 1, 5, 6 ∈ K A = {A1, A5, A6} 2) ก Aa = {1, 2, 3, , a} F F A1 = {1} 3) ก Aa = {1, 2, 3, , a} F F A5 = {1, 2, 3, 4, 5} 1.5 ก F K ˈ F a ∈ K F Aa ⊆ U ก K F ˈ ก A ˈ Aa a ∈ K F (family of sets)
  • 20. 12 F 4) ก Aa = {1, 2, 3, , a} F F A6 = {1, 2, 3, 4, 5, 6} 5) A1 ∪ A6 = {1} ∪ {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4, 5, 6} = A6 6) A5 ∩ A6 = {1, 2, 3, 4, 5} ∩ {1, 2, 3, 4, 5, 6} F F A5 ∩ A6 = {1, 2, 3, 4, 5} = A5 ก F F F 1.6 ก F 1.5 F a a K A ∈ ∪ a a K A ∈ ∩ a a K A ∈ ∪ = A1 ∪ A5 ∪ A6 = A6 = {1, 2, 3, 4, 5, 6} a a K A ∈ ∩ = A1 ∩ A5 ∩ A6 = A1 = {1} 1.6 ก F K ≠ φ ˈ A = {Aa | a ∈ K} ˈ F ก ก A ก ก F a a K A ∈ ∪ = {x | x ∈ Aa a ∈ K} 1.7 ก F K ≠ φ ˈ A = {Aa | a ∈ K} ˈ F ก A ก ก F a a K A ∈ ∩ = {x | x ∈ Aa ก a ∈ K}
  • 21. F F 13 ก F ก F F F ก F F 1) F 3) F F F F F ˈ ʿก ก F K ˈ A = {Aa | a ∈ K} ˈ B ˈ 1) (⊆) F x ∈ B ∪ a a K A ∈       ∪ F F x ∈ B x ∈ a a K A ∈ ∪ ก x ∈ a a K A ∈ ∪ F F x ∈Aa a ∈ K x ∈ B x ∈ Aa a ∈ K ก x ∈ B ∪ Aa a ∈ K x ∈ ( )a a K B A ∈ ∪∪ (⊇) F y ∈ ( )a a K B A ∈ ∪∪ F F y ∈ B ∪ Aa a ∈ K y ∈ B y ∈ Aa a ∈ K F F y ∈ B y ∈ a a K A ∈ ∪ 1.5 ก F A = {Aa | a ∈ K} ˈ B ˈ F F F 1) B ∪ a a K A ∈       ∪ = ( )a a K B A ∈ ∪∪ 2) B ∩ a a K A ∈       ∩ = ( )a a K B A ∈ ∩∩ 3) B ∩ a a K A ∈       ∪ = ( )a a K B A ∈ ∩∪ 4) B ∪ a a K A ∈       ∩ = ( )a a K B A ∈ ∪∩ 5) a a K A ∈ ′      ∪ = ( )a a K A ∈ ′∩
  • 22. 14 F y ∈ B ∪ a a K A ∈       ∪ B ∪ a a K A ∈       ∪ = ( )a a K B A ∈ ∪∪ F ก 3) (⊆) F x ∈ B ∩ a a K A ∈       ∪ F F x ∈ B x ∈ a a K A ∈ ∪ ก x ∈ a a K A ∈ ∪ F F x ∈Aa a ∈ K x ∈ B x ∈ Aa a ∈ K ก x ∈ B ∩ Aa a ∈ K x ∈ ( )a a K B A ∈ ∩∪ (⊇) F y ∈ ( )a a K B A ∈ ∩∪ F F y ∈ B ∩ Aa a ∈ K y ∈ B y ∈ Aa a ∈ K F F y ∈ B y ∈ a a K A ∈ ∪ y ∈ B ∩ a a K A ∈       ∪ B ∩ a a K A ∈       ∪ = ( )a a K B A ∈ ∩∪ F ก ʿก 1.5 1. ก ก F F 1) 1 1 n n- ,   ก n 2) ( ε, ε) ก ε 2. ก F 1.5 F F F F
  • 23. F F 15 1.6 F F F F (Venn Euler Diagram) ˈ F F F ˈ F ก F F F ˈ ก กF ก F 2 F F F (John Venn, 1834 1923) F F (Leonard Euler, 1707 1783) F F ก F F F ก F ก F ก F ˈ F ก F F 1.7 ก F U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {3, 4, 5, 6, 9} U A ก F ก F F 1.8 ก F U ˈ ก F A, B ˈ F ก F F F ก F F 1) A ∪ B 2) A ∩ B 1) F F กF A ∪ B 1 2 3 4 5 6 7 8 9 U 3 4 5 6 9 U
  • 24. 16 F 2) F F กF A ∩ B ʿก 1.6 1. F F ก F F 1) A = B 2) A B F ก F ก 3) A ˈ F F B 2. F A B = {2, 4, 6}, B A = {0, 1, 3} A ∪ B = {0, 1, 2, 3, 4, 5, 6, 7, 8} F A ∩ B ˈ F F F 1) {0, 1, 4, 5, 6, 7} 2) {1, 2, 4, 5, 6, 8} 3) {0, 1, 3, 5, 7, 8} 4) {0, 2, 4, 5, 6, 8} U
  • 25. F F 17 1.7 F ก ก F F ˈ ก F ˆ F ก ก F ˈ F F F ʾ F F 1.9 A B F F 1) F A ∩ B = φ F A ⊆ B′ B ⊆ A′ 2) A (A ∩ B) = A B 3) (A ∪ B) A = B 4) F A ∩ B = A F A ⊆ B 1) ก F ( F F F ˈ ʿก ) 2) ก A (A ∩ B) = A ∩ (A ∩ B)′ = A ∩ (A′ ∪ B′) = (A ∩ A′) ∪ (A ∩ B′) = (A A) ∪ (A B) = φ∪ (A B) = A B F 2 ก F 3) ก (A ∪ B) A = (A ∪ B) ∩ A′ = (A ∩ A′) ∪ (B ∩ A′) = φ∪ (B A) = B A ≠ B F 3 4) F A ∩ B = A F x ∈ A ∩ B x ∈ A ก x ∈ A ∩ B F x ∈ A x ∈ B A ⊆ B F 4 ก F F 3 F ก F
  • 26. 18 F F 1.10 F A = {1, 2, 3, , 9} S = {B | B ⊆ A (1 ∈ B 9 ∈ B)} F ก S F ก F ก S Fก F F S ก F F B A 1, 9 ∈ A ก F B1 = {B | B ⊆ A 1 ∈ B}, B2 = {B | B ⊆ A 9 ∈ B} F S = B1 ∪ B2 n(S) = n(B1 ∪ B2) = n(B1) + n(B2) n(B1 ∩ B2) -----(1.6.1) ก n(B1) = 1 ⋅ 29 1 = 1 ⋅ 28 ก F F n(B2) = 1 ⋅ 28 n(B1 ∩ B2) = 1 ⋅ 29 2 = 1 ⋅ 27 F F n(S) = 1 ⋅ 28 + 1 ⋅ 28 1 ⋅ 27 = 2 ⋅ 28 81 2 2⋅ = 83 2 2⋅ = 384 F 1.11 ก F S = {n ∈ I+ | n ≤ 1000, . . . n 100 F ก 1} ก S F ก F (n, 100) = 1 ก 100 = 22 ⋅ 52 F n F F 2 5 ˈ ก n F F 2 ⋅ 5 = 10 F ก F F ก n ≤ 1000 F 10 F ก 1000 10 = 100 ก n ≤ 1000 F 10 F F ก 1000 100 = 900----(1.6.2) F ก n ≤ 1000 F 2 F F ก 1000 500 = 500----(1.6.3) F ก n ≤ 1000 F 5 F F ก 1000 200 = 800----(1.6.4) n(S) = 800 + 500 900 = 400 F 1.12 ก F ก F U = {1, 2, 3, 4, 5} A, B, C ˈ F n(A) = n(B) = n(C) = 3 n(A ∩ B) = n(B ∩ C) = n(A ∩ C) = 2 F A ∪ B ∪ C = U F F F 1) n(A ∪ B) = 4 2) n(A ∪ (B ∩ C)) = 3 3) n(A ∩ (B ∪ C)) = 2 4) n(A ∩ B ∩ C) = 1
  • 27. F F 19 ก n(A ∪ B ∪ C) = n(A) + n(B) + n(C) n(A ∩ B) n(A ∩ C) n(B ∩ C) + n(A ∩ B ∩ C) F F 5 = 3 + 3 + 3 2 2 2 + n(A ∩ B ∩ C) n(A ∩ B ∩ C) = 5 (3 + 3 + 3) + (2 + 2 + 2) = 2 F F 4 F 1.13 F A, B C ˈ n(A ∪ B) = 16, n(A) = 8, n(B) = 14, n(C) = 5 n(A ∩ B ∩ C) = 2 F n((A ∩ B) × (C A)) ˈ F F ก F F 1) 6 2) 12 3) 18 4) 24 ก ก n(A ∪ B) = n(A) + n(B) n(A ∩ B) F F F n(A ∩ B) = (8 + 14) 16 = 6 n((A ∩ B) × (C A)) = n(A ∩ B) ⋅ n(C A) = 6 ⋅ n(C A) = 6 ⋅ (n(C) n(A ∩ C)) = 6 ⋅ (5 n(A ∩ C)) -----(1.6.5) ก F F ก F F ก (1.6.5) F F ก F F ก F 5 n(A ∩ C) F n(A ∩ C) F F F F ˈ F F F F ก 0, 1, 2, 3, 4 F F F F F F F x = n(A ∩ C) ก F F F F F F x ≥ 2 F n(A ∩ C) F ก 2 F n((A ∩ B) × (C A)) F ก 6 ⋅ (5 2) = 18 U A B C 2 4 x 2
  • 28. 20 F F 1.14 ก F A, B, C ˈ F n(B) = 42, n(C) = 28, n(A ∩ C) = 8, n(A ∩ B ∩ C) = 3 n(A ∩ B ∩ C′) = 2, n(A ∩ B′ ∩ C′) = 20 n(A ∪ B ∪ C) = 80 F n(A′ ∩ B ∩ C) F ก F F 1) 5 2) 7 3) 10 4) 13 F F F F F F F ก F x = n(A′ ∩ B ∩ C) F F 80 = 20 + 2 + 3 + 5 + (37 x) + x + (20 x) = 87 x x = 87 80 = 7 F F F ก F F F F F F n(A′ ∩ B ∩ C) = 7 U A B C 3 5 2 x 20 37 x 20 x U A B C 3 5 2 7 20 30 13
  • 29. F F 21 F 1.15 ก F A, B, C ˈ A ∩ B ⊆ B ∩ C F n(A) = 25, n(C) = 23, n(B ∩ C) = 7 n(A ∩ C) = 10 n(A ∪ B ∪ C) = 49 F n(B) F ก F F 1) 11 2) 14 3) 15 4) 18 F F F F F n(A ∩ B ∩ C) = x n(A ∩ B ∩ C′) = y ก n(A ∪ B ∪ C) = n(A) + n(B) + n(C) n(A ∩ B) n(A ∩ C) n(B ∩ C) + n(A ∩ B ∩ C) -----(1.6.6) F F ก F F ก (1.6.6) F F 49 = 25 + n(B) + 23 (x + y) 10 7 + x = 31 y + n(B) n(B) = 49 31 + y = y + 18 -----(1.6.7) ก A ∩ B ⊆ B ∩ C F (A ∩ B) (B ∩ C) = φ n((A ∩ B) (B ∩ C)) = n(φ) = 0 ก n(A ∩ B) n(A ∩ B ∩ C) = 0 n(A ∩ B) = n(A ∩ B ∩ C) = x ก F F F F x + y = x y = 0 F y = 0 ก (1.6.7) F F n(B) = 0 + 18 = 18 U A B C x 7 x10 x y 15 y 6 + x
  • 30. 22 F 1.8 F F ก ก F Fก F F ก ก F ก F F ก F ก F F 1.16 F p - p, p / p F F F ก ก p ก F (Idempotent) F A F A ∪ A A ∩ A F ก F ก A F ก ก ˈ ก ก F 1.17 ก ก (commutative law) ก ก F ก ก ก ก F กF A ∪ B = B ∪ A, A ∩ B = B ∩ A, A ∪ (B ∪ C) = (A ∪ B) ∪ C ก Fก F ก F 1.18 ก Fก F A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∩ C) A ∩ (B ∪ C) = (A ∩ B) ∪ (B ∩ C) ก Fก ก Fก ก F ก F F 1.19 F F A ก F F (A′)′ = A ก Fก ก F F F ∼(∼p) ≡ p ก F F F F ก ก F F ก F ∪ / ∩ - = ‹ ′ ∼ F ก ก fl F ก ก F F F ก fl F F F F F F ก ก F p fl q ≡ ∼p / q F ก fl F ก ก ก ′ ก ก ∪
  • 31. F F 23 ʿก 1.8 1. F F p, q, r ก A, B, C 2. ก ก F ก ก ก F 3. ก Fก ก F 4. ก Fก ก F
  • 32.
  • 33. 2 ก F ก F F F ก ˈ ก F ก F F ก F ˈ 2 ก (finite sets) F (infinite sets) ก F ก ก ก ก ก ก F Fก ก F ก ก ก F F กก F F (countable sets) ก F F F (uncountable sets) F ก F F F ก F ˈ ก ก F F F F ก F ˈ F F ก F F ก ก F F F Fก F F F ก F ก ก F ก ก F F F ก F F 5 F ˆ กF F F F ก F ก F ก F กF ก F F F 2.1 ก F A = {1, 2, 3, , 10}, B = {1, 3, 5, 7, 9}, C = {1, 2, 3, } ก F F A ˈ ก ก ก ก ก B ˈ ก F C ˈ F ก ก F ก F F ก ก F F C ˈ F F (countable infinite set) F F 2.2 ก F D = {x | x ∈ I 2|x}, E = {x | x ∈ Q}, F = {x | x ∈ R} ก F F D ˈ F F E F F ก ˈ F F F
  • 34. 26 F 2.1 F F 2.3 ก F A = {1, 2, 3} B = {a, b, c} F F A ∼ B ก F f = {(1, a), (2, b), (3, c)} F F 1. f ˈ ˆ กF F ( F F F ˈ ʿก ) 2. f ˈ ˆ กF ก A B F F F Rf ⊆ B B ⊆ Rf ก Rf ⊆ B ˈ F F F F B ⊆ Rf ก F F y ∈ B y = a y = b y = c ก y = a F F x = 1 ∈ A (1, a) ∈ f a ∈ Rf ก F F b, c ∈ Rf F F y ∈ Rf B ⊆ Rf 2.1 F F A ∼ B ก ก ก F F F ก F ก F ˈ F ก F F F F F 2.4 F = ˈ F (R) ก F a, b, c ∈ R F F = F 2.2 1) ก a = a = F F 2) ก a = b F b = a = F 2.1 ก F A B ˈ ก F F A ก B ( F ก F A ∼ B) ก F F (one to one correspondence) ก A B 2.2 F (equivalent relation) F F 1) F (reflexivity) 2) (symmetry) 3) F (transitivity)
  • 35. F F 27 3) F a = b F F a b = 0 ก b = c a c = 0 a = c = F F ก F 1) 3) F F = ˈ F F 1. ∼ F (reflexivity) ก F A ∈ X ก IA : A → A F F F A ∼ A ∼ F X 2. ∼ (symmetry) ( F F F ˈ ʿก ) 3. ∼ F (transitivity) ก F A, B, C ∈ X A ∼ B B ∼ C F f : A → B, g : B → C ก 2.2 F F 5 F F gof : A → C A ∼ C F ∼ F X ก F 1 3 F F ∼ ˈ F X F ก ʿก 2.1 1. ก F ก F F F F F F F F 2 F 2. ก F X ˈ (family of sets) A, B ∈ X F F ∼ X 3. ก F N = ก Z = F N ∼ Z 2.1 ก F X ˈ (family of sets) F ∼ ˈ F X
  • 36. 28 F 2.2 ก F F F Fก F ก F F F F F F ก ก ก Fก Fก F F กก F ก ก ก F ก ʽ F F F ก F ก ก ก 2.2 ก F F F F A ˈ F F A ก 0 F A F ˈ F F A ก n F 2.4 ก F A = {1, 2, 3, , 10} F A ˈ ก F ก A 2.2 F F F F A ∼ {1, 2, 3, , 10} ก F IA : A → {1, 2, 3, , 10} A ∼ {1, 2, 3, , 10} F F A ก 10 F 2.5 ก F A, B ˈ A ∼ B F F F A ˈ ก F B ˈ ก ก F A, B ˈ A ∼ B F A ˈ ก 2.2 F F ก n F A ∼ {1, 2, 3, , n} 2.1 F f: A → {1, 2, 3, , n} ก A ∼ B F F g: A → B ก g ˈ ˆ กF F 2.3 F F 5 F F g 1 : B → A ก g 1 ˈ ˆ กF F A F f ˈ ˆ กF F {1, 2, 3, , n} 2.2 F F 5 F F fog 1 : B → {1, 2, 3, , n} ก fog 1 ˈ ˆ กF F {1, 2, 3, , n} F F B ∼ {1, 2, 3, , n} ก n B ˈ ก 2.2 ก F A ˈ F A ˈ F F A ∼ {1, 2, 3, , n} ก n F ก F F A ˈ ก
  • 37. F F 29 ก F F F F A ˈ F F B F ˈ F F F ˈ ก ก ก ก 2.2 F ก F F ก F F ก ก F F ก F ก ก F F ก ก ก ก F F ก F F F ก F ˈ F 2.6 ก F A = {1, 2, 3} f : A → {1, 2, 3} f ˈ ˆ กF F {1, 2, 3} F F F F B A F กF {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, φ F F F F B F ˆ กF F {1, 2, 3} F ( ?) F ˆ กF F {1, 2, 3, , m} ก m m < n F B = {1} F h : {1} → {1} F F 1 < 3 B = {2} F h : {2} → {1} F F 1 < 3 B = {3} F h : {3} → {1} F F 1 < 3 B = {1, 2} F h : {1, 2} → {1, 2} F F 2 < 3 B = {1, 3} F h : {1, 3} → {1, 2} F F 2 < 3 B = {2, 3} F h : {2, 3} → {1, 2} F F 2 < 3 B = φ F h : φ→ φ F F 0 < 3 F ก F B ˈ F F A F F f : A → B ก A ˈ ก F F A ∼ {1, 2, 3, , n} ก n F g : A → {1, 2, 3, , n} F gof 1 : B → {1, 2, 3, , n} ˈ F {1, 2, 3, , n} F F F ก 2.2 F F F ก F ˈ 2.2 ก F A ˈ F f : A → {1, 2, 3, , n} ก n F B ˈ F F A F F F F F g : B → {1, 2, 3, , n} F F B ≠ φ F F h : B → {1, 2, 3, , m} ก m m < n 2.3 F A ˈ ก F A F F ก F F
  • 38. 30 F ˆ F ก ก ก Fก ˆ ก F F F F F ก F m, n ˈ ก A m ≠ n F m < n F F f : A → {1, 2, 3, , m} g : A → {1, 2, 3, , n} F F gof 1 : {1, 2, 3, , m} → {1, 2, 3, , n} ˈ ˆ กF F {1, 2, 3, , n} F F F {1, 2, 3, , m} ⊂ {1, 2, 3, , n} gof 1 ก F ˈ ˆ กF F ก F F ก F ก 2.2 F F F F ⊂ ˈ F F 2.5 ก F F F ก F F F F F ก ก ก ก F F ก F F F F 2.7 C F 2.1 ˈ F F 2.8 D, E, F F 2.2 ˈ F F Fก F F F ก F A ≠ φ ˈ F A ˈ ก F ก F B ˈ ก F A ˈ ก F f : A → {1, 2, 3, , n} ก n 2.4 ก A F 2.3 ก F F ก ก F F 2.5 ก F B ≠ φ n ˈ ก F F F ก 1) ˆ กF f : {1, 2, 3, , n} → B 2) ˆ กF F g : B → {1, 2, 3, , n} 3) B ˈ ก ก ก n 2.6 ก F A ≠ φ ˈ F B ˈ F B ⊆ A F A ˈ F
  • 39. F F 31 ก B ⊆ A f : B → {1, 2, 3, , n} ก n F F B ˈ ก F F F F A ˈ F F ก ʿก 2.2 1. F F F ก ก F ˈ ก 2. F F A ∪ B ˈ ก ก F A B F ก ˈ ก 3. F F N ˈ F
  • 40.
  • 41. F F 33 ก ก ก ก ก F. ก F. F 2. ก : ก F , 2542. . F Ent 47. ก : F F ก F, 2547. ˆ ก F F . ก ก F 1 ก F F ˅ 2001. ก : , 2544. F . ก ก F 1 ก F F ˅ 2004. ก : , 2547. . F. F 1. ก : ก F, 2533. ก . ก F .4 ( 011, 012). F ก. ก : ʽ ก F F, 2539.