SlideShare a Scribd company logo
1 of 51
Download to read offline
QTPIE and water
                                    Jiahao Chen
                                    2008-05-20

quot;We can't solve problems by using the same kind of thinking we used when we created them.quot;
                                - attributed to Albert Einstein
Since last time...
• QTPIE has become much faster
• We now know why dipole moments and
  polarizabilities previously weren’t
  translationally invariant, and why they aren’t
  size extensive.
• We have (some) parameters for a new
  water model
• We’ve shown that QTPIE gets the correct
  direction of intermolecular charge transfer
What is QTPIE: a
      scientific POV
• A way to model polarization and
  intermolecular charge transfer in molecular
  mechanics
• One of the simplest electronic structure
  methods, except without electrons
• Give me a geometry, and I will give you a
  charge distribution
What is QTPIE? A
       numerical POV
• Give me a geometry, and I will give you a
   charge distribution
     f : R = R1 , . . . , RN       → (q1 , . . . , qN )

• Minimize the quadratic form1
E(q1 , . . . , qN ; R) =       qi vi (R) +            qi qj Jij (R)
                           i
                                             2   ij

• subject to the constraint
                               qi = 0
                           i
How to make QTPIE faster
  • Using GTOs in place of STOs
  • Integral prescreening
  • Sparse matrix data structure for overlap
    matrix
  • Conjugate gradients to solve linear problem
    (vs GMRES)
  • Initial guess from previous solution
  • Fast multipole methods (future work)
Optimizing GTOs for
       STOs
n
                                                       n!e−α         αν
                                   An (α)     =
                                                       αn+1      ν=0
                                                                     ν!
                                                                  n        ν
                                                       n!e−α         (−α) − αν
                                   Bn (α)     =
                                                       αn+1      ν=0
                                                                         ν!
                                                                  k      m           n
                                        mn
                                       Dp     =             (−1)
                                                                        p−k          k
                                                       k
                                        2m
                              1   (2α) R2m−1
  K2 (α, β, m, n, R)   =        +            (2αR − 2m) A2m−1 (2αR) − e−2αR
                              R       (2m)!
                                             2n                         2m−1+ν
                              α2m+1 R2m          2n − ν     ν
                            −                           (βR)                      2m−1,ν
                                                                                 Dp      Bp (R (α − β)) A2m+ν−1−p (R (α + β))
                               2n (2m)!      ν=0
                                                   ν!                     p=0
                                                  2m
   dK2            2m + 1 2m      (2αR)
          = −           +   K2 +                        2m (1 + 2m − 2αR) A2m−1 (2αR) + (1 + 2m) e−2αR
    dR              R 2   R        (2m)!
                                2n−1                             2m+ν
                 α2m+1 R2m             2n − ν − 1     ν
              −β                                  (βR)                   2m−1,ν+1
                                                                        Dp        Bp (R (α − β)) A2m+ν−p (R (α + β))
                  2n (2m)!      ν=0
                                           ν!                    p=0
                           2m 2n                       2m−1+ν
                  α2m+1 R          2n − ν     ν
              +                           (βR)                     2m−1,ν
                                                                  Dp      ×
                   2n (2m)!    ν=0
                                     ν!                    p=0
              [(α − β) Bp+1 (R (α − β)) A2m+ν−1−p (R (α + β)) + (α + β) Bp (R (α − β)) A2m+ν−p (R (α + β))]



Unlike GTOs, STOs are really, really nasty to work with.
                                                                ab
                                                  p    =
                                                               a+b
                                             dK2              2p −p2 R2 erf (pR)
                                                       =      √ e      −
                                              dR             R π           R2
STO-nG orbitals were defined by fitting an orbital of n
contracted Gaussian primitives to an STO to reproduce
  the orbital in a least-squares sense. The conventional
 wisdom is n > 2 for some kind of useful, reasonable fit.


       STO-1Gs suck when used in QEq/QTPIE.

However, there is a way to get accurate results with just
                 primitive Gaussians...
Instead of maximizing overlap in a least-squares sense,
   minimize the deviation in the Coulomb integrals.
                               min J ST O − J GT O (α)
                                α
                     This is equivalent to minimizing
J GT O − J ST O      2
                     2   =      J GT O , J GT O − 2 J GT O , J ST O + J ST O , J ST O
                         =      J GT O , J GT O − 2J ST O      + J ST O , J ST O
        which is minimized by the exponent such that
                 ∂
    0   =            J GT O (α) , J GT O (α) − 2J ST O
                ∂α
                   ∂ GT O                                                 ∂ GT O
        =            J      (α) , J GT O (α) − 2J ST O    + J GT O (α) ,    J    (α)
                  ∂α                                                     ∂α
                                            ∂ GT O
        =          2J GT O (α) − 2J ST O ,    J       (α)
                                           ∂α

                                            i.e.
                ∞
                                                        1 −αR2
                    J   GT O
                               (R; α) − J   ST O
                                                   (R) √ e     =0
            0                                           απ
Element   Best Coulomb   Least-squares
  H          0.5343         0.3101
  Li         0.1668         0.0440
  C          0.2069         0.1853
  N          0.2214         0.2088
  O          0.2240         0.2400
  F          0.2312         0.2142
  Na         0.0959         0.0399
  Si         0.1032         0.1256
  P          0.1085         0.1430
  S          0.1156         0.1584
  Cl         0.1137         0.1758
  K          0.0602         0.0361
  Br         0.0701         0.1850
  Rb         0.0420         0.0402
   I         0.0469         0.1735
  Cs         0.0307         0.0374
Summary
• STOs are really, really nasty to work with
• GTOs fit to STOs by reproducing the
  Coulomb self-repulsion integrals yield
  excellent approximations
• Use in QEq and QTPIE result in very little
  error (< 0.00001e)
• There is very little basis to the claim that
  STOs can be used “for extra accuracy”
Sparse matrices in
     QTPIE
Matrix-vector multiplication
  in computer memory
                   
  1.0   0.4 0.0                             do i = 1, N
                                              do j = 1, N
 0.4   1.0 0.0                                u(i) = M(i, j) * v(j)
                                              end do
  0.0   0.0 1.0                             end do


In (linear) memory, matrix data structure looks like this:
M(:)    1.0   0.4   0.0   0.4   1.0   0.0    0.0   0.0   1.0
                                            k = 0
                                            do i = 1, N
                                              do j = 1, N
                                                k = k + 1
                                                u(i) = M(k) * v(j)
                                              end do
                                            end do
Conventional matrix data structure
         1.0   0.4      0.0   0.4   1.0   0.0   0.0   0.0   1.0
                                              k = 0
    1.0     0.4       0.0                       do i = 1, N
                                                  do j = 1, N
   0.4     1.0       0.0                          k = k + 1
                                                    u(i) = M(k) * v(j)
    0.0     0.0       1.0                         end do
                                                end do


      Compressed sparse row (CSR) data structure
row start         1     3     5     6           do i = 1, N
                                                  do k=M%r(i),M%r(i+1)-1
                                                    j = M%c(k)
column          1       2      1     2     3        u(i) = M%d(k) * v(j)
                                                  end do
data           1.0     0.4    0.4   1.0   1.0   end do


Fewer operations and lower memory latency, so faster!
Calculating the linear
 coefficients in QTPIE
• In QTPIE, minimize                        1
E(q1 , . . . , qN ; R) =        qi vi (R) +             qi qj Jij (R)
                           i
                                            2      ij
• The linear coefficients are given by
                               j (χi   − χj )Sij
                 vi =
                                        Sij
• The main costs are matrix-vector
                                   j


   multiplication and memory latency
Using conjugate
    gradients for
constrained problems
QTPIE is a saddle-point
       problem
• In matrix notation,         1 T
                min      q v + q Jq
                         T
              q: q·1=0        2
• Solving QTPIE with a Lagrange multiplier,
             J     1         q       −v
                                 =
             1T    0         µ        0
• J is positive definite but this constrained problem
  is not (the constraint introduces a negative
  eigenvalue). Conjugate gradients can (and does)
  fail by going uphill, thinking it’s going downhill.
However...
Solving the saddle-point
          problem
   •       There exists a block inversion formula1 for
           2 x 2 structured matrices
                 −1
      J      1            J −1 + J −1 1S1T J −1   −J −1 1S
                      =
      1T     0                 −S1T J −1             S
                                    1
                          S = − T −1
                                1 J 1
   • The analytic solution is given by
                          −1
  q              J    1         −v          −J −1 (v − µ1)
           =                           =
  µ              1T   0          0           1T J −1 v S

1. e.g. P.-O. Löwdin, Linear algebra for quantum mechanics
Solving the saddle-point
       problem with CG
    • Analytic solution can be solved numerically
      with two symmetric, positive definite
      problems (CG is guaranteed to work)

q         −J −1 (v − µ1)            Jw = 1
      =                                   w·v
µ           1T J −1 v S              µ=−
                                          w·1
            1                       Jy = −v
    S = − T −1
         1 J 1
                                      q = y − µw
II. Fixing the
translational invariance
of dipole moments and
     polarizabilities
Dipoles and
polarizabilities in QEq
• The regular story: the charge model is
  solved by q = −J −1 v
• The energy is therefore minimized by
                    1
                E = − v T J −1 v
                     2
• Want to calculate dipole moments and
  polarizabilities
               ∂E                       ∂dν
   dν =                   ανλ =
              ∂Riν                 j
                                       ∂Rjλ
          i
How to calculate dipoles
        and polarizabilities
    • Dipole coupling prescription
                                1
E(q1 , . . . , qN ; R, ) =       qi vi (R) +            qi qj Jij (R) −       q i Ri ·
                             i
                                               2   ij                     i

    • The external field shifts the voltages on each atom
        by an external potential
                                                             1
E(q1 , . . . , qN ; R, ) =       qi vi (R) − Ri ·          +          qi qj Jij (R)
                             i
                                                             2   ij
    • Now calculate dipole moments and polarizabilities
                  ∂E                                          ∂2E
             dν =                                   ανλ    =
                  ∂ ν                                        ∂ ν∂ λ
Physically, the universe is translationally invariant.
Therefore, electrostatic properties (mostly) don’t
          depend on the choice of origin.



                     x→x+δ




                 ⇒     d → d + δQ
                     ανλ → ανλ
This is not the case in QEq!



               d→d+δ 1 J        T   −1
                                         v
ανλ → ανλ − 1 JT   −1
                        · (δν Rλ + Rν δλ ) − δν δλ 1 J
                                                  T      −1
                                                              1



   The solution in the literature is to fix an origin
 arbitrarily, even though nobody has a good physical
   reason why that should be the “correct” origin
As it turns out, QEq and other fluctuating charge
     models do obey the correct translational
 properties, as long as one works with the correct
      solution of the constrained minimization

                     q = −J −1 v
                                   J −1 1
    q = −J −1 (v − µ1) = −J −1 v − T −1
                                  1 J 1

 The second term actually generates counterterms
under translation that kill all the pathological terms.
The analytic solutions for the dipole
moment and polarizability in QTPIE
            are given by
         µ T −1                1T J−1 Rµ
dµ = − (R ) J v − 1T J−1 v + Q
                                1T J−1 1

            µ T −1 ν 1T J−1 Rµ 1T J−1 Rν
αµν   = − (R ) J R −
                            1T J−1 1
T
dµ   →   − (R + δ 1) J−1 v
              µ       µ

                             1T J−1
         − 1T J−1 v + Q T −1 (Rµ + δ µ 1)
                            1 J 1
                 T −1                      1T J−1 Rµ
     =   − (Rµ ) J v + 1T J−1 v + Q
                                            1T J−1 1
                                            1T J−1 1
         −δ µ 1T J−1 v + δ µ 1T J−1 v + Q T −1
                                            1 J 1
     =   dµ − δ µ 1T J−1 v + δ µ 1T J−1 v + Q
     =   dµ + δ µ Q
T
αµν   →   − (Rµ + δ µ 1) J−1 (Rν + δ ν 1)
             1T J−1 (Rµ + δ µ 1) 1T J−1 (Rν + δ ν 1)
          −
                             1T J−1 1
                 T
      =   − (Rµ ) J−1 Rν − δ µ δ ν 1T J−1 1
                                  T
          −δ µ 1T J−1 Rν − δ ν (Rµ ) J−1 1
             1T J−1 Rµ 1T J−1 Rν
          −
                     1T J−1 1
                   1T J−1 1 1T J−1 1
          −δ µ δ ν
                         1T J−1 1
                 1T J−1 1 1T J−1 Rν
          −δ µ
                       1T J−1 1
                 1T J−1 Rµ 1T J−1 1
          −δ ν
                       1T J−1 1
      =   αµν
III. Fixing the size
extensivity of dipole
    moments and
   polarizabilities
Not size extensive!
         2n


lim               =     2
n→∞
                        4
          n
       Why?
Work it out analytically for N identical, noninteracting
                     subsystems...



                                                           
             ¯
             Rµ                    ¯
                                   Rµ                   0
         ¯
          Rµ + ∆µ 1           Rµ ¯                  1       
                                       µ                   
R =
 µ
              .             = .       +∆            .       
             .
              .               .   .                 .
                                                        .       
       ¯
       Rµ + (N   − 1) ∆µ 1         ¯
                                   Rµ               (N − 1) 1
                ¯ 0 ··· 0                        
                 J                              ¯
                                                v
                          ..   . 
                0 J  ¯       . . 
                                . 
                                          
                                               ¯
                                                v   
                                                    
        J=
                . ..           .      v=     .
                                                .   
                 .         ..                      
                .      .     . . 
                                .               .
                 0 ··· ··· J    ¯               ¯
                                                v
T            1
dµ   = − (Rµ ) J−1 v − T −1 1T J−1 v + Q
                         1 J 1
                              −1                                        
                   ¯µ
                   R                ¯ v
                                    J ¯                               ¯
                                                                      J−1 1
               ¯
                Rµ + ∆µ 1           ¯ ¯
                               J−1 v  N 1T J−1 v + Q 
                                               ¯ ¯                    ¯
                                                                      J−1 1   
                                                                        
     = −           .         ·    .   −      ¯                    .     
                   .
                    .              .
                                      .     N 1T J−1 1                .
                                                                        .     
            ¯
           Rµ + (N − 1) ∆µ 1        ¯ ¯
                                    J−1 v                             ¯
                                                                      J−1 1
                                       T −1 ¯
     = −N         ¯
                  Rµ
                         T   ¯ −1 v − 1 J v + Q/N Rµ
                             J ¯                  ¯       T   ¯
                                                              J−1 1
                                         1T J−1 1
                 N −1
                              T ¯ −1             ¯
                                          1T J−1 v + Q/N T ¯ −1
        −∆   µ
                        n 1 J          ¯
                                       v−               1 J 1
                 n=0
                                              1T J−1 1

         ¯    (N − 1) (N − 2) µ T ¯ −1
     = N dµ −                          ¯       ¯
                              ∆ 1 J v − 1T J−1 v − Q/N
                     2
         ¯    (N − 1) (N − 2) Q µ
     = N dµ −                  ∆
                     2N
µ T           1T J−1 Rµ 1T J−1 Rν
αµν   = − (R ) J R +    −1       ν
                                     1T J−1 1
                                  T  J−1
                                          ¯       0              0
                                                                                                      
                      R¯µ                               ···                       ¯
                                                                                 Rν
                 ¯
                  Rµ + ∆µ 1                            ..       . 
                                                                  .         ¯
                                                                              Rν + ∆ν 1                 
                                    0        ¯
                                                J−1         .     .                                    
      = −              .              
                                     .                                           .
                       .
                        .            .         ..      ..       . 
                                                                  .              .
                                                                                   .
                                                                                                        
                                                                                                        
                                            .       .       .     .
            R¯ µ + (N − 1) ∆µ 1                                 ¯         ¯ ν + (N − 1) ∆ν 1
                                                                          R
                                           0    · · · · · · J−1
                                                                               
                          ¯ ¯
                       1T J−1 Rµ                                  ¯ ¯
                                                              1T J−1 Rν
                    ¯     ¯
                  1T J−1 Rµ + ∆µ 1                        ¯       ¯
                                                        1T J−1 Rν + ∆ν 1          
                                                                               
                           .
                            .                                      .
                                                                     .            
                           .                                      .            
                ¯      ¯
            1T J−1 Rµ + (N − 1) ∆µ 1                  ¯       ¯
                                                  1T J−1 Rν + (N − 1) ∆ν 1
        +                                     ¯
                                         N 1T J−1 1
              N −1
      = −             ¯
                      Rµ
                             T   ¯ ¯          ¯
                                 J−1 Rν + n∆ν Rµ
                                                      T   ¯            ¯ ¯                  ¯
                                                          J−1 1 + n∆µ 1J−1 Rν + n2 ∆µ ∆ν 1T J−1 1
              n=0
                 N −1   ¯
                        Rµ
                                 T   ¯              ¯
                                     J−1 1 + n∆µ 1T J−1 1
                                                                N −1   ¯
                                                                       Rν
                                                                            T   ¯               ¯
                                                                                J−1 1 + n ∆ν 1T J−1 1
                 n=0                                            n =0
          +                                  ¯
                                        N 1T J−1 1
             ¯ T¯ ¯         (N − 1) (N − 2) ν ¯ µ T ¯ −1
      = −N Rµ J−1 Rν −                     ∆ R        J 1
                                   2
          (N − 1) (N − 2) µ ¯ −1 ¯ ν (N − 1) (N − 2) (2N − 3) µ ν T ¯ −1
        −                 ∆ 1J R −                            ∆ ∆ 1 J 1
                 2                                 6
              ¯ T¯
              Rµ J−1 1       ¯ T¯
                             Rν J−1 1               2      2
                                           (N − 1) (N − 2) µ ν T ¯ −1
        +N                ¯              +                   ∆ ∆ 1 J 1
                      1T J−1 1                      N
          (N − 1) (N − 2)   ¯ T¯             ¯ T¯
        +                   Rµ J−1 1∆ν + Rν J−1 1∆µ
                 2
                (N − 1) (N − 2)                        ¯
      = N αµν −
          ¯                     N 2 − 3N − 6 ∆µ ∆ν 1T J−1 1
                      6N
Dipole moments have the correct translational
properties because the terms and counterterms
               cancel perfectly.


The terms in the polarizabilities cancel only to
 second order; the cubic terms do not cancel
perfectly, giving rise to anomalous cubic scaling.
Modified dipole coupling
In QEq, the external field shifts the electronegativities on
           each atom by an external potential
                                                   1
        E(q1 , . . . , qN ; R) =       qi vi (R) +          qi qj Jij (R)
                                   i
                                                   2   ij
                         vi (R) = χi → χi − Ri ·
                                                          1
E(q1 , . . . , qN ; R, ) =       qi vi (R) − Ri ·       +            qi qj Jij (R)
                             i
                                                          2     ij
Modified dipole coupling
We propose to apply the same coupling in QTPIE, which
   shifts the atomic voltages in a less trivial manner
                                                  1
     E(q1 , . . . , qN ; R) =         qi vi (R) +              qi qj Jij (R)
                                 i
                                                  2       ij

                                     j (χi   − χj )Sij
                      vi =
                                         j    Sij
                           χi → χi − Ri ·

                               (χi − χj ) Sij              j    Ri − Rj Sij
                           j
   vi (R) → vi (R, ) =                              − ·
                                  j   Sij                         j   Sij
With this coupling, the dipole moments and polarizabilities
                          become
                                           µ  µ
                                   Sik (Ri − Rk ) −1
       dµ   =                    k
                                                  J v                        i
                     i                  l Sil
                                                                             P              “                       ”
                                                                                                     µ        µ
                                                                                     Si k       R −R
                             1 J
                             T     −1
                                        v          i    1 J
                                                        T     −1
                                                                     i
                                                                                 k
                                                                                      P
                                                                                                Si
                                                                                                     i        k
                                                                                        l            l
                     −
                                                         1T J−1 1

                             µ    µ
                     k Sik (Ri − Rk ) J−1               ij      l
                                                                         ν    ν
                                                                    Sjl Rj − Rl
αµν   = −
            ij                                k   Sik    l    Sjl
                                       P                                                         P
                                           k Sik (Ri −Rk )                                                            (Ri −Rk )
                                                    µ  µ                                                                ν   ν
                                                                                                             Si k
                 i   1 J T    −1              P
                                                                         i   1 J T    −1                 k    P
                                   i             l Sil                                      i                     l   Si   l
        +
                                                             1T J−1 1
More importantly, these expressions are still translationally
         invariant, but are now size-extensive
                       dµ → dµ                                        α→α
                       dµ = N dµ                                      α = Nα
                                                                           ¯

The key difference is that the overlap matrix attenuates any
  contributions across subsystems to terms of this form
                                ¯ −1                                          ¯                   
                                 J              0   ···     0                    S 0      ···    0
                                                   ..       .
                                                             .                          ..     .
                                                                                                 .   
                                0          ¯
                                            J−1        .     .                 0 S¯        .   .   
J−1                 ν    ν
               Sjl Rj − Rl   =  .
                                                            .
                                                                  
                                                                  
                                                                               
                                                                                . .             .
                                                                                                     
                                                                                                     
      ij
                                .           ..     ..       .                  .   ..   ..     .
           l                       .            .      .     .            l     .           .   .   
                                  0         ···     ···    ¯
                                                           J −1
                                                                                 0 ···    ···    ¯
                                                                                                 S
                                                                      ij                             jl
                                                                                                 
                                                   ¯
                                                   Rν                                  ¯
                                                                                       Rν
                                              ¯
                                                Rν + ∆ν 1                         ¯
                                                                                    Rν + ∆ν 1                
                                                                                                         
                                 ×                .
                                                    .              −                  .
                                                                                        .                    
                                                  .                                 .                    
                                        ¯
                                        Rν + (N − 1) ∆ν 1                        ¯
                                                                                 Rν + (N − 1) ∆ν 1
                                                                       j                                  l

                             =   ¯
                                 J−1            ¯ ¯ν     ¯ν
                                                Sjl Rj − Rl
                                       ij
                                            l
Planar water chains with z-spacing 10.00 Angstroms
                            0
                                                                                                                        zz-polarizability
                                                                                linear fit (gradient = -0.325919, intercept = 0.007088)
                          -100


                          -200


                          -300




Polarizability (bohr^3)
                          -400


                          -500


                          -600


                          -700


                          -800


                          -900
                                 0           500            1000                1500                 2000                  2500             3000
                                                                          Number of atoms
                                                           Planar water chains with z-spacing 10.00 Angstroms
                            5e+09
                                                                                                                      zz-polarizability
                                                             linear fit (gradient = -5773165.409344, intercept = 1434581215.053739)

                                     0



                            -5e+09
Polarizability (bohr^3)




                            -1e+10



                          -1.5e+10



                            -2e+10



                          -2.5e+10
                                         0         500         1000                1500                2000                 2500            3000
                                                                            Number of atoms
IV. Parameters for
       water
Strategy
                                                                                                    5
                                   2

•   Aim: reproduce ab initio               1

    data (LCCSD(T)/aug-cc-                                                            4

    pVTZ) with three-site                      3
                                                                                            6
    water model
                               E   = EB (R12 ) + EB (R13 ) + EB (R45 ) + EB (R46 )
                                      OH          OH          OH          OH




•                                      +EA   (R12 , R13 , R23 ) + EA   (R45 , R46 , R56 )
                                         HOH                       HOH

    First determine QTPIE              +EvdW (R14 )
                                         OO


    parameters (4) by fitting           +EvdW (R15 ) + EvdW (R16 ) + EvdW (R42 ) + EvdW (R43 )
                                         OH            OH            OH            OH

                                       +EvdW (R25 ) + EvdW (R26 ) + EvdW (R35 ) + EvdW (R36 )
                                         HH            HH            HH            HH
    to dipole moments                  +EQT P IE (R)



•
                                                                              2
    Then fit other parameters               EB (r) = k OH r − r0
                                            OH                OH

                                                                                  2
    (10) to energies (up to               HOH
                                         EA   (θ) = κOH θ − θ0
                                                             HOH

                                                          σAB 12   σAB                          6
    constant)                            EvdW (r) = AB
                                           AB
                                                           r
                                                                 −
                                                                    r
Geometries
•       1,230 water monomer
        geometries generated
        by directly varying
        internal coordinates

•   890 water dimer geometries generated by classical MD
    sampling (TINKER, flexible SPC water model, 1000K)

    •   O-O distance constrained by varying vdW radius of O

    •   10 ps equilibration then 10 geometries at 1ps intervals
Fitting method
• Weighted least-squares fitting with
   Boltzmann weight (β = 100)
f (ζ) =       e−βEi               (dab initio − dQTPIE (ζ))2
                                    iν           iν
          i           ν∈{x,y,z}

• Fitting done with Neader-Mead downhill
   simplex algorithm in scipy
  import scipy.optimize
  z0 = (8.741, 13.364, 4.528, 13.890)
  zopt = scipy.optimize.fmin(f, z0)
  print quot;Optimal parameters = quot;, zopt
Best-fit parameters
Par./eV    QEq       New

 χ(H)     4.5280    5.6841

 η(H)     13.8904   12.4166

 χ(O)      8.741    7.9173

 η(O)     13.364    13.1643
QTPIE
        Dipoles correlation




                              ab initio
Dipole moment per water / D




                         Number of water molecules
yy-polarizability per water / ų




                              Number of water molecules
zz-polarizability per water / ų




                              Number of water molecules
That’s all, folks!

More Related Content

Viewers also liked

Fluctuating-charge models: theory and applications
Fluctuating-charge models: theory and applicationsFluctuating-charge models: theory and applications
Fluctuating-charge models: theory and applicationsJiahao Chen
 
New Passenger Cabins In Aircraft
New Passenger Cabins In AircraftNew Passenger Cabins In Aircraft
New Passenger Cabins In AircraftJose Antonio Martin
 
Excitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesExcitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesJiahao Chen
 
Chistes Informaticos Y De Chat 1199295697555190 5
Chistes Informaticos Y De Chat 1199295697555190 5Chistes Informaticos Y De Chat 1199295697555190 5
Chistes Informaticos Y De Chat 1199295697555190 5Jose Antonio Martin
 
An introduction to Julia
An introduction to JuliaAn introduction to Julia
An introduction to JuliaJiahao Chen
 
The Visualization Toolkit (VTK) and why you might care about it
The Visualization Toolkit (VTK) and why you might care about itThe Visualization Toolkit (VTK) and why you might care about it
The Visualization Toolkit (VTK) and why you might care about itJiahao Chen
 
Theory and application of fluctuating-charge models
Theory and application of fluctuating-charge modelsTheory and application of fluctuating-charge models
Theory and application of fluctuating-charge modelsJiahao Chen
 
Vinculum E-Retail Product Suite for Retailers and E-commerce Vendors
Vinculum E-Retail Product Suite for Retailers and E-commerce VendorsVinculum E-Retail Product Suite for Retailers and E-commerce Vendors
Vinculum E-Retail Product Suite for Retailers and E-commerce VendorsSiddhartha Tripathi
 

Viewers also liked (11)

Fluctuating-charge models: theory and applications
Fluctuating-charge models: theory and applicationsFluctuating-charge models: theory and applications
Fluctuating-charge models: theory and applications
 
Ilusionoptica
IlusionopticaIlusionoptica
Ilusionoptica
 
New Passenger Cabins In Aircraft
New Passenger Cabins In AircraftNew Passenger Cabins In Aircraft
New Passenger Cabins In Aircraft
 
Posturitas
PosturitasPosturitas
Posturitas
 
Angulperfect
AngulperfectAngulperfect
Angulperfect
 
Excitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesExcitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic Membranes
 
Chistes Informaticos Y De Chat 1199295697555190 5
Chistes Informaticos Y De Chat 1199295697555190 5Chistes Informaticos Y De Chat 1199295697555190 5
Chistes Informaticos Y De Chat 1199295697555190 5
 
An introduction to Julia
An introduction to JuliaAn introduction to Julia
An introduction to Julia
 
The Visualization Toolkit (VTK) and why you might care about it
The Visualization Toolkit (VTK) and why you might care about itThe Visualization Toolkit (VTK) and why you might care about it
The Visualization Toolkit (VTK) and why you might care about it
 
Theory and application of fluctuating-charge models
Theory and application of fluctuating-charge modelsTheory and application of fluctuating-charge models
Theory and application of fluctuating-charge models
 
Vinculum E-Retail Product Suite for Retailers and E-commerce Vendors
Vinculum E-Retail Product Suite for Retailers and E-commerce VendorsVinculum E-Retail Product Suite for Retailers and E-commerce Vendors
Vinculum E-Retail Product Suite for Retailers and E-commerce Vendors
 

Similar to QTPIE and water (Part 2)

Similar to QTPIE and water (Part 2) (14)

Basic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic SolidsBasic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic Solids
 
ProjectPresentation_11:30:2016
ProjectPresentation_11:30:2016ProjectPresentation_11:30:2016
ProjectPresentation_11:30:2016
 
Hw6sols
Hw6solsHw6sols
Hw6sols
 
Hw6sols
Hw6solsHw6sols
Hw6sols
 
Semiconductor laser
Semiconductor laserSemiconductor laser
Semiconductor laser
 
CMOS Analog Design Lect 4
CMOS Analog Design  Lect 4CMOS Analog Design  Lect 4
CMOS Analog Design Lect 4
 
Bessel functionsoffractionalorder1
Bessel functionsoffractionalorder1Bessel functionsoffractionalorder1
Bessel functionsoffractionalorder1
 
Notes 4-4
Notes 4-4Notes 4-4
Notes 4-4
 
Lecture 08
Lecture 08Lecture 08
Lecture 08
 
107069260 trabajo-final-de-estructuras-ii
107069260 trabajo-final-de-estructuras-ii107069260 trabajo-final-de-estructuras-ii
107069260 trabajo-final-de-estructuras-ii
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
End sem solution
End sem solutionEnd sem solution
End sem solution
 
The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03
 

Recently uploaded

DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 

Recently uploaded (20)

DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 

QTPIE and water (Part 2)

  • 1. QTPIE and water Jiahao Chen 2008-05-20 quot;We can't solve problems by using the same kind of thinking we used when we created them.quot; - attributed to Albert Einstein
  • 2. Since last time... • QTPIE has become much faster • We now know why dipole moments and polarizabilities previously weren’t translationally invariant, and why they aren’t size extensive. • We have (some) parameters for a new water model • We’ve shown that QTPIE gets the correct direction of intermolecular charge transfer
  • 3. What is QTPIE: a scientific POV • A way to model polarization and intermolecular charge transfer in molecular mechanics • One of the simplest electronic structure methods, except without electrons • Give me a geometry, and I will give you a charge distribution
  • 4. What is QTPIE? A numerical POV • Give me a geometry, and I will give you a charge distribution f : R = R1 , . . . , RN → (q1 , . . . , qN ) • Minimize the quadratic form1 E(q1 , . . . , qN ; R) = qi vi (R) + qi qj Jij (R) i 2 ij • subject to the constraint qi = 0 i
  • 5. How to make QTPIE faster • Using GTOs in place of STOs • Integral prescreening • Sparse matrix data structure for overlap matrix • Conjugate gradients to solve linear problem (vs GMRES) • Initial guess from previous solution • Fast multipole methods (future work)
  • 7. n n!e−α αν An (α) = αn+1 ν=0 ν! n ν n!e−α (−α) − αν Bn (α) = αn+1 ν=0 ν! k m n mn Dp = (−1) p−k k k 2m 1 (2α) R2m−1 K2 (α, β, m, n, R) = + (2αR − 2m) A2m−1 (2αR) − e−2αR R (2m)! 2n 2m−1+ν α2m+1 R2m 2n − ν ν − (βR) 2m−1,ν Dp Bp (R (α − β)) A2m+ν−1−p (R (α + β)) 2n (2m)! ν=0 ν! p=0 2m dK2 2m + 1 2m (2αR) = − + K2 + 2m (1 + 2m − 2αR) A2m−1 (2αR) + (1 + 2m) e−2αR dR R 2 R (2m)! 2n−1 2m+ν α2m+1 R2m 2n − ν − 1 ν −β (βR) 2m−1,ν+1 Dp Bp (R (α − β)) A2m+ν−p (R (α + β)) 2n (2m)! ν=0 ν! p=0 2m 2n 2m−1+ν α2m+1 R 2n − ν ν + (βR) 2m−1,ν Dp × 2n (2m)! ν=0 ν! p=0 [(α − β) Bp+1 (R (α − β)) A2m+ν−1−p (R (α + β)) + (α + β) Bp (R (α − β)) A2m+ν−p (R (α + β))] Unlike GTOs, STOs are really, really nasty to work with. ab p = a+b dK2 2p −p2 R2 erf (pR) = √ e − dR R π R2
  • 8. STO-nG orbitals were defined by fitting an orbital of n contracted Gaussian primitives to an STO to reproduce the orbital in a least-squares sense. The conventional wisdom is n > 2 for some kind of useful, reasonable fit. STO-1Gs suck when used in QEq/QTPIE. However, there is a way to get accurate results with just primitive Gaussians...
  • 9. Instead of maximizing overlap in a least-squares sense, minimize the deviation in the Coulomb integrals. min J ST O − J GT O (α) α This is equivalent to minimizing J GT O − J ST O 2 2 = J GT O , J GT O − 2 J GT O , J ST O + J ST O , J ST O = J GT O , J GT O − 2J ST O + J ST O , J ST O which is minimized by the exponent such that ∂ 0 = J GT O (α) , J GT O (α) − 2J ST O ∂α ∂ GT O ∂ GT O = J (α) , J GT O (α) − 2J ST O + J GT O (α) , J (α) ∂α ∂α ∂ GT O = 2J GT O (α) − 2J ST O , J (α) ∂α i.e. ∞ 1 −αR2 J GT O (R; α) − J ST O (R) √ e =0 0 απ
  • 10. Element Best Coulomb Least-squares H 0.5343 0.3101 Li 0.1668 0.0440 C 0.2069 0.1853 N 0.2214 0.2088 O 0.2240 0.2400 F 0.2312 0.2142 Na 0.0959 0.0399 Si 0.1032 0.1256 P 0.1085 0.1430 S 0.1156 0.1584 Cl 0.1137 0.1758 K 0.0602 0.0361 Br 0.0701 0.1850 Rb 0.0420 0.0402 I 0.0469 0.1735 Cs 0.0307 0.0374
  • 11.
  • 12. Summary • STOs are really, really nasty to work with • GTOs fit to STOs by reproducing the Coulomb self-repulsion integrals yield excellent approximations • Use in QEq and QTPIE result in very little error (< 0.00001e) • There is very little basis to the claim that STOs can be used “for extra accuracy”
  • 14. Matrix-vector multiplication in computer memory   1.0 0.4 0.0 do i = 1, N do j = 1, N  0.4 1.0 0.0  u(i) = M(i, j) * v(j) end do 0.0 0.0 1.0 end do In (linear) memory, matrix data structure looks like this: M(:) 1.0 0.4 0.0 0.4 1.0 0.0 0.0 0.0 1.0 k = 0 do i = 1, N do j = 1, N k = k + 1 u(i) = M(k) * v(j) end do end do
  • 15. Conventional matrix data structure 1.0 0.4 0.0 0.4 1.0 0.0 0.0 0.0 1.0   k = 0 1.0 0.4 0.0 do i = 1, N do j = 1, N  0.4 1.0 0.0  k = k + 1 u(i) = M(k) * v(j) 0.0 0.0 1.0 end do end do Compressed sparse row (CSR) data structure row start 1 3 5 6 do i = 1, N do k=M%r(i),M%r(i+1)-1 j = M%c(k) column 1 2 1 2 3 u(i) = M%d(k) * v(j) end do data 1.0 0.4 0.4 1.0 1.0 end do Fewer operations and lower memory latency, so faster!
  • 16. Calculating the linear coefficients in QTPIE • In QTPIE, minimize 1 E(q1 , . . . , qN ; R) = qi vi (R) + qi qj Jij (R) i 2 ij • The linear coefficients are given by j (χi − χj )Sij vi = Sij • The main costs are matrix-vector j multiplication and memory latency
  • 17. Using conjugate gradients for constrained problems
  • 18. QTPIE is a saddle-point problem • In matrix notation, 1 T min q v + q Jq T q: q·1=0 2 • Solving QTPIE with a Lagrange multiplier, J 1 q −v = 1T 0 µ 0 • J is positive definite but this constrained problem is not (the constraint introduces a negative eigenvalue). Conjugate gradients can (and does) fail by going uphill, thinking it’s going downhill.
  • 20. Solving the saddle-point problem • There exists a block inversion formula1 for 2 x 2 structured matrices −1 J 1 J −1 + J −1 1S1T J −1 −J −1 1S = 1T 0 −S1T J −1 S 1 S = − T −1 1 J 1 • The analytic solution is given by −1 q J 1 −v −J −1 (v − µ1) = = µ 1T 0 0 1T J −1 v S 1. e.g. P.-O. Löwdin, Linear algebra for quantum mechanics
  • 21. Solving the saddle-point problem with CG • Analytic solution can be solved numerically with two symmetric, positive definite problems (CG is guaranteed to work) q −J −1 (v − µ1) Jw = 1 = w·v µ 1T J −1 v S µ=− w·1 1 Jy = −v S = − T −1 1 J 1 q = y − µw
  • 22. II. Fixing the translational invariance of dipole moments and polarizabilities
  • 23. Dipoles and polarizabilities in QEq • The regular story: the charge model is solved by q = −J −1 v • The energy is therefore minimized by 1 E = − v T J −1 v 2 • Want to calculate dipole moments and polarizabilities ∂E ∂dν dν = ανλ = ∂Riν j ∂Rjλ i
  • 24. How to calculate dipoles and polarizabilities • Dipole coupling prescription 1 E(q1 , . . . , qN ; R, ) = qi vi (R) + qi qj Jij (R) − q i Ri · i 2 ij i • The external field shifts the voltages on each atom by an external potential 1 E(q1 , . . . , qN ; R, ) = qi vi (R) − Ri · + qi qj Jij (R) i 2 ij • Now calculate dipole moments and polarizabilities ∂E ∂2E dν = ανλ = ∂ ν ∂ ν∂ λ
  • 25. Physically, the universe is translationally invariant. Therefore, electrostatic properties (mostly) don’t depend on the choice of origin. x→x+δ ⇒ d → d + δQ ανλ → ανλ
  • 26. This is not the case in QEq! d→d+δ 1 J T −1 v ανλ → ανλ − 1 JT −1 · (δν Rλ + Rν δλ ) − δν δλ 1 J T −1 1 The solution in the literature is to fix an origin arbitrarily, even though nobody has a good physical reason why that should be the “correct” origin
  • 27. As it turns out, QEq and other fluctuating charge models do obey the correct translational properties, as long as one works with the correct solution of the constrained minimization q = −J −1 v J −1 1 q = −J −1 (v − µ1) = −J −1 v − T −1 1 J 1 The second term actually generates counterterms under translation that kill all the pathological terms.
  • 28. The analytic solutions for the dipole moment and polarizability in QTPIE are given by µ T −1 1T J−1 Rµ dµ = − (R ) J v − 1T J−1 v + Q 1T J−1 1 µ T −1 ν 1T J−1 Rµ 1T J−1 Rν αµν = − (R ) J R − 1T J−1 1
  • 29. T dµ → − (R + δ 1) J−1 v µ µ 1T J−1 − 1T J−1 v + Q T −1 (Rµ + δ µ 1) 1 J 1 T −1 1T J−1 Rµ = − (Rµ ) J v + 1T J−1 v + Q 1T J−1 1 1T J−1 1 −δ µ 1T J−1 v + δ µ 1T J−1 v + Q T −1 1 J 1 = dµ − δ µ 1T J−1 v + δ µ 1T J−1 v + Q = dµ + δ µ Q
  • 30. T αµν → − (Rµ + δ µ 1) J−1 (Rν + δ ν 1) 1T J−1 (Rµ + δ µ 1) 1T J−1 (Rν + δ ν 1) − 1T J−1 1 T = − (Rµ ) J−1 Rν − δ µ δ ν 1T J−1 1 T −δ µ 1T J−1 Rν − δ ν (Rµ ) J−1 1 1T J−1 Rµ 1T J−1 Rν − 1T J−1 1 1T J−1 1 1T J−1 1 −δ µ δ ν 1T J−1 1 1T J−1 1 1T J−1 Rν −δ µ 1T J−1 1 1T J−1 Rµ 1T J−1 1 −δ ν 1T J−1 1 = αµν
  • 31. III. Fixing the size extensivity of dipole moments and polarizabilities
  • 32. Not size extensive! 2n lim = 2 n→∞ 4 n Why?
  • 33. Work it out analytically for N identical, noninteracting subsystems...       ¯ Rµ ¯ Rµ 0  ¯ Rµ + ∆µ 1   Rµ ¯   1      µ  R = µ . = . +∆  .   . .   . .   . .  ¯ Rµ + (N − 1) ∆µ 1 ¯ Rµ (N − 1) 1  ¯ 0 ··· 0    J ¯ v  .. .   0 J ¯ . .  .    ¯ v   J=  . .. .  v= . .  . ..    . . . .  . . 0 ··· ··· J ¯ ¯ v
  • 34. T 1 dµ = − (Rµ ) J−1 v − T −1 1T J−1 v + Q 1 J 1    −1    ¯µ R ¯ v J ¯ ¯ J−1 1  ¯ Rµ + ∆µ 1 ¯ ¯   J−1 v  N 1T J−1 v + Q  ¯ ¯ ¯ J−1 1        = − .  ·  . − ¯  .   . .   . .  N 1T J−1 1  . .  ¯ Rµ + (N − 1) ∆µ 1 ¯ ¯ J−1 v ¯ J−1 1 T −1 ¯ = −N ¯ Rµ T ¯ −1 v − 1 J v + Q/N Rµ J ¯ ¯ T ¯ J−1 1 1T J−1 1 N −1 T ¯ −1 ¯ 1T J−1 v + Q/N T ¯ −1 −∆ µ n 1 J ¯ v− 1 J 1 n=0 1T J−1 1 ¯ (N − 1) (N − 2) µ T ¯ −1 = N dµ − ¯ ¯ ∆ 1 J v − 1T J−1 v − Q/N 2 ¯ (N − 1) (N − 2) Q µ = N dµ − ∆ 2N
  • 35. µ T 1T J−1 Rµ 1T J−1 Rν αµν = − (R ) J R + −1 ν 1T J−1 1  T  J−1 ¯ 0 0   R¯µ ··· ¯ Rν  ¯ Rµ + ∆µ 1   .. .  .  ¯ Rν + ∆ν 1     0 ¯ J−1 . .   = − .    . .  . .   . .. .. .  .  . .   . . . . R¯ µ + (N − 1) ∆µ 1 ¯ ¯ ν + (N − 1) ∆ν 1 R 0 · · · · · · J−1    ¯ ¯ 1T J−1 Rµ ¯ ¯ 1T J−1 Rν  ¯ ¯ 1T J−1 Rµ + ∆µ 1  ¯ ¯ 1T J−1 Rν + ∆ν 1      . .  . .   .  .  ¯ ¯ 1T J−1 Rµ + (N − 1) ∆µ 1 ¯ ¯ 1T J−1 Rν + (N − 1) ∆ν 1 + ¯ N 1T J−1 1 N −1 = − ¯ Rµ T ¯ ¯ ¯ J−1 Rν + n∆ν Rµ T ¯ ¯ ¯ ¯ J−1 1 + n∆µ 1J−1 Rν + n2 ∆µ ∆ν 1T J−1 1 n=0 N −1 ¯ Rµ T ¯ ¯ J−1 1 + n∆µ 1T J−1 1 N −1 ¯ Rν T ¯ ¯ J−1 1 + n ∆ν 1T J−1 1 n=0 n =0 + ¯ N 1T J−1 1 ¯ T¯ ¯ (N − 1) (N − 2) ν ¯ µ T ¯ −1 = −N Rµ J−1 Rν − ∆ R J 1 2 (N − 1) (N − 2) µ ¯ −1 ¯ ν (N − 1) (N − 2) (2N − 3) µ ν T ¯ −1 − ∆ 1J R − ∆ ∆ 1 J 1 2 6 ¯ T¯ Rµ J−1 1 ¯ T¯ Rν J−1 1 2 2 (N − 1) (N − 2) µ ν T ¯ −1 +N ¯ + ∆ ∆ 1 J 1 1T J−1 1 N (N − 1) (N − 2) ¯ T¯ ¯ T¯ + Rµ J−1 1∆ν + Rν J−1 1∆µ 2 (N − 1) (N − 2) ¯ = N αµν − ¯ N 2 − 3N − 6 ∆µ ∆ν 1T J−1 1 6N
  • 36. Dipole moments have the correct translational properties because the terms and counterterms cancel perfectly. The terms in the polarizabilities cancel only to second order; the cubic terms do not cancel perfectly, giving rise to anomalous cubic scaling.
  • 37. Modified dipole coupling In QEq, the external field shifts the electronegativities on each atom by an external potential 1 E(q1 , . . . , qN ; R) = qi vi (R) + qi qj Jij (R) i 2 ij vi (R) = χi → χi − Ri · 1 E(q1 , . . . , qN ; R, ) = qi vi (R) − Ri · + qi qj Jij (R) i 2 ij
  • 38. Modified dipole coupling We propose to apply the same coupling in QTPIE, which shifts the atomic voltages in a less trivial manner 1 E(q1 , . . . , qN ; R) = qi vi (R) + qi qj Jij (R) i 2 ij j (χi − χj )Sij vi = j Sij χi → χi − Ri · (χi − χj ) Sij j Ri − Rj Sij j vi (R) → vi (R, ) = − · j Sij j Sij
  • 39. With this coupling, the dipole moments and polarizabilities become µ µ Sik (Ri − Rk ) −1 dµ = k J v i i l Sil P “ ” µ µ Si k R −R 1 J T −1 v i 1 J T −1 i k P Si i k l l − 1T J−1 1 µ µ k Sik (Ri − Rk ) J−1 ij l ν ν Sjl Rj − Rl αµν = − ij k Sik l Sjl P P k Sik (Ri −Rk ) (Ri −Rk ) µ µ ν ν Si k i 1 J T −1 P i 1 J T −1 k P i l Sil i l Si l + 1T J−1 1
  • 40. More importantly, these expressions are still translationally invariant, but are now size-extensive dµ → dµ α→α dµ = N dµ α = Nα ¯ The key difference is that the overlap matrix attenuates any contributions across subsystems to terms of this form  ¯ −1   ¯  J 0 ··· 0 S 0 ··· 0  .. . .   .. . .   0 ¯ J−1 . .   0 S¯ . .  J−1 ν ν Sjl Rj − Rl =  .  .     . . .   ij  . .. .. .  . .. .. . l . . . .  l . . .  0 ··· ··· ¯ J −1 0 ··· ··· ¯ S ij jl     ¯ Rν ¯ Rν  ¯ Rν + ∆ν 1   ¯ Rν + ∆ν 1        ×  . .  − . .    .   .   ¯ Rν + (N − 1) ∆ν 1 ¯ Rν + (N − 1) ∆ν 1 j l = ¯ J−1 ¯ ¯ν ¯ν Sjl Rj − Rl ij l
  • 41. Planar water chains with z-spacing 10.00 Angstroms 0 zz-polarizability linear fit (gradient = -0.325919, intercept = 0.007088) -100 -200 -300 Polarizability (bohr^3) -400 -500 -600 -700 -800 -900 0 500 1000 1500 2000 2500 3000 Number of atoms Planar water chains with z-spacing 10.00 Angstroms 5e+09 zz-polarizability linear fit (gradient = -5773165.409344, intercept = 1434581215.053739) 0 -5e+09 Polarizability (bohr^3) -1e+10 -1.5e+10 -2e+10 -2.5e+10 0 500 1000 1500 2000 2500 3000 Number of atoms
  • 43. Strategy 5 2 • Aim: reproduce ab initio 1 data (LCCSD(T)/aug-cc- 4 pVTZ) with three-site 3 6 water model E = EB (R12 ) + EB (R13 ) + EB (R45 ) + EB (R46 ) OH OH OH OH • +EA (R12 , R13 , R23 ) + EA (R45 , R46 , R56 ) HOH HOH First determine QTPIE +EvdW (R14 ) OO parameters (4) by fitting +EvdW (R15 ) + EvdW (R16 ) + EvdW (R42 ) + EvdW (R43 ) OH OH OH OH +EvdW (R25 ) + EvdW (R26 ) + EvdW (R35 ) + EvdW (R36 ) HH HH HH HH to dipole moments +EQT P IE (R) • 2 Then fit other parameters EB (r) = k OH r − r0 OH OH 2 (10) to energies (up to HOH EA (θ) = κOH θ − θ0 HOH σAB 12 σAB 6 constant) EvdW (r) = AB AB r − r
  • 44. Geometries • 1,230 water monomer geometries generated by directly varying internal coordinates • 890 water dimer geometries generated by classical MD sampling (TINKER, flexible SPC water model, 1000K) • O-O distance constrained by varying vdW radius of O • 10 ps equilibration then 10 geometries at 1ps intervals
  • 45. Fitting method • Weighted least-squares fitting with Boltzmann weight (β = 100) f (ζ) = e−βEi (dab initio − dQTPIE (ζ))2 iν iν i ν∈{x,y,z} • Fitting done with Neader-Mead downhill simplex algorithm in scipy import scipy.optimize z0 = (8.741, 13.364, 4.528, 13.890) zopt = scipy.optimize.fmin(f, z0) print quot;Optimal parameters = quot;, zopt
  • 46. Best-fit parameters Par./eV QEq New χ(H) 4.5280 5.6841 η(H) 13.8904 12.4166 χ(O) 8.741 7.9173 η(O) 13.364 13.1643
  • 47. QTPIE Dipoles correlation ab initio
  • 48. Dipole moment per water / D Number of water molecules
  • 49. yy-polarizability per water / ų Number of water molecules
  • 50. zz-polarizability per water / ų Number of water molecules