SlideShare a Scribd company logo
1 of 80
Invitation to revisit the
          Mesoamerican Calendars
          The one called the Real Calendar




                July 16-20, 2012 Daejeon CC, Korea




1000 km
s s 1h
                                      t
                               re 2
                            ng the
                         c o ly
                       2’ J u
                    01 a,
                   2 e
             H P M K or
            g h
          in o u t
       ur S
      d ,
   ne e o n                                 DG5:
d o ej
   Da                                      문화와 수학
                                안드레
                                 C A UTY
                                보르도
                                프랑스
bi-uprooting
July 16-20, 2012 Daejeon, Korea



                                                  κα
                                               ρη
                                             Εὕ
                                                   κα
                                                ρη
Inter-dépays ement                           Εὕ
« uprooting » sounds like a ‘quiproquo’ or a
misunderstanding that …

      …calls to co-built inter-cultural bridges
« uprooting » calls to…




                      bolon tu Ø-kal   Ø-kal catac bolon

a Mayan case where the commutation aB/Ba produces a
subtle switch; that of the operation (protraction/ addition)
and of the type (additive/protractive) of numeration.


       …co-built inter-cultural bridges
α!                  bolon tu Ø-kal Ø-kal catac bolon
    ηκ
Εὕρ                          Ø- = ca ‘2nd’ and Ø- = hun ‘1’

Using theoretical concepts[1] by Ferdinand de Saussure,
Bernard Pottier and André Martinet we have solved four
intertwined identification’s problems:
1. That of the indetermination of the SIGNIFIER, Sa, (‘signifiant’)
2. That of the syntactic ambiguity of the FORMAL CONSTITUENT, Sy, OF
THE SIGNIFIED (‘forme du signifié’)
3. That of the semantic vagueness of the MEANINGFUL CONSTITUENT,
Sé, OF THE SIGNIFIED (‘signifié’)
4. That of the analysis in units of the DOUBLE ARTICULATION
[1]

                                          Signifier (Sa)                      Sa
linguistic sign: Si = ——————————————————————— = ————
                      Formal constituent (Sy) / Meaningful constituent (Sé) Sy / Sé
1st articulation: Phrases are formed of Morphemes
2nd articulation: Morphemes are formed of Phonemes (or Graphemes)
α!
    ηκ           bolon tu Ø-kal Ø-kal catac bolon
Εὕρ                 Ø- = ca ‘2nd’ and Ø- = hun ‘1’

our bridge was the discovery of a subtle Mayan switch
between two different numerical processes shown and done
by an interpretation in the metalanguage provided by the
Yucatan language of the Maya scribe.

is it strange?
not so strange! the same subtle switch occurs in
spoken French where “vingt-quatre” (twenty-four)
refers to an additive composition 20 + 4 while
“quatre vingt(s)” (eighty) refers to a multiplicative
determination 4 x 20.
cognitive bridges build themselves in a meta-linguistic space of translation (an inter-
disciplinary and inter-cultural translation)
               our bridge is founded on a real transcription of the source-texts into
               Yucatec (or other Maya scribe’s natural language)
                             this Mayan language is the real and final interpreter of all
                             Maya’s cognitive productions




                                               (the reason: natural languages are the only
              symbolic
                                       systems including their own meta-language)




                                      the
                                      space for
                                      translation and meta-
                      ^




                                      linguistic processes is on the floor of
                                      the Yucatec language, the ultimate interpreter
uprooting leads to a METALANGUAGE of TRANSLATION,
built from inter-cultural/disciplinary places where the I/YOU-
speakers of all communication’s act can built cognitive
bridges, can develop new ideas and propose alternative
interpretations…
nights
  Welcome in the Mayan
         nights
supernatural scribes…
                  doing with math's texts
numbers ? calculations? Yes! but for what?
                                       k1196
Mayan numbers are bricks to construct the
calendars which give to the Mesoamerican
soothsayer his most used tool to “see” the
invisible world and to predict the fate (good, evil
or indifferent) of everybody, everything, every
cycle of time…
the divinatory week is among the Mesoamericans
the most used, as well as the oldest, calendar
Par l’autosacrifice de son
                                sang, la reine obtient une
                                vision de son ancêtre qui
                                nous est montré sortant
                                de la gueule d’un serpent
                                qui interprète les volutes
                                de fumée des offrandes
                                brûlées.




Br ish M    int u 7 a án
  it useum: l ea 4 de Y xchil
as all Mesoamericans did, Mayas and Aztecs
used the same divinatory week of 13 x 20 = 260
expressions αX (13 integers and 20 day signs)




α is an integer, X a day sign, and the sequence of the αX
sounds like: 2 Sunday, 3 Monday… and follows the rule s(αX) =
s(α)s(X)
Mayan and Aztec examples of the 13 integers α
The 20 Mayan and Aztec day signs X




Mayan             Aztec
αX dates were used to name persons, things
or time cycles like days/years…




… and to predict his/her/its fate: “the natives
          of this sign will be rich”
Mayas and Aztecs used the same divinatory week
in order to qualify the future or to celebrate the
rulers or the cities history
Here a very common Mayan divinatory practice done
by small translations in the divinatory week:
   αX + d = α’X’ (d in additive numeration)
      13
  Edznab
    Ahau           28        2      24       13
      Eb
     Kan
    ? Cib
        13 Ahau + 28    = 2 [Lamat] + 24 =   13 [Eb]
another common Maya use: αXβY + d = α’X’β’Y’
(duration d is done in dispositional numeration):
the equations of the form αXβ Y + Σ(ciPi) = α’X’β ’Y’




     E2    F2                 H3              G4         H4     G5
 (1 Ben 1 Ch’en) + [10-[kin] 5-uinal 3-tun 2-katun] = (11 Ahau 8 Tzec)
as we can imagine every people develops its
own arithmetic and calendar skills and habits:
1.- Occidental dates:
                       Mardi 14 juillet 1789, Saint Bonaventure
                                           Sunday, July 8, 2012
2.- Aztec quantities (additive numeration) :
  cenxiquipilli xochocótzotl
  una talega de ocozote o goma de color
  8 000 packages of resin of copalm
  (a tribute due to the Triple Alliance)
         3.- Mayan duration (positional numeration):

         1.5.14.;4.0. [-tun] or 1.5.14.;4.0. [-kin]

        (1 x 400 + 5 x 20 + 14 x 1)-tun ; (4 x 20 + 0 x 1)-kin
July
       a famous French date:

       mardi 14 juillet 1789
       St Bonaventure, évêque,
       un jour après le dernier
       quartier de Lune
 J
       Tuesday, July 14th, 1789
       St Bonaventure, bishop,
       A day after the last district of
       the Moon
       Almanach royal, année commune M.DCC.LXXXIX et
       M.DCC.LXXXX., BN de France, Lc25-28
the Mixtec and us did not
          have
the same dating system or the same
             calendar




the above Mixtec date:
crocodile 13 house 7
 had shape: (Xα, XP α)
Mayas and Aztecs did not
         have
              the same dating system or the same
What a cognitive difference!


                           calendar




                               IDP
Mayan CR dates follow the (αX, β Y)-model: 6 Ahau, 13 Yaxkin




  Aztec SA dates follow the (αX, αXP)-model: 7 Acatl, 8 Acatl




Mixtec dates follow the (Xα, XPα)-model: ‘crocodile’ 13, ‘house’
                               7
so, Aztec and Mayan chronicles are
very different:
   the firsts look like comic strips
   the second like texts full of equations
Aztec chronicle




αXP dates
            looks like a comic strip
Mayan chronicle
looks like a text full of equations




Sous Yax, on compte les katun : 9-baktun 13-katun 17-tun 12-uinal 10-kin,
 le 8 Oc 13 Yax […] ; 1-tun 1-uinal 17-jours avant, le 1 Ben 1 Ch’en […] ;
      2-katun 3-tun 5-uinal 10-jours plus tard, le 11 Ahau 8 Tzec […] ;
            12-tun 0-uinal 0-jours plus tard, le 2 Ahau 8 Uo […] ;
   7-tun 0-uinal 0-jours plus tard, le 13 Ahau 18 Cumku Fin du Katun 13
equations of the form
αX β Y + Σ (ci Pi) = α’X’ β ’Y ’
today, Mayan arithmetic
and Mesoamerican
calendars are just SECS,
strange extinct cognitive
species, to be discovered,
reinvent and rebuilt

Quoting Proust: “partons à la
recherche des nombres perdus”
let’s go to the search of the lost
numbers
Tulum by Frederick Catherwood (1799 - 1854)
the search for the ‘lost numbers’ began at the time
of the discovery of America (1492), it continues
today and will continue tomorrow…
this task was (and still is) specially hard not only
because of the cultural gap between Mesoamerican
and Spanish but also because the new rulers of
America tried to remove the divinatory week (a
very diabolic work, they said) and to transform
the festive year used by the Natives into a
calendar which sounds like the Julian (then
Gregorian) one; first steps of the process leading to
the imposition of the Spanish calendar…
d de
               an itu
            ns erv
         tio f s
      ua s o
   it n
 S o             Discovery
    a ti        Conquests
rel           Spoliation
            Colonization

                             but now: who and how
                             rebuilt the disappeared
                             Mesoamerican ideas?
                             Training
                             Evangelization
                             Incomprehension
                             Education, Translation…
Colonial opinion
“Tienen  su año perfecto
como el nuestro de 365 días
y seis horas […] De estas
seis horas se hacía cada
cuatro años un día, y así
tenían de cuatro en cuatro
años el año de 366 días”
They had a year perfect as ours of 365 days and
six hours […]. Of these six hours they made
every four years one day, and so they had from
four to four years one year of 366 days.



                 Diego de Landa
                 (1524-1579)
                 Bishop of the Yucatan
Modern opinion
              “El calendario
   mesoamericano era el
             resultado de la
   combinación entre un
          ciclo de 365 días,
       llamado en nahuatl
   xiuhpohualli o ‘cuenta
del año’ (ha'ab en maya),
 y otro ciclo de 260 días,
 llamado tonalpohualli o
      ‘cuenta de los días’
        (tzolkin en maya)”
The Mesoamerican calendar was
the result of the combination of a
cycle of 365 days called xiuhpohu-
alli in Nahuatl […] (ha'ab in Maya),
and an another cycle of 260 called
tonalpohualli […] (tzolkin in Maya)         Rafael Tena, ‘El calendario mesoamericano’,
                                       Arqueología mexicana, Vol. 7, nº 41, México, 2000, p. 5-6
Modern opinion: 260 x 365 = 52 / 18 980
“Se requería el transcurso de 18 980 días
nominales, equivalentes a un ‘siglo’ de 52
años, para que se agotaran todas las
posiciones posibles de un día cualquiera
del tonalpohualli dentro del xiuhpohualli, y
viceversa […]. Cada uno de los 52 años
tenia su nombre propio…”
18 980 days, equivalent to a 'century' of 52 years, they had to wait for each
date Tonalpohualli goes through all possible positions of the xiuhpohualli,
and vice versa […] Each of 52 years had its own name…
n !
        u tio          dangerous                  simplifying ideas…

   ca
They said that all Mesoamericans share the same calendar: a combination
of the divinatory week of 13 x 20 days with the solar year supposed,
without proofs, to be a calendar counting 365 dated days. A combination
often described as a mechanism borrowed from the industrial world!

They said that the Aztecs had intertwined these two cycles and obtained
a calendar of 18 980 days similar to the Calendar Round used by the
Mayas or a century of 52 years that it is called the "Siècle Aztèque", SA
(Aztec century)


                                 …and amazing                 hybrids
Waldeck! What did you see?




The weight of time and habits makes difficult for Waldeck to see, admit and understand
the Mayan creations which were for his time so strange and so radically different.
hybridize is not totally inevitable
Whether called a “monstrous hybrid”, “Waldeck’s elephant”,
or even the “self indulgence of the ethno-X”, the underlying
concept reflects not only the ineluctable fact of projecting
one’s own frames of reference and one’s own forms of
knowledge upon the foreign work that we are trying to
understand, but rather the human failure to submit all
readings and interpretations to systematic and collective
criticism, a kind of criticism that has to be interdisciplinary
and interethnic or intercultural.
All Mesoamerican calendars
              were founded on 2/3 main cycles
             (strongly intertwined among the Mayas):

1.- the divinatory week which was giving the color of the times and days
2.- a solar and/or festive year imposed by Nature and/or Rulers & Priests




          Gods are time's bearers, they bear the packages of time
1. The divinatory week/almanac
2a. The undergone seasonal year
2b. The Mayan discretized festive year
Mesoamerican Festive Year
 If the residual period is
   well fixed and defined,
        the Mesoamerican
Festive year, FY, counts
 365 days bundled in 18
  months of 20 days and
1 residue of 5 days. It is
  the Mesoamerican way
    to divide ‘discrétiser’
    the continuous of the
time (tropic year) and to
   register it in the space
 of the 6 cardinal points                   East
                                          E Spring
     (Zenith, Nadir, North,   Summer S
                                                     Winter


  West, South and East).                 Autumn
26
                                0
                                    x
                                36
                                  5.
Call to revisit the main thesis      24
                                       2…

 they say that “all Mesoamericans
 combined these two essential cycles:
 the divinatory week of 260 days and
 the year”, that is OK! but they speak
 about a year which is not well defined
 by the historical sources…
Important historical data
Almost everywhere and always in Mesoamerica, the days of the FY
were not dated by means of an annual calendar, but they all were
distinguished and defined by the highly symbolic ‘color’ conferred to each
of them by its expression αX in the divinatory week (it is the case for
instance in the Duran’s descriptions of the Aztecan year).
Some colonial documents claimed that the 5 (or 6) aciagos days were not
dated at all; so, we have
to observe that the fact of
using a festive year FY of
365 days does not imply
the obligation to name
them all; documents said
that people dated only
360 days, the 360 days
which belong to the 18
months. If a calendar, or
as a calendar, the Festive
Year would have only 360
dates, in some cases.
More important historical data
In 4th century, the Mayas had developed and were using a
system of writing to uniquely define the days of the festive
year. Making that, their festive year became a calendar with
365 dates, all written in the innovative shape β Y
At the same time, the Mayas had formed the product of two
important cycles they used in such a particular way that
the coupling 260 x 365 gives a product of 18 980
elements. In this manner, they created a new calendar
which dates are the 18 980 pairs (αX, βY). The Mayan name
of that calendar is yet unknown. Scientists say : ‘Calendrier
Rituel’ or Calendar Round, CR.
Finally, the Mayas put in narrow correspondence the
Calendar Round CR and the Long Count CL as shown by
thousands of initial series. In conclusion: the Maya disposed
of several intertwined calendars.
More important historical data…


Between the 4th and the 10th century, the Mayas used
not only the 260 ancient αX dates, but also the 365
innovative β Y dates.

Their festive year had became the following calendar
which gave the αX and the β Y correlated dates:
Le tableau montre une année maya de type [(28 x 13) + 1] = [(18 x 20) + 5] et de 1er
jour (2 Eb, 0 Pop). Les 365 jours sont organisés en treizaines (distinguées par une
couleur) et en mois (de 20 jours, matérialisés par les colonnes). Chaque case contient
le rang α (de 1 à 13) de la date tzolkin, αX, du jour dont le signe X se trouve (en bleu)
en dernière colonne. La date ha’ab, β Y, est donnée par les coordonnées (en rouge). Le
calendrier se lit par colonne (haut/bas, gauche/droite) : 2 Eb 0 Pop, 3 Ik 1 Pop, etc.,
jusqu’au 2 Cib 4 Uayeb.
More important historical data
during the colonial period, the Mesoamericans (in particular
Aztecs and Mayas) did not use the β Y or the (αX, β Y)
calendar dates. Spanish and Natives crossed their calendars
and the Aztec festive year, FY, of 18 months:




                  became the following crossed calendars:
according to Durán (who did mis takes : months XI
and XII)
Y→
↓X
        I    II   III   IV   V    VI   VII   VIII   IX   X    XI   XII   XIII   XIV   XV   XVI   XVII   XVIII


  I     1    8    2     9    3    10   4     11     5    12   6    12     5     12    6    13     7      1
 II     2    9    3     10   4    11   5     12     6    13   7    13     6     13    7    1      8      2
 III    3    10   4     11   5    12   6     13     7    1    8    1      7     1     8    2      9      3
 IV     4    11   5     12   6    13   7      1     8    2    9    2      8     2     9    3     10      4
 V      5    12   6     13   7    1    8      2     9    3    10   3      9     3     10   4     11      5
 VI     6    13   7     1    8    2    9      3     10   4    11   4     10     4     11   5     12      6
 VII    7    1    8     2    9    3    10     4     11   5    12   5     11     5     12   6     13      7
VIII    8    2    9     3    10   4    11     5     12   6    13   6     12     6     13   7      1      8
 IX     9    3    10    4    11   5    12     6     13   7    13   7     13     7     1    8      2      9
 X      10   4    11    5    12   6    13     7     1    8    1    8      1     8     2    9      3      10
 XI     11   5    12    6    13   7    1      8     2    9    2    9      2     9     3    10     4      11
 XII    12   6    13    7    1    8    2      9     3    10   3    10     3     10    4    11     5      12
XIII    13   7    1     8    2    9    3     10     4    11   4    11     4     11    5    12     6      13
XIV     1    8    2     9    3    10   4     11     5    12   5    12     5     12    6    13     7      1
 XV     2    9    3     10   4    11   5     12     6    13   6    *      6     13    7    1      8      2
XVI     3    10   4     11   5    12   6     13     7    1    7    12     7     1     8    2      9      3
XVII    4    11   5     12   6    13   7      1     8    2    8    1      8     2     9    3     10      4
XVIII   5    12   6     13   7    1    8      2     9    3    9    2      9     3     10   4     11      5
XIX     6    13   7     1    8    2    9      3     10   4    10   3     10     4     11   5     12      6
 XX     7    1    8     2    9    3    10     4     11   5    11   4     11     5     12   6     13      7
…and ac cording to Landa:




 ci-dessus les données calendaires européennes et indigènes insérées par Landa dans
 une année vague solaire maya (en désuétude à cette époque coloniale). Les couleurs
 servent à identifier les 12 mois de l’année julienne, dont le Nouvel an (lundi 1er Janvier)
 se trouve en case (9, IX) laissée en blanc ; en calendrier maya la date CR de ce jour
 aurait été un 12 Ben 11 Ch’en. Le tableau commence en juillet (jaune), le 16 Juillet.
Mayas used intertwined calendars,
the four more used were:

 1. Long Count, CL, open and isomorphic to the set
 2. tzolkin of 13 x 20 days, which provides 260 dates αX
 3. ha'ab ‘year’ which provides 365 dates β Y
 4. Calendar Round, CR, which provides 18 980 dates of the
    form (αX, β Y)
4 intertwined calendars
                          CL ‘long count’, tzolkin ‘divinatory calendar’
                          ha’ab ‘annual calendar’, CR ‘calendar round’




                            0.0.0.;0.0. (4 Ahau, 8 Cumku)
4 intertwined calendars
                        The monuments prove that the Mayas located an event
                        by placing its day at least with regard to four calendars:
                         Date CL 9-baktun 16-katun 10-tun; 0-uinal 0-kin
                           Date tzolkin αX = 1 Ahau
                              Date ha’ab β Y = 3 Zip
                                Date CR (1 Ahau, 3 Zip)


                                                 ha’ab


                                                 tzolkin

                                                1 Ahau
                                                 3 Zip
                                                                                   CL



                                                                  CR
                                 CR




                                                   │


                                                                  74
                                 75




                                 │           9.16.10.; 0.0.        │
                                                                          ‌
Stèle F de Quiriguá
(Izabal, Guatemala)   Graphic: wheel tzolkin makes turn wheel ha’ab and gearing CR makes move ax CL
     15/03/761
Theorem of the
             Mayan soothsayer the P
Theorem Whatever the integer P, the almanac date of             day of the
                                                               th

festive year is of the form αXP, where α ∈ [1, 13] and where XP belongs to
a class (modulo 5) of four X almanac day signs.
Corollary. Every day of the vague year is associated with a set of 13 x 4 =
52 dates almanac; the tzolkin date of this day would be done, year after
year, by the rule: s(αXP ) = s(α) s(XP ) = [(α + 1), (XP + 1) / (X + 5)].
Example The value P = 0 defines the 1st day of the 1st month of the Mayan
festive year. Applied to this day, the theorem states, first, that the Mayan
New Year is associated with four tzolkin XP=0 day signs. Second, its
corollary says that each New Year date αXP=0 distinguishes and defines a
ha’ab year in the group of 52 years that make up the CR.
Consequence The system of dates αXP supplied a practical means to
label the years of a CR: by making αXP the eponym for the year.
Definition The 4 XP are said the Year’s bearers. For instance the set (Ik,
Manik, Eb, Caban) in duty during the Classic.
Theorem of the
      Mayan soothsayer
Theorem Whatever the integer P, the almanac date of the Pth day of the
festive year is of the form αXP, where α ∈ [1, 13] and where XP belongs to
a class (modulo 5) of four X almanac day signs.
Theorem of the
      Mayan soothsayer
Corollary. Every day of the vague year is associated with a set of 13 x 4 =
52 dates almanac; the tzolkin date of this day would be done, year after
year, by the rule: s(αXP ) = s(α) s(XP ) = [(α + 1), (XP + 1) / (X + 5)].


Example The value P = 0 defines the 1st day of the 1st month of the Mayan
festive year. Applied to this day, the theorem states, first, that the Mayan
New Year is associated with four tzolkin XP=0 day signs. Second, its
corollary says that each New Year date αXP=0 distinguishes and defines a
ha’ab year in the group of 52 years that make up the CR.
Theorem of the
      Mayan soothsayer
Consequence The system of dates αXP supplied a practical means to
label the years of a CR: by making αXP the eponym for the year.

Definition The entities corresponding to the XP=0 are the Year’s bearers.
For instance, the set P0 = {Ik, Manik, Eb, Caban} used during the Classic.
Note.
The celebration of the Year’s bearers is attested among the Mayas from
the first century (Late-Preclassic murals of San Bartolo) to the colonial
period (codex of Madrid)
Madrid’s codex shows the cycle of the
52 Year’s Bearers of a colonial CR with
    P2 = { Cauac, Kan, Muluc, Hix }

10 Cauac   11 Kan            12 Muluc   13 Hix
 1 Cauac    2 Kan             3 Muluc    4 Hix
 5 Cauac    6 Kan            *7 Muluc    8 Hix
 9 Cauac   10 Kan           *11 Muluc   12 Hix
13 Cauac    1 Kan            *2 Muluc    3 Hix
 4 Cauac    5 Kan            *6 Muluc    7 Hix
 8 Cauac    9 Kan           *10 Muluc   11 Hix
12 Cauac   13 Kan            *1 Muluc    2 Hix
 3 Cauac    4 Kan            *5 Muluc    6 Hix
 7 Cauac    8 Kan            *9 Muluc   10 Hix
11 Cauac   12 Kan           *13 Muluc    1 Hix
 2 Cauac    3 Kan            *4 Muluc    5 Hix
 6 Cauac    7 Kan/*11 Kan    *8 Muluc    9 Hix
   p. 34       p. 35           p. 36      p. 37
Decisive historical fact
To my knowledge and except really rare exceptions, all the
Mayan dates of classic period verify the Mayan Soothsayer’s
theorem, the corollary of which may be advantageously
expressed in terms of a rule that I called Rule of Orthodoxy of
the Mayan Chronology, and that was translated by Thompson
(1960) into the following easy to use array :




It is a constraint of co-occurrence concerning only the constituents X and
β of the dates CR. Without the ROCm, the CR would add up 5 x 18 980
dates, instead of 2.12.; 13.0. = 18 980.
ROCm
How to use the table to decide if a CR date αX β Y
is correct or not? Let the CR date 9 Ahau 19
Cumku proposed by R. Tena. Is it correct? In its
table form, the ROCm shows the following: a) when
a date contains the sign X = Ahau, then the date α
Ahau β Y are correct if and only if, iff, the rank β is
3, 8, 13 or 18; and b): when a date contains the
rang β = 19, then the dates αX 19Y are correct iff
the day name X belongs to the set {Cimi, Chuen,
Cib, Imix}. We conclude that the given date is not
correct, it’s a stared-date: 9 Ahau *19 Cumku. And
the same is true for all the 18 980 dates
engendered by the device. The gear mechanism
proposed by Tena produces a clone of the
*Calendar Round.
Aztec Century or SA (siècle)
a consequence of the soothsayer’s theorem?
   Unlike the Mayas, the Aztecs
 did not used the Long Count
 and did not have a numeration
 to express numbers higher
 than 160,000.
  Aztecs did not develop the β Y
 expressions to date the days of
 their Festive Year (18 x 20 + n);
 for that they used only the αX
 expressions [1]
 Aztecs did not used intertwined
 calendars, so the Soothsayer’s
 theorem does not apply in their
 case.
   they don’t used any equivalent of annual
 [1]                                          The 20 days of an Aztec month
 calendar dates like “July 13th” but only
 equivalent expressions of the day of the     described by Duran (1537-1588)
 week like “Sunday or Saint John’s day”
the soothsayer’s theorem did not apply
   in the Aztec case, nevertheless…
   the Aztecs used its corolary
   and named their years by
   the αX dates of a fixed
   day[1] in a way which gave
   them a cycle of 4 x 13 = 52
   years αXP.

      Historical data do not allow to
   assert that these 52 years had all
   the same number of days or that
   their 360 + n days were all counted
   and dated
                                           The 52 years of an Aztec century
                                           described by Duran (1537-1588)
[1] called eponymous or pth day of the year)
reading’s
instructions:


1 Acatl   2 Tecpatl
3 Calli   4 Tochtli
5 Acatl   6 Tecpatl
7 Calli   8 Tochtli
The count that is called
the Real Calendar

  the year of 365.242… days
Look at the sunrises supplied to the
Maya a kind of calendar (sometimes
   called ‘calendar of horizon’)

                           Spring
                  Summer            Winter
                           Autumn
subterranean observatories




supplied other Mesoamerican calendars
tice
Summer sols
   (June)
te
        W (D
         in ece
                   s
              r s mb
                     tic
                         e
                 ol er)
    (Ma Equi
       rch nox
          , Se es
              p te
                   mb
                      er)

                   e
                               Zenith




            tic
Summer sols
                             (May, July)




   (June)
The enlightened period includes: summer solstice, 2
passages at the Zenith; it lasts 105 days (5 months
and 5 days). The dark one lasts 260 days in normal
year and 261 days in leap year:

  Anné e vague n° 1                                        Anné e vague n° 2                                  Anné e vague n° 3

  105 j                       260 j                        105 j                  260 j                       105 j                          260 j


  Anné e vague n° 4                                        Anné e vague n° 5                                  Anné e vague n° 6

  105 j                       261 j                        105 j                  260 j                       105 j                          260 j

   Disposant d’un tel héliographe, les rois et les prêtres n’avaient nul besoin d’un calendrier de l’année vague, ni même de marquer les jours qui passent.


     *
         d(13 Août, 30 Avril/1Mai) = 260/261 selon que Février compte 28/29 j.
It is certain that Mesoamericans
 had heliographs which cut the year in 2 parts:
                                                01/05   21/06      12/08
13/08
                                                        Solstice
30/04
 dark during 260/261 days and    enlightened during 105 days




                     It’s a kind of live solar calendar which gives
                     directly and continuously the progress of
                     days and periods of the tropic year

                      and it is likely that…
… they have used this practical tool
some Mesoamerican cities were able to
have a « real » calendar, counting 366 days
every 4 years
If it was the case…
With the exception of the intertwined
calendars used by Mayas during the
Classic period, Mesoamerican rulers
had at their disposal different guard-
times which were likely independent:
  The cultural week of 260 almanac dates
  The natural heliograph (‘verdadero calendario’)
  The cultural vague year of 18/19 periods
  The cultural cycle of 52 eponyms of years
conclusions
               classique maya                postclassique
 en calendrier maya classique                en calendrier aztèque
        on écrit aX β Y mais*                on écrit αX αXγ mais* on
  on n’a pas d’éponymes αXP                   n’écrit pas de dates β Y
 soit 18 980 expressions pour                 soit 260 x 52 = 13 520
 dater les 18 980 jours du CR                 expressions pour dater les
       et ces expressions sont                18 980/18 993 jours du
       fonctionnellement liées                siècle aztèque
aux durées/dates compte long                  ni compte long ni contrôle
                  αX β Y Σ ci                 des dates ou constituants

  * éponyme identique au porteur (X de        * les spécialistes diffèrent sur la
  la date tzolkin du jour 0 Pop = 1er jour    définition de l’éponyme, celle du jeu de
                                              porteurs et sur la valeur de la durée
  de la 1ère période)
                                              séparant ces deux jours
Thank you
            for attention!
Revisit Aztec and Maya calendars

More Related Content

Similar to Revisit Aztec and Maya calendars

STUDENTS' PROJECTS ABOUT TURKEY
STUDENTS' PROJECTS ABOUT TURKEYSTUDENTS' PROJECTS ABOUT TURKEY
STUDENTS' PROJECTS ABOUT TURKEYsoniadedios
 
Mayas Surviving the Colonial Genocide
Mayas Surviving the Colonial GenocideMayas Surviving the Colonial Genocide
Mayas Surviving the Colonial GenocideEditions La Dondaine
 
Foundations of mathematics
Foundations of mathematicsFoundations of mathematics
Foundations of mathematicsMark Mulit
 
Essay Topics For ShakespeareS The Tempest
Essay Topics For ShakespeareS The TempestEssay Topics For ShakespeareS The Tempest
Essay Topics For ShakespeareS The TempestNatasha Hopper
 
Landmarks-of-Science-in-Early-and-Classical-India-Michel-Danino.pdf
Landmarks-of-Science-in-Early-and-Classical-India-Michel-Danino.pdfLandmarks-of-Science-in-Early-and-Classical-India-Michel-Danino.pdf
Landmarks-of-Science-in-Early-and-Classical-India-Michel-Danino.pdfDrADITYAVORA
 
The Mesopotamian culture is often called Babylonian, after the lar.docx
The Mesopotamian culture is often called Babylonian, after the lar.docxThe Mesopotamian culture is often called Babylonian, after the lar.docx
The Mesopotamian culture is often called Babylonian, after the lar.docxoreo10
 
Story of Scripts - Part 5 Meso-American Scripts
Story of Scripts - Part 5 Meso-American ScriptsStory of Scripts - Part 5 Meso-American Scripts
Story of Scripts - Part 5 Meso-American ScriptsSubramanian Swaminathan
 
LONG LIVE INTERNATIONAL MATHEMATICS DAY, THE QUEEN OF SCIENCES.pdf
LONG LIVE INTERNATIONAL MATHEMATICS DAY, THE QUEEN OF SCIENCES.pdfLONG LIVE INTERNATIONAL MATHEMATICS DAY, THE QUEEN OF SCIENCES.pdf
LONG LIVE INTERNATIONAL MATHEMATICS DAY, THE QUEEN OF SCIENCES.pdfFaga1939
 
Maths in Art and Architecture Why Maths? Comenius project
Maths in Art and Architecture Why Maths? Comenius projectMaths in Art and Architecture Why Maths? Comenius project
Maths in Art and Architecture Why Maths? Comenius projectGosia Garkowska
 
Maths in culturar life new
Maths in culturar life newMaths in culturar life new
Maths in culturar life neweffiefil
 
Europe Smells the CoffeeNear the end of the (Western) Roman Empi.docx
Europe Smells the CoffeeNear the end of the (Western) Roman Empi.docxEurope Smells the CoffeeNear the end of the (Western) Roman Empi.docx
Europe Smells the CoffeeNear the end of the (Western) Roman Empi.docxSANSKAR20
 
Prehistory
PrehistoryPrehistory
Prehistorymmm-g
 
Mesoamerica Civilization (Maya, Aztec and Incan Civilization)
Mesoamerica Civilization (Maya, Aztec and Incan Civilization)Mesoamerica Civilization (Maya, Aztec and Incan Civilization)
Mesoamerica Civilization (Maya, Aztec and Incan Civilization)MadonnaAlejo
 

Similar to Revisit Aztec and Maya calendars (20)

STUDENTS' PROJECTS ABOUT TURKEY
STUDENTS' PROJECTS ABOUT TURKEYSTUDENTS' PROJECTS ABOUT TURKEY
STUDENTS' PROJECTS ABOUT TURKEY
 
33 17 mayan prophecies and calendar www.gftaognosticaespiritual.org
33 17 mayan prophecies and calendar www.gftaognosticaespiritual.org33 17 mayan prophecies and calendar www.gftaognosticaespiritual.org
33 17 mayan prophecies and calendar www.gftaognosticaespiritual.org
 
Mayas Surviving the Colonial Genocide
Mayas Surviving the Colonial GenocideMayas Surviving the Colonial Genocide
Mayas Surviving the Colonial Genocide
 
Foundations of mathematics
Foundations of mathematicsFoundations of mathematics
Foundations of mathematics
 
Essay Topics For ShakespeareS The Tempest
Essay Topics For ShakespeareS The TempestEssay Topics For ShakespeareS The Tempest
Essay Topics For ShakespeareS The Tempest
 
Landmarks-of-Science-in-Early-and-Classical-India-Michel-Danino.pdf
Landmarks-of-Science-in-Early-and-Classical-India-Michel-Danino.pdfLandmarks-of-Science-in-Early-and-Classical-India-Michel-Danino.pdf
Landmarks-of-Science-in-Early-and-Classical-India-Michel-Danino.pdf
 
şErife özder
şErife özderşErife özder
şErife özder
 
şErife özder
şErife özderşErife özder
şErife özder
 
şerife özder
şerife özderşerife özder
şerife özder
 
The Mesopotamian culture is often called Babylonian, after the lar.docx
The Mesopotamian culture is often called Babylonian, after the lar.docxThe Mesopotamian culture is often called Babylonian, after the lar.docx
The Mesopotamian culture is often called Babylonian, after the lar.docx
 
şErife özder
şErife özderşErife özder
şErife özder
 
şErife özder
şErife özderşErife özder
şErife özder
 
şErife özder
şErife özderşErife özder
şErife özder
 
Story of Scripts - Part 5 Meso-American Scripts
Story of Scripts - Part 5 Meso-American ScriptsStory of Scripts - Part 5 Meso-American Scripts
Story of Scripts - Part 5 Meso-American Scripts
 
LONG LIVE INTERNATIONAL MATHEMATICS DAY, THE QUEEN OF SCIENCES.pdf
LONG LIVE INTERNATIONAL MATHEMATICS DAY, THE QUEEN OF SCIENCES.pdfLONG LIVE INTERNATIONAL MATHEMATICS DAY, THE QUEEN OF SCIENCES.pdf
LONG LIVE INTERNATIONAL MATHEMATICS DAY, THE QUEEN OF SCIENCES.pdf
 
Maths in Art and Architecture Why Maths? Comenius project
Maths in Art and Architecture Why Maths? Comenius projectMaths in Art and Architecture Why Maths? Comenius project
Maths in Art and Architecture Why Maths? Comenius project
 
Maths in culturar life new
Maths in culturar life newMaths in culturar life new
Maths in culturar life new
 
Europe Smells the CoffeeNear the end of the (Western) Roman Empi.docx
Europe Smells the CoffeeNear the end of the (Western) Roman Empi.docxEurope Smells the CoffeeNear the end of the (Western) Roman Empi.docx
Europe Smells the CoffeeNear the end of the (Western) Roman Empi.docx
 
Prehistory
PrehistoryPrehistory
Prehistory
 
Mesoamerica Civilization (Maya, Aztec and Incan Civilization)
Mesoamerica Civilization (Maya, Aztec and Incan Civilization)Mesoamerica Civilization (Maya, Aztec and Incan Civilization)
Mesoamerica Civilization (Maya, Aztec and Incan Civilization)
 

More from André Cauty

Unité diversité des usages calendaires méso
Unité diversité des usages calendaires mésoUnité diversité des usages calendaires méso
Unité diversité des usages calendaires mésoAndré Cauty
 
Zéro un agent double maya
Zéro un agent double mayaZéro un agent double maya
Zéro un agent double mayaAndré Cauty
 
Congrès SFHST Nantes 20/11/2011
Congrès  SFHST Nantes 20/11/2011Congrès  SFHST Nantes 20/11/2011
Congrès SFHST Nantes 20/11/2011André Cauty
 
Approche critique comparée des nombres aztèques et mayas
Approche critique comparée des nombres aztèques et mayasApproche critique comparée des nombres aztèques et mayas
Approche critique comparée des nombres aztèques et mayasAndré Cauty
 
Approche critique comparée des nombres aztèques et mayas
Approche critique comparée des nombres aztèques et mayasApproche critique comparée des nombres aztèques et mayas
Approche critique comparée des nombres aztèques et mayasAndré Cauty
 
Introduction partie 2
Introduction partie 2Introduction partie 2
Introduction partie 2André Cauty
 
Introduction partie 1
Introduction partie 1Introduction partie 1
Introduction partie 1André Cauty
 

More from André Cauty (7)

Unité diversité des usages calendaires méso
Unité diversité des usages calendaires mésoUnité diversité des usages calendaires méso
Unité diversité des usages calendaires méso
 
Zéro un agent double maya
Zéro un agent double mayaZéro un agent double maya
Zéro un agent double maya
 
Congrès SFHST Nantes 20/11/2011
Congrès  SFHST Nantes 20/11/2011Congrès  SFHST Nantes 20/11/2011
Congrès SFHST Nantes 20/11/2011
 
Approche critique comparée des nombres aztèques et mayas
Approche critique comparée des nombres aztèques et mayasApproche critique comparée des nombres aztèques et mayas
Approche critique comparée des nombres aztèques et mayas
 
Approche critique comparée des nombres aztèques et mayas
Approche critique comparée des nombres aztèques et mayasApproche critique comparée des nombres aztèques et mayas
Approche critique comparée des nombres aztèques et mayas
 
Introduction partie 2
Introduction partie 2Introduction partie 2
Introduction partie 2
 
Introduction partie 1
Introduction partie 1Introduction partie 1
Introduction partie 1
 

Recently uploaded

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 

Recently uploaded (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 

Revisit Aztec and Maya calendars

  • 1. Invitation to revisit the Mesoamerican Calendars The one called the Real Calendar July 16-20, 2012 Daejeon CC, Korea 1000 km
  • 2. s s 1h t re 2 ng the c o ly 2’ J u 01 a, 2 e H P M K or g h in o u t ur S d , ne e o n DG5: d o ej Da 문화와 수학 안드레 C A UTY 보르도 프랑스
  • 3. bi-uprooting July 16-20, 2012 Daejeon, Korea κα ρη Εὕ κα ρη Inter-dépays ement Εὕ
  • 4. « uprooting » sounds like a ‘quiproquo’ or a misunderstanding that … …calls to co-built inter-cultural bridges
  • 5. « uprooting » calls to… bolon tu Ø-kal Ø-kal catac bolon a Mayan case where the commutation aB/Ba produces a subtle switch; that of the operation (protraction/ addition) and of the type (additive/protractive) of numeration. …co-built inter-cultural bridges
  • 6. α! bolon tu Ø-kal Ø-kal catac bolon ηκ Εὕρ Ø- = ca ‘2nd’ and Ø- = hun ‘1’ Using theoretical concepts[1] by Ferdinand de Saussure, Bernard Pottier and André Martinet we have solved four intertwined identification’s problems: 1. That of the indetermination of the SIGNIFIER, Sa, (‘signifiant’) 2. That of the syntactic ambiguity of the FORMAL CONSTITUENT, Sy, OF THE SIGNIFIED (‘forme du signifié’) 3. That of the semantic vagueness of the MEANINGFUL CONSTITUENT, Sé, OF THE SIGNIFIED (‘signifié’) 4. That of the analysis in units of the DOUBLE ARTICULATION [1] Signifier (Sa) Sa linguistic sign: Si = ——————————————————————— = ———— Formal constituent (Sy) / Meaningful constituent (Sé) Sy / Sé 1st articulation: Phrases are formed of Morphemes 2nd articulation: Morphemes are formed of Phonemes (or Graphemes)
  • 7. α! ηκ bolon tu Ø-kal Ø-kal catac bolon Εὕρ Ø- = ca ‘2nd’ and Ø- = hun ‘1’ our bridge was the discovery of a subtle Mayan switch between two different numerical processes shown and done by an interpretation in the metalanguage provided by the Yucatan language of the Maya scribe. is it strange? not so strange! the same subtle switch occurs in spoken French where “vingt-quatre” (twenty-four) refers to an additive composition 20 + 4 while “quatre vingt(s)” (eighty) refers to a multiplicative determination 4 x 20.
  • 8. cognitive bridges build themselves in a meta-linguistic space of translation (an inter- disciplinary and inter-cultural translation) our bridge is founded on a real transcription of the source-texts into Yucatec (or other Maya scribe’s natural language) this Mayan language is the real and final interpreter of all Maya’s cognitive productions (the reason: natural languages are the only symbolic systems including their own meta-language) the space for translation and meta- ^ linguistic processes is on the floor of the Yucatec language, the ultimate interpreter
  • 9. uprooting leads to a METALANGUAGE of TRANSLATION, built from inter-cultural/disciplinary places where the I/YOU- speakers of all communication’s act can built cognitive bridges, can develop new ideas and propose alternative interpretations…
  • 10. nights Welcome in the Mayan nights
  • 11. supernatural scribes… doing with math's texts
  • 12. numbers ? calculations? Yes! but for what? k1196
  • 13. Mayan numbers are bricks to construct the calendars which give to the Mesoamerican soothsayer his most used tool to “see” the invisible world and to predict the fate (good, evil or indifferent) of everybody, everything, every cycle of time… the divinatory week is among the Mesoamericans the most used, as well as the oldest, calendar
  • 14. Par l’autosacrifice de son sang, la reine obtient une vision de son ancêtre qui nous est montré sortant de la gueule d’un serpent qui interprète les volutes de fumée des offrandes brûlées. Br ish M int u 7 a án it useum: l ea 4 de Y xchil
  • 15. as all Mesoamericans did, Mayas and Aztecs used the same divinatory week of 13 x 20 = 260 expressions αX (13 integers and 20 day signs) α is an integer, X a day sign, and the sequence of the αX sounds like: 2 Sunday, 3 Monday… and follows the rule s(αX) = s(α)s(X)
  • 16. Mayan and Aztec examples of the 13 integers α
  • 17. The 20 Mayan and Aztec day signs X Mayan Aztec
  • 18. αX dates were used to name persons, things or time cycles like days/years… … and to predict his/her/its fate: “the natives of this sign will be rich”
  • 19. Mayas and Aztecs used the same divinatory week in order to qualify the future or to celebrate the rulers or the cities history Here a very common Mayan divinatory practice done by small translations in the divinatory week: αX + d = α’X’ (d in additive numeration) 13 Edznab Ahau 28 2 24 13 Eb Kan ? Cib 13 Ahau + 28 = 2 [Lamat] + 24 = 13 [Eb]
  • 20. another common Maya use: αXβY + d = α’X’β’Y’ (duration d is done in dispositional numeration): the equations of the form αXβ Y + Σ(ciPi) = α’X’β ’Y’ E2 F2 H3 G4 H4 G5 (1 Ben 1 Ch’en) + [10-[kin] 5-uinal 3-tun 2-katun] = (11 Ahau 8 Tzec)
  • 21. as we can imagine every people develops its own arithmetic and calendar skills and habits: 1.- Occidental dates: Mardi 14 juillet 1789, Saint Bonaventure Sunday, July 8, 2012 2.- Aztec quantities (additive numeration) : cenxiquipilli xochocótzotl una talega de ocozote o goma de color 8 000 packages of resin of copalm (a tribute due to the Triple Alliance) 3.- Mayan duration (positional numeration): 1.5.14.;4.0. [-tun] or 1.5.14.;4.0. [-kin] (1 x 400 + 5 x 20 + 14 x 1)-tun ; (4 x 20 + 0 x 1)-kin
  • 22. July a famous French date: mardi 14 juillet 1789 St Bonaventure, évêque, un jour après le dernier quartier de Lune J Tuesday, July 14th, 1789 St Bonaventure, bishop, A day after the last district of the Moon Almanach royal, année commune M.DCC.LXXXIX et M.DCC.LXXXX., BN de France, Lc25-28
  • 23. the Mixtec and us did not have the same dating system or the same calendar the above Mixtec date: crocodile 13 house 7 had shape: (Xα, XP α)
  • 24. Mayas and Aztecs did not have the same dating system or the same What a cognitive difference! calendar IDP
  • 25. Mayan CR dates follow the (αX, β Y)-model: 6 Ahau, 13 Yaxkin Aztec SA dates follow the (αX, αXP)-model: 7 Acatl, 8 Acatl Mixtec dates follow the (Xα, XPα)-model: ‘crocodile’ 13, ‘house’ 7
  • 26. so, Aztec and Mayan chronicles are very different: the firsts look like comic strips the second like texts full of equations
  • 27. Aztec chronicle αXP dates looks like a comic strip
  • 28. Mayan chronicle looks like a text full of equations Sous Yax, on compte les katun : 9-baktun 13-katun 17-tun 12-uinal 10-kin, le 8 Oc 13 Yax […] ; 1-tun 1-uinal 17-jours avant, le 1 Ben 1 Ch’en […] ; 2-katun 3-tun 5-uinal 10-jours plus tard, le 11 Ahau 8 Tzec […] ; 12-tun 0-uinal 0-jours plus tard, le 2 Ahau 8 Uo […] ; 7-tun 0-uinal 0-jours plus tard, le 13 Ahau 18 Cumku Fin du Katun 13
  • 29. equations of the form αX β Y + Σ (ci Pi) = α’X’ β ’Y ’
  • 30. today, Mayan arithmetic and Mesoamerican calendars are just SECS, strange extinct cognitive species, to be discovered, reinvent and rebuilt Quoting Proust: “partons à la recherche des nombres perdus” let’s go to the search of the lost numbers
  • 31. Tulum by Frederick Catherwood (1799 - 1854)
  • 32. the search for the ‘lost numbers’ began at the time of the discovery of America (1492), it continues today and will continue tomorrow… this task was (and still is) specially hard not only because of the cultural gap between Mesoamerican and Spanish but also because the new rulers of America tried to remove the divinatory week (a very diabolic work, they said) and to transform the festive year used by the Natives into a calendar which sounds like the Julian (then Gregorian) one; first steps of the process leading to the imposition of the Spanish calendar…
  • 33. d de an itu ns erv tio f s ua s o it n S o Discovery a ti Conquests rel Spoliation Colonization but now: who and how rebuilt the disappeared Mesoamerican ideas? Training Evangelization Incomprehension Education, Translation…
  • 34. Colonial opinion “Tienen su año perfecto como el nuestro de 365 días y seis horas […] De estas seis horas se hacía cada cuatro años un día, y así tenían de cuatro en cuatro años el año de 366 días” They had a year perfect as ours of 365 days and six hours […]. Of these six hours they made every four years one day, and so they had from four to four years one year of 366 days. Diego de Landa (1524-1579) Bishop of the Yucatan
  • 35. Modern opinion “El calendario mesoamericano era el resultado de la combinación entre un ciclo de 365 días, llamado en nahuatl xiuhpohualli o ‘cuenta del año’ (ha'ab en maya), y otro ciclo de 260 días, llamado tonalpohualli o ‘cuenta de los días’ (tzolkin en maya)” The Mesoamerican calendar was the result of the combination of a cycle of 365 days called xiuhpohu- alli in Nahuatl […] (ha'ab in Maya), and an another cycle of 260 called tonalpohualli […] (tzolkin in Maya) Rafael Tena, ‘El calendario mesoamericano’, Arqueología mexicana, Vol. 7, nº 41, México, 2000, p. 5-6
  • 36. Modern opinion: 260 x 365 = 52 / 18 980 “Se requería el transcurso de 18 980 días nominales, equivalentes a un ‘siglo’ de 52 años, para que se agotaran todas las posiciones posibles de un día cualquiera del tonalpohualli dentro del xiuhpohualli, y viceversa […]. Cada uno de los 52 años tenia su nombre propio…” 18 980 days, equivalent to a 'century' of 52 years, they had to wait for each date Tonalpohualli goes through all possible positions of the xiuhpohualli, and vice versa […] Each of 52 years had its own name…
  • 37. n ! u tio dangerous simplifying ideas… ca They said that all Mesoamericans share the same calendar: a combination of the divinatory week of 13 x 20 days with the solar year supposed, without proofs, to be a calendar counting 365 dated days. A combination often described as a mechanism borrowed from the industrial world! They said that the Aztecs had intertwined these two cycles and obtained a calendar of 18 980 days similar to the Calendar Round used by the Mayas or a century of 52 years that it is called the "Siècle Aztèque", SA (Aztec century) …and amazing hybrids
  • 38. Waldeck! What did you see? The weight of time and habits makes difficult for Waldeck to see, admit and understand the Mayan creations which were for his time so strange and so radically different.
  • 39. hybridize is not totally inevitable Whether called a “monstrous hybrid”, “Waldeck’s elephant”, or even the “self indulgence of the ethno-X”, the underlying concept reflects not only the ineluctable fact of projecting one’s own frames of reference and one’s own forms of knowledge upon the foreign work that we are trying to understand, but rather the human failure to submit all readings and interpretations to systematic and collective criticism, a kind of criticism that has to be interdisciplinary and interethnic or intercultural.
  • 40. All Mesoamerican calendars were founded on 2/3 main cycles (strongly intertwined among the Mayas): 1.- the divinatory week which was giving the color of the times and days 2.- a solar and/or festive year imposed by Nature and/or Rulers & Priests Gods are time's bearers, they bear the packages of time
  • 41. 1. The divinatory week/almanac
  • 42. 2a. The undergone seasonal year
  • 43. 2b. The Mayan discretized festive year
  • 44. Mesoamerican Festive Year If the residual period is well fixed and defined, the Mesoamerican Festive year, FY, counts 365 days bundled in 18 months of 20 days and 1 residue of 5 days. It is the Mesoamerican way to divide ‘discrétiser’ the continuous of the time (tropic year) and to register it in the space of the 6 cardinal points East E Spring (Zenith, Nadir, North, Summer S Winter West, South and East). Autumn
  • 45. 26 0 x 36 5. Call to revisit the main thesis 24 2… they say that “all Mesoamericans combined these two essential cycles: the divinatory week of 260 days and the year”, that is OK! but they speak about a year which is not well defined by the historical sources…
  • 46. Important historical data Almost everywhere and always in Mesoamerica, the days of the FY were not dated by means of an annual calendar, but they all were distinguished and defined by the highly symbolic ‘color’ conferred to each of them by its expression αX in the divinatory week (it is the case for instance in the Duran’s descriptions of the Aztecan year). Some colonial documents claimed that the 5 (or 6) aciagos days were not dated at all; so, we have to observe that the fact of using a festive year FY of 365 days does not imply the obligation to name them all; documents said that people dated only 360 days, the 360 days which belong to the 18 months. If a calendar, or as a calendar, the Festive Year would have only 360 dates, in some cases.
  • 47. More important historical data In 4th century, the Mayas had developed and were using a system of writing to uniquely define the days of the festive year. Making that, their festive year became a calendar with 365 dates, all written in the innovative shape β Y At the same time, the Mayas had formed the product of two important cycles they used in such a particular way that the coupling 260 x 365 gives a product of 18 980 elements. In this manner, they created a new calendar which dates are the 18 980 pairs (αX, βY). The Mayan name of that calendar is yet unknown. Scientists say : ‘Calendrier Rituel’ or Calendar Round, CR. Finally, the Mayas put in narrow correspondence the Calendar Round CR and the Long Count CL as shown by thousands of initial series. In conclusion: the Maya disposed of several intertwined calendars.
  • 48. More important historical data… Between the 4th and the 10th century, the Mayas used not only the 260 ancient αX dates, but also the 365 innovative β Y dates. Their festive year had became the following calendar which gave the αX and the β Y correlated dates:
  • 49. Le tableau montre une année maya de type [(28 x 13) + 1] = [(18 x 20) + 5] et de 1er jour (2 Eb, 0 Pop). Les 365 jours sont organisés en treizaines (distinguées par une couleur) et en mois (de 20 jours, matérialisés par les colonnes). Chaque case contient le rang α (de 1 à 13) de la date tzolkin, αX, du jour dont le signe X se trouve (en bleu) en dernière colonne. La date ha’ab, β Y, est donnée par les coordonnées (en rouge). Le calendrier se lit par colonne (haut/bas, gauche/droite) : 2 Eb 0 Pop, 3 Ik 1 Pop, etc., jusqu’au 2 Cib 4 Uayeb.
  • 50. More important historical data during the colonial period, the Mesoamericans (in particular Aztecs and Mayas) did not use the β Y or the (αX, β Y) calendar dates. Spanish and Natives crossed their calendars and the Aztec festive year, FY, of 18 months: became the following crossed calendars:
  • 51. according to Durán (who did mis takes : months XI and XII) Y→ ↓X I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII I 1 8 2 9 3 10 4 11 5 12 6 12 5 12 6 13 7 1 II 2 9 3 10 4 11 5 12 6 13 7 13 6 13 7 1 8 2 III 3 10 4 11 5 12 6 13 7 1 8 1 7 1 8 2 9 3 IV 4 11 5 12 6 13 7 1 8 2 9 2 8 2 9 3 10 4 V 5 12 6 13 7 1 8 2 9 3 10 3 9 3 10 4 11 5 VI 6 13 7 1 8 2 9 3 10 4 11 4 10 4 11 5 12 6 VII 7 1 8 2 9 3 10 4 11 5 12 5 11 5 12 6 13 7 VIII 8 2 9 3 10 4 11 5 12 6 13 6 12 6 13 7 1 8 IX 9 3 10 4 11 5 12 6 13 7 13 7 13 7 1 8 2 9 X 10 4 11 5 12 6 13 7 1 8 1 8 1 8 2 9 3 10 XI 11 5 12 6 13 7 1 8 2 9 2 9 2 9 3 10 4 11 XII 12 6 13 7 1 8 2 9 3 10 3 10 3 10 4 11 5 12 XIII 13 7 1 8 2 9 3 10 4 11 4 11 4 11 5 12 6 13 XIV 1 8 2 9 3 10 4 11 5 12 5 12 5 12 6 13 7 1 XV 2 9 3 10 4 11 5 12 6 13 6 * 6 13 7 1 8 2 XVI 3 10 4 11 5 12 6 13 7 1 7 12 7 1 8 2 9 3 XVII 4 11 5 12 6 13 7 1 8 2 8 1 8 2 9 3 10 4 XVIII 5 12 6 13 7 1 8 2 9 3 9 2 9 3 10 4 11 5 XIX 6 13 7 1 8 2 9 3 10 4 10 3 10 4 11 5 12 6 XX 7 1 8 2 9 3 10 4 11 5 11 4 11 5 12 6 13 7
  • 52. …and ac cording to Landa: ci-dessus les données calendaires européennes et indigènes insérées par Landa dans une année vague solaire maya (en désuétude à cette époque coloniale). Les couleurs servent à identifier les 12 mois de l’année julienne, dont le Nouvel an (lundi 1er Janvier) se trouve en case (9, IX) laissée en blanc ; en calendrier maya la date CR de ce jour aurait été un 12 Ben 11 Ch’en. Le tableau commence en juillet (jaune), le 16 Juillet.
  • 53. Mayas used intertwined calendars, the four more used were: 1. Long Count, CL, open and isomorphic to the set 2. tzolkin of 13 x 20 days, which provides 260 dates αX 3. ha'ab ‘year’ which provides 365 dates β Y 4. Calendar Round, CR, which provides 18 980 dates of the form (αX, β Y)
  • 54. 4 intertwined calendars CL ‘long count’, tzolkin ‘divinatory calendar’ ha’ab ‘annual calendar’, CR ‘calendar round’ 0.0.0.;0.0. (4 Ahau, 8 Cumku)
  • 55. 4 intertwined calendars The monuments prove that the Mayas located an event by placing its day at least with regard to four calendars: Date CL 9-baktun 16-katun 10-tun; 0-uinal 0-kin Date tzolkin αX = 1 Ahau Date ha’ab β Y = 3 Zip Date CR (1 Ahau, 3 Zip) ha’ab tzolkin 1 Ahau 3 Zip CL CR CR │ 74 75 │ 9.16.10.; 0.0. │ ‌ Stèle F de Quiriguá (Izabal, Guatemala) Graphic: wheel tzolkin makes turn wheel ha’ab and gearing CR makes move ax CL 15/03/761
  • 56.
  • 57. Theorem of the Mayan soothsayer the P Theorem Whatever the integer P, the almanac date of day of the th festive year is of the form αXP, where α ∈ [1, 13] and where XP belongs to a class (modulo 5) of four X almanac day signs. Corollary. Every day of the vague year is associated with a set of 13 x 4 = 52 dates almanac; the tzolkin date of this day would be done, year after year, by the rule: s(αXP ) = s(α) s(XP ) = [(α + 1), (XP + 1) / (X + 5)]. Example The value P = 0 defines the 1st day of the 1st month of the Mayan festive year. Applied to this day, the theorem states, first, that the Mayan New Year is associated with four tzolkin XP=0 day signs. Second, its corollary says that each New Year date αXP=0 distinguishes and defines a ha’ab year in the group of 52 years that make up the CR. Consequence The system of dates αXP supplied a practical means to label the years of a CR: by making αXP the eponym for the year. Definition The 4 XP are said the Year’s bearers. For instance the set (Ik, Manik, Eb, Caban) in duty during the Classic.
  • 58. Theorem of the Mayan soothsayer Theorem Whatever the integer P, the almanac date of the Pth day of the festive year is of the form αXP, where α ∈ [1, 13] and where XP belongs to a class (modulo 5) of four X almanac day signs.
  • 59. Theorem of the Mayan soothsayer Corollary. Every day of the vague year is associated with a set of 13 x 4 = 52 dates almanac; the tzolkin date of this day would be done, year after year, by the rule: s(αXP ) = s(α) s(XP ) = [(α + 1), (XP + 1) / (X + 5)]. Example The value P = 0 defines the 1st day of the 1st month of the Mayan festive year. Applied to this day, the theorem states, first, that the Mayan New Year is associated with four tzolkin XP=0 day signs. Second, its corollary says that each New Year date αXP=0 distinguishes and defines a ha’ab year in the group of 52 years that make up the CR.
  • 60. Theorem of the Mayan soothsayer Consequence The system of dates αXP supplied a practical means to label the years of a CR: by making αXP the eponym for the year. Definition The entities corresponding to the XP=0 are the Year’s bearers. For instance, the set P0 = {Ik, Manik, Eb, Caban} used during the Classic. Note. The celebration of the Year’s bearers is attested among the Mayas from the first century (Late-Preclassic murals of San Bartolo) to the colonial period (codex of Madrid)
  • 61. Madrid’s codex shows the cycle of the 52 Year’s Bearers of a colonial CR with P2 = { Cauac, Kan, Muluc, Hix } 10 Cauac 11 Kan 12 Muluc 13 Hix 1 Cauac 2 Kan 3 Muluc 4 Hix 5 Cauac 6 Kan *7 Muluc 8 Hix 9 Cauac 10 Kan *11 Muluc 12 Hix 13 Cauac 1 Kan *2 Muluc 3 Hix 4 Cauac 5 Kan *6 Muluc 7 Hix 8 Cauac 9 Kan *10 Muluc 11 Hix 12 Cauac 13 Kan *1 Muluc 2 Hix 3 Cauac 4 Kan *5 Muluc 6 Hix 7 Cauac 8 Kan *9 Muluc 10 Hix 11 Cauac 12 Kan *13 Muluc 1 Hix 2 Cauac 3 Kan *4 Muluc 5 Hix 6 Cauac 7 Kan/*11 Kan *8 Muluc 9 Hix p. 34 p. 35 p. 36 p. 37
  • 62. Decisive historical fact To my knowledge and except really rare exceptions, all the Mayan dates of classic period verify the Mayan Soothsayer’s theorem, the corollary of which may be advantageously expressed in terms of a rule that I called Rule of Orthodoxy of the Mayan Chronology, and that was translated by Thompson (1960) into the following easy to use array : It is a constraint of co-occurrence concerning only the constituents X and β of the dates CR. Without the ROCm, the CR would add up 5 x 18 980 dates, instead of 2.12.; 13.0. = 18 980.
  • 63. ROCm How to use the table to decide if a CR date αX β Y is correct or not? Let the CR date 9 Ahau 19 Cumku proposed by R. Tena. Is it correct? In its table form, the ROCm shows the following: a) when a date contains the sign X = Ahau, then the date α Ahau β Y are correct if and only if, iff, the rank β is 3, 8, 13 or 18; and b): when a date contains the rang β = 19, then the dates αX 19Y are correct iff the day name X belongs to the set {Cimi, Chuen, Cib, Imix}. We conclude that the given date is not correct, it’s a stared-date: 9 Ahau *19 Cumku. And the same is true for all the 18 980 dates engendered by the device. The gear mechanism proposed by Tena produces a clone of the *Calendar Round.
  • 64. Aztec Century or SA (siècle) a consequence of the soothsayer’s theorem? Unlike the Mayas, the Aztecs did not used the Long Count and did not have a numeration to express numbers higher than 160,000. Aztecs did not develop the β Y expressions to date the days of their Festive Year (18 x 20 + n); for that they used only the αX expressions [1] Aztecs did not used intertwined calendars, so the Soothsayer’s theorem does not apply in their case. they don’t used any equivalent of annual [1] The 20 days of an Aztec month calendar dates like “July 13th” but only equivalent expressions of the day of the described by Duran (1537-1588) week like “Sunday or Saint John’s day”
  • 65. the soothsayer’s theorem did not apply in the Aztec case, nevertheless… the Aztecs used its corolary and named their years by the αX dates of a fixed day[1] in a way which gave them a cycle of 4 x 13 = 52 years αXP. Historical data do not allow to assert that these 52 years had all the same number of days or that their 360 + n days were all counted and dated The 52 years of an Aztec century described by Duran (1537-1588) [1] called eponymous or pth day of the year)
  • 66. reading’s instructions: 1 Acatl 2 Tecpatl 3 Calli 4 Tochtli 5 Acatl 6 Tecpatl 7 Calli 8 Tochtli
  • 67. The count that is called the Real Calendar the year of 365.242… days
  • 68.
  • 69. Look at the sunrises supplied to the Maya a kind of calendar (sometimes called ‘calendar of horizon’) Spring Summer Winter Autumn
  • 70.
  • 73. te W (D in ece s r s mb tic e ol er) (Ma Equi rch nox , Se es p te mb er) e Zenith tic Summer sols (May, July) (June)
  • 74. The enlightened period includes: summer solstice, 2 passages at the Zenith; it lasts 105 days (5 months and 5 days). The dark one lasts 260 days in normal year and 261 days in leap year: Anné e vague n° 1 Anné e vague n° 2 Anné e vague n° 3 105 j 260 j 105 j 260 j 105 j 260 j Anné e vague n° 4 Anné e vague n° 5 Anné e vague n° 6 105 j 261 j 105 j 260 j 105 j 260 j Disposant d’un tel héliographe, les rois et les prêtres n’avaient nul besoin d’un calendrier de l’année vague, ni même de marquer les jours qui passent. * d(13 Août, 30 Avril/1Mai) = 260/261 selon que Février compte 28/29 j.
  • 75. It is certain that Mesoamericans had heliographs which cut the year in 2 parts: 01/05 21/06 12/08 13/08 Solstice 30/04 dark during 260/261 days and enlightened during 105 days It’s a kind of live solar calendar which gives directly and continuously the progress of days and periods of the tropic year and it is likely that…
  • 76. … they have used this practical tool some Mesoamerican cities were able to have a « real » calendar, counting 366 days every 4 years
  • 77. If it was the case… With the exception of the intertwined calendars used by Mayas during the Classic period, Mesoamerican rulers had at their disposal different guard- times which were likely independent: The cultural week of 260 almanac dates The natural heliograph (‘verdadero calendario’) The cultural vague year of 18/19 periods The cultural cycle of 52 eponyms of years
  • 78. conclusions classique maya postclassique en calendrier maya classique en calendrier aztèque on écrit aX β Y mais* on écrit αX αXγ mais* on on n’a pas d’éponymes αXP n’écrit pas de dates β Y soit 18 980 expressions pour soit 260 x 52 = 13 520 dater les 18 980 jours du CR expressions pour dater les et ces expressions sont 18 980/18 993 jours du fonctionnellement liées siècle aztèque aux durées/dates compte long ni compte long ni contrôle αX β Y Σ ci des dates ou constituants * éponyme identique au porteur (X de * les spécialistes diffèrent sur la la date tzolkin du jour 0 Pop = 1er jour définition de l’éponyme, celle du jeu de porteurs et sur la valeur de la durée de la 1ère période) séparant ces deux jours
  • 79. Thank you for attention!

Editor's Notes

  1. Culture et Mathématiques (munhwa wa suhag)
  2. HPM experiences: Change of scenery, uprooting. Disorientation, cognitive dissonance, commitive conflict causing a reorientation. On the left: the Aztec’s point of view; on the right: the Epistemologist’s point of viewD
  3. Kerr 1196
  4. Good, evil or indifferent. Relever les défis d’une divination qui trouve ses figures dans le mouvement des astres et dans les visions aussi difficilement arrachées aux mondes invisibles que la main n’attrape un poisson.
  5. Let’s see what was common. ID P/A indicateur de date postérieur / antérieur
  6. les scribes aztèques dressaient des listes d’années (sur la figure, les années successives : 6 Calli , 7 Tochtli , 8 Acatl ) diversement mises en page parfois en tableau. Sur ce canevas, il inscrivaient les événements non par un texte mais par des dessins conventionnels et sans les relier, comme les Mayas, par des équations jouant sur la dualité date/durée.
  7. Le rapport de servitue (codex Kingsborough)
  8. They have his perfect year as ours of 365 days and six hours […] Of these six hours it was done every four years one day, and this way they had of four in four years the year of 366 days.
  9. The Mesomerican calendar was the result of the combination between a cycle of 365 days, called in nahuatl xiuhpohualli or ' account of the years ' (ha'ab in Maya), and another cycle of 260 days, called tonalpohualli or ' account of the days ' (tzolkin in Maya) .
  10. La unidad cultural de los pueblos mesoamericanos se refleja en varios rasgos que Paul Kirchhoff definió en 1943 como el complejo mesoamericano. Let’s see how did Aztecs and Mayas date an event.
  11. Or bundled in 24 trecenas and a 1 day
  12. Il y a aussi de bonnes raisons de penser que les savants connaissaient et utilisaient aussi une autre année (zodiacale) divisée en 28 treizaines (avec ou sans un résidu), soit une année de 364 jours.
  13. Il y a aussi de bonnes raisons de penser que les savants connaissaient et utilisaient aussi une autre année (zodiacale) divisée en 28 treizaines (avec ou sans un résidu), soit une année de 364 jours.
  14. Il y a aussi de bonnes raisons de penser que les savants connaissaient et utilisaient aussi une autre année (zodiacale) divisée en 28 treizaines (avec ou sans un résidu), soit une année de 364 jours.
  15. Il y a aussi de bonnes raisons de penser que les savants connaissaient et utilisaient aussi une autre année (zodiacale) divisée en 28 treizaines (avec ou sans un résidu), soit une année de 364 jours.
  16. Il y a aussi de bonnes raisons de penser que les savants connaissaient et utilisaient aussi une autre année (zodiacale) divisée en 28 treizaines (avec ou sans un résidu), soit une année de 364 jours.
  17. Comments:   Scribal workshop  Iconographic Elements:  Ah K'hun, orator, Bundle, tribute, cache, Codex - book, Conch shell, Inscription - other text, Mirror, Ruler, king, cacique, governor, potentate, Scribes, artists, carvers, Ink or paint container, Sabak Kuch, Throne
  18. Plaque de Leyde : première attestation du zéro mayas (il s’agit du zéro ordinal des dates, dans la date ha’ab 0 Yaxkin). Le CR possède 4 clones, chacun de 18 980 éléments)
  19. A chaque tour du Calendrier Rituel, l’engrenage aux 2 roues ( tzolkin x ha’ab ) ‘gradue’ la droite CL du Compte Long : 0 1 CR 2 CR 3 CR 4 CR 5 CR etc. Dans cette graduation, le contact des 3 dates (CL 9.16.10. ; 0.0. = 1 414 800 , date tzolkin 1 Ahau et date ha’ab 3 Zip ) se trouve entre les graduations 74 CR (1 404 520) et 75 CR (1 423 500). Le mécanisme implique l’invariance des nombres de jours de chaque cycle ou unité (le tzolkin a toujours 260 j, le ha’ab toujours 365, le tun toujours 360, et le CR toujours 18 980 jours, et il implique aussi que les mouvements se fassent sans glissement et sans changement les conditions initiales
  20. Comments:   Scribal workshop  Iconographic Elements:  Ah K'hun, orator, Bundle, tribute, cache, Codex - book, Conch shell, Inscription - other text, Mirror, Ruler, king, cacique, governor, potentate, Scribes, artists, carvers, Ink or paint container, Sabak Kuch, Throne
  21. Each was associated with a direction (north, west, sud, east) and a color (white, black, yellow, red)
  22. Each was associated with a direction (north, west, sud, east) and a color (white, black, yellow, red)
  23. Each was associated with a direction (north, west, sud, east) and a color (white, black, yellow, red)
  24. Each was associated with a direction (north, west, sud, east) and a color (white, black, yellow, red)
  25. Voir par exemple ANotational Explanationfor Maya Calendar RoundDates Suchas 11 Eb*16 Mac by VICTORIA R. BRICKER (sur wayeb)