SlideShare a Scribd company logo
1 of 9
Download to read offline
TECHNICAL BULLETIN
6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220
TRI 1001
AIR JET SPINNING OF COTTON
YARNS
© 2004 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers.
INTRODUCTION
Since its introduction in 1980, air jet spinning has offered yarn manufacturers the opportunity to
produce yarn at relatively high production rates. Some of the obstacles for the earlier generations
of air jet machinery included difficulty to make 100% cotton yarns and the generally harsh hand
of the fabrics produced from them. Starting with the first air jet spinning machine, Cotton
Incorporated, in close cooperation with Murata, worked extensively to develop a working
knowledge of the fiber selection parameters and preparation procedures necessary to produce
100% cotton and cotton-rich air jet yarns. Machine design changes, based on Cotton
Incorporated’s research, affected the evolution of air jet spinning from the early Murata Jet
Spinners (MJS) to the recently developed Murata Vortex Spinner (MVS). Because the MJS
machine remains largely a cotton blend and 100% synthetic spinning technology, the focus of
this technical bulletin is exclusive to the MVS technology.
Unlike other spinning methods in which productivity is limited by the amount of twist in the
yarn, air jet yarns, in general, can be produced at the same production rate regardless of yarn
counts. MVS machines excel at producing finer yarns (Ne 40/1-60/1), because of the improved
strength imparted to the smaller fiber bundle. MVS technology is not suitable for spinning yarn
counts coarser than Ne 12/1. Compared to ring yarns made from the same fiber properties, the
primary drawback of yarns produced by the MVS system relates primarily to their lower
tenacity. It is also important to note that the MVS system removes significant amounts of short
fiber during the spinning process. Waste percentages typically range from 3-8%, depending on
whether combed or carded cotton is being used. The removal of short fiber improves the yarn’s
total imperfections and resultant fabric appearance/sheen. In addition, with new components
available from Murata, MVS yarns can be made with varying levels of hairiness that can directly
influence the fabric’s hand/softness while maintaining excellent resistance to pilling and
abrasion.
MVS SPINNING CONCEPT
The vortex design represents a radical departure from the basic MJS design. This new and
innovative design differs from its predecessor almost entirely in the air jet (or vortex) area itself.
These changes facilitate an improved preservation of fiber alignment/orientation and a more
efficient transfer of the air vortex’s energy into an actual twisting action on the fiber bundle (see
Figure 1). As a result of these innovations, the system makes more efficient use of fiber length
and provides an improved yarn structure. These improvements are largely responsible for this
machine’s ability to spin 100% cotton.
1
Figure 1. Murata Vortex Spinning Components
(Courtesy of Muratec)
Air Jet Output
(Causes circular movement of fibers)
Package Take-up
Waste
Waste
Air Jet Output
Fiber flow
For the same reasons that these design changes have impacted spinning, they have also
influenced the resulting yarn qualities and important fabric characteristics. Yarns are smoother to
the touch because of the absence of “wrapper” fibers and improved fiber alignment. These same
aspects are also responsible for improved fabric appearance and fabric “hand” when compared to
previous MJS results.
FIBER SELECTION FOR MVS YARNS
The fiber selection for the MVS system should be approached in the same manner as ring
spinning. The laydown properties must be selected in accordance with the desired quality of the
end product.
Fiber Length
The MVS drafting mechanism incorporates roller drafting as a means of reducing/controlling the
number of fibers in the cross section of the resultant yarn. Previous studies show that overall
fiber length and short fiber content (SFC%) in the laydown play significant roles in obtaining
desired yarn properties. In general, the MVS system requires medium to long fibers in the
laydown. The MVS cotton laydown should be more similar to a ring-spun laydown than an open-
end (OE) laydown.
2
Short Fiber Content
An inherent trait of MVS is the removal of short fibers during spinning. A higher SFC% in the
virgin cotton lint or the introduction of waste into the laydown negatively affects yarn quality
and the amount of waste removed during spinning. Yarn count range and yarn strength are also
influenced by the amount of SFC% in the sliver.
Micronaire
Spinning trials indicate that decreases in fiber fineness or increases in micronaire can limit count
range and spinning performance in the same way as it might on ring spinning.
Trash Content
Cotton should be clean and absent of seed coat fragments. The presence of trash has a negative
effect on spinning performance. Seed coat fragments can collect on top and bottom drafting rolls,
which can cause lapping and ends down. Furthermore, trash and seed coat neps can cause choke
in the spindle also leading to ends down. At the high surface velocities normal for this spinning
system, any lapping or fiber chokes can quickly damage spinning components.
Fiber Tenacity
Fiber tenacity is another important parameter, because it is directly related to the resultant yarn
and fabric strength.
FIBER PROCESSING PARAMETERS
Fiber processing parameters should be chosen to protect the fiber from breakage and over-
working. This ensures that the finisher sliver is uniform and consists of highly parallel fibers and
a low short fiber content.
Opening and Cleaning
The opening action must be as gentle as possible to avoid excessive breakage of fibers. The raw
cotton stock should be opened into the smallest possible tufts to ensure thorough blending action
and good cleaning efficiency. Do not exceed manufacturer’s recommendations for throughput
and maintain an 85-90% material run time on all machines in the blow room.
Carding
Carding is the most important phase in the entire production process. Settings, wire condition,
waste removal, and nep extraction dictate the resultant spinning performance and yarn quality.
Visible foreign matter and nep content should be monitored for each card in the mill not just as a
room average.
3
Drawing
Previous drawing trials indicate that three processes of drawing tend to attain maximum fiber
alignment and provide for the best yarn quality for carded cotton. Only one process of drawing
after combing is recommended for combed yarns. The sliver weight is determined by the yarn
count being spun.
Combing
Combing the carded cotton allows for finer yarn counts to be spun. Reduction of SFC% reduces
waste at spinning, improves yarn tensile and evenness characteristics, and enhances fabric
appearance and drape. Spinning performance may also improve with combed fiber.
MURATA VORTEX SPINNING
Like any other spinning system, the MVS performs best with properly prepared fiber. The
cotton fibers should be parallel and free of extraneous matter. The MVS Model 851 machine can
reach speeds of up to 400 meters/minute. New piecing and clearer technology and tension
control may allow future models to exceed production rates of 450-500 meters/minute (see
Figure 2).
Figure 2. Spinning System Production Rate Comparison
(Courtesy of Muratec)
445500 mm//mmiinn –– tthhee WWoorrlldd’’ss TToopp SSppeeeedd SSppiinnnniinngg
The No. 861 MVS can spin yarn at speeds of up to 450 m/min.
Compared to ring spinning, productivity is 20 times higher for
VS. In the case of OE-Rotor spinning, MVS is 3 times higher.M
SpinningSpeed(m/min)
Yarn count
4
Cotton Incorporated conducted extensive research on the MVS Model 851 spinning frame
installed in the Fiber Processing Laboratory in Cary, NC. Controlled comparison studies (Murata
Vortex Spinning Comparison – Report Number 1999-1) were conducted in the late 1990s, which
clearly show the quality relationships among MVS, ring, and rotor-spun yarns and the resultant
knit and woven fabrics. MVS yarn strength improved as yarn count became finer (see general
strength trend in Chart I).
Chart I: Tenacity of MVS Yarn In Relation to Yarn Count
Strength Trend (gram/Tex) vs. Yarn Count (Ne)
(Courtesy of Muratec)
The overall yarn evenness is equal to ring and rotor yarns. Total imperfections (thin places, thick
places, and neps) are generally lower than ring and rotor yarns, especially for finer yarn counts.
The knit fabrics made from MVS yarns had better overall surface definition, especially compared
to ring yarns. The MVS knit fabrics exhibited better surface appearance after repeated
launderings. There was slightly less torque or skew with the MVS fabrics compared to ring-spun
fabrics.
Soft Hand MVS Technology
Historically, fabrics made from air jet yarns have a harsher hand when compared to ring and
rotor spinning systems. Recent developments at Cotton Incorporated led to breakthrough results
with respect to this important aspect. Through proper raw material selection, component
selection, and machinery settings, “soft” MVS yarns are attainable and well suited for knit end
5
uses. Soft hand developments performed at Cotton Incorporated, comparing ring and MVS spun
fabrics made from the same cotton laydown, showed indistinguishable differences with respect
to resultant fabric softness. In addition, the appearance and pilling/abrasion resistance is as good
as if not better than the MVS fabrics, especially after multiple home launderings and tumble
dryings.
Core Spinning Technology
The MVS spinning frame has core-spinning capability. This is a process in which a filament or
staple yarn is fed behind the front roll of the drafting system and covered (or wrapped) with
another fiber during the spinning process. Figure 3 shows the composition of a core spun yarn.
Figure 3. Core Spun MVS Yarn
(Courtesy of Muratec)
Covering fibers
Core filaments
Core Filament Yarn
MVS technology is ideal for this type of end use, mainly because of the wrapping effect
imparted at the spindle. The fibers are literally wrapped around the self-centering core
component. A key advantage of MVS core spun technology compared to ring core-spun
technology is that the core is not twisted during spinning. As a result, fabric torque is reduced in
MVS core spun fabrics.
Novelty Yarns
Splash yarn is a novelty yarn, which can be easily made by supplying colored yarns to each part
of a draft. Thanks to the unique formation method, colored yarn is scattered through the yarn,
giving the spinner the possibility of creating value-added yarns. The combinations and types
have infinite potential.
6
7
Future developments could include mechanical slub attachments, twin spinning (two parallel
yarns on same package), and specialized spinning components.
Conclusion
Since its official introduction in 1997, the MVS system has developed into a viable choice for
many end uses. The production rate and yarn characteristics of MVS yarns continue to create
interest among those in the spinning and fabric formation sectors.
The spinning technology continues to evolve. Cotton Incorporated possesses intimate knowledge
of the capabilities of the MVS technology. The Fiber Processing Research group will continue to
develop and implement MVS project work that addresses the needs of U.S. cotton consumers.
The statements, recommendations and suggestions contained herein are based on experiments and information believed to be reliable only with
regard to the products and/or processes involved at the time. No guarantee is made of their accuracy, however, and the information is given
without warranty as to its accuracy or reproducibility either express or implied, and does not authorize use of the information for purposes of
advertisement or product endorsement or certification. Likewise, no statement contained herein shall be construed as a permission or
recommendation for the use of any information, product or process that may infringe any existing patents. The use of trade names does not
constitute endorsement of any product mentioned, nor is permission granted to use the name Cotton Incorporated or any of its trademarks in
conjunction with the products involved."
RESEARCH AND TECHNICAL SERVICES
Cotton Incorporated is a research and promotion company representing cotton worldwide. Through research and
technical services, our company has the capability to develop, evaluate, and then commercialize the latest technology to
benefit cotton.
• Agricultural research leads to improved agronomic practices, pest control and fiber variants with properties
required by the most modern textile processes and consumer preferences. Ginning development provides efficient
and effective machines for preservation of fiber characteristics. Cottonseed value is enhanced with biotechnology
research to improve nutritional qualities and expand the animal food market.
• Research in fiber quality leads to improved fiber testing methodology and seasonal fiber analyses to bring better
value both to growers and then mill customers.
• Computerized fiber management techniques result from in-depth fiber processing research.
• Product Development and Implementation operates programs leading to the commercialization of new finishes and
improved energy and water conserving dyeing and finishing systems. New cotton fabrics are engineered --
wovens, circular knits, warp knits, and nonwovens -- that meet today's standards for performance.
• Technology Implementation provides comprehensive and customized professional assistance to the cotton industry
and its customers -- textile mills and manufacturers.
• A fiber to yarn pilot spinning center allows full exploration of alternative methods of producing yarn for various
products from cotton with specific fiber profiles.
• The Company operates its own dyeing and finishing laboratory, knitting laboratory, and a laboratory for physical
testing of yarn, fabric, and fiber properties including High Volume Instrument testing capable of measuring
micronaire, staple length, strength, uniformity, color, and trash content.
For further information contact:
COTTON INCORPORATED COTTON INCORPORATED
WORLD HEADQUARTERS CONSUMER MARKETING HEADQUARTERS
6399 WESTON PARKWAY 488 MADISON AVENUE
CARY, NC 27513 NEW YORK, NY 10022-5702
PHONE: 919-678-2220 PHONE: 212-413-8300
FAX: 919-678-2230 FAX: 212-413-8377
Other Locations
• Los Angeles • Mexico City • Osaka • Shanghai • Singapore •
Visit our website at: www.cottoninc.com

More Related Content

What's hot

Machine parameter of speed frame
Machine parameter of speed frameMachine parameter of speed frame
Machine parameter of speed framesrsujandiu
 
Web stitching & stitch bonding warp knitt
Web stitching & stitch bonding warp knittWeb stitching & stitch bonding warp knitt
Web stitching & stitch bonding warp knittHimanshu Gupta
 
Tertiary motion of a loom
Tertiary motion of a loomTertiary motion of a loom
Tertiary motion of a loomMd Nurunnabi
 
startup breakages in ring frame and their control
startup breakages in ring frame and their controlstartup breakages in ring frame and their control
startup breakages in ring frame and their controlVicky Raj
 
Slub yarn and its measurement
Slub yarn and its measurementSlub yarn and its measurement
Slub yarn and its measurementMurali Krishnan
 
Cotton Yarn Quality Depends on Mixing Strategy
Cotton Yarn Quality Depends on Mixing StrategyCotton Yarn Quality Depends on Mixing Strategy
Cotton Yarn Quality Depends on Mixing StrategySunil Kumar Sharma
 
Laps of warp knit machine
Laps of warp knit machineLaps of warp knit machine
Laps of warp knit machineMd Fahimuzzaman
 
Keighley Dobby (negative- double lift)
Keighley Dobby (negative- double lift)Keighley Dobby (negative- double lift)
Keighley Dobby (negative- double lift)KEVSER CARPET
 
1.3 preparation of combing
1.3 preparation of combing1.3 preparation of combing
1.3 preparation of combingAmit Biswas
 
Rapier weaving
Rapier weavingRapier weaving
Rapier weavingFuad Ahmed
 
Yarn unevenness and its empact on quality
Yarn unevenness and its empact on qualityYarn unevenness and its empact on quality
Yarn unevenness and its empact on qualityArNesto WaHid
 
Projectile weaving
Projectile weavingProjectile weaving
Projectile weavingFuad Ahmed
 
Simplex machine. Roving, sliver
Simplex machine. Roving, sliverSimplex machine. Roving, sliver
Simplex machine. Roving, sliversrsujandiu
 

What's hot (20)

Machine parameter of speed frame
Machine parameter of speed frameMachine parameter of speed frame
Machine parameter of speed frame
 
Core yarn spinning
Core yarn spinning Core yarn spinning
Core yarn spinning
 
Web stitching & stitch bonding warp knitt
Web stitching & stitch bonding warp knittWeb stitching & stitch bonding warp knitt
Web stitching & stitch bonding warp knitt
 
Tertiary motion of a loom
Tertiary motion of a loomTertiary motion of a loom
Tertiary motion of a loom
 
startup breakages in ring frame and their control
startup breakages in ring frame and their controlstartup breakages in ring frame and their control
startup breakages in ring frame and their control
 
Ring frame
Ring frame Ring frame
Ring frame
 
Yarn Geometry
Yarn GeometryYarn Geometry
Yarn Geometry
 
Slub yarn and its measurement
Slub yarn and its measurementSlub yarn and its measurement
Slub yarn and its measurement
 
Cotton Yarn Quality Depends on Mixing Strategy
Cotton Yarn Quality Depends on Mixing StrategyCotton Yarn Quality Depends on Mixing Strategy
Cotton Yarn Quality Depends on Mixing Strategy
 
Laps of warp knit machine
Laps of warp knit machineLaps of warp knit machine
Laps of warp knit machine
 
Keighley Dobby (negative- double lift)
Keighley Dobby (negative- double lift)Keighley Dobby (negative- double lift)
Keighley Dobby (negative- double lift)
 
1.3 preparation of combing
1.3 preparation of combing1.3 preparation of combing
1.3 preparation of combing
 
Rapier weaving
Rapier weavingRapier weaving
Rapier weaving
 
Yarn unevenness and its empact on quality
Yarn unevenness and its empact on qualityYarn unevenness and its empact on quality
Yarn unevenness and its empact on quality
 
Rapier Loom
Rapier LoomRapier Loom
Rapier Loom
 
Projectile weaving
Projectile weavingProjectile weaving
Projectile weaving
 
Simplex machine. Roving, sliver
Simplex machine. Roving, sliverSimplex machine. Roving, sliver
Simplex machine. Roving, sliver
 
Yarn Manufacturing Process : Comber Part III [Fractionation at comber]
Yarn Manufacturing Process : Comber Part III [Fractionation at comber]Yarn Manufacturing Process : Comber Part III [Fractionation at comber]
Yarn Manufacturing Process : Comber Part III [Fractionation at comber]
 
Roving
RovingRoving
Roving
 
Warp winding
Warp winding Warp winding
Warp winding
 

Viewers also liked (20)

Advance spinning techniques
Advance spinning techniquesAdvance spinning techniques
Advance spinning techniques
 
Rotor spinning working principle
Rotor spinning working principleRotor spinning working principle
Rotor spinning working principle
 
Spinning Systems
Spinning SystemsSpinning Systems
Spinning Systems
 
Hairiness of-yarns
Hairiness of-yarnsHairiness of-yarns
Hairiness of-yarns
 
Ring spun yarn
Ring spun yarnRing spun yarn
Ring spun yarn
 
Rotor spinning
Rotor spinningRotor spinning
Rotor spinning
 
Water Jet loom
Water Jet loomWater Jet loom
Water Jet loom
 
Carding process
Carding processCarding process
Carding process
 
Air jet looms
Air jet loomsAir jet looms
Air jet looms
 
Yarn manufacturing Process : Carding
Yarn manufacturing Process : CardingYarn manufacturing Process : Carding
Yarn manufacturing Process : Carding
 
Types of Looms and Weaves
Types of Looms and WeavesTypes of Looms and Weaves
Types of Looms and Weaves
 
Carding machine
Carding machineCarding machine
Carding machine
 
cotton yarn ppt
cotton yarn pptcotton yarn ppt
cotton yarn ppt
 
Ring Spinning Vs All technologies
Ring Spinning Vs All technologiesRing Spinning Vs All technologies
Ring Spinning Vs All technologies
 
Rapier loom by Vignesh Dhanabalan
Rapier loom by Vignesh DhanabalanRapier loom by Vignesh Dhanabalan
Rapier loom by Vignesh Dhanabalan
 
Fancy weaves
Fancy weavesFancy weaves
Fancy weaves
 
Spinning Presentation By Sukhvir Sabharwal
Spinning Presentation By Sukhvir SabharwalSpinning Presentation By Sukhvir Sabharwal
Spinning Presentation By Sukhvir Sabharwal
 
Unconventional machining process
Unconventional machining processUnconventional machining process
Unconventional machining process
 
Fabric structure-and-design
Fabric structure-and-designFabric structure-and-design
Fabric structure-and-design
 
Textile Calculations and Equations
Textile  Calculations and EquationsTextile  Calculations and Equations
Textile Calculations and Equations
 

Similar to Air jet-spinning-of-cotton-yarns

THE COMBING PROCESS.pptx
THE COMBING PROCESS.pptxTHE COMBING PROCESS.pptx
THE COMBING PROCESS.pptxTolenufAbeya
 
Process control in weaving
Process control in weavingProcess control in weaving
Process control in weavingVijay Babu Gaur
 
368642344-Lenzing-Tencel-Courtesy-Lenzing.pdf
368642344-Lenzing-Tencel-Courtesy-Lenzing.pdf368642344-Lenzing-Tencel-Courtesy-Lenzing.pdf
368642344-Lenzing-Tencel-Courtesy-Lenzing.pdfmurugesan venkateswaran
 
Recent development in needle punching nonwoven manufacturing
Recent development in needle punching nonwoven manufacturingRecent development in needle punching nonwoven manufacturing
Recent development in needle punching nonwoven manufacturingVijay Prakash
 
Textile spinning
Textile spinningTextile spinning
Textile spinningtanveersahb
 
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and FabricsJournal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and FabricsPARESHPD1977
 
Textile spinning
Textile spinningTextile spinning
Textile spinningtanveersahb
 
Mechanics of Composite Materials
Mechanics of Composite MaterialsMechanics of Composite Materials
Mechanics of Composite MaterialsChris Pastore
 
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURINGABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURINGRajib Ghosh
 
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURINGABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURINGRajib Ghosh(雅吉)
 
Cotton spun-yarns-for-knit-and-woven-fabrics
Cotton spun-yarns-for-knit-and-woven-fabricsCotton spun-yarns-for-knit-and-woven-fabrics
Cotton spun-yarns-for-knit-and-woven-fabricsSamrat Dewan
 
Abhi rana)4. dry laid non woven fabrics
Abhi rana)4. dry laid non woven fabricsAbhi rana)4. dry laid non woven fabrics
Abhi rana)4. dry laid non woven fabricsAbhishek Rana
 

Similar to Air jet-spinning-of-cotton-yarns (20)

THE COMBING PROCESS.pptx
THE COMBING PROCESS.pptxTHE COMBING PROCESS.pptx
THE COMBING PROCESS.pptx
 
Presentation
PresentationPresentation
Presentation
 
Presentation
PresentationPresentation
Presentation
 
Drawing and texturising
Drawing and texturising Drawing and texturising
Drawing and texturising
 
Process control in weaving
Process control in weavingProcess control in weaving
Process control in weaving
 
368642344-Lenzing-Tencel-Courtesy-Lenzing.pdf
368642344-Lenzing-Tencel-Courtesy-Lenzing.pdf368642344-Lenzing-Tencel-Courtesy-Lenzing.pdf
368642344-Lenzing-Tencel-Courtesy-Lenzing.pdf
 
Fibre to yarn
Fibre to yarnFibre to yarn
Fibre to yarn
 
yarn count in friction spinning
yarn count in friction spinningyarn count in friction spinning
yarn count in friction spinning
 
Recent development in needle punching nonwoven manufacturing
Recent development in needle punching nonwoven manufacturingRecent development in needle punching nonwoven manufacturing
Recent development in needle punching nonwoven manufacturing
 
Textile spinning
Textile spinningTextile spinning
Textile spinning
 
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and FabricsJournal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics
 
Textile spinning
Textile spinningTextile spinning
Textile spinning
 
class 2.ppt
class 2.pptclass 2.ppt
class 2.ppt
 
20120140503007
2012014050300720120140503007
20120140503007
 
Mechanics of Composite Materials
Mechanics of Composite MaterialsMechanics of Composite Materials
Mechanics of Composite Materials
 
Knitting science
Knitting scienceKnitting science
Knitting science
 
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURINGABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
 
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURINGABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
ABOUT RECENT DEVELOPMENT OF DENIM MANUFACTURING
 
Cotton spun-yarns-for-knit-and-woven-fabrics
Cotton spun-yarns-for-knit-and-woven-fabricsCotton spun-yarns-for-knit-and-woven-fabrics
Cotton spun-yarns-for-knit-and-woven-fabrics
 
Abhi rana)4. dry laid non woven fabrics
Abhi rana)4. dry laid non woven fabricsAbhi rana)4. dry laid non woven fabrics
Abhi rana)4. dry laid non woven fabrics
 

Recently uploaded

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 

Recently uploaded (20)

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 

Air jet-spinning-of-cotton-yarns

  • 1. TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 TRI 1001 AIR JET SPINNING OF COTTON YARNS © 2004 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers.
  • 2. INTRODUCTION Since its introduction in 1980, air jet spinning has offered yarn manufacturers the opportunity to produce yarn at relatively high production rates. Some of the obstacles for the earlier generations of air jet machinery included difficulty to make 100% cotton yarns and the generally harsh hand of the fabrics produced from them. Starting with the first air jet spinning machine, Cotton Incorporated, in close cooperation with Murata, worked extensively to develop a working knowledge of the fiber selection parameters and preparation procedures necessary to produce 100% cotton and cotton-rich air jet yarns. Machine design changes, based on Cotton Incorporated’s research, affected the evolution of air jet spinning from the early Murata Jet Spinners (MJS) to the recently developed Murata Vortex Spinner (MVS). Because the MJS machine remains largely a cotton blend and 100% synthetic spinning technology, the focus of this technical bulletin is exclusive to the MVS technology. Unlike other spinning methods in which productivity is limited by the amount of twist in the yarn, air jet yarns, in general, can be produced at the same production rate regardless of yarn counts. MVS machines excel at producing finer yarns (Ne 40/1-60/1), because of the improved strength imparted to the smaller fiber bundle. MVS technology is not suitable for spinning yarn counts coarser than Ne 12/1. Compared to ring yarns made from the same fiber properties, the primary drawback of yarns produced by the MVS system relates primarily to their lower tenacity. It is also important to note that the MVS system removes significant amounts of short fiber during the spinning process. Waste percentages typically range from 3-8%, depending on whether combed or carded cotton is being used. The removal of short fiber improves the yarn’s total imperfections and resultant fabric appearance/sheen. In addition, with new components available from Murata, MVS yarns can be made with varying levels of hairiness that can directly influence the fabric’s hand/softness while maintaining excellent resistance to pilling and abrasion. MVS SPINNING CONCEPT The vortex design represents a radical departure from the basic MJS design. This new and innovative design differs from its predecessor almost entirely in the air jet (or vortex) area itself. These changes facilitate an improved preservation of fiber alignment/orientation and a more efficient transfer of the air vortex’s energy into an actual twisting action on the fiber bundle (see Figure 1). As a result of these innovations, the system makes more efficient use of fiber length and provides an improved yarn structure. These improvements are largely responsible for this machine’s ability to spin 100% cotton. 1
  • 3. Figure 1. Murata Vortex Spinning Components (Courtesy of Muratec) Air Jet Output (Causes circular movement of fibers) Package Take-up Waste Waste Air Jet Output Fiber flow For the same reasons that these design changes have impacted spinning, they have also influenced the resulting yarn qualities and important fabric characteristics. Yarns are smoother to the touch because of the absence of “wrapper” fibers and improved fiber alignment. These same aspects are also responsible for improved fabric appearance and fabric “hand” when compared to previous MJS results. FIBER SELECTION FOR MVS YARNS The fiber selection for the MVS system should be approached in the same manner as ring spinning. The laydown properties must be selected in accordance with the desired quality of the end product. Fiber Length The MVS drafting mechanism incorporates roller drafting as a means of reducing/controlling the number of fibers in the cross section of the resultant yarn. Previous studies show that overall fiber length and short fiber content (SFC%) in the laydown play significant roles in obtaining desired yarn properties. In general, the MVS system requires medium to long fibers in the laydown. The MVS cotton laydown should be more similar to a ring-spun laydown than an open- end (OE) laydown. 2
  • 4. Short Fiber Content An inherent trait of MVS is the removal of short fibers during spinning. A higher SFC% in the virgin cotton lint or the introduction of waste into the laydown negatively affects yarn quality and the amount of waste removed during spinning. Yarn count range and yarn strength are also influenced by the amount of SFC% in the sliver. Micronaire Spinning trials indicate that decreases in fiber fineness or increases in micronaire can limit count range and spinning performance in the same way as it might on ring spinning. Trash Content Cotton should be clean and absent of seed coat fragments. The presence of trash has a negative effect on spinning performance. Seed coat fragments can collect on top and bottom drafting rolls, which can cause lapping and ends down. Furthermore, trash and seed coat neps can cause choke in the spindle also leading to ends down. At the high surface velocities normal for this spinning system, any lapping or fiber chokes can quickly damage spinning components. Fiber Tenacity Fiber tenacity is another important parameter, because it is directly related to the resultant yarn and fabric strength. FIBER PROCESSING PARAMETERS Fiber processing parameters should be chosen to protect the fiber from breakage and over- working. This ensures that the finisher sliver is uniform and consists of highly parallel fibers and a low short fiber content. Opening and Cleaning The opening action must be as gentle as possible to avoid excessive breakage of fibers. The raw cotton stock should be opened into the smallest possible tufts to ensure thorough blending action and good cleaning efficiency. Do not exceed manufacturer’s recommendations for throughput and maintain an 85-90% material run time on all machines in the blow room. Carding Carding is the most important phase in the entire production process. Settings, wire condition, waste removal, and nep extraction dictate the resultant spinning performance and yarn quality. Visible foreign matter and nep content should be monitored for each card in the mill not just as a room average. 3
  • 5. Drawing Previous drawing trials indicate that three processes of drawing tend to attain maximum fiber alignment and provide for the best yarn quality for carded cotton. Only one process of drawing after combing is recommended for combed yarns. The sliver weight is determined by the yarn count being spun. Combing Combing the carded cotton allows for finer yarn counts to be spun. Reduction of SFC% reduces waste at spinning, improves yarn tensile and evenness characteristics, and enhances fabric appearance and drape. Spinning performance may also improve with combed fiber. MURATA VORTEX SPINNING Like any other spinning system, the MVS performs best with properly prepared fiber. The cotton fibers should be parallel and free of extraneous matter. The MVS Model 851 machine can reach speeds of up to 400 meters/minute. New piecing and clearer technology and tension control may allow future models to exceed production rates of 450-500 meters/minute (see Figure 2). Figure 2. Spinning System Production Rate Comparison (Courtesy of Muratec) 445500 mm//mmiinn –– tthhee WWoorrlldd’’ss TToopp SSppeeeedd SSppiinnnniinngg The No. 861 MVS can spin yarn at speeds of up to 450 m/min. Compared to ring spinning, productivity is 20 times higher for VS. In the case of OE-Rotor spinning, MVS is 3 times higher.M SpinningSpeed(m/min) Yarn count 4
  • 6. Cotton Incorporated conducted extensive research on the MVS Model 851 spinning frame installed in the Fiber Processing Laboratory in Cary, NC. Controlled comparison studies (Murata Vortex Spinning Comparison – Report Number 1999-1) were conducted in the late 1990s, which clearly show the quality relationships among MVS, ring, and rotor-spun yarns and the resultant knit and woven fabrics. MVS yarn strength improved as yarn count became finer (see general strength trend in Chart I). Chart I: Tenacity of MVS Yarn In Relation to Yarn Count Strength Trend (gram/Tex) vs. Yarn Count (Ne) (Courtesy of Muratec) The overall yarn evenness is equal to ring and rotor yarns. Total imperfections (thin places, thick places, and neps) are generally lower than ring and rotor yarns, especially for finer yarn counts. The knit fabrics made from MVS yarns had better overall surface definition, especially compared to ring yarns. The MVS knit fabrics exhibited better surface appearance after repeated launderings. There was slightly less torque or skew with the MVS fabrics compared to ring-spun fabrics. Soft Hand MVS Technology Historically, fabrics made from air jet yarns have a harsher hand when compared to ring and rotor spinning systems. Recent developments at Cotton Incorporated led to breakthrough results with respect to this important aspect. Through proper raw material selection, component selection, and machinery settings, “soft” MVS yarns are attainable and well suited for knit end 5
  • 7. uses. Soft hand developments performed at Cotton Incorporated, comparing ring and MVS spun fabrics made from the same cotton laydown, showed indistinguishable differences with respect to resultant fabric softness. In addition, the appearance and pilling/abrasion resistance is as good as if not better than the MVS fabrics, especially after multiple home launderings and tumble dryings. Core Spinning Technology The MVS spinning frame has core-spinning capability. This is a process in which a filament or staple yarn is fed behind the front roll of the drafting system and covered (or wrapped) with another fiber during the spinning process. Figure 3 shows the composition of a core spun yarn. Figure 3. Core Spun MVS Yarn (Courtesy of Muratec) Covering fibers Core filaments Core Filament Yarn MVS technology is ideal for this type of end use, mainly because of the wrapping effect imparted at the spindle. The fibers are literally wrapped around the self-centering core component. A key advantage of MVS core spun technology compared to ring core-spun technology is that the core is not twisted during spinning. As a result, fabric torque is reduced in MVS core spun fabrics. Novelty Yarns Splash yarn is a novelty yarn, which can be easily made by supplying colored yarns to each part of a draft. Thanks to the unique formation method, colored yarn is scattered through the yarn, giving the spinner the possibility of creating value-added yarns. The combinations and types have infinite potential. 6
  • 8. 7 Future developments could include mechanical slub attachments, twin spinning (two parallel yarns on same package), and specialized spinning components. Conclusion Since its official introduction in 1997, the MVS system has developed into a viable choice for many end uses. The production rate and yarn characteristics of MVS yarns continue to create interest among those in the spinning and fabric formation sectors. The spinning technology continues to evolve. Cotton Incorporated possesses intimate knowledge of the capabilities of the MVS technology. The Fiber Processing Research group will continue to develop and implement MVS project work that addresses the needs of U.S. cotton consumers. The statements, recommendations and suggestions contained herein are based on experiments and information believed to be reliable only with regard to the products and/or processes involved at the time. No guarantee is made of their accuracy, however, and the information is given without warranty as to its accuracy or reproducibility either express or implied, and does not authorize use of the information for purposes of advertisement or product endorsement or certification. Likewise, no statement contained herein shall be construed as a permission or recommendation for the use of any information, product or process that may infringe any existing patents. The use of trade names does not constitute endorsement of any product mentioned, nor is permission granted to use the name Cotton Incorporated or any of its trademarks in conjunction with the products involved."
  • 9. RESEARCH AND TECHNICAL SERVICES Cotton Incorporated is a research and promotion company representing cotton worldwide. Through research and technical services, our company has the capability to develop, evaluate, and then commercialize the latest technology to benefit cotton. • Agricultural research leads to improved agronomic practices, pest control and fiber variants with properties required by the most modern textile processes and consumer preferences. Ginning development provides efficient and effective machines for preservation of fiber characteristics. Cottonseed value is enhanced with biotechnology research to improve nutritional qualities and expand the animal food market. • Research in fiber quality leads to improved fiber testing methodology and seasonal fiber analyses to bring better value both to growers and then mill customers. • Computerized fiber management techniques result from in-depth fiber processing research. • Product Development and Implementation operates programs leading to the commercialization of new finishes and improved energy and water conserving dyeing and finishing systems. New cotton fabrics are engineered -- wovens, circular knits, warp knits, and nonwovens -- that meet today's standards for performance. • Technology Implementation provides comprehensive and customized professional assistance to the cotton industry and its customers -- textile mills and manufacturers. • A fiber to yarn pilot spinning center allows full exploration of alternative methods of producing yarn for various products from cotton with specific fiber profiles. • The Company operates its own dyeing and finishing laboratory, knitting laboratory, and a laboratory for physical testing of yarn, fabric, and fiber properties including High Volume Instrument testing capable of measuring micronaire, staple length, strength, uniformity, color, and trash content. For further information contact: COTTON INCORPORATED COTTON INCORPORATED WORLD HEADQUARTERS CONSUMER MARKETING HEADQUARTERS 6399 WESTON PARKWAY 488 MADISON AVENUE CARY, NC 27513 NEW YORK, NY 10022-5702 PHONE: 919-678-2220 PHONE: 212-413-8300 FAX: 919-678-2230 FAX: 212-413-8377 Other Locations • Los Angeles • Mexico City • Osaka • Shanghai • Singapore • Visit our website at: www.cottoninc.com