SlideShare uma empresa Scribd logo
1 de 39
ラムダ計算入門
  yingtai
自己紹介

• 67回生
• twitter: @_yingtai
• 部誌でラムダ計算のこと書いた
• Haskellerワナビ
LTの動機

• ラムダ計算が人口に膾炙していない
 • 部誌書いたのに...
 • ※部誌の内容は信用しちゃだめです
流れ

• ラムダ計算入門
• データ型の表現
ラムダ計算入門
ラムダ計算とは


• 「関数」をより抽象的に扱う
関数
• 「箱」(ブラックボックス)
• 入力(引数)があって、出力(結果)がある

         f(x)
ラムダ記法
要するに

• λ[入力].[出力]
• なぜ「抽象的」と言えるのか?
 • = どこがええのんや
抽象化①
• 無名関数
 • いちいち名前を付けない

       λx. x+2
抽象化②


• 高階関数
 • 関数そのものを入力 / 出力できる
例えば、
• f(x, y) = x を考える (図はイメージ)
 • ラムダ記法では?

             f
答え


λx. (λy.x)
λx. (λy.x)

      •Pythonコード
      •f1 と f2 は同じ
カリー化


• f(x, y) = x → f(x)(y) = x
• これをカリー化と言います
ラムダ記法では


• カリー化した関数を簡潔に表せる
 • λx.(λy.x) で事足りる
でっていう


• カリー化して何が嬉しいのか
• めんどいだけなのでは...
嬉しいです
•   f(x, y) = x

    • … x と y の両方を渡す必要がある
• f(x)(y) = x
 • … x だけ渡す、という操作が可能
• この操作を部分適用と言う
ついでに

• λx. (λy. x) は λx. λy. x と表せる
 • どこがどの関数か自明
• λx. λy. x は λxy. x と表せる
 • ただの省略記法
SKIコンビネータ

• S = λx y z. x z (y z)
• K = λx y. x
• I = λx. x
I コンビネータ

• λx. x
• Identity combinator (恒等関数)
• 取ったのをそのまま返すだけ
Kコンビネータ

• λx y. x
• Constant combinator
• Konstant (独)
• 定数関数
Sコンビネータ
• λx y z. x z (y z)
• Sharing combinator
 • z をシェアする
 • S (λa. M) (λb. N) = λz. M N
   • ただし M = M[a:=z], N = N[b:=z]
データ型の表現
基本的な考え方

• Turing: 関数をデータで表現する
 • → 手続き型
• Church: データを関数で表現する
 • → 関数型
Church encoding


• データ型をラムダ計算でエンコード
 • 自然数、真偽値、コンテナ、...etc.
自然数 (Church)

• いわゆるチャーチ数
• ペアノの公理系に基づいて構成
• 1 := suc(0), 2 := suc(suc(0)), ...
具体的には
• 0 := λs z. z
• 1 := λs z. s z
• 2 := λs z. s (s z)
• 3 := λs z. s (s (s z))
• ...
Boolean

• True := λt f. t
• False := λt f. f
• if t1 then t2 else t3 := t1 t2 t3
Tuple

• (t1, t2) := λx. x t1 t2
• fst := λt. t (λf s. f)
• snd := λt. t (λf s. s)
List (Church)

• cons と nil で表現
• [x,y,z]
• = (cons x (cons y (cons z nil)))
List (Church)


• Nil := λc n. n
• Cons := λh t c n. c h (t c n)
List (Church)
• [x,y,z]
• =λc n. c x(λc n. c y(λc n. c z n))
• cons が foldr 的に振る舞う!
 • foldr = λn c l. l c n
   • tail = λl. l (λx xs. xs) Nil
Scott encoding


• もう一つのエンコーディング
• Lazy Kのリストは Scott encoding
自然数 (Scott)
• 0 := λz s. z
• 1 := λz s. s 0
• 2 := λz s. s 1
• 3 := λz s. s 2
• ...
List (Scott)


• Nil = λf g. f
• Cons = λx xs f g. g x xs
List (Scott)

• [x,y,z]
• = λc. c x (λc. c y (λc. (c z) Nil))
 • consはパターンマッチ的!
まとめ
• Scott encoding
 • プログラミングが簡単
 • パターンマッチ
• Church encoding
 • 再帰が簡単、計算量
Any questions?

Mais conteúdo relacionado

Mais procurados

ゲーム開発者のための C++11/C++14
ゲーム開発者のための C++11/C++14ゲーム開発者のための C++11/C++14
ゲーム開発者のための C++11/C++14Ryo Suzuki
 
文法圧縮入門:超高速テキスト処理のためのデータ圧縮(NLP2014チュートリアル)
文法圧縮入門:超高速テキスト処理のためのデータ圧縮(NLP2014チュートリアル)文法圧縮入門:超高速テキスト処理のためのデータ圧縮(NLP2014チュートリアル)
文法圧縮入門:超高速テキスト処理のためのデータ圧縮(NLP2014チュートリアル)Shirou Maruyama
 
関数プログラミング入門
関数プログラミング入門関数プログラミング入門
関数プログラミング入門Hideyuki Tanaka
 
メタプログラミングって何だろう
メタプログラミングって何だろうメタプログラミングって何だろう
メタプログラミングって何だろうKota Mizushima
 
プログラミングコンテストでの乱択アルゴリズム
プログラミングコンテストでの乱択アルゴリズムプログラミングコンテストでの乱択アルゴリズム
プログラミングコンテストでの乱択アルゴリズムTakuya Akiba
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
 
オブジェクト指向の設計と実装の学び方のコツ
オブジェクト指向の設計と実装の学び方のコツオブジェクト指向の設計と実装の学び方のコツ
オブジェクト指向の設計と実装の学び方のコツ増田 亨
 
圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナドYoshihiro Mizoguchi
 
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説Takateru Yamagishi
 
暗号文のままで計算しよう - 準同型暗号入門 -
暗号文のままで計算しよう - 準同型暗号入門 -暗号文のままで計算しよう - 準同型暗号入門 -
暗号文のままで計算しよう - 準同型暗号入門 -MITSUNARI Shigeo
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門Norishige Fukushima
 
中3女子が狂える本当に気持ちのいい constexpr
中3女子が狂える本当に気持ちのいい constexpr中3女子が狂える本当に気持ちのいい constexpr
中3女子が狂える本当に気持ちのいい constexprGenya Murakami
 
不遇の標準ライブラリ - valarray
不遇の標準ライブラリ - valarray不遇の標準ライブラリ - valarray
不遇の標準ライブラリ - valarrayRyosuke839
 
競技プログラミングにおけるコードの書き方とその利便性
競技プログラミングにおけるコードの書き方とその利便性競技プログラミングにおけるコードの書き方とその利便性
競技プログラミングにおけるコードの書き方とその利便性Hibiki Yamashiro
 
Cognitive Complexity でコードの複雑さを定量的に計測しよう
Cognitive Complexity でコードの複雑さを定量的に計測しようCognitive Complexity でコードの複雑さを定量的に計測しよう
Cognitive Complexity でコードの複雑さを定量的に計測しようShuto Suzuki
 
型安全性入門
型安全性入門型安全性入門
型安全性入門Akinori Abe
 

Mais procurados (20)

ゲーム開発者のための C++11/C++14
ゲーム開発者のための C++11/C++14ゲーム開発者のための C++11/C++14
ゲーム開発者のための C++11/C++14
 
文法圧縮入門:超高速テキスト処理のためのデータ圧縮(NLP2014チュートリアル)
文法圧縮入門:超高速テキスト処理のためのデータ圧縮(NLP2014チュートリアル)文法圧縮入門:超高速テキスト処理のためのデータ圧縮(NLP2014チュートリアル)
文法圧縮入門:超高速テキスト処理のためのデータ圧縮(NLP2014チュートリアル)
 
グラフネットワーク〜フロー&カット〜
グラフネットワーク〜フロー&カット〜グラフネットワーク〜フロー&カット〜
グラフネットワーク〜フロー&カット〜
 
関数プログラミング入門
関数プログラミング入門関数プログラミング入門
関数プログラミング入門
 
メタプログラミングって何だろう
メタプログラミングって何だろうメタプログラミングって何だろう
メタプログラミングって何だろう
 
プログラミングコンテストでの乱択アルゴリズム
プログラミングコンテストでの乱択アルゴリズムプログラミングコンテストでの乱択アルゴリズム
プログラミングコンテストでの乱択アルゴリズム
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
 
オブジェクト指向の設計と実装の学び方のコツ
オブジェクト指向の設計と実装の学び方のコツオブジェクト指向の設計と実装の学び方のコツ
オブジェクト指向の設計と実装の学び方のコツ
 
圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド
 
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
CUDAのアセンブリ言語基礎のまとめ PTXとSASSの概説
 
暗号文のままで計算しよう - 準同型暗号入門 -
暗号文のままで計算しよう - 準同型暗号入門 -暗号文のままで計算しよう - 準同型暗号入門 -
暗号文のままで計算しよう - 準同型暗号入門 -
 
直交領域探索
直交領域探索直交領域探索
直交領域探索
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門
 
π計算
π計算π計算
π計算
 
中3女子が狂える本当に気持ちのいい constexpr
中3女子が狂える本当に気持ちのいい constexpr中3女子が狂える本当に気持ちのいい constexpr
中3女子が狂える本当に気持ちのいい constexpr
 
不遇の標準ライブラリ - valarray
不遇の標準ライブラリ - valarray不遇の標準ライブラリ - valarray
不遇の標準ライブラリ - valarray
 
競技プログラミングにおけるコードの書き方とその利便性
競技プログラミングにおけるコードの書き方とその利便性競技プログラミングにおけるコードの書き方とその利便性
競技プログラミングにおけるコードの書き方とその利便性
 
Cognitive Complexity でコードの複雑さを定量的に計測しよう
Cognitive Complexity でコードの複雑さを定量的に計測しようCognitive Complexity でコードの複雑さを定量的に計測しよう
Cognitive Complexity でコードの複雑さを定量的に計測しよう
 
型安全性入門
型安全性入門型安全性入門
型安全性入門
 
LDA入門
LDA入門LDA入門
LDA入門
 

Semelhante a ラムダ計算入門

(Lambdaだけで) 純LISPのような ナニかを作る
(Lambdaだけで)純LISPのようなナニかを作る(Lambdaだけで)純LISPのようなナニかを作る
(Lambdaだけで) 純LISPのような ナニかを作るDaichi Teruya
 
Rubyの拡張をCrystalで書いてみる
Rubyの拡張をCrystalで書いてみるRubyの拡張をCrystalで書いてみる
Rubyの拡張をCrystalで書いてみる5t111111
 
12-11-30 Kashiwa.R #5 初めてのR Rを始める前に知っておきたい10のこと
12-11-30 Kashiwa.R #5 初めてのR Rを始める前に知っておきたい10のこと 12-11-30 Kashiwa.R #5 初めてのR Rを始める前に知っておきたい10のこと
12-11-30 Kashiwa.R #5 初めてのR Rを始める前に知っておきたい10のこと Haruka Ozaki
 
Ruby 3の型推論やってます
Ruby 3の型推論やってますRuby 3の型推論やってます
Ruby 3の型推論やってますmametter
 
すごいHaskell読書会 第六章 発表資料
すごいHaskell読書会 第六章 発表資料すごいHaskell読書会 第六章 発表資料
すごいHaskell読書会 第六章 発表資料Hiromasa Ohashi
 
関数の最小値を求めることから機械学習へ
関数の最小値を求めることから機械学習へ関数の最小値を求めることから機械学習へ
関数の最小値を求めることから機械学習へHiro H.
 
How wonderful to be (statically) typed 〜型が付くってスバラシイ〜
How wonderful to be (statically) typed 〜型が付くってスバラシイ〜How wonderful to be (statically) typed 〜型が付くってスバラシイ〜
How wonderful to be (statically) typed 〜型が付くってスバラシイ〜Hiromi Ishii
 
Real World OCamlを読んでLispと協調してみた
Real World OCamlを読んでLispと協調してみたReal World OCamlを読んでLispと協調してみた
Real World OCamlを読んでLispと協調してみたblackenedgold
 
自然言語処理のための機械学習入門1章
自然言語処理のための機械学習入門1章自然言語処理のための機械学習入門1章
自然言語処理のための機械学習入門1章Hiroki Mizukami
 
Haskell勉強会 in ie
Haskell勉強会 in ieHaskell勉強会 in ie
Haskell勉強会 in iemaeken2010
 
命令プログラミングから関数プログラミングへ
命令プログラミングから関数プログラミングへ命令プログラミングから関数プログラミングへ
命令プログラミングから関数プログラミングへNaoki Kitora
 
つくってあそぼ ラムダ計算インタプリタ
つくってあそぼ ラムダ計算インタプリタつくってあそぼ ラムダ計算インタプリタ
つくってあそぼ ラムダ計算インタプリタ京大 マイコンクラブ
 
秘密分散法の数理
秘密分散法の数理秘密分散法の数理
秘密分散法の数理Akito Tabira
 
数式をnumpyに落としこむコツ
数式をnumpyに落としこむコツ数式をnumpyに落としこむコツ
数式をnumpyに落としこむコツShuyo Nakatani
 
Python勉強会3-コレクションとファイル
Python勉強会3-コレクションとファイルPython勉強会3-コレクションとファイル
Python勉強会3-コレクションとファイル理 小林
 

Semelhante a ラムダ計算入門 (18)

(Lambdaだけで) 純LISPのような ナニかを作る
(Lambdaだけで)純LISPのようなナニかを作る(Lambdaだけで)純LISPのようなナニかを作る
(Lambdaだけで) 純LISPのような ナニかを作る
 
Lisp講義1
Lisp講義1Lisp講義1
Lisp講義1
 
Rubyの拡張をCrystalで書いてみる
Rubyの拡張をCrystalで書いてみるRubyの拡張をCrystalで書いてみる
Rubyの拡張をCrystalで書いてみる
 
12-11-30 Kashiwa.R #5 初めてのR Rを始める前に知っておきたい10のこと
12-11-30 Kashiwa.R #5 初めてのR Rを始める前に知っておきたい10のこと 12-11-30 Kashiwa.R #5 初めてのR Rを始める前に知っておきたい10のこと
12-11-30 Kashiwa.R #5 初めてのR Rを始める前に知っておきたい10のこと
 
Ruby 3の型推論やってます
Ruby 3の型推論やってますRuby 3の型推論やってます
Ruby 3の型推論やってます
 
すごいHaskell読書会 第六章 発表資料
すごいHaskell読書会 第六章 発表資料すごいHaskell読書会 第六章 発表資料
すごいHaskell読書会 第六章 発表資料
 
関数の最小値を求めることから機械学習へ
関数の最小値を求めることから機械学習へ関数の最小値を求めることから機械学習へ
関数の最小値を求めることから機械学習へ
 
1+1=2の話
1+1=2の話1+1=2の話
1+1=2の話
 
How wonderful to be (statically) typed 〜型が付くってスバラシイ〜
How wonderful to be (statically) typed 〜型が付くってスバラシイ〜How wonderful to be (statically) typed 〜型が付くってスバラシイ〜
How wonderful to be (statically) typed 〜型が付くってスバラシイ〜
 
Real World OCamlを読んでLispと協調してみた
Real World OCamlを読んでLispと協調してみたReal World OCamlを読んでLispと協調してみた
Real World OCamlを読んでLispと協調してみた
 
Pythonintro
PythonintroPythonintro
Pythonintro
 
自然言語処理のための機械学習入門1章
自然言語処理のための機械学習入門1章自然言語処理のための機械学習入門1章
自然言語処理のための機械学習入門1章
 
Haskell勉強会 in ie
Haskell勉強会 in ieHaskell勉強会 in ie
Haskell勉強会 in ie
 
命令プログラミングから関数プログラミングへ
命令プログラミングから関数プログラミングへ命令プログラミングから関数プログラミングへ
命令プログラミングから関数プログラミングへ
 
つくってあそぼ ラムダ計算インタプリタ
つくってあそぼ ラムダ計算インタプリタつくってあそぼ ラムダ計算インタプリタ
つくってあそぼ ラムダ計算インタプリタ
 
秘密分散法の数理
秘密分散法の数理秘密分散法の数理
秘密分散法の数理
 
数式をnumpyに落としこむコツ
数式をnumpyに落としこむコツ数式をnumpyに落としこむコツ
数式をnumpyに落としこむコツ
 
Python勉強会3-コレクションとファイル
Python勉強会3-コレクションとファイルPython勉強会3-コレクションとファイル
Python勉強会3-コレクションとファイル
 

Mais de Eita Sugimoto (10)

型推論
型推論型推論
型推論
 
電源2
電源2電源2
電源2
 
Semiotics
SemioticsSemiotics
Semiotics
 
電源
電源電源
電源
 
Lecture4
Lecture4Lecture4
Lecture4
 
Lecture3
Lecture3Lecture3
Lecture3
 
Lecture2
Lecture2Lecture2
Lecture2
 
Lecture1
Lecture1Lecture1
Lecture1
 
Summer seminar
Summer seminarSummer seminar
Summer seminar
 
Functional Pearl + Brainfuck
Functional Pearl + BrainfuckFunctional Pearl + Brainfuck
Functional Pearl + Brainfuck
 

ラムダ計算入門

Notas do Editor

  1. \n
  2. \n
  3. \n
  4. \n
  5. \n
  6. \n
  7. \n
  8. \n
  9. \n
  10. \n
  11. \n
  12. \n
  13. \n
  14. \n
  15. \n
  16. \n
  17. \n
  18. \n
  19. \n
  20. \n
  21. \n
  22. \n
  23. \n
  24. \n
  25. \n
  26. \n
  27. \n
  28. \n
  29. \n
  30. \n
  31. \n
  32. \n
  33. \n
  34. \n
  35. \n
  36. \n
  37. \n
  38. \n
  39. \n