SlideShare uma empresa Scribd logo
1 de 32
Baixar para ler offline
Rethinking	
  Energy,	
  Materials,	
  &	
  
Transporta6on	
  in	
  Passive	
  Houses	
  
Source:	
  Hausbau-­‐Beratung24.de	
  
Embodied	
  
Energy	
  and	
  
Carbon	
  
Steelmaking	
  (Source:	
  Jupiter	
  Images	
  Corpora6on)	
  
Embodied	
  Energy	
  vs.	
  Carbon	
  Footprint	
  
Embodied	
  Energy	
  =	
  Sum	
  of	
  
all	
  energy	
  needed	
  to	
  
produce	
  any	
  product,	
  as	
  if	
  
that	
  energy	
  was	
  
incorporated	
  or	
  "embodied"	
  
into	
  the	
  product	
  itself.	
  
Source:	
  Building	
  Green	
  
Carbon	
  Footprint	
  =	
  Sum	
  
of	
  all	
  greenhouse	
  gases	
  
emiQed	
  by	
  the	
  full	
  life	
  
cycle	
  of	
  a	
  product.	
  
Life	
  Cycle	
  Energy	
  Assessment	
  for	
  Passive	
  Houses	
  =	
  	
  
Embodied	
  Energy	
  +	
  Opera6ons	
  +	
  Maintenance	
  
Source:	
  Stephan,	
  André,	
  Robert	
  H.	
  Crawford,	
  and	
  Kristel	
  De	
  MyQenaere.	
  "A	
  Comprehensive	
  
Assessment	
  of	
  the	
  Life	
  Cycle	
  Energy	
  Demand	
  of	
  Passive	
  Houses."	
  Applied	
  Energy112	
  (2013):	
  
23-­‐34.	
  Print.	
  
But	
  source	
  data	
  may	
  not	
  be	
  appropriate	
  
for	
  our	
  context.	
  	
  
DETAILS
	
  
Base	
  case	
  passive	
  house:	
  	
  
•  Period	
  of	
  analysis	
  =	
  100	
  
years	
  
•  Usable	
  floor	
  area	
  =	
  
3,197	
  a2	
  
•  Structure:	
  Steel-­‐framed,	
  	
  
concrete	
  floor	
  slabs	
  
•  Façade	
  =	
  Block	
  walls,	
  
Glued	
  bricks	
  –	
  220	
  mm	
  
of	
  polyurethane	
  
insula6on	
  –	
  	
  
•  Triple	
  glazed,	
  argon	
  
filled,	
  wood	
  windows	
  
•  Roof	
  =	
  TerracoQa	
  6les	
  –	
  
300	
  mm	
  of	
  
polyurethane	
  insula6on	
  
and	
  100	
  mm	
  of	
  rock	
  
wool	
  insula6on	
  
	
  0	
  
200	
  
400	
  
600	
  
800	
  
1000	
  
1200	
  
Base	
  Case	
   As-­‐Built	
  
Stephan	
  et	
  al	
  Study	
  uses	
  
Australian	
  figures	
  for	
  Belgian	
  case	
  
Energy	
  Choices	
  Not	
  Fixed	
  
Study:	
  "The	
  embodied,	
  opera6onal	
  and	
  transport	
  energy	
  
requirements	
  represent	
  40.0%,	
  32.8%	
  and	
  27.2%	
  of	
  the	
  
total,	
  respec6vely."	
  	
  
Source:	
  Stephan	
  et	
  al	
  
However,	
  material	
  and	
  
process	
  choices	
  have	
  a	
  
significant	
  effect	
  on	
  
embodied	
  energy.	
  
Map	
  of	
  Material	
  origina6on	
  loca6ons:	
  by	
  Linnean	
  
Carbon	
  Emissions	
  
Two	
  Very	
  similar	
  office	
  
renova6on	
  projects	
  
	
  
Upper	
  total	
  =	
  86	
  MJ/sf	
  
	
  
Lower	
  total	
  =	
  43	
  MJ/sf	
  
Life	
  Cycle	
  Energy	
  Demand:	
  
Embodied,	
  Opera6onal,	
  &	
  Transport	
  
Embodied:	
  
4,001,000	
  kWh	
  
145,332	
  kWh/C2	
  
	
  
Graph	
  Compares	
  	
  
GJ	
  and	
  GJ/m2	
  
1	
  GJ	
  =	
  278	
  kWh	
  
1m²	
  =	
  10.8C²	
  
	
  
OperaLonal:	
  
3,280,277	
  kWh	
  
118,885	
  kWh/C2	
   Transport:	
  
2,273,333	
  kWh	
  
98,700	
  kWh/C2	
  
Total:	
  
10,013,611	
  kWh	
  
362,918	
  kWh/C2	
  
	
  
100	
  Year	
  Analysis	
  Period	
  	
  
	
  
Life	
  Cycle	
  Energy	
  Demand	
  of	
  Passive	
  
Houses	
  Compared	
  with	
  Varia6ons	
  	
  
Graph	
  
Compares	
  	
  
GJ	
  of	
  energy	
  
over	
  100	
  
years	
  
	
  
Standard	
  house	
  with	
  
electrical	
  appliances	
  
now	
  powered	
  by	
  gas	
  
uses	
  9,292,631	
  kWh	
  
Passive	
  house	
  with	
  
electrical	
  appliances	
  
now	
  powered	
  by	
  gas	
  
uses	
  8,660,732	
  kWh	
  
Standard	
  house	
  with	
  
electrical	
  appliances	
  
now	
  powered	
  by	
  gas	
  
plus	
  reduced	
  
operaLonal	
  energy	
  
Passive	
  
house	
  base	
  
case	
  uses	
  
10,013,611	
  
kWh	
   Standard	
  
house	
  uses	
  
10,070,277	
  
kWh	
  
Embodied	
  vs.	
  Opera6onal	
  Energy	
  
This	
  needs	
  some	
  explana6on.	
  What	
  are	
  the	
  two	
  bars	
  and	
  the	
  confidence	
  intervals?	
  
And	
  a	
  way	
  more	
  descrip6ve	
  6tle.	
  
EcoCalculator	
  for	
  North	
  East	
  
Belgian	
  Style	
  =	
  7,376	
  GJ	
  
EcoCalulator	
  for	
  NE	
  
US	
  Style	
  =	
  3,600	
  GJ	
  
OE	
  =	
  35	
  Kbtu/sf/yr	
  	
  
Embodied	
  Energy	
  By	
  Material	
   Timber	
  use	
  in	
  base	
  case:	
  
•  158.9	
  a3	
  -­‐	
  hardwood	
  
window	
  frames	
  	
  
•  247.2	
  a3	
  -­‐	
  parquet	
  
flooring;	
  hollow	
  core	
  MDF	
  
doors;	
  roof;	
  cupboards	
  
and	
  closets	
  
•  10.6	
  a3	
  -­‐	
  soawood	
  
(framing)	
  in	
  hollow	
  core	
  
MDF	
  doors	
  
•  416.7	
  a3	
  =	
  Total	
  
Carbon	
  Emissions	
  By	
  Material	
  
Other	
  poten6al	
  uses	
  of	
  6mber	
  in	
  
passive	
  houses:	
  
•  Upper	
  floor	
  slabs	
  
•  Roof	
  structure	
  
•  Columns	
  and	
  beams	
  
Source:	
  Coopera6ve	
  Research	
  Centre	
  for	
  Greenhouse	
  Accoun6ng	
  (Australia)	
  
Carbon	
  Emissions	
  
Key	
  Conclusions:	
  
§  Metal	
  has	
  the	
  highest	
  carbon	
  intensity.	
  
§  The	
  amount	
  of	
  carbon	
  generally	
  correlates	
  
with	
  the	
  amount	
  of	
  material.	
  
• 	
  	
  Time	
  Value	
  of	
  Carbon	
  Savings	
  
	
  	
  	
  	
  Carbon	
  saved	
  now	
  is	
  worth	
  more	
  than	
  Carbon	
  later	
  
	
  	
  	
  	
  (area	
  under	
  the	
  line	
  is	
  total	
  carbon	
  emiQed)	
  
	
  
	
  
10%	
  reduc6on	
  per	
  year	
  
Start	
  slow	
  -­‐	
  increase	
  rate	
  of	
  reduc6on	
  
Start	
  fast	
  -­‐	
  decrease	
  rate	
  of	
  reduc6on	
  
Time	
  
CarbonReduction WHY	
  FOCUS	
  ON	
  EMBODIED	
  CARBON?	
  
Carbon	
  &	
  Chemical	
  of	
  Concern	
  Accoun7ng	
  
§  Typical	
  Interior	
  Office	
  Renova6on	
  	
  
§  Calculated	
  carbon	
  emissions	
  for	
  materials	
  
and	
  contractor	
  commu6ng	
  
§  Assessed	
  VOC	
  quan6ty	
  and	
  quality	
  of	
  
materials	
  
§  Evaluated	
  economic	
  impact	
  on	
  local	
  and	
  
na6onal	
  community	
  
Toxicity	
  of	
  Materials	
  
PVC	
  piping	
  (Source:	
  True	
  Well	
  Pipes)	
  
Red	
  Lists	
  and	
  Transparency	
  
“Red	
  lists,”	
  such	
  as	
  the	
  
Living	
  Building	
  Challenge’s	
  
are	
  increasingly	
  common	
  
but	
  cau6on	
  is	
  advised,	
  as	
  	
  
new	
  subs6tutes	
  for	
  listed	
  
chemical	
  may	
  be	
  as	
  bad	
  or	
  
worse.	
  
LEED	
  ra6ng	
  system	
  rewards	
  
projects	
  for	
  using	
  products	
  
with	
  low	
  VOC	
  emissions,	
  
but	
  doesn’t	
  address	
  
chemical	
  cons6tuents	
  of	
  
building	
  products.	
  
LEED	
  
Materials	
  &	
  Resources	
   Energy	
  &	
  Air	
  Quality	
  
Risks	
  From	
  
Adhesives	
  &	
  Sealants	
  
Source:	
  Green	
  Building	
  Supply	
   Source:	
  Building	
  Green	
  
Greener	
  Adhesive	
  Choices	
  
Acrylic	
  Tape	
  
Butyl	
  Rubber	
  Tape	
  
Source:	
  Building	
  Green	
  
To	
  minimize	
  environmental	
  and	
  
health	
  impacts:	
  	
  
	
  
•  Select	
  low-­‐emiyng	
  tapes	
  over	
  
solvent-­‐based,	
  wet-­‐applied	
  
products.	
  	
  
•  Provide	
  adequate	
  worker	
  
training	
  and	
  protec6on.	
  
Risks	
  From	
  Insula6on	
  
Spray	
  Polyurethane	
  
Foam	
  (SPF)	
  
Extruded	
  
Polystyrene	
  (XPS)	
  	
  
“The	
  more	
  insula6on	
  the	
  beQer”	
  is	
  
common	
  refrain	
  in	
  green	
  building	
  
industry.	
  Insula6on	
  =	
  strategy	
  for	
  
net-­‐zero-­‐energy	
  &	
  carbon-­‐neutral	
  
performance	
  	
  
	
  
But	
  both	
  XPS	
  and	
  SPF	
  contribute	
  to	
  climate	
  
change	
  via	
  embodied	
  energy	
  and	
  blowing-­‐
agent	
  leakage.	
  And,	
  the	
  brominated	
  flame	
  
retardant	
  HBCD	
  in	
  XPS	
  is	
  persistent,	
  
bioaccumula6ve,	
  and	
  toxic	
  in	
  animal	
  
studies.	
  
	
  
Greener	
  Insula6on	
  Choices	
  
Mineral	
  Wool	
  
Cellulose	
  
Source:	
  Building	
  Green	
  
Wood	
  
•  Compared	
  with	
  nonrenewable	
  building	
  
materials,	
  wood:	
  
– is	
  produced	
  largely	
  from	
  input	
  of	
  sunlight	
  
(through	
  photosynthesis),	
  	
  
– sequesters	
  carbon	
  in	
  its	
  produc6on,	
  	
  
– carries	
  low	
  embodied	
  energy,	
  and	
  	
  
– is	
  nontoxic,	
  reusable,	
  and	
  biodegradable.	
  
Increasing	
  Demand	
  for	
  Materials	
  	
  
with	
  Low	
  Emissions	
  and	
  VOCs	
  
Improve	
  IAQ	
  Increases	
  11%	
  from	
  
0%	
   10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
  
Reduce	
  Energy	
  Consump6on	
  
Lower	
  Greenhouse	
  Gas	
  
Emissions	
  
Protect	
  Natural	
  Resources	
  
Reduce	
  Water	
  Consump6on	
  
Improve	
  Indoor	
  Air	
  Quality	
  
2012	
  
2008	
  
Most	
  Important	
  Environmental	
  Reasons	
  	
  
for	
  Building	
  Green	
  
Chemicals	
  of	
  Concern	
  Present	
  in	
  Project	
  
§  Formaldehyde	
  was	
  found	
  in	
  plywood	
  –	
  a	
  
frequently	
  used	
  product	
  
§  PVC	
  was	
  found	
  in	
  some	
  ‘green’	
  flooring	
  
§  Phthalates	
  were	
  found	
  in	
  adhesives	
  
Chemicals	
  of	
  Concern	
  per	
  Building	
  Product	
  
§  Carpet	
  by	
  far	
  the	
  worst	
  VOC	
  emiQer,	
  mainly	
  
because	
  of	
  the	
  amount	
  of	
  product	
  used.	
  
§  Sheetrock	
  contains	
  formaldehyde;	
  there	
  is	
  an	
  
es6mated	
  22	
  mg	
  in	
  base	
  case	
  passive	
  house.	
  
Total	
  Weight	
  of	
  Chemicals	
  of	
  Concern	
  in	
  the	
  Project	
  
Contractor	
  
Transporta6on	
  
During	
  
Construc6on	
  
New	
  Bedford:	
  .90	
  
MT	
  C02e	
  for	
  140	
  
labor	
  hours	
  
(1	
  MT/156	
  hours)	
  
Easton:	
  3.62	
  MT	
  C02e	
  
for	
  1,274	
  labor	
  hours	
  
(1	
  MT/354	
  hours)	
  
Woburn:	
  1.89	
  MT	
  C02e	
  for	
  
1,205	
  labor	
  hours	
  
(1	
  MT/638	
  hours)	
   Boston:	
  .44	
  MT	
  C02e	
  
for	
  1,873	
  labor	
  hours	
  
(1	
  MT/4,257	
  hours)	
  
Contractor	
  
Transporta6on	
  
During	
  
Construc6on	
  
Transporta6on	
  Post-­‐Construc6on	
  
Study	
  Trans	
  Energy	
  per	
  year	
  =	
  93	
  MBtu	
  
Ques6ons	
  
As	
  we	
  reduce	
  opera6onal	
  energy,	
  
how	
  can	
  we	
  find	
  similar	
  
reduc6ons	
  in	
  other	
  impacts?	
  
•  Reduce	
  embodied	
  carbon	
  
materials?	
  
•  Lower	
  toxicity	
  of	
  materials?	
  
•  Minimize	
  loca6on	
  effects?	
  

Mais conteúdo relacionado

Mais procurados

013_20160726_Overview of net zero energy buildings in the US
013_20160726_Overview of net zero energy buildings in the US013_20160726_Overview of net zero energy buildings in the US
013_20160726_Overview of net zero energy buildings in the USsenicsummerschool
 
Operational and Embodied Energy in three houses
Operational and Embodied Energy in three housesOperational and Embodied Energy in three houses
Operational and Embodied Energy in three housesjpcardenas
 
Lesson Lane Design for nzeb by Hugh Dolan
Lesson Lane Design for nzeb   by Hugh DolanLesson Lane Design for nzeb   by Hugh Dolan
Lesson Lane Design for nzeb by Hugh DolanSustainableEnergyAut
 
Deep Retrofit: Deep Retrofits across Europe,Passive House Institute
Deep Retrofit: Deep Retrofits across Europe,Passive House InstituteDeep Retrofit: Deep Retrofits across Europe,Passive House Institute
Deep Retrofit: Deep Retrofits across Europe,Passive House InstituteSustainableEnergyAut
 
Ccse Net Zero Energy
Ccse Net Zero EnergyCcse Net Zero Energy
Ccse Net Zero Energyccseerc
 
2018 03 Embodied Energy in Buildings
2018 03 Embodied Energy in Buildings2018 03 Embodied Energy in Buildings
2018 03 Embodied Energy in BuildingsJennifer Fox
 
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013Shanti Pless
 
Deep Retrofit: Irish Housing Building Standards
Deep Retrofit: Irish Housing Building StandardsDeep Retrofit: Irish Housing Building Standards
Deep Retrofit: Irish Housing Building StandardsSustainableEnergyAut
 
Material LIFE: The Embodied Energy of Building Materials
Material LIFE: The Embodied Energy of Building MaterialsMaterial LIFE: The Embodied Energy of Building Materials
Material LIFE: The Embodied Energy of Building MaterialsCannonDesign
 
Energy Efficient Buildings Codes
Energy Efficient Buildings CodesEnergy Efficient Buildings Codes
Energy Efficient Buildings CodesIbrahim Al-Hudhaif
 
Embodied energy and embodied embodied carbon
Embodied energy and embodied embodied carbonEmbodied energy and embodied embodied carbon
Embodied energy and embodied embodied carbonCraig Jones
 
Energy and Indoor Air Quality Impacts of DOAS Retrofits in Small Commercial B...
Energy and Indoor Air Quality Impacts of DOAS Retrofits in Small Commercial B...Energy and Indoor Air Quality Impacts of DOAS Retrofits in Small Commercial B...
Energy and Indoor Air Quality Impacts of DOAS Retrofits in Small Commercial B...RDH Building Science
 
Building an even better Passivhaus School
Building an even better Passivhaus SchoolBuilding an even better Passivhaus School
Building an even better Passivhaus SchoolNick Grant
 
Deep Retrofit: The Dun Laoghaire-Rathdown Experience
Deep Retrofit: The Dun Laoghaire-Rathdown ExperienceDeep Retrofit: The Dun Laoghaire-Rathdown Experience
Deep Retrofit: The Dun Laoghaire-Rathdown ExperienceSustainableEnergyAut
 
HVAC Energy Efficiency in Commercial Buildings
HVAC Energy Efficiency in Commercial BuildingsHVAC Energy Efficiency in Commercial Buildings
HVAC Energy Efficiency in Commercial BuildingsAlan Richardson
 
Achieving net zero energy at scale gb12 111512
Achieving net zero energy at scale gb12 111512Achieving net zero energy at scale gb12 111512
Achieving net zero energy at scale gb12 111512Tom Hootman
 
Optimization of Energy Efficiency and Conservation in Green Building Design U...
Optimization of Energy Efficiency and Conservation in Green Building Design U...Optimization of Energy Efficiency and Conservation in Green Building Design U...
Optimization of Energy Efficiency and Conservation in Green Building Design U...Totok R Biyanto
 
Passivhaus Archive Hereford
Passivhaus Archive HerefordPassivhaus Archive Hereford
Passivhaus Archive HerefordNick Grant
 

Mais procurados (20)

013_20160726_Overview of net zero energy buildings in the US
013_20160726_Overview of net zero energy buildings in the US013_20160726_Overview of net zero energy buildings in the US
013_20160726_Overview of net zero energy buildings in the US
 
Operational and Embodied Energy in three houses
Operational and Embodied Energy in three housesOperational and Embodied Energy in three houses
Operational and Embodied Energy in three houses
 
Lesson Lane Design for nzeb by Hugh Dolan
Lesson Lane Design for nzeb   by Hugh DolanLesson Lane Design for nzeb   by Hugh Dolan
Lesson Lane Design for nzeb by Hugh Dolan
 
Deep Retrofit: Deep Retrofits across Europe,Passive House Institute
Deep Retrofit: Deep Retrofits across Europe,Passive House InstituteDeep Retrofit: Deep Retrofits across Europe,Passive House Institute
Deep Retrofit: Deep Retrofits across Europe,Passive House Institute
 
Ccse Net Zero Energy
Ccse Net Zero EnergyCcse Net Zero Energy
Ccse Net Zero Energy
 
2018 03 Embodied Energy in Buildings
2018 03 Embodied Energy in Buildings2018 03 Embodied Energy in Buildings
2018 03 Embodied Energy in Buildings
 
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
 
Deep Retrofit: Irish Housing Building Standards
Deep Retrofit: Irish Housing Building StandardsDeep Retrofit: Irish Housing Building Standards
Deep Retrofit: Irish Housing Building Standards
 
Material LIFE: The Embodied Energy of Building Materials
Material LIFE: The Embodied Energy of Building MaterialsMaterial LIFE: The Embodied Energy of Building Materials
Material LIFE: The Embodied Energy of Building Materials
 
Energy Efficient Buildings Codes
Energy Efficient Buildings CodesEnergy Efficient Buildings Codes
Energy Efficient Buildings Codes
 
Embodied energy and embodied embodied carbon
Embodied energy and embodied embodied carbonEmbodied energy and embodied embodied carbon
Embodied energy and embodied embodied carbon
 
Energy and Indoor Air Quality Impacts of DOAS Retrofits in Small Commercial B...
Energy and Indoor Air Quality Impacts of DOAS Retrofits in Small Commercial B...Energy and Indoor Air Quality Impacts of DOAS Retrofits in Small Commercial B...
Energy and Indoor Air Quality Impacts of DOAS Retrofits in Small Commercial B...
 
Building an even better Passivhaus School
Building an even better Passivhaus SchoolBuilding an even better Passivhaus School
Building an even better Passivhaus School
 
Low embodied energy
Low embodied energyLow embodied energy
Low embodied energy
 
Deep Retrofit: The Dun Laoghaire-Rathdown Experience
Deep Retrofit: The Dun Laoghaire-Rathdown ExperienceDeep Retrofit: The Dun Laoghaire-Rathdown Experience
Deep Retrofit: The Dun Laoghaire-Rathdown Experience
 
HVAC Energy Efficiency in Commercial Buildings
HVAC Energy Efficiency in Commercial BuildingsHVAC Energy Efficiency in Commercial Buildings
HVAC Energy Efficiency in Commercial Buildings
 
Achieving net zero energy at scale gb12 111512
Achieving net zero energy at scale gb12 111512Achieving net zero energy at scale gb12 111512
Achieving net zero energy at scale gb12 111512
 
Karpiak Mulhall Passive House
Karpiak Mulhall Passive HouseKarpiak Mulhall Passive House
Karpiak Mulhall Passive House
 
Optimization of Energy Efficiency and Conservation in Green Building Design U...
Optimization of Energy Efficiency and Conservation in Green Building Design U...Optimization of Energy Efficiency and Conservation in Green Building Design U...
Optimization of Energy Efficiency and Conservation in Green Building Design U...
 
Passivhaus Archive Hereford
Passivhaus Archive HerefordPassivhaus Archive Hereford
Passivhaus Archive Hereford
 

Semelhante a Zak Patten - Presentation - Passive House Presentation

Green building materials
Green building materialsGreen building materials
Green building materialschazza1234
 
Elements of Sustainable Construction and Design Parameters
Elements of Sustainable Construction and Design ParametersElements of Sustainable Construction and Design Parameters
Elements of Sustainable Construction and Design ParametersAjit Sabnis
 
Reframed Tech Series: Embodied carbon & deep retrofits
Reframed Tech Series: Embodied carbon & deep retrofitsReframed Tech Series: Embodied carbon & deep retrofits
Reframed Tech Series: Embodied carbon & deep retrofitsPembina Institute
 
N. Carbone Gamarra. A comprehensive comparison 5 & 6 Stars, Green Star Buildi...
N. Carbone Gamarra. A comprehensive comparison 5 & 6 Stars, Green Star Buildi...N. Carbone Gamarra. A comprehensive comparison 5 & 6 Stars, Green Star Buildi...
N. Carbone Gamarra. A comprehensive comparison 5 & 6 Stars, Green Star Buildi...Nicolas Carbone Gamarra
 
Building materials selection ee- treloar, fay
Building materials selection   ee- treloar, fayBuilding materials selection   ee- treloar, fay
Building materials selection ee- treloar, fayFernando Henrique Neves
 
Embodied Energy In Building Construction
Embodied Energy In Building ConstructionEmbodied Energy In Building Construction
Embodied Energy In Building ConstructionSandeep Jaiswal
 
Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...
Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...
Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...cnglenn
 
Sam Chapman | Electricity Sensitivity
Sam Chapman | Electricity SensitivitySam Chapman | Electricity Sensitivity
Sam Chapman | Electricity Sensitivityicarb
 
BCI Equinox 2022 - CLB Kien Truc Xanh - Ms PhanThuHang - EN
BCI Equinox 2022 - CLB Kien Truc Xanh - Ms PhanThuHang - ENBCI Equinox 2022 - CLB Kien Truc Xanh - Ms PhanThuHang - EN
BCI Equinox 2022 - CLB Kien Truc Xanh - Ms PhanThuHang - ENARDOR
 
Rising To The Challenge: Toward Carbon Neutral Buildings
Rising To The Challenge: Toward Carbon Neutral BuildingsRising To The Challenge: Toward Carbon Neutral Buildings
Rising To The Challenge: Toward Carbon Neutral BuildingsTom Hootman
 
Energy Saving Lighting Devices
Energy Saving Lighting DevicesEnergy Saving Lighting Devices
Energy Saving Lighting DevicesCHETAN D. GANDATE
 
Carbon Accounting Buildings | Sue Roaf
Carbon Accounting Buildings | Sue Roaf Carbon Accounting Buildings | Sue Roaf
Carbon Accounting Buildings | Sue Roaf icarb
 

Semelhante a Zak Patten - Presentation - Passive House Presentation (20)

Green building materials
Green building materialsGreen building materials
Green building materials
 
Elements of Sustainable Construction and Design Parameters
Elements of Sustainable Construction and Design ParametersElements of Sustainable Construction and Design Parameters
Elements of Sustainable Construction and Design Parameters
 
Reframed Tech Series: Embodied carbon & deep retrofits
Reframed Tech Series: Embodied carbon & deep retrofitsReframed Tech Series: Embodied carbon & deep retrofits
Reframed Tech Series: Embodied carbon & deep retrofits
 
N. Carbone Gamarra. A comprehensive comparison 5 & 6 Stars, Green Star Buildi...
N. Carbone Gamarra. A comprehensive comparison 5 & 6 Stars, Green Star Buildi...N. Carbone Gamarra. A comprehensive comparison 5 & 6 Stars, Green Star Buildi...
N. Carbone Gamarra. A comprehensive comparison 5 & 6 Stars, Green Star Buildi...
 
Building materials selection ee- treloar, fay
Building materials selection   ee- treloar, fayBuilding materials selection   ee- treloar, fay
Building materials selection ee- treloar, fay
 
Embodied Energy In Building Construction
Embodied Energy In Building ConstructionEmbodied Energy In Building Construction
Embodied Energy In Building Construction
 
Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...
Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...
Incorporation of Carbon Footprint Estimates into Remedial Alternatives Evalua...
 
Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...
Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...
Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...
 
Sam Chapman | Electricity Sensitivity
Sam Chapman | Electricity SensitivitySam Chapman | Electricity Sensitivity
Sam Chapman | Electricity Sensitivity
 
BCI Equinox 2022 - CLB Kien Truc Xanh - Ms PhanThuHang - EN
BCI Equinox 2022 - CLB Kien Truc Xanh - Ms PhanThuHang - ENBCI Equinox 2022 - CLB Kien Truc Xanh - Ms PhanThuHang - EN
BCI Equinox 2022 - CLB Kien Truc Xanh - Ms PhanThuHang - EN
 
Innovation through carbon
Innovation through carbonInnovation through carbon
Innovation through carbon
 
Rising To The Challenge: Toward Carbon Neutral Buildings
Rising To The Challenge: Toward Carbon Neutral BuildingsRising To The Challenge: Toward Carbon Neutral Buildings
Rising To The Challenge: Toward Carbon Neutral Buildings
 
Energy Saving Lighting Devices
Energy Saving Lighting DevicesEnergy Saving Lighting Devices
Energy Saving Lighting Devices
 
Carbon Accounting Buildings | Sue Roaf
Carbon Accounting Buildings | Sue Roaf Carbon Accounting Buildings | Sue Roaf
Carbon Accounting Buildings | Sue Roaf
 
The Spencer Pavillion 100152598
The Spencer Pavillion 100152598The Spencer Pavillion 100152598
The Spencer Pavillion 100152598
 
CCUS in the USA: Activity, Prospects, and Academic Research - plenary present...
CCUS in the USA: Activity, Prospects, and Academic Research - plenary present...CCUS in the USA: Activity, Prospects, and Academic Research - plenary present...
CCUS in the USA: Activity, Prospects, and Academic Research - plenary present...
 
Zero Carbon technology
Zero Carbon technologyZero Carbon technology
Zero Carbon technology
 
Paul Fennell (Imperial College London) - Cost comparison of different technol...
Paul Fennell (Imperial College London) - Cost comparison of different technol...Paul Fennell (Imperial College London) - Cost comparison of different technol...
Paul Fennell (Imperial College London) - Cost comparison of different technol...
 
LCA
LCALCA
LCA
 
Steel Making Methods
Steel Making MethodsSteel Making Methods
Steel Making Methods
 

Zak Patten - Presentation - Passive House Presentation

  • 1. Rethinking  Energy,  Materials,  &   Transporta6on  in  Passive  Houses   Source:  Hausbau-­‐Beratung24.de  
  • 2. Embodied   Energy  and   Carbon   Steelmaking  (Source:  Jupiter  Images  Corpora6on)  
  • 3. Embodied  Energy  vs.  Carbon  Footprint   Embodied  Energy  =  Sum  of   all  energy  needed  to   produce  any  product,  as  if   that  energy  was   incorporated  or  "embodied"   into  the  product  itself.   Source:  Building  Green   Carbon  Footprint  =  Sum   of  all  greenhouse  gases   emiQed  by  the  full  life   cycle  of  a  product.  
  • 4. Life  Cycle  Energy  Assessment  for  Passive  Houses  =     Embodied  Energy  +  Opera6ons  +  Maintenance   Source:  Stephan,  André,  Robert  H.  Crawford,  and  Kristel  De  MyQenaere.  "A  Comprehensive   Assessment  of  the  Life  Cycle  Energy  Demand  of  Passive  Houses."  Applied  Energy112  (2013):   23-­‐34.  Print.  
  • 5. But  source  data  may  not  be  appropriate   for  our  context.     DETAILS   Base  case  passive  house:     •  Period  of  analysis  =  100   years   •  Usable  floor  area  =   3,197  a2   •  Structure:  Steel-­‐framed,     concrete  floor  slabs   •  Façade  =  Block  walls,   Glued  bricks  –  220  mm   of  polyurethane   insula6on  –     •  Triple  glazed,  argon   filled,  wood  windows   •  Roof  =  TerracoQa  6les  –   300  mm  of   polyurethane  insula6on   and  100  mm  of  rock   wool  insula6on    0   200   400   600   800   1000   1200   Base  Case   As-­‐Built   Stephan  et  al  Study  uses   Australian  figures  for  Belgian  case  
  • 6. Energy  Choices  Not  Fixed   Study:  "The  embodied,  opera6onal  and  transport  energy   requirements  represent  40.0%,  32.8%  and  27.2%  of  the   total,  respec6vely."     Source:  Stephan  et  al   However,  material  and   process  choices  have  a   significant  effect  on   embodied  energy.   Map  of  Material  origina6on  loca6ons:  by  Linnean  
  • 7. Carbon  Emissions   Two  Very  similar  office   renova6on  projects     Upper  total  =  86  MJ/sf     Lower  total  =  43  MJ/sf  
  • 8. Life  Cycle  Energy  Demand:   Embodied,  Opera6onal,  &  Transport   Embodied:   4,001,000  kWh   145,332  kWh/C2     Graph  Compares     GJ  and  GJ/m2   1  GJ  =  278  kWh   1m²  =  10.8C²     OperaLonal:   3,280,277  kWh   118,885  kWh/C2   Transport:   2,273,333  kWh   98,700  kWh/C2   Total:   10,013,611  kWh   362,918  kWh/C2     100  Year  Analysis  Period      
  • 9. Life  Cycle  Energy  Demand  of  Passive   Houses  Compared  with  Varia6ons     Graph   Compares     GJ  of  energy   over  100   years     Standard  house  with   electrical  appliances   now  powered  by  gas   uses  9,292,631  kWh   Passive  house  with   electrical  appliances   now  powered  by  gas   uses  8,660,732  kWh   Standard  house  with   electrical  appliances   now  powered  by  gas   plus  reduced   operaLonal  energy   Passive   house  base   case  uses   10,013,611   kWh   Standard   house  uses   10,070,277   kWh  
  • 10. Embodied  vs.  Opera6onal  Energy   This  needs  some  explana6on.  What  are  the  two  bars  and  the  confidence  intervals?   And  a  way  more  descrip6ve  6tle.   EcoCalculator  for  North  East   Belgian  Style  =  7,376  GJ   EcoCalulator  for  NE   US  Style  =  3,600  GJ   OE  =  35  Kbtu/sf/yr    
  • 11. Embodied  Energy  By  Material   Timber  use  in  base  case:   •  158.9  a3  -­‐  hardwood   window  frames     •  247.2  a3  -­‐  parquet   flooring;  hollow  core  MDF   doors;  roof;  cupboards   and  closets   •  10.6  a3  -­‐  soawood   (framing)  in  hollow  core   MDF  doors   •  416.7  a3  =  Total  
  • 12. Carbon  Emissions  By  Material   Other  poten6al  uses  of  6mber  in   passive  houses:   •  Upper  floor  slabs   •  Roof  structure   •  Columns  and  beams   Source:  Coopera6ve  Research  Centre  for  Greenhouse  Accoun6ng  (Australia)  
  • 13. Carbon  Emissions   Key  Conclusions:   §  Metal  has  the  highest  carbon  intensity.   §  The  amount  of  carbon  generally  correlates   with  the  amount  of  material.  
  • 14. •     Time  Value  of  Carbon  Savings          Carbon  saved  now  is  worth  more  than  Carbon  later          (area  under  the  line  is  total  carbon  emiQed)       10%  reduc6on  per  year   Start  slow  -­‐  increase  rate  of  reduc6on   Start  fast  -­‐  decrease  rate  of  reduc6on   Time   CarbonReduction WHY  FOCUS  ON  EMBODIED  CARBON?  
  • 15. Carbon  &  Chemical  of  Concern  Accoun7ng   §  Typical  Interior  Office  Renova6on     §  Calculated  carbon  emissions  for  materials   and  contractor  commu6ng   §  Assessed  VOC  quan6ty  and  quality  of   materials   §  Evaluated  economic  impact  on  local  and   na6onal  community  
  • 16. Toxicity  of  Materials   PVC  piping  (Source:  True  Well  Pipes)  
  • 17. Red  Lists  and  Transparency   “Red  lists,”  such  as  the   Living  Building  Challenge’s   are  increasingly  common   but  cau6on  is  advised,  as     new  subs6tutes  for  listed   chemical  may  be  as  bad  or   worse.   LEED  ra6ng  system  rewards   projects  for  using  products   with  low  VOC  emissions,   but  doesn’t  address   chemical  cons6tuents  of   building  products.  
  • 18.
  • 19. LEED   Materials  &  Resources   Energy  &  Air  Quality  
  • 20. Risks  From   Adhesives  &  Sealants   Source:  Green  Building  Supply   Source:  Building  Green  
  • 21. Greener  Adhesive  Choices   Acrylic  Tape   Butyl  Rubber  Tape   Source:  Building  Green   To  minimize  environmental  and   health  impacts:       •  Select  low-­‐emiyng  tapes  over   solvent-­‐based,  wet-­‐applied   products.     •  Provide  adequate  worker   training  and  protec6on.  
  • 22. Risks  From  Insula6on   Spray  Polyurethane   Foam  (SPF)   Extruded   Polystyrene  (XPS)     “The  more  insula6on  the  beQer”  is   common  refrain  in  green  building   industry.  Insula6on  =  strategy  for   net-­‐zero-­‐energy  &  carbon-­‐neutral   performance       But  both  XPS  and  SPF  contribute  to  climate   change  via  embodied  energy  and  blowing-­‐ agent  leakage.  And,  the  brominated  flame   retardant  HBCD  in  XPS  is  persistent,   bioaccumula6ve,  and  toxic  in  animal   studies.    
  • 23. Greener  Insula6on  Choices   Mineral  Wool   Cellulose   Source:  Building  Green  
  • 24. Wood   •  Compared  with  nonrenewable  building   materials,  wood:   – is  produced  largely  from  input  of  sunlight   (through  photosynthesis),     – sequesters  carbon  in  its  produc6on,     – carries  low  embodied  energy,  and     – is  nontoxic,  reusable,  and  biodegradable.  
  • 25. Increasing  Demand  for  Materials     with  Low  Emissions  and  VOCs   Improve  IAQ  Increases  11%  from   0%   10%   20%   30%   40%   50%   60%   70%   80%   Reduce  Energy  Consump6on   Lower  Greenhouse  Gas   Emissions   Protect  Natural  Resources   Reduce  Water  Consump6on   Improve  Indoor  Air  Quality   2012   2008   Most  Important  Environmental  Reasons     for  Building  Green  
  • 26. Chemicals  of  Concern  Present  in  Project   §  Formaldehyde  was  found  in  plywood  –  a   frequently  used  product   §  PVC  was  found  in  some  ‘green’  flooring   §  Phthalates  were  found  in  adhesives  
  • 27. Chemicals  of  Concern  per  Building  Product   §  Carpet  by  far  the  worst  VOC  emiQer,  mainly   because  of  the  amount  of  product  used.   §  Sheetrock  contains  formaldehyde;  there  is  an   es6mated  22  mg  in  base  case  passive  house.  
  • 28. Total  Weight  of  Chemicals  of  Concern  in  the  Project  
  • 29. Contractor   Transporta6on   During   Construc6on   New  Bedford:  .90   MT  C02e  for  140   labor  hours   (1  MT/156  hours)   Easton:  3.62  MT  C02e   for  1,274  labor  hours   (1  MT/354  hours)   Woburn:  1.89  MT  C02e  for   1,205  labor  hours   (1  MT/638  hours)   Boston:  .44  MT  C02e   for  1,873  labor  hours   (1  MT/4,257  hours)  
  • 31. Transporta6on  Post-­‐Construc6on   Study  Trans  Energy  per  year  =  93  MBtu  
  • 32. Ques6ons   As  we  reduce  opera6onal  energy,   how  can  we  find  similar   reduc6ons  in  other  impacts?   •  Reduce  embodied  carbon   materials?   •  Lower  toxicity  of  materials?   •  Minimize  loca6on  effects?