SlideShare uma empresa Scribd logo
1 de 45
Baixar para ler offline
Fundamentals of
RF Systems
조용희조용희
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실2
1. Microwave systems
Transmission
  Information
- Channel bandwidth
- Base band
- Inefficient wave radiation
 Modulation – center frequency
Time domain Frequency domain
출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실3
Why’s modulation need?
  Transmission efficiency
- Multiplexing
- Antenna length: wavelength
- Wave radiation: comparison with DC
Battery: DC
Antenna: AC
1. Microwave systems
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실4
Microwave transmitter (Tx)
  Up-conversion: frequency
( ))cos()cos(
2
1
)cos()cos( yxyxyx −++=
BBf BBLO ff ± BBLO ff ±
1. Microwave systems

출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실5
Microwave receiver (Rx)
  Down-conversion: frequency
( ))cos()cos(
2
1
)cos()cos( yxyxyx −++=
BBfBBIF ff ±BBLO ff ±
IFLO fff −= IFff =
1. Microwave systems

출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실6
Microwave transceiver
  Duplexer: bandpass filter or switch
- Loss, tx suppression, channel selection
IF: superheterodyne
No IF: direct conversion
1. Microwave systems
출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실7
FDMA (FDM Access)
1. Microwave systems
  Resource: frequency
 Guard band
 Simple transceiver
 Interference
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실8
DS(Direct Sequence)-CDMA
1. Microwave systems
QPSK: Quadrature Phase Shift Keying
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실9
Fundamentals
  Antenna gain: anisotropic radiation (G > 1)
isotropic radiation (G = 1)
 Directivity and efficiency:
 Angular beamwidth: 3dB
Radiation pattern [dBi]: dB isotropic
2. Antennas
DG η=
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실10
2. Antennas
Dipole antenna
  Simple but long structure
 Low efficiency
Microstrip type
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실11
Handy phone antenna
Helical antenna
2. Antennas
  Complicated structure
 Medium efficiency
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실12
Antenna simulation
Ansoft: Ensemble
CST: MWS
Ansoft: HFSS
2. Antennas
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실13
Wave propagation
}Re{
}Re{
)cos(),(
)(
tjzjj
o
ztj
o
o
eeeV
eV
ztVtzV
ωβφ
φβω
φβω
−
+−
=
=
+−=
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실14
Distributed element
  Lumped element: R, L, C
  Distributed element: tx line
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실15
Wave solution
  Traveling wave solution
- Voltage:
- Current:
zz
s eVeVzV γγ −−+
+= 00)(
zz
s eIeIzI γγ −−+
−= 00)(
)())((
)(
2
2
zVCjGLjR
dz
zVd
s
s
ωω ++=
))(( CjGLjRj ωωβαγ ++=+=
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실16
Characteristic impedance
  Important parameter in tx line:
-
-
CjG
LjR
Z
ω
ω
+
+
=0
−
−
+
+
==
0
0
0
0
0
I
V
I
V
Z
3. Tx line theory
0Z
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실17
Reflection coefficient
0
0
0
11 ||
ZZ
ZZ
V
V
e
L
Loj
+
−
==Γ=Γ +
−
φ

  Voltage wave continuity conditions
 Current wave continuity conditions
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실18
Wave power
( ) ( )2
0
2
0*
1
2
Re
2
1
Γ−==
+
Z
V
VIP
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실19
SWR (Standing Wave Ratio)
  SWR: field theory
 VSWR (Voltage SWR): tx line theory
||1
||1
min
max
Γ−
Γ+
=
=
V
V
s
Experiment
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실20
Smith chart
 Graphical method
 Essential diagram for
microwave engineering

P. Smith in 1939
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실21
Induction of Smith chart
 S-parameter: reflection
coefficient
 |S11| = 0: all transmission
 |S11| = 1: all reflection

3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실22
VNA (Vector Network Analyzer)
 Measurement equipment
 Reflection coefficients
with frequency sweep

3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실23
Scattering matrix: Two-port network
 Matrix definition: matched load
gain:
isolation:
reflection:,where
21
12
2211
2
1
2221
1211
2
1
S
S
SS
V
V
SS
SS
V
V












=





+
+
−
−

3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실24
Antenna impedance
  Antenna impedance (not infinity) matching
 No reflection, power efficiency
Handy phone antenna
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실25
Coaxial line
3. Tx line theory
 Wide bandwidth (TEM)
 Characteristic impedance: 50 Ohms
 Shielding
 Conductor and dielectric loss
 Measurement
 RG (Radio Government) series
Coaxial line
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실26
Connector
 BNC (Bayonet Neill Concelman) connector
 SMA (SubMiniature type A) connector
 Type N connector
 Type K connector
 APC (Amphenol Precision Connector)
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실27
Microstrip line
3. Tx line theory
  Quasi-TEM line
 Easy fabrication: etching
 Substrate
 Characteristic impedance
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실28
Substrate
  Relative permittivity
 Thickness of a substrate: mil (inch/1000)
 Thickness of a metal: oz (almost 1.4 mils)
 Loss: loss tangent
 Temperature
3. Tx line theory
Power amplifier module
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실29
Etching: PCB (Printed Circuit
Board)
  FR4, RT/duroid 5880 (6010 …)
 Film
 Photoresist (PR)
 Toluene
 Ultraviolet
 Iron chloride
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실30
Selection of active device
4. Amplifier
pHEMT amplifier with package
 Gain [dB]
 Bandwidth [Hz]
 Stability: oscillation
 Noise figure [dB]: LNA
 P1dB [dBm]: PA
 Characteristics of
active device: bias

Bare chip
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실31
Wire bonding for bare chip
Wire bonding vs.
soldering

4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실32
Bias design
 Assignment of AC and DC path
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실33
S2P file: S-parameter information
 Input impedance: S11
 Output impedance: S22
 Gain: S21
 Isolation: S12

4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실34
Impedance matching
 Lumped elements (L or C)
 Stub matching
 Conjugate matching: maximum power transfer
 Noise matching: low noise

( )*
LL ZZ →
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실35
Block diagram of cellular phone
 LNA (Low Noise Amplifier), PA (Power
Amplifier), Mixer, VCO, switch
 Filter, duplexer

4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실36
Digital RF system
Transmitter and receiver
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실37
LNA (Low Noise Amplifier)
 Noise figure: 2 dB
 Amplifier gain: 15 dB
 Return loss: 15 dB
 Reverse isolation: 20 dB
 Impedance matching: power and noise

4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실38
 SNR: signal to noise ratio
 Noiseless system: NF = 1
 Noisy system: NF > 1
 Ground

Noise figure (NF)
4. Amplifier
in
out
out
in
out
in
N
N
S
S
SNR
SNR
NF ==
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실39
Simulation of LNA
Port
OUT
Num=2
Port
IN
Num=1
C
C2
C=1.0pF
C
C1
C=1.0pF
L
L3
R=
L=1.0nH
L
L2
R=
L=1.0nH
TSMC_CM025RF_PMOS_RF
PMOS_RF1
finger=16
width=10um
length=0.24um
Type=2.5Vtwin-well
TSMC_CM025RF_NMOS
NMOS2
Width=0.30um
Length=0.24um
Type=2.5V_nom
L
L1
R=
L=1.0nH
R
R3
R=50Ohm
R
R2
R=50OhmTSMC_CM025RF_NMOS
NMOS1
Width=0.30um
Length=0.24um
Type=2.5V_nom
R
R1
R=50Ohm
HP
ADS (Advanced Design System)

 AC and DC path
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실40
HPA (High Power Amplifier)
 Output power (P1dB), power gain
 Linearity (OIP3)
 Efficiency (PAE)
 Temperature

Power amplifier scheme
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실41
Characteristics
5. Filter
 2 port network: S parameters
 Pass band and stop band
 Return loss and insertion loss
 Ripple and selectivity (skirt)
 Pole and zero
 Group delay

Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실42
Classification
 LPF (Low Pass Filter)
 HPF (High Pass Filter)
 BPF (Band Pass Filter)
 BSF (Band Stop Filter): notch filter
 Duplexer: 2 BPF
 Diplexer: LPF and HPF

5. Filter
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실43
Power divider
 Division of power: scattering matrix
 Lossless system
-
- Scattering matrix: unitary matrix

3-port networks 5-port networks












−−−
−−
−
=
ββαα
βαβα
αα
222
22
2
lossy
11
1
10
S

[ ] [ ] [ ] [ ]** −−++
= VVVV
TT
5. Filter
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실44
T-junction power divider
 Simple 3-port network
 Waveguide or microstrip line
 Lossless or all-port matched network

portat 021in YYYjBY ++=
5. Filter
출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실45
Frequency conversion
  Mixer
 VCO: Voltage Controlled Oscillator
 PLL: Phase Locked Loop
 TCXO: Temperature Compensated Crystal
Oscillator
6. IF conversion
출처 : RFDH.com

Mais conteúdo relacionado

Mais procurados

An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014Rohde & Schwarz North America
 
Understanding RF Fundamentals and the Radio Design of Wireless Networks
Understanding RF Fundamentals and the Radio Design of Wireless NetworksUnderstanding RF Fundamentals and the Radio Design of Wireless Networks
Understanding RF Fundamentals and the Radio Design of Wireless NetworksCisco Mobility
 
Filtering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosFiltering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosPei-Che Chang
 
Introduction to modern receiver
Introduction to modern receiverIntroduction to modern receiver
Introduction to modern receivercriterion123
 
Power delay profile,delay spread and doppler spread
Power delay profile,delay spread and doppler spreadPower delay profile,delay spread and doppler spread
Power delay profile,delay spread and doppler spreadManish Srivastava
 
Receiver Desense Common Issue
Receiver Desense Common IssueReceiver Desense Common Issue
Receiver Desense Common Issuecriterion123
 
Introduction To Antenna Impedance Tuner And Aperture Switch
Introduction To Antenna Impedance Tuner And Aperture SwitchIntroduction To Antenna Impedance Tuner And Aperture Switch
Introduction To Antenna Impedance Tuner And Aperture Switchcriterion123
 
Introduction to RF & Wireless - Part 2
Introduction to RF & Wireless - Part 2Introduction to RF & Wireless - Part 2
Introduction to RF & Wireless - Part 2Carl Weisman
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifierscriterion123
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIcriterion123
 
Wireless Communication short talk
Wireless Communication short talkWireless Communication short talk
Wireless Communication short talkPei-Che Chang
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] LinearitySimen Li
 
IIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset ReceiversIIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset Receiverscriterion123
 

Mais procurados (20)

Phase Noise and Jitter Measurements
Phase Noise and Jitter MeasurementsPhase Noise and Jitter Measurements
Phase Noise and Jitter Measurements
 
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014
 
Understanding RF Fundamentals and the Radio Design of Wireless Networks
Understanding RF Fundamentals and the Radio Design of Wireless NetworksUnderstanding RF Fundamentals and the Radio Design of Wireless Networks
Understanding RF Fundamentals and the Radio Design of Wireless Networks
 
Filtering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosFiltering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA Scenarios
 
Diplexer duplexer
Diplexer duplexerDiplexer duplexer
Diplexer duplexer
 
Introduction to modern receiver
Introduction to modern receiverIntroduction to modern receiver
Introduction to modern receiver
 
Power delay profile,delay spread and doppler spread
Power delay profile,delay spread and doppler spreadPower delay profile,delay spread and doppler spread
Power delay profile,delay spread and doppler spread
 
Receiver Desense Common Issue
Receiver Desense Common IssueReceiver Desense Common Issue
Receiver Desense Common Issue
 
Low noise amplifier
Low noise amplifierLow noise amplifier
Low noise amplifier
 
Saw filters
Saw filtersSaw filters
Saw filters
 
RF module
RF moduleRF module
RF module
 
Introduction To Antenna Impedance Tuner And Aperture Switch
Introduction To Antenna Impedance Tuner And Aperture SwitchIntroduction To Antenna Impedance Tuner And Aperture Switch
Introduction To Antenna Impedance Tuner And Aperture Switch
 
Introduction to RF & Wireless - Part 2
Introduction to RF & Wireless - Part 2Introduction to RF & Wireless - Part 2
Introduction to RF & Wireless - Part 2
 
Rf fundamentals
Rf fundamentalsRf fundamentals
Rf fundamentals
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFI
 
Wireless Communication short talk
Wireless Communication short talkWireless Communication short talk
Wireless Communication short talk
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
B2 desence
B2 desenceB2 desence
B2 desence
 
IIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset ReceiversIIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset Receivers
 

Destaque

Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect TransistorYong Heui Cho
 
Bipolar Junction Transistor
Bipolar Junction TransistorBipolar Junction Transistor
Bipolar Junction TransistorYong Heui Cho
 
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)Yong Heui Cho
 

Destaque (6)

Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Impedance Matching
Impedance MatchingImpedance Matching
Impedance Matching
 
Transmission Line
Transmission LineTransmission Line
Transmission Line
 
Smith Chart
Smith ChartSmith Chart
Smith Chart
 
Bipolar Junction Transistor
Bipolar Junction TransistorBipolar Junction Transistor
Bipolar Junction Transistor
 
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
 

Semelhante a Fundamentals of RF Systems

RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Finalimranbashir
 
rffundamentalsseminarrecordingsection1v21588598809158.pdf
rffundamentalsseminarrecordingsection1v21588598809158.pdfrffundamentalsseminarrecordingsection1v21588598809158.pdf
rffundamentalsseminarrecordingsection1v21588598809158.pdfsantanusen30
 
RF Basics, RF for Non-RF Engineers.pdf
RF Basics, RF for Non-RF Engineers.pdfRF Basics, RF for Non-RF Engineers.pdf
RF Basics, RF for Non-RF Engineers.pdfatsnoida3
 
Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...mohamed albanna
 
Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...mohamed albanna
 
Updated! Debugging EMI Problems Using a Digital Oscilloscope
Updated! Debugging EMI Problems Using a Digital OscilloscopeUpdated! Debugging EMI Problems Using a Digital Oscilloscope
Updated! Debugging EMI Problems Using a Digital OscilloscopeRohde & Schwarz North America
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
Electronic instrumentation in NMT
Electronic instrumentation in NMTElectronic instrumentation in NMT
Electronic instrumentation in NMTSUMAN GOWNDER
 
Short introduction to CLIC and CTF3
Short introduction to CLIC and CTF3Short introduction to CLIC and CTF3
Short introduction to CLIC and CTF3asafrona
 
Proposals for Memristor Crossbar Design and Applications
Proposals for Memristor Crossbar Design and ApplicationsProposals for Memristor Crossbar Design and Applications
Proposals for Memristor Crossbar Design and ApplicationsBlaise Mouttet
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...csijjournal
 
Exp no 1 edited Analog electronics
Exp no 1 edited Analog electronicsExp no 1 edited Analog electronics
Exp no 1 edited Analog electronicsOmkar Rane
 
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer ConsiderationUHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Considerationxiaohuzhang
 
RF Coils invivo NMR course 2014
RF Coils invivo NMR course 2014RF Coils invivo NMR course 2014
RF Coils invivo NMR course 2014Bart van de Bank
 

Semelhante a Fundamentals of RF Systems (20)

RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
rffundamentalsseminarrecordingsection1v21588598809158.pdf
rffundamentalsseminarrecordingsection1v21588598809158.pdfrffundamentalsseminarrecordingsection1v21588598809158.pdf
rffundamentalsseminarrecordingsection1v21588598809158.pdf
 
RF Basics, RF for Non-RF Engineers.pdf
RF Basics, RF for Non-RF Engineers.pdfRF Basics, RF for Non-RF Engineers.pdf
RF Basics, RF for Non-RF Engineers.pdf
 
Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...
 
Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...
 
STAN Tool overview
STAN Tool overviewSTAN Tool overview
STAN Tool overview
 
Updated! Debugging EMI Problems Using a Digital Oscilloscope
Updated! Debugging EMI Problems Using a Digital OscilloscopeUpdated! Debugging EMI Problems Using a Digital Oscilloscope
Updated! Debugging EMI Problems Using a Digital Oscilloscope
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Electronic instrumentation in NMT
Electronic instrumentation in NMTElectronic instrumentation in NMT
Electronic instrumentation in NMT
 
Short introduction to CLIC and CTF3
Short introduction to CLIC and CTF3Short introduction to CLIC and CTF3
Short introduction to CLIC and CTF3
 
Proposals for Memristor Crossbar Design and Applications
Proposals for Memristor Crossbar Design and ApplicationsProposals for Memristor Crossbar Design and Applications
Proposals for Memristor Crossbar Design and Applications
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
 
Exp no 1 edited Analog electronics
Exp no 1 edited Analog electronicsExp no 1 edited Analog electronics
Exp no 1 edited Analog electronics
 
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer ConsiderationUHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
 
Laser Communication
Laser CommunicationLaser Communication
Laser Communication
 
RF Coils invivo NMR course 2014
RF Coils invivo NMR course 2014RF Coils invivo NMR course 2014
RF Coils invivo NMR course 2014
 
thesis_presentation
thesis_presentationthesis_presentation
thesis_presentation
 
UNIT5_1.pdf
UNIT5_1.pdfUNIT5_1.pdf
UNIT5_1.pdf
 

Mais de Yong Heui Cho

Android - Sensor Manager
Android - Sensor ManagerAndroid - Sensor Manager
Android - Sensor ManagerYong Heui Cho
 
Android - Broadcast Receiver
Android - Broadcast ReceiverAndroid - Broadcast Receiver
Android - Broadcast ReceiverYong Heui Cho
 
TestBCD2018-2(answer)
TestBCD2018-2(answer)TestBCD2018-2(answer)
TestBCD2018-2(answer)Yong Heui Cho
 
TestSDS2018-2(answer)
TestSDS2018-2(answer)TestSDS2018-2(answer)
TestSDS2018-2(answer)Yong Heui Cho
 
TestEC2018-2(answer)
TestEC2018-2(answer)TestEC2018-2(answer)
TestEC2018-2(answer)Yong Heui Cho
 
TestEC2018-1(answer)
TestEC2018-1(answer)TestEC2018-1(answer)
TestEC2018-1(answer)Yong Heui Cho
 
TestBCD2018-1(answer)
TestBCD2018-1(answer)TestBCD2018-1(answer)
TestBCD2018-1(answer)Yong Heui Cho
 
TestSDS2018-1(answer)
TestSDS2018-1(answer)TestSDS2018-1(answer)
TestSDS2018-1(answer)Yong Heui Cho
 
BJT - Analysis of Bias
BJT - Analysis of BiasBJT - Analysis of Bias
BJT - Analysis of BiasYong Heui Cho
 
TestCloud2018-2(answer)
TestCloud2018-2(answer)TestCloud2018-2(answer)
TestCloud2018-2(answer)Yong Heui Cho
 
TestECD2018-1(answer)
TestECD2018-1(answer)TestECD2018-1(answer)
TestECD2018-1(answer)Yong Heui Cho
 
Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Yong Heui Cho
 
TestCloud2018-1(answer)
TestCloud2018-1(answer)TestCloud2018-1(answer)
TestCloud2018-1(answer)Yong Heui Cho
 
Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Yong Heui Cho
 
RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1Yong Heui Cho
 
Computing Paradigm - rev1
Computing Paradigm - rev1Computing Paradigm - rev1
Computing Paradigm - rev1Yong Heui Cho
 

Mais de Yong Heui Cho (20)

Android - Sensor Manager
Android - Sensor ManagerAndroid - Sensor Manager
Android - Sensor Manager
 
Android - Broadcast Receiver
Android - Broadcast ReceiverAndroid - Broadcast Receiver
Android - Broadcast Receiver
 
Android - Message
Android - MessageAndroid - Message
Android - Message
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
 
Computing Paradigm
Computing ParadigmComputing Paradigm
Computing Paradigm
 
TestBCD2018-2(answer)
TestBCD2018-2(answer)TestBCD2018-2(answer)
TestBCD2018-2(answer)
 
TestSDS2018-2(answer)
TestSDS2018-2(answer)TestSDS2018-2(answer)
TestSDS2018-2(answer)
 
TestEC2018-2(answer)
TestEC2018-2(answer)TestEC2018-2(answer)
TestEC2018-2(answer)
 
TestEC2018-1(answer)
TestEC2018-1(answer)TestEC2018-1(answer)
TestEC2018-1(answer)
 
TestBCD2018-1(answer)
TestBCD2018-1(answer)TestBCD2018-1(answer)
TestBCD2018-1(answer)
 
TestSDS2018-1(answer)
TestSDS2018-1(answer)TestSDS2018-1(answer)
TestSDS2018-1(answer)
 
BJT - Analysis of Bias
BJT - Analysis of BiasBJT - Analysis of Bias
BJT - Analysis of Bias
 
TestCloud2018-2(answer)
TestCloud2018-2(answer)TestCloud2018-2(answer)
TestCloud2018-2(answer)
 
TestECD2018-1(answer)
TestECD2018-1(answer)TestECD2018-1(answer)
TestECD2018-1(answer)
 
Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)
 
TestCloud2018-1(answer)
TestCloud2018-1(answer)TestCloud2018-1(answer)
TestCloud2018-1(answer)
 
Cloud Service Model
Cloud Service ModelCloud Service Model
Cloud Service Model
 
Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)
 
RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1
 
Computing Paradigm - rev1
Computing Paradigm - rev1Computing Paradigm - rev1
Computing Paradigm - rev1
 

Último

Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfAijun Zhang
 
UiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPathCommunity
 
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IES VE
 
9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding TeamAdam Moalla
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxGDSC PJATK
 
Computer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsComputer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsSeth Reyes
 
Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024D Cloud Solutions
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxMatsuo Lab
 
Comparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioComparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioChristian Posta
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintMahmoud Rabie
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7DianaGray10
 
Cloud Revolution: Exploring the New Wave of Serverless Spatial Data
Cloud Revolution: Exploring the New Wave of Serverless Spatial DataCloud Revolution: Exploring the New Wave of Serverless Spatial Data
Cloud Revolution: Exploring the New Wave of Serverless Spatial DataSafe Software
 
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfIaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfDaniel Santiago Silva Capera
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1DianaGray10
 
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...UbiTrack UK
 
Digital magic. A small project for controlling smart light bulbs.
Digital magic. A small project for controlling smart light bulbs.Digital magic. A small project for controlling smart light bulbs.
Digital magic. A small project for controlling smart light bulbs.francesco barbera
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
Spring24-Release Overview - Wellingtion User Group-1.pdf
Spring24-Release Overview - Wellingtion User Group-1.pdfSpring24-Release Overview - Wellingtion User Group-1.pdf
Spring24-Release Overview - Wellingtion User Group-1.pdfAnna Loughnan Colquhoun
 
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdfJamie (Taka) Wang
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationIES VE
 

Último (20)

Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdf
 
UiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation Developers
 
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
 
9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptx
 
Computer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsComputer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and Hazards
 
Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptx
 
Comparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioComparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and Istio
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership Blueprint
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7
 
Cloud Revolution: Exploring the New Wave of Serverless Spatial Data
Cloud Revolution: Exploring the New Wave of Serverless Spatial DataCloud Revolution: Exploring the New Wave of Serverless Spatial Data
Cloud Revolution: Exploring the New Wave of Serverless Spatial Data
 
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfIaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1
 
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
 
Digital magic. A small project for controlling smart light bulbs.
Digital magic. A small project for controlling smart light bulbs.Digital magic. A small project for controlling smart light bulbs.
Digital magic. A small project for controlling smart light bulbs.
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
Spring24-Release Overview - Wellingtion User Group-1.pdf
Spring24-Release Overview - Wellingtion User Group-1.pdfSpring24-Release Overview - Wellingtion User Group-1.pdf
Spring24-Release Overview - Wellingtion User Group-1.pdf
 
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
 

Fundamentals of RF Systems

  • 2. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실2 1. Microwave systems Transmission   Information - Channel bandwidth - Base band - Inefficient wave radiation  Modulation – center frequency Time domain Frequency domain 출처 : RFDH.com
  • 3. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실3 Why’s modulation need?   Transmission efficiency - Multiplexing - Antenna length: wavelength - Wave radiation: comparison with DC Battery: DC Antenna: AC 1. Microwave systems
  • 4. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실4 Microwave transmitter (Tx)   Up-conversion: frequency ( ))cos()cos( 2 1 )cos()cos( yxyxyx −++= BBf BBLO ff ± BBLO ff ± 1. Microwave systems  출처 : RFDH.com
  • 5. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실5 Microwave receiver (Rx)   Down-conversion: frequency ( ))cos()cos( 2 1 )cos()cos( yxyxyx −++= BBfBBIF ff ±BBLO ff ± IFLO fff −= IFff = 1. Microwave systems  출처 : RFDH.com
  • 6. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실6 Microwave transceiver   Duplexer: bandpass filter or switch - Loss, tx suppression, channel selection IF: superheterodyne No IF: direct conversion 1. Microwave systems 출처 : RFDH.com
  • 7. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실7 FDMA (FDM Access) 1. Microwave systems   Resource: frequency  Guard band  Simple transceiver  Interference
  • 8. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실8 DS(Direct Sequence)-CDMA 1. Microwave systems QPSK: Quadrature Phase Shift Keying
  • 9. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실9 Fundamentals   Antenna gain: anisotropic radiation (G > 1) isotropic radiation (G = 1)  Directivity and efficiency:  Angular beamwidth: 3dB Radiation pattern [dBi]: dB isotropic 2. Antennas DG η=
  • 10. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실10 2. Antennas Dipole antenna   Simple but long structure  Low efficiency Microstrip type
  • 11. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실11 Handy phone antenna Helical antenna 2. Antennas   Complicated structure  Medium efficiency
  • 12. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실12 Antenna simulation Ansoft: Ensemble CST: MWS Ansoft: HFSS 2. Antennas
  • 13. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실13 Wave propagation }Re{ }Re{ )cos(),( )( tjzjj o ztj o o eeeV eV ztVtzV ωβφ φβω φβω − +− = = +−= 3. Tx line theory
  • 14. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실14 Distributed element   Lumped element: R, L, C   Distributed element: tx line 3. Tx line theory
  • 15. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실15 Wave solution   Traveling wave solution - Voltage: - Current: zz s eVeVzV γγ −−+ += 00)( zz s eIeIzI γγ −−+ −= 00)( )())(( )( 2 2 zVCjGLjR dz zVd s s ωω ++= ))(( CjGLjRj ωωβαγ ++=+= 3. Tx line theory
  • 16. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실16 Characteristic impedance   Important parameter in tx line: - - CjG LjR Z ω ω + + =0 − − + + == 0 0 0 0 0 I V I V Z 3. Tx line theory 0Z
  • 17. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실17 Reflection coefficient 0 0 0 11 || ZZ ZZ V V e L Loj + − ==Γ=Γ + − φ    Voltage wave continuity conditions  Current wave continuity conditions 3. Tx line theory
  • 18. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실18 Wave power ( ) ( )2 0 2 0* 1 2 Re 2 1 Γ−== + Z V VIP 3. Tx line theory
  • 19. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실19 SWR (Standing Wave Ratio)   SWR: field theory  VSWR (Voltage SWR): tx line theory ||1 ||1 min max Γ− Γ+ = = V V s Experiment 3. Tx line theory
  • 20. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실20 Smith chart  Graphical method  Essential diagram for microwave engineering  P. Smith in 1939 3. Tx line theory
  • 21. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실21 Induction of Smith chart  S-parameter: reflection coefficient  |S11| = 0: all transmission  |S11| = 1: all reflection  3. Tx line theory
  • 22. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실22 VNA (Vector Network Analyzer)  Measurement equipment  Reflection coefficients with frequency sweep  3. Tx line theory
  • 23. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실23 Scattering matrix: Two-port network  Matrix definition: matched load gain: isolation: reflection:,where 21 12 2211 2 1 2221 1211 2 1 S S SS V V SS SS V V             =      + + − −  3. Tx line theory
  • 24. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실24 Antenna impedance   Antenna impedance (not infinity) matching  No reflection, power efficiency Handy phone antenna 3. Tx line theory
  • 25. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실25 Coaxial line 3. Tx line theory  Wide bandwidth (TEM)  Characteristic impedance: 50 Ohms  Shielding  Conductor and dielectric loss  Measurement  RG (Radio Government) series Coaxial line
  • 26. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실26 Connector  BNC (Bayonet Neill Concelman) connector  SMA (SubMiniature type A) connector  Type N connector  Type K connector  APC (Amphenol Precision Connector) 3. Tx line theory
  • 27. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실27 Microstrip line 3. Tx line theory   Quasi-TEM line  Easy fabrication: etching  Substrate  Characteristic impedance
  • 28. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실28 Substrate   Relative permittivity  Thickness of a substrate: mil (inch/1000)  Thickness of a metal: oz (almost 1.4 mils)  Loss: loss tangent  Temperature 3. Tx line theory Power amplifier module
  • 29. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실29 Etching: PCB (Printed Circuit Board)   FR4, RT/duroid 5880 (6010 …)  Film  Photoresist (PR)  Toluene  Ultraviolet  Iron chloride 3. Tx line theory
  • 30. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실30 Selection of active device 4. Amplifier pHEMT amplifier with package  Gain [dB]  Bandwidth [Hz]  Stability: oscillation  Noise figure [dB]: LNA  P1dB [dBm]: PA  Characteristics of active device: bias  Bare chip
  • 31. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실31 Wire bonding for bare chip Wire bonding vs. soldering  4. Amplifier
  • 32. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실32 Bias design  Assignment of AC and DC path 4. Amplifier
  • 33. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실33 S2P file: S-parameter information  Input impedance: S11  Output impedance: S22  Gain: S21  Isolation: S12  4. Amplifier
  • 34. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실34 Impedance matching  Lumped elements (L or C)  Stub matching  Conjugate matching: maximum power transfer  Noise matching: low noise  ( )* LL ZZ → 4. Amplifier
  • 35. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실35 Block diagram of cellular phone  LNA (Low Noise Amplifier), PA (Power Amplifier), Mixer, VCO, switch  Filter, duplexer  4. Amplifier
  • 36. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실36 Digital RF system Transmitter and receiver 4. Amplifier
  • 37. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실37 LNA (Low Noise Amplifier)  Noise figure: 2 dB  Amplifier gain: 15 dB  Return loss: 15 dB  Reverse isolation: 20 dB  Impedance matching: power and noise  4. Amplifier
  • 38. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실38  SNR: signal to noise ratio  Noiseless system: NF = 1  Noisy system: NF > 1  Ground  Noise figure (NF) 4. Amplifier in out out in out in N N S S SNR SNR NF ==
  • 39. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실39 Simulation of LNA Port OUT Num=2 Port IN Num=1 C C2 C=1.0pF C C1 C=1.0pF L L3 R= L=1.0nH L L2 R= L=1.0nH TSMC_CM025RF_PMOS_RF PMOS_RF1 finger=16 width=10um length=0.24um Type=2.5Vtwin-well TSMC_CM025RF_NMOS NMOS2 Width=0.30um Length=0.24um Type=2.5V_nom L L1 R= L=1.0nH R R3 R=50Ohm R R2 R=50OhmTSMC_CM025RF_NMOS NMOS1 Width=0.30um Length=0.24um Type=2.5V_nom R R1 R=50Ohm HP ADS (Advanced Design System)   AC and DC path 4. Amplifier
  • 40. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실40 HPA (High Power Amplifier)  Output power (P1dB), power gain  Linearity (OIP3)  Efficiency (PAE)  Temperature  Power amplifier scheme 4. Amplifier
  • 41. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실41 Characteristics 5. Filter  2 port network: S parameters  Pass band and stop band  Return loss and insertion loss  Ripple and selectivity (skirt)  Pole and zero  Group delay 
  • 42. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실42 Classification  LPF (Low Pass Filter)  HPF (High Pass Filter)  BPF (Band Pass Filter)  BSF (Band Stop Filter): notch filter  Duplexer: 2 BPF  Diplexer: LPF and HPF  5. Filter
  • 43. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실43 Power divider  Division of power: scattering matrix  Lossless system - - Scattering matrix: unitary matrix  3-port networks 5-port networks             −−− −− − = ββαα βαβα αα 222 22 2 lossy 11 1 10 S  [ ] [ ] [ ] [ ]** −−++ = VVVV TT 5. Filter
  • 44. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실44 T-junction power divider  Simple 3-port network  Waveguide or microstrip line  Lossless or all-port matched network  portat 021in YYYjBY ++= 5. Filter 출처 : RFDH.com
  • 45. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실45 Frequency conversion   Mixer  VCO: Voltage Controlled Oscillator  PLL: Phase Locked Loop  TCXO: Temperature Compensated Crystal Oscillator 6. IF conversion 출처 : RFDH.com