SlideShare uma empresa Scribd logo
1 de 38
POLYMER SCIENCE
PRESENTED BY
VARSHA AWASARKAR
DEFINITION
The word ‘polymer’ comes from the Greek words
poly (meaning ‘many’) and meros (meaning ‘parts’).
Example: POLYBUTADIENE =
(BUTADIENE+ BUTADIENE+......)n
Where n = 4,000
Polymers are very large molecules made when hundreds of monomers join
together to form long chains.
INTRODUCTION
• Polymers are complex and giant molecules usually with
carbons building the backbone, different from low
molecular weight compounds.
• The small individual repeating units/moleules are known
as monomers(means single part).
• Imagine that a monomer can be represented by the
letter A. Then a polymer made of that monomer would
have the structure:
-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-
A-A
• This kind of polymer is known as HOMOPOLYMER.
CONT…..
• In another kind of polymer, two different monomers
might be involved.
• If the letters A and B represent those monomers, then
the polymer could be represented as:
-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A- B-
A-B-A
• A polymer with two different monomers is known as a
COPOLYMER / HOMOPOLYMER.
Molecular Structure of Polymer
Linear
– High Density Polyethylene (HDPE), PVC, Nylon,
Cotton
Branched
– Low Density
- Polyethylene (LDPE)
Cross-linked
– Rubber
Network
– Kevlar, Epoxy
CHARACTERISTICS OF
IDEAL POLYMER
• Should be inert and compatible with
the environment.
• Should be non-toxic.
• Should be easily administered.
• Should be easy and inexpensive to
fabricate.
• Should have good mechanical
strength.
POLYMERISATION
• The process by which the monomer molecules are linked
to form a big polymer molecule is called ‘polymerisation’.
• Polymerization is a process of bonding monomer, or
“single units” together through a variety of reaction
mechanisms to form longer chains named Polymer
• As important as polymers are, they exist with monomers,
which are small, single molecules such as hydrocarbons
and amino acids.
Addition Polymerization=
When monomers just add on to form the polymer, the
process is called ‘addition polym erisation’. The polymer
is the only product
e.g. Ethylene monomers add on to form
polyethylene. (5 Ethylene monomers)
Polyethylene formation
It Is useful to dIstInguIsh four
polymerIzatIon procedures fIttIng
thIs general descrIptIon.
• Radical Polymerization The initiator is a radical, and the
propagating site of reactivity (*) is a carbon radical.
• Cationic Polymerization The initiator is an acid, and the
propagating site of reactivity (*) is a carbocation.
• Anionic Polymerization The initiator is a nucleophile, and
the propagating site of reactivity (*) is a carbanion.
• Coordination Catalytic Polymerization The initiator is a
transition metal complex, and the propagating site of
reactivity (*) is a terminal catalytic complex.
CONT….
Condensation polymerisation=
• The molecules do not just add on but also undergo some reaction in
forming the polymer, the process is called ‘condensation
polymerisation’.
• Here the two molecules condense to form a polymer.The
condensation takes place between two reactivefunctional groups,
like the carboxyl group(of an acid) and the hydroxyl group(of an
alcohol). While forming the polymer water molecules also get
eliminated.
• In A. P. mol. weight of polymer is roughly equal to that of all
monomers, while in C. P. the mol. weight of polymer is lesser by the
weight of simple molecules eliminated during the condensation
process. E.g. Condensation polymerization diacid
diamine.
1. Natural and Synthetic Polymers
 Polymers which are isolated from natural materials,
are called as ‘natural polymers’.
E.g. : Cotton, silk, wool, rubber.
natural rubber
 Polymers synthesized from low molecular weight
compounds, are called as, ‘synthetic polymers’.
E.g. polyethylene, nylon, terylene.
Polyethylene
NATURAL RUBBER-
Hevea brasiilensis
2. Organic and Inorganic
Polymers
 A Polymer whose backbone chain is essentially made of
carbon atoms is termed an ‘Organic polymer’.
Examples- cellulose, proteins, polyethylene, nylons.
 A Polymer which does not have carbon atom in their
chain is termed as ‘Inorganic polymer’ .
Examples- Glass and silicone rubber
3. Thermoplastic and Thermosetting
Polymer
 Some polymer are soften on heating and can be converted into
any shape that they can retain on cooling.
 Such polymer that soften on heating and stiffen on cooling are
termed as `thermoplastic’ polymers.
Ex. Polyethylene, PVC, nylon, sealing wax.
 Polymer that become an infusible and insoluble mass on heating
are called ‘thermosetting’ polymers. Plastics made of these
polymers cannot be stretched, are rigid and have a high melting
point.
4. Plastics, Elastomers, Fibres & Liquid
resins
 Polymer is shaped into hard and tough utility articles by application
of heat and pressure, is known as ‘plastics’.
E.g. polysterene, PVC, polymethyl methacrylate.
 When plastics are vulcanised into rubbery products exhibiting good
strength and elongation, polymers are known as ‘elastomers’.
E.g. silicone rubber, natural rubber, synthetic rubber, etc.
 Long filament like material whose length is atleast 100 times it’s
diameter, polymers are said to be ‘fibres’.
E.g. Nylon, terylene.
 Polymers used as adhesives, potting compounds, sealants, etc., in
a liquid form are described as ‘liquid resins’.
E.g. Epoxy adhesives and polysulphides sealants.
Common Addition Polymers
Structure Chemical Name Trade Name or
CommonName
poly(tetrafluoroethylene) Teflon
polypropylene Herculon
polyisobutylene butyl rubber
polyethylene
STEPS FOR SYNTHESIS
OF POLYMERS
There are three significant reactions that take place in addition
polymerization:
1. INITIATION
INITIATOR:
• A relatively unstable molecule that decomposes into a
free radical. Used to "initiate" a polymer growth reaction.
(A molecule with an unpaired electron, making it highly
reactive).
• The stability of a radical refers to the molecule's
tendency to react with other compounds. An unstable
radical will readily combine with many different
molecules. However a stable radical will not easily
interact with other chemical substances.
CONT….
• The first step in chain polymerization- Initiation involves
the formation of a free radical. Addition can occur at
either end of the monomer. This process is illustrated in
the following animation in which a chlorine atom
possessing an unpaired electron (often indicated as cl-)
initiates the reaction.
.
2. PROPAGATION
• Propagation is the middle step in chain polymerization where
successive monomers are attached to the growing chain. In the
propagation stage, the process of electron transfer and
consequent motion of the active center down the chain proceeds.
• In following reaction(chain), refers to a chain of connected
monomers, and X refers to a substituent group (a molecular
fragment) specific to the monomer. For example, if X were a methyl
group, the monomer would be propylene and the polymer,
polypropylene.
• The entire propagation reaction usually takes place within a fraction
of a second.
3. TERMINATION
• Termination of reaction is nothing but stop the further
propagation of chain.
• In theory, the propagation reaction could continue until
the supply of monomers is exhausted. Most often the
growth of a polymer chain is halted by the termination
reaction. Termination typically occurs in two ways:
Combination occurs when the polymer's growth is
stopped by free electrons from two growing chains that
join and form a single chain. The following diagram
depicts combination, with the symbol (R) representing
the rest of the chain.
Combination Disproportionation
CONT….
Disproportionation halts the propagation reaction when
a free radical strips a hydrogen atom from an active
chain. A carbon-carbon double bond takes the place of
the missing hydrogen.
- Disproportionation can also occur when the radical
reacts with an impurity. This is why it is so important that
polymerization be carried out under very clean
conditions.
LIVING POLYMERISATION
• There exists a type of addition polymerization that does
not undergo a termination reaction. This so-called "living
polymerization" continues until the monomer supply has
been exhausted. When this happens, the free radicals
become less active due to interactions with solvent
molecules. If more monomers are added to the solution,
the polymerization will resume.
• Uniform molecular weights (low polydispersity) are
characteristic of living polymerization. Because the
supply of monomers is controlled, the chain length can
be manipulated to serve the needs of a specific
application. This assumes that the initiator is 100%
efficient.
MOLECULAR WEIGHT
DETERMINATION
• There are two ways to calculate the average molecular
weight:
1. Number Average Molecular Weight
2. Weight Average Molecular Weight
CONT…
1. Number Average Molecular Weight
• Molecular weight is determined by calculating the total molecular
weight of monomer and total number of monomer.
• Mi- total molecular weight of monomer.
• Ni- number of monomer molecules.
• Mn- number average molecular weight.
∑
∑=
i
ii
N
MN
nM
CONT…
2. Weight Average Molecular Weight
• Mw- weight average molecular weight.
• Mi- total molecular weight of monomer.
• Ni- number of monomer molecules.
∑
∑=
ii
ii.i
MN
MMN
wM
APPLICATIONS
 Mainly used for drug delivery.
– As a coating material
examples: Hydroxyl propyl methyl cellulose(HPMC),
Methyl cellulose,
Propylene glycol.
– As a binders in tabletting granulation
examples: Acacia, Gelatin, Sodium alginate.
– As a disintegrants
examples: starch, HPMC
– As a thickening agent in suspension and ophthalmic preparations
Example: methyl cellulose.
– To form bases in ointments.
– In hard and soft capsule gelatin is used.
– Gelatin also used as suppository base, as an emulsifying agent and
suspending agent.
THERMAL
CHARACTERIZATION
Thermal analysis of the polymers is the
important phenomenon to study the
stability and degradation of polymers.
Method :-
a) TGA
b) DSC
c) Thermo mechanical analysis
Thermo-gravimetric Analysis (TGA)
• This method provides indication for thermal
stability and upper limit of thermal degradation
where loss of sample begins.
• This method only measures loss of volatile
content from the polymer.
• This method has limitation that it can not detect
temperature at chain cleavage of chain takes
place.
Differential Scanning Calorimetry
(DSC)
Parameters measured-
1. Glass transition temperature (Tg)
2. Crystalline melting point
3. Heat of fusion
4. Heat of crystallization
• It requires placing of Reference and test sample
for the continuous monitoring in the heating
chamber.
Thermo Mechanical Analysis
(TMA)
• This method is used for determination of
deformation of polymer sample as a function of
temperature placed on platform in contact with
probe.
• It measures transition from glassy to a rubbery
polymer and gives idea about softening
temperature.
BIODEGRADABLE POLYMERS
• Definition :
Biodegradable polymers are defined as polymers
comprised of monomers linked to one another through
functional groups and have unstable links in the
backbone.
• They slowly disappear from the site of administration in
response to a chemical reaction such as hydrolysis.
• Material progressively releasing dissolved or dispersed
drug, with ability of functioning for a temporary period
and subsequently degrade in the biological fluids under a
controlled mechanism, in to product easily eliminated in
body metabolism pathway.
Classification
• Biodegradable polymers can be classified in two:
1. Natural biodegradable polymer
examples:
a) Collagen
b) Albumin
c) Casein
d) gelatin
e) xanthum gum
f) gaur gum
g) chitosan
h) chtin
2. Synthetic biodegradable polymer
examples: Polyanhydrides, Poly(ß-Hydroxybutyric Acids) etc.
• Synthetic biodegradable polymer are preferred more than the natural
biodegradable polymer because they are free of immunogenicity & their
physicochemical properties are more predictable &reproducible
ADVANTAGES
• Localized delivery of drug
• Sustained delivery of drug
• Stabilization of drug
• Decrease in dosing frequency
• Reduce side effects
• Improved patient compliance
• Controllable degradation rate
BIBLIOGRAPHY
• file:///D:/polymerization/polymers%20with
%20biodegradable.htm
• file:///D:/polymerization/Polymerization.htm
• file:///D:/polymerization/synthesis%20of
%20polymerization.htm
• file:///D:/polymerization/types.html
Polymer science: preparation and uses of polymers

Mais conteúdo relacionado

Mais procurados (20)

Crystallization and crystallinity of polymers
Crystallization and crystallinity of polymersCrystallization and crystallinity of polymers
Crystallization and crystallinity of polymers
 
Introduction to pharmaceuitcal polymer chemistry
Introduction to pharmaceuitcal polymer chemistryIntroduction to pharmaceuitcal polymer chemistry
Introduction to pharmaceuitcal polymer chemistry
 
POLYMERS
POLYMERSPOLYMERS
POLYMERS
 
Polymerization techniques
Polymerization techniquesPolymerization techniques
Polymerization techniques
 
Polymer Course
Polymer CoursePolymer Course
Polymer Course
 
Properties of polymers
Properties of polymersProperties of polymers
Properties of polymers
 
Crystallinity in polymers
Crystallinity in polymers Crystallinity in polymers
Crystallinity in polymers
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable Polymers
 
Polymers
PolymersPolymers
Polymers
 
Polymerization Process
Polymerization Process Polymerization Process
Polymerization Process
 
Introduction to Polymers
Introduction to PolymersIntroduction to Polymers
Introduction to Polymers
 
Suspension polymerization
Suspension polymerizationSuspension polymerization
Suspension polymerization
 
Polymer science
Polymer sciencePolymer science
Polymer science
 
Types of polymerization
Types of polymerizationTypes of polymerization
Types of polymerization
 
Techniques of Polymerization
Techniques of PolymerizationTechniques of Polymerization
Techniques of Polymerization
 
Polymer ppt
Polymer pptPolymer ppt
Polymer ppt
 
Hydrolytic degradation
Hydrolytic degradationHydrolytic degradation
Hydrolytic degradation
 
Polymers and It's Classification
Polymers and It's ClassificationPolymers and It's Classification
Polymers and It's Classification
 
Polymer
PolymerPolymer
Polymer
 
Molecular Weight of Polymers
Molecular Weight of PolymersMolecular Weight of Polymers
Molecular Weight of Polymers
 

Destaque

Polymers and their properties
Polymers and their propertiesPolymers and their properties
Polymers and their propertiesripestone_ho
 
The Study of Polymers Used in Pharmaceutical Industries.
The Study of Polymers Used in Pharmaceutical Industries.The Study of Polymers Used in Pharmaceutical Industries.
The Study of Polymers Used in Pharmaceutical Industries.KLE College of pharmacy
 
Determination of molecular weight of polymers by visometry
Determination of molecular weight of polymers by visometryDetermination of molecular weight of polymers by visometry
Determination of molecular weight of polymers by visometryudhay roopavath
 
Conducting Polymer By Imran Aziz
Conducting Polymer By Imran AzizConducting Polymer By Imran Aziz
Conducting Polymer By Imran AzizDr.imran aziz
 
Analysis of Conducting Polymer:Polypyrrole::Part 1
Analysis of Conducting Polymer:Polypyrrole::Part 1Analysis of Conducting Polymer:Polypyrrole::Part 1
Analysis of Conducting Polymer:Polypyrrole::Part 1Debajyoti Biswas
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable PolymersSunil Kamboj
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable PolymersSaurabh Shukla
 
Biodegradable Polymers By CHITRANSH
Biodegradable Polymers By CHITRANSHBiodegradable Polymers By CHITRANSH
Biodegradable Polymers By CHITRANSHCHITRANSH JUNEJA
 
Non linear kinetics
Non linear kineticsNon linear kinetics
Non linear kineticsSujit Patel
 
Ppt of biodegradable packaging
Ppt of biodegradable packagingPpt of biodegradable packaging
Ppt of biodegradable packagingPradip Pawar
 
Slideshare Powerpoint presentation
Slideshare Powerpoint presentationSlideshare Powerpoint presentation
Slideshare Powerpoint presentationelliehood
 

Destaque (20)

Polymers evs ppt (3)
Polymers evs ppt (3)Polymers evs ppt (3)
Polymers evs ppt (3)
 
Polymer Ppt
Polymer PptPolymer Ppt
Polymer Ppt
 
biodegradable polymers
biodegradable polymersbiodegradable polymers
biodegradable polymers
 
Polymer
PolymerPolymer
Polymer
 
Polymers and their properties
Polymers and their propertiesPolymers and their properties
Polymers and their properties
 
The Study of Polymers Used in Pharmaceutical Industries.
The Study of Polymers Used in Pharmaceutical Industries.The Study of Polymers Used in Pharmaceutical Industries.
The Study of Polymers Used in Pharmaceutical Industries.
 
Determination of molecular weight of polymers by visometry
Determination of molecular weight of polymers by visometryDetermination of molecular weight of polymers by visometry
Determination of molecular weight of polymers by visometry
 
Conducting Polymer By Imran Aziz
Conducting Polymer By Imran AzizConducting Polymer By Imran Aziz
Conducting Polymer By Imran Aziz
 
CONDUCTING POLYMERS
CONDUCTING POLYMERSCONDUCTING POLYMERS
CONDUCTING POLYMERS
 
conducting polymers
conducting polymersconducting polymers
conducting polymers
 
Analysis of Conducting Polymer:Polypyrrole::Part 1
Analysis of Conducting Polymer:Polypyrrole::Part 1Analysis of Conducting Polymer:Polypyrrole::Part 1
Analysis of Conducting Polymer:Polypyrrole::Part 1
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable Polymers
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable Polymers
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable Polymers
 
Biodegradable Polymers By CHITRANSH
Biodegradable Polymers By CHITRANSHBiodegradable Polymers By CHITRANSH
Biodegradable Polymers By CHITRANSH
 
Biodegradable polymers by madhuri phute
Biodegradable polymers by madhuri phuteBiodegradable polymers by madhuri phute
Biodegradable polymers by madhuri phute
 
Non linear kinetics
Non linear kineticsNon linear kinetics
Non linear kinetics
 
Biodegradable polymers
Biodegradable polymersBiodegradable polymers
Biodegradable polymers
 
Ppt of biodegradable packaging
Ppt of biodegradable packagingPpt of biodegradable packaging
Ppt of biodegradable packaging
 
Slideshare Powerpoint presentation
Slideshare Powerpoint presentationSlideshare Powerpoint presentation
Slideshare Powerpoint presentation
 

Semelhante a Polymer science: preparation and uses of polymers

Polymers
PolymersPolymers
Polymersmiss j
 
Polymer Chemistry
Polymer ChemistryPolymer Chemistry
Polymer ChemistryNur Fatihah
 
Polymers, types, synthesis, applications
Polymers, types, synthesis, applicationsPolymers, types, synthesis, applications
Polymers, types, synthesis, applicationsHuma Hameed
 
Polymer chemistry
Polymer chemistryPolymer chemistry
Polymer chemistryPMJadhav1
 
Dental polymers with recent advancements in dental base techniques 2
Dental polymers with recent advancements in dental base techniques 2Dental polymers with recent advancements in dental base techniques 2
Dental polymers with recent advancements in dental base techniques 2PoojaKhandelwal45
 
ORGANIC CHEMISTRY 1.1 -POLYMERS
ORGANIC CHEMISTRY 1.1 -POLYMERSORGANIC CHEMISTRY 1.1 -POLYMERS
ORGANIC CHEMISTRY 1.1 -POLYMERSshahzadebaujiti
 
Polymer M.Sc. Final presented by Dr. Sonia Rani.pptx
Polymer M.Sc. Final presented by Dr. Sonia Rani.pptxPolymer M.Sc. Final presented by Dr. Sonia Rani.pptx
Polymer M.Sc. Final presented by Dr. Sonia Rani.pptxSoniaRani69
 
Polymer for engineering students
Polymer for engineering studentsPolymer for engineering students
Polymer for engineering studentsJayeshBind
 
Polymer notes.pptx
Polymer notes.pptxPolymer notes.pptx
Polymer notes.pptxvishalnew345
 
Polymer for engineering students
Polymer for engineering studentsPolymer for engineering students
Polymer for engineering studentspathik shah
 
Chapter 4 - Inorganic Polymers.pdf
Chapter 4 - Inorganic Polymers.pdfChapter 4 - Inorganic Polymers.pdf
Chapter 4 - Inorganic Polymers.pdfShotosroyRoyTirtho
 

Semelhante a Polymer science: preparation and uses of polymers (20)

polymer
polymerpolymer
polymer
 
Polymers
PolymersPolymers
Polymers
 
Polymers
PolymersPolymers
Polymers
 
Polymer Chemistry
Polymer ChemistryPolymer Chemistry
Polymer Chemistry
 
Polymers, types, synthesis, applications
Polymers, types, synthesis, applicationsPolymers, types, synthesis, applications
Polymers, types, synthesis, applications
 
Application and advances of polymers
Application and advances of polymersApplication and advances of polymers
Application and advances of polymers
 
Polymer chemistry
Polymer chemistryPolymer chemistry
Polymer chemistry
 
Dental polymers with recent advancements in dental base techniques 2
Dental polymers with recent advancements in dental base techniques 2Dental polymers with recent advancements in dental base techniques 2
Dental polymers with recent advancements in dental base techniques 2
 
ORGANIC CHEMISTRY 1.1 -POLYMERS
ORGANIC CHEMISTRY 1.1 -POLYMERSORGANIC CHEMISTRY 1.1 -POLYMERS
ORGANIC CHEMISTRY 1.1 -POLYMERS
 
Macromolecules
MacromoleculesMacromolecules
Macromolecules
 
nmr.pptx
nmr.pptxnmr.pptx
nmr.pptx
 
Polymer M.Sc. Final presented by Dr. Sonia Rani.pptx
Polymer M.Sc. Final presented by Dr. Sonia Rani.pptxPolymer M.Sc. Final presented by Dr. Sonia Rani.pptx
Polymer M.Sc. Final presented by Dr. Sonia Rani.pptx
 
Polymers
PolymersPolymers
Polymers
 
Polymer for engineering students
Polymer for engineering studentsPolymer for engineering students
Polymer for engineering students
 
Polymer notes.pptx
Polymer notes.pptxPolymer notes.pptx
Polymer notes.pptx
 
Polymers Chemistry
Polymers ChemistryPolymers Chemistry
Polymers Chemistry
 
Polymers
Polymers Polymers
Polymers
 
Polymer
PolymerPolymer
Polymer
 
Polymer for engineering students
Polymer for engineering studentsPolymer for engineering students
Polymer for engineering students
 
Chapter 4 - Inorganic Polymers.pdf
Chapter 4 - Inorganic Polymers.pdfChapter 4 - Inorganic Polymers.pdf
Chapter 4 - Inorganic Polymers.pdf
 

Último

All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...narwatsonia7
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...Neha Kaur
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...indiancallgirl4rent
 
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsBangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsGfnyt
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...chandars293
 
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...narwatsonia7
 
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoybabeytanya
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatorenarwatsonia7
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...astropune
 
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...narwatsonia7
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.MiadAlsulami
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Deliverynehamumbai
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...narwatsonia7
 

Último (20)

All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCREscort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
 
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsBangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
 
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
 
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
 

Polymer science: preparation and uses of polymers

  • 2. DEFINITION The word ‘polymer’ comes from the Greek words poly (meaning ‘many’) and meros (meaning ‘parts’). Example: POLYBUTADIENE = (BUTADIENE+ BUTADIENE+......)n Where n = 4,000 Polymers are very large molecules made when hundreds of monomers join together to form long chains.
  • 3. INTRODUCTION • Polymers are complex and giant molecules usually with carbons building the backbone, different from low molecular weight compounds. • The small individual repeating units/moleules are known as monomers(means single part). • Imagine that a monomer can be represented by the letter A. Then a polymer made of that monomer would have the structure: -A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A- A-A • This kind of polymer is known as HOMOPOLYMER.
  • 4. CONT….. • In another kind of polymer, two different monomers might be involved. • If the letters A and B represent those monomers, then the polymer could be represented as: -A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A- B- A-B-A • A polymer with two different monomers is known as a COPOLYMER / HOMOPOLYMER.
  • 5.
  • 6. Molecular Structure of Polymer Linear – High Density Polyethylene (HDPE), PVC, Nylon, Cotton Branched – Low Density - Polyethylene (LDPE) Cross-linked – Rubber Network – Kevlar, Epoxy
  • 7. CHARACTERISTICS OF IDEAL POLYMER • Should be inert and compatible with the environment. • Should be non-toxic. • Should be easily administered. • Should be easy and inexpensive to fabricate. • Should have good mechanical strength.
  • 8. POLYMERISATION • The process by which the monomer molecules are linked to form a big polymer molecule is called ‘polymerisation’. • Polymerization is a process of bonding monomer, or “single units” together through a variety of reaction mechanisms to form longer chains named Polymer • As important as polymers are, they exist with monomers, which are small, single molecules such as hydrocarbons and amino acids.
  • 9. Addition Polymerization= When monomers just add on to form the polymer, the process is called ‘addition polym erisation’. The polymer is the only product e.g. Ethylene monomers add on to form polyethylene. (5 Ethylene monomers) Polyethylene formation
  • 10. It Is useful to dIstInguIsh four polymerIzatIon procedures fIttIng thIs general descrIptIon. • Radical Polymerization The initiator is a radical, and the propagating site of reactivity (*) is a carbon radical. • Cationic Polymerization The initiator is an acid, and the propagating site of reactivity (*) is a carbocation. • Anionic Polymerization The initiator is a nucleophile, and the propagating site of reactivity (*) is a carbanion. • Coordination Catalytic Polymerization The initiator is a transition metal complex, and the propagating site of reactivity (*) is a terminal catalytic complex.
  • 11. CONT…. Condensation polymerisation= • The molecules do not just add on but also undergo some reaction in forming the polymer, the process is called ‘condensation polymerisation’. • Here the two molecules condense to form a polymer.The condensation takes place between two reactivefunctional groups, like the carboxyl group(of an acid) and the hydroxyl group(of an alcohol). While forming the polymer water molecules also get eliminated. • In A. P. mol. weight of polymer is roughly equal to that of all monomers, while in C. P. the mol. weight of polymer is lesser by the weight of simple molecules eliminated during the condensation process. E.g. Condensation polymerization diacid diamine.
  • 12.
  • 13. 1. Natural and Synthetic Polymers  Polymers which are isolated from natural materials, are called as ‘natural polymers’. E.g. : Cotton, silk, wool, rubber. natural rubber  Polymers synthesized from low molecular weight compounds, are called as, ‘synthetic polymers’. E.g. polyethylene, nylon, terylene. Polyethylene
  • 15. 2. Organic and Inorganic Polymers  A Polymer whose backbone chain is essentially made of carbon atoms is termed an ‘Organic polymer’. Examples- cellulose, proteins, polyethylene, nylons.  A Polymer which does not have carbon atom in their chain is termed as ‘Inorganic polymer’ . Examples- Glass and silicone rubber
  • 16. 3. Thermoplastic and Thermosetting Polymer  Some polymer are soften on heating and can be converted into any shape that they can retain on cooling.  Such polymer that soften on heating and stiffen on cooling are termed as `thermoplastic’ polymers. Ex. Polyethylene, PVC, nylon, sealing wax.  Polymer that become an infusible and insoluble mass on heating are called ‘thermosetting’ polymers. Plastics made of these polymers cannot be stretched, are rigid and have a high melting point.
  • 17. 4. Plastics, Elastomers, Fibres & Liquid resins  Polymer is shaped into hard and tough utility articles by application of heat and pressure, is known as ‘plastics’. E.g. polysterene, PVC, polymethyl methacrylate.  When plastics are vulcanised into rubbery products exhibiting good strength and elongation, polymers are known as ‘elastomers’. E.g. silicone rubber, natural rubber, synthetic rubber, etc.  Long filament like material whose length is atleast 100 times it’s diameter, polymers are said to be ‘fibres’. E.g. Nylon, terylene.  Polymers used as adhesives, potting compounds, sealants, etc., in a liquid form are described as ‘liquid resins’. E.g. Epoxy adhesives and polysulphides sealants.
  • 18. Common Addition Polymers Structure Chemical Name Trade Name or CommonName poly(tetrafluoroethylene) Teflon polypropylene Herculon polyisobutylene butyl rubber polyethylene
  • 19. STEPS FOR SYNTHESIS OF POLYMERS There are three significant reactions that take place in addition polymerization:
  • 20. 1. INITIATION INITIATOR: • A relatively unstable molecule that decomposes into a free radical. Used to "initiate" a polymer growth reaction. (A molecule with an unpaired electron, making it highly reactive). • The stability of a radical refers to the molecule's tendency to react with other compounds. An unstable radical will readily combine with many different molecules. However a stable radical will not easily interact with other chemical substances.
  • 21. CONT…. • The first step in chain polymerization- Initiation involves the formation of a free radical. Addition can occur at either end of the monomer. This process is illustrated in the following animation in which a chlorine atom possessing an unpaired electron (often indicated as cl-) initiates the reaction.
  • 22. . 2. PROPAGATION • Propagation is the middle step in chain polymerization where successive monomers are attached to the growing chain. In the propagation stage, the process of electron transfer and consequent motion of the active center down the chain proceeds. • In following reaction(chain), refers to a chain of connected monomers, and X refers to a substituent group (a molecular fragment) specific to the monomer. For example, if X were a methyl group, the monomer would be propylene and the polymer, polypropylene. • The entire propagation reaction usually takes place within a fraction of a second.
  • 23. 3. TERMINATION • Termination of reaction is nothing but stop the further propagation of chain. • In theory, the propagation reaction could continue until the supply of monomers is exhausted. Most often the growth of a polymer chain is halted by the termination reaction. Termination typically occurs in two ways: Combination occurs when the polymer's growth is stopped by free electrons from two growing chains that join and form a single chain. The following diagram depicts combination, with the symbol (R) representing the rest of the chain. Combination Disproportionation
  • 24. CONT…. Disproportionation halts the propagation reaction when a free radical strips a hydrogen atom from an active chain. A carbon-carbon double bond takes the place of the missing hydrogen. - Disproportionation can also occur when the radical reacts with an impurity. This is why it is so important that polymerization be carried out under very clean conditions.
  • 25. LIVING POLYMERISATION • There exists a type of addition polymerization that does not undergo a termination reaction. This so-called "living polymerization" continues until the monomer supply has been exhausted. When this happens, the free radicals become less active due to interactions with solvent molecules. If more monomers are added to the solution, the polymerization will resume. • Uniform molecular weights (low polydispersity) are characteristic of living polymerization. Because the supply of monomers is controlled, the chain length can be manipulated to serve the needs of a specific application. This assumes that the initiator is 100% efficient.
  • 26. MOLECULAR WEIGHT DETERMINATION • There are two ways to calculate the average molecular weight: 1. Number Average Molecular Weight 2. Weight Average Molecular Weight
  • 27. CONT… 1. Number Average Molecular Weight • Molecular weight is determined by calculating the total molecular weight of monomer and total number of monomer. • Mi- total molecular weight of monomer. • Ni- number of monomer molecules. • Mn- number average molecular weight. ∑ ∑= i ii N MN nM
  • 28. CONT… 2. Weight Average Molecular Weight • Mw- weight average molecular weight. • Mi- total molecular weight of monomer. • Ni- number of monomer molecules. ∑ ∑= ii ii.i MN MMN wM
  • 29. APPLICATIONS  Mainly used for drug delivery. – As a coating material examples: Hydroxyl propyl methyl cellulose(HPMC), Methyl cellulose, Propylene glycol. – As a binders in tabletting granulation examples: Acacia, Gelatin, Sodium alginate. – As a disintegrants examples: starch, HPMC – As a thickening agent in suspension and ophthalmic preparations Example: methyl cellulose. – To form bases in ointments. – In hard and soft capsule gelatin is used. – Gelatin also used as suppository base, as an emulsifying agent and suspending agent.
  • 30. THERMAL CHARACTERIZATION Thermal analysis of the polymers is the important phenomenon to study the stability and degradation of polymers. Method :- a) TGA b) DSC c) Thermo mechanical analysis
  • 31. Thermo-gravimetric Analysis (TGA) • This method provides indication for thermal stability and upper limit of thermal degradation where loss of sample begins. • This method only measures loss of volatile content from the polymer. • This method has limitation that it can not detect temperature at chain cleavage of chain takes place.
  • 32. Differential Scanning Calorimetry (DSC) Parameters measured- 1. Glass transition temperature (Tg) 2. Crystalline melting point 3. Heat of fusion 4. Heat of crystallization • It requires placing of Reference and test sample for the continuous monitoring in the heating chamber.
  • 33. Thermo Mechanical Analysis (TMA) • This method is used for determination of deformation of polymer sample as a function of temperature placed on platform in contact with probe. • It measures transition from glassy to a rubbery polymer and gives idea about softening temperature.
  • 34. BIODEGRADABLE POLYMERS • Definition : Biodegradable polymers are defined as polymers comprised of monomers linked to one another through functional groups and have unstable links in the backbone. • They slowly disappear from the site of administration in response to a chemical reaction such as hydrolysis. • Material progressively releasing dissolved or dispersed drug, with ability of functioning for a temporary period and subsequently degrade in the biological fluids under a controlled mechanism, in to product easily eliminated in body metabolism pathway.
  • 35. Classification • Biodegradable polymers can be classified in two: 1. Natural biodegradable polymer examples: a) Collagen b) Albumin c) Casein d) gelatin e) xanthum gum f) gaur gum g) chitosan h) chtin 2. Synthetic biodegradable polymer examples: Polyanhydrides, Poly(ß-Hydroxybutyric Acids) etc. • Synthetic biodegradable polymer are preferred more than the natural biodegradable polymer because they are free of immunogenicity & their physicochemical properties are more predictable &reproducible
  • 36. ADVANTAGES • Localized delivery of drug • Sustained delivery of drug • Stabilization of drug • Decrease in dosing frequency • Reduce side effects • Improved patient compliance • Controllable degradation rate
  • 37. BIBLIOGRAPHY • file:///D:/polymerization/polymers%20with %20biodegradable.htm • file:///D:/polymerization/Polymerization.htm • file:///D:/polymerization/synthesis%20of %20polymerization.htm • file:///D:/polymerization/types.html