SlideShare uma empresa Scribd logo
1 de 19
Synchronous-Buck Converter Circuit
•   Synchronous-Buck Converter Circuit
•   Test Setup
•   Test Circuit
•   Synchronous-Buck Controller
•   MOSFET: TPC8014
•   Inductor L1: Würth Elektronik Inductor
•   Capacitor C9: 820uF (25V)
•   Switching Waveform
•   High Side MOSFET(QH): VGS, VDS, ID
•   Low Side MOSFET(QL): VGS, VDS, ID
•   Gate Drive Signal
•   VIN-VOUT
•   VOUT,RIPPLE
•   Output Inductor Voltage and Current


                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   1
Synchronous-Buck Converter Circuit




 Duty Cycle (D)
  ≈ Vin/Vout,
   D = 0.368




                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   2
Test Setup



                                                              Power Supply:
             Measurement Waveform                               VCC 12V
                                                                                     VIN 5V




                                                                               Test Circuit




                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2011     3
Test Circuit Schematic




       Synchronous-Buck Converter using TPS5618 controller from Texas Instruments

                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   4
Test Circuit (Breadboard)


                                                                    Q1


                                                                         Q2



                                Controller




                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   5
Test Circuit (Top View)


                                                     L1



                                                                        C9

                                                                                    C10


                                   Controller




                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2011     6
Synchronous-Buck Controller (1/2)

Synchronous-Buck Controller Circuit with IC                  Synchronous-Buck Controller Block Model
TPS5618 from Texas Instruments                               (Open Loop Setting)




                             HIDR
                                                                                               High side gate driver




                                                                                               Low side gate driver
                             LODR



•   The Syn-Buck_Ctrl is a block model that generates gate drive pulse signal to control MOSFET
    switches of the Synchronous-Buck Converter. The duty cycle, switching frequency, and the
    switching dead-time are input into the model to match the real circuit.


                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                           7
Synchronous-Buck Controller (2/2)

                                                                                                        Parameters
                                                                                                        •   FREQ = Switching frequency, set to match
                                                                                                            the measurement switching frequency.
     PARAMETERS:                                                                                        •   D = Duty Cycle, calculated by D≈VOUT/VIN
                                                                                                        •
     FREQ = 152kHz
     D = 0.36
                                                                          DHDR1    RHDR1                    tdly = HDR and LDR dead-time, the tdly is
                                   U1                                     Dclmp    0.01
     tdly = 80n                    AND2_ABM                                     N7                          set to match the measurement dead time
               Rdly 1
                        N4
                                                         N5                    N6
                                                                                                  HDR       value.
                                                                          Dclmp RHDR2          CHDR                                      Dead-time, the time
               1k
                             Cdly 1                 VOH = 12              DHDR2 0.01           1n                                         when QH and QL
Pulse                        {tdly /1k}             VOL = 0
                                                                                           0                                                are both off
Control                 0
Signal                                                                                                               1/frequency
                    U5                                             U2
                    INV_ABM                                        AND2_ABM
     N1                                   N2
                                               Rdly 2
                                                        N3                                        LDR
                    VOH = 1.709
                    VOL = 0
                                               1k
          V1                                                 Cdly 2            VOH = 8
                                                             {tdly /1k}        VOL = 0
          TD = {1/FREQ}
          TR = 1n                                       0
          TF = 1n                                                           Dead-time
      0   V1 = 0
          V2 = 1.709                                                        generator
          PW = {D/FREQ}
          PER = {1/FREQ}



      The Syn-Buck_Ctrl Equivalent Circuit


                                                                                                             Gate drive signal (measurement)

                                                                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                         8
MOSFET: TPC8014 (1/2)

                                                  *$
                                                  *PART NUMBER: TPC8014
                                                  *MANUFACTURER: TOSHIBA
                                                  *VDSS=30V, ID=11A
                                                  *All Rights Reserved Copyright (c) Bee Technologies Inc. 2011
                                                  .SUBCKT TPC8014 1 2 3 4 5 6 7 8
                                                  X_U1 6 4 3 MTPC8014_p
                                                  X_U2 4 3     DZTPC8014
                                                  X_U3 3 6     DTPC8014_p
                                                  R_R1 1 3 0.01m
                                                  R_R2 2 3 0.01m
                                                  R_R5 5 6 0.01m
                                                  R_R7 7 6 0.01m
 Device mounted on an epoxy board                 R_R8 8 6 0.01m
                                                  .ENDS
                                                  *$




    TPC8014 LTSpice Symbol



                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                        9
MOSFET: TPC8014 (2/2)

*$                                                              *$
                                                                .SUBCKT DTPC8014_p A K
.SUBCKT MTPC8014_p D G S
                                                                R_R2 5 6 100
CGD     1    G 1.7n                                             R_R1 3 4 1
R1    1     G 10MEG                                             C_C1 5 6 195p
S1    1 D G D SMOD1                                             E_E1 5 K 3 4 1
                                                                S_S1 6 K 4 K _S1
D1    2     D DGD
                                                                RS_S1 4 K 1G
R2    D     2 10MEG                                             .MODEL _S1 VSWITCH
S2    2 G D G SMOD1                                             + Roff=50MEG Ron=100m Voff=90mV Von=100mV
M1   D G S S MTPC8014                                           G_G1 K A VALUE { V(3,4)-V(5,6) }
                                                                D_D1 2 K DTPC8014
.MODEL SMOD1 VSWITCH
                                                                D_D2 4 K DTPC8014
+ VON=0V VOFF=-10mV RON=1m ROFF=1E12                            F_F1 K 3 VF_F1 1
.MODEL DGD D (CJO=0.950E-9 M=.52396 VJ=.54785)                  VF_F1 A 2 0V
.MODEL MTPC8014 NMOS                                            .MODEL DTPC8014 D
+ LEVEL=3 L=720.00E-9 W=.45 KP=66.000E-6 RS=1.0000E-3           + IS=824.87E-12 N=1.2770 RS=6.2420E-3 IKF=7.3139
                                                                + CJO=3.0000E-12 BV=60 IBV=100.00E-6 TT=24.062E-9
+ RD=6.8436E-3 VTO=2.3063 RDS=3.0000E6 TOX=40.000E-9            .ENDS
+ CGSO=2.7726E-9 CGDO=1E-12 RG=22.95                            *$
+ CBD=342.86E-12 MJ=.70573 PB=.3905                             .subckt DZTPC8014 1 2
+ RB=1 N=5 IS=1E-15 GAMMA=0 KAPPA=0 ETA=0.5m                    D2 1 3 DZ2
                                                                D1 2 3 DZ1
.ENDS
                                                                .model DZ1 D
*$                                                              + IS=0.01p N=0.1 ISR=0
                                                                + CJO=3E-12 BV=22.423 IBV=0.001 RS=0
                                                                .model DZ2 D
                                                                + IS=0.01p N=0.1 ISR=0
                                                                + CJO=3E-12 BV=22.423 IBV=0.001 RS=411.11
                                                                .ENDS
                                                                *$



                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                     10
Inductor L1: Würth Elektronik Inductor

                                                                *$
                                                                *PART NUMBER: L7447140
                                                                *MANUFACTURER: Würth Elektronik
                                                                *All Rights Reserved Copyright (c) Bee Technologies Inc. 2011
                                                                .SUBCKT L7447140 1 2
                                                                R_RS 1 N1 10.366m
                                                                L_L1 N1 2 4.84796uH
                                                                C_C1 N1 2 0.357pF
                                                                R_R1 N1 2 15.3375k
                                                                .ENDS
                                                                *$

  Würth Elektronik Inductor part no. 7447140




    LTSpice Symbol



                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                          11
Capacitor C9: 820uF (25V)

                                                              *$
                                                              *PART NUMBER: EEUFM1E821L
                                                              *MANUFACTURER: Panasonic
                                                              *CAP=820uF, Vmax=25V
                                                              *All Rights Reserved Copyright (C) Bee Technologies Inc. 2011
                                                              .SUBCKT C820U 1 2
                                                              L_L1 1        N1            8.16935nH
                                                              C_C1          N1            N2            812.73uF
                                                              R_R1          N2            2             15.695m
                                                              .ENDS
                                                               *$

  Capacitor 820uF (25V)




  LTSpice Symbol




                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                          12
Switching Waveform


Measurement                                        Simulation



     VDS(Q1)                                                VDS(Q1)




      I(L1)

                                                             I(L1)



     V(Vout)
                                                            V(Vout)




               All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   13
High Side MOSFET(QH): VGS, VDS, ID


Measurement                                        Simulation


    VGS(Q1)                                                 VGS(Q1)




     VDS(Q1)

                                                             VDS(Q1)


    ID(Q1)                                                  ID(Q1)




               All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   14
Low Side MOSFET(QL): VGS, VDS, ID


Measurement                                        Simulation



     VGS(Q2)                                                VGS(Q2)




     VDS(Q2)

                                                           VDS(Q2)


    ID(Q2)                                                  ID(Q2)




               All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   15
Gate Drive Signal


Measurement                                             Simulation




     VGS(Q1)                                                    VGS(Q1)




     VGS(Q2)                                                    VGS(Q2)




                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   16
VIN – VOUT


Measurement                                       Simulation




     VIN                                                   VIN




     VOUT                                                   VOUT




              All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   17
VOUT,RIPPLE


Measurement                                            Simulation




     VOUT,RIPPLE                                                  VOUT,RIPPLE




                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   18
Output Inductor Voltage and Current


Measurement                                          Simulation


                                                             V(L)
     V(L)




                                                             I(L)
     I(L)




                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   19

Mais conteúdo relacionado

Mais procurados

Colpitts Oscillator - Working and Applications
Colpitts Oscillator - Working and ApplicationsColpitts Oscillator - Working and Applications
Colpitts Oscillator - Working and Applicationselprocus
 
Working Principle of Inverters & Types
Working Principle of Inverters & TypesWorking Principle of Inverters & Types
Working Principle of Inverters & TypesKrishna Mohan Mishra
 
Unit 2.Converter and Chopper fed Dc drives
Unit 2.Converter and Chopper fed Dc drivesUnit 2.Converter and Chopper fed Dc drives
Unit 2.Converter and Chopper fed Dc drivesraviarmugam
 
Ac fundamentals
Ac fundamentalsAc fundamentals
Ac fundamentalsAnu71
 
Chapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdfChapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdfbenson215
 
Methods of Voltage Control
Methods of Voltage ControlMethods of Voltage Control
Methods of Voltage ControlYashvi Mehta
 
Report on industrial summer training on 220 kv substation
Report  on industrial summer training on 220 kv substationReport  on industrial summer training on 220 kv substation
Report on industrial summer training on 220 kv substationAshutosh Srivastava
 
Introduction to chopper & analysis
Introduction to chopper & analysisIntroduction to chopper & analysis
Introduction to chopper & analysissachin kr
 
Power Electronics-Introduction
Power Electronics-IntroductionPower Electronics-Introduction
Power Electronics-Introductionsangeetha rakhi
 
555 Timer integrated circuit and its applications
555 Timer integrated circuit and its applications555 Timer integrated circuit and its applications
555 Timer integrated circuit and its applicationsMayank Raj Singh
 
regulated power supply
regulated power supplyregulated power supply
regulated power supplyHalaKamal9
 
Module 2 ee369 KTU syllabus-high voltage ac generation,resonant circuits
Module 2 ee369 KTU syllabus-high voltage ac generation,resonant circuitsModule 2 ee369 KTU syllabus-high voltage ac generation,resonant circuits
Module 2 ee369 KTU syllabus-high voltage ac generation,resonant circuitsAsha Anu Kurian
 
protection scheme of a grid substation prsentation
protection scheme of a grid substation prsentationprotection scheme of a grid substation prsentation
protection scheme of a grid substation prsentationabu jubayer
 

Mais procurados (20)

Flyback converter
Flyback converterFlyback converter
Flyback converter
 
Facts controller
Facts controllerFacts controller
Facts controller
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
 
Colpitts Oscillator - Working and Applications
Colpitts Oscillator - Working and ApplicationsColpitts Oscillator - Working and Applications
Colpitts Oscillator - Working and Applications
 
Working Principle of Inverters & Types
Working Principle of Inverters & TypesWorking Principle of Inverters & Types
Working Principle of Inverters & Types
 
Unit 2.Converter and Chopper fed Dc drives
Unit 2.Converter and Chopper fed Dc drivesUnit 2.Converter and Chopper fed Dc drives
Unit 2.Converter and Chopper fed Dc drives
 
Scr firing circuits
Scr firing circuitsScr firing circuits
Scr firing circuits
 
RTCC & AVR
RTCC & AVRRTCC & AVR
RTCC & AVR
 
2. VFD
2. VFD2. VFD
2. VFD
 
Ac fundamentals
Ac fundamentalsAc fundamentals
Ac fundamentals
 
Chapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdfChapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdf
 
Methods of Voltage Control
Methods of Voltage ControlMethods of Voltage Control
Methods of Voltage Control
 
Report on industrial summer training on 220 kv substation
Report  on industrial summer training on 220 kv substationReport  on industrial summer training on 220 kv substation
Report on industrial summer training on 220 kv substation
 
Silicon control rectifier
Silicon control rectifierSilicon control rectifier
Silicon control rectifier
 
Introduction to chopper & analysis
Introduction to chopper & analysisIntroduction to chopper & analysis
Introduction to chopper & analysis
 
Power Electronics-Introduction
Power Electronics-IntroductionPower Electronics-Introduction
Power Electronics-Introduction
 
555 Timer integrated circuit and its applications
555 Timer integrated circuit and its applications555 Timer integrated circuit and its applications
555 Timer integrated circuit and its applications
 
regulated power supply
regulated power supplyregulated power supply
regulated power supply
 
Module 2 ee369 KTU syllabus-high voltage ac generation,resonant circuits
Module 2 ee369 KTU syllabus-high voltage ac generation,resonant circuitsModule 2 ee369 KTU syllabus-high voltage ac generation,resonant circuits
Module 2 ee369 KTU syllabus-high voltage ac generation,resonant circuits
 
protection scheme of a grid substation prsentation
protection scheme of a grid substation prsentationprotection scheme of a grid substation prsentation
protection scheme of a grid substation prsentation
 

Destaque

Gjuhe Programuese ushtrimet C++
Gjuhe Programuese   ushtrimet   C++Gjuhe Programuese   ushtrimet   C++
Gjuhe Programuese ushtrimet C++Ajla Hasani
 
Concept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelConcept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelTsuyoshi Horigome
 
18289602 buck-converter
18289602 buck-converter18289602 buck-converter
18289602 buck-converterAli Baihaqi
 
Concept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelConcept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelTsuyoshi Horigome
 
Analysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitAnalysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitUniv of Jember
 
BUCK converter fed by PV array
BUCK converter fed by PV arrayBUCK converter fed by PV array
BUCK converter fed by PV arrayMonika Rout
 
Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck ConverterAkhil Syamalan
 
Full-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsFull-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsLong Thang Pham
 
Synchronous motor drive
Synchronous motor driveSynchronous motor drive
Synchronous motor driveGuru Moorthi
 

Destaque (12)

Gjuhe Programuese ushtrimet C++
Gjuhe Programuese   ushtrimet   C++Gjuhe Programuese   ushtrimet   C++
Gjuhe Programuese ushtrimet C++
 
Synchronous link converter var compensator (SLCVC)
Synchronous link converter var compensator (SLCVC)Synchronous link converter var compensator (SLCVC)
Synchronous link converter var compensator (SLCVC)
 
Concept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelConcept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients Model
 
18289602 buck-converter
18289602 buck-converter18289602 buck-converter
18289602 buck-converter
 
Concept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelConcept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average Model
 
POWER POINT TRACKING
POWER POINT TRACKINGPOWER POINT TRACKING
POWER POINT TRACKING
 
Analysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitAnalysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC Circuit
 
BUCK converter fed by PV array
BUCK converter fed by PV arrayBUCK converter fed by PV array
BUCK converter fed by PV array
 
Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck Converter
 
Full-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsFull-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generators
 
Boost converter
Boost converterBoost converter
Boost converter
 
Synchronous motor drive
Synchronous motor driveSynchronous motor drive
Synchronous motor drive
 

Semelhante a Synchronous Buck Converter using LTspice

Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Tsuyoshi Horigome
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationscuashok07
 
Simple Method To Determine Esr Requirements For Stable
Simple Method To Determine Esr Requirements For StableSimple Method To Determine Esr Requirements For Stable
Simple Method To Determine Esr Requirements For StableSteven Sandler
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppttariqqureshi33
 
Cyclo converter design for hf applications using h-bridge inverter
Cyclo converter design for hf applications using h-bridge inverterCyclo converter design for hf applications using h-bridge inverter
Cyclo converter design for hf applications using h-bridge invertercuashok07
 
Power elecronics lab manual1
Power elecronics lab manual1Power elecronics lab manual1
Power elecronics lab manual1aroulk
 
Noise reduction techniques
Noise reduction techniquesNoise reduction techniques
Noise reduction techniquesChico3001
 
Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfbenson215
 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
 
Distance Protection
Distance ProtectionDistance Protection
Distance Protectionncct
 
TTL Driving CMOS - Digital Electronic Presentation ALA 2018
TTL Driving CMOS - Digital Electronic Presentation ALA 2018TTL Driving CMOS - Digital Electronic Presentation ALA 2018
TTL Driving CMOS - Digital Electronic Presentation ALA 2018Mr. RahüL YøGi
 

Semelhante a Synchronous Buck Converter using LTspice (20)

Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)
 
Datasheet 555
Datasheet 555Datasheet 555
Datasheet 555
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Simple Method To Determine Esr Requirements For Stable
Simple Method To Determine Esr Requirements For StableSimple Method To Determine Esr Requirements For Stable
Simple Method To Determine Esr Requirements For Stable
 
Ne555
Ne555Ne555
Ne555
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 
Cd4047
Cd4047Cd4047
Cd4047
 
Cyclo converter design for hf applications using h-bridge inverter
Cyclo converter design for hf applications using h-bridge inverterCyclo converter design for hf applications using h-bridge inverter
Cyclo converter design for hf applications using h-bridge inverter
 
Unit 6.pptx
Unit 6.pptxUnit 6.pptx
Unit 6.pptx
 
Power elecronics lab manual1
Power elecronics lab manual1Power elecronics lab manual1
Power elecronics lab manual1
 
8
88
8
 
Noise reduction techniques
Noise reduction techniquesNoise reduction techniques
Noise reduction techniques
 
Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdf
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Distance Protection
Distance ProtectionDistance Protection
Distance Protection
 
Ch2slide (1).pdf
Ch2slide (1).pdfCh2slide (1).pdf
Ch2slide (1).pdf
 
Lpc662
Lpc662Lpc662
Lpc662
 
TTL Driving CMOS - Digital Electronic Presentation ALA 2018
TTL Driving CMOS - Digital Electronic Presentation ALA 2018TTL Driving CMOS - Digital Electronic Presentation ALA 2018
TTL Driving CMOS - Digital Electronic Presentation ALA 2018
 
Testing
TestingTesting
Testing
 
Basic protection and relaying
Basic protection and relayingBasic protection and relaying
Basic protection and relaying
 

Mais de Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

Mais de Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Último

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 

Último (20)

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 

Synchronous Buck Converter using LTspice

  • 1. Synchronous-Buck Converter Circuit • Synchronous-Buck Converter Circuit • Test Setup • Test Circuit • Synchronous-Buck Controller • MOSFET: TPC8014 • Inductor L1: Würth Elektronik Inductor • Capacitor C9: 820uF (25V) • Switching Waveform • High Side MOSFET(QH): VGS, VDS, ID • Low Side MOSFET(QL): VGS, VDS, ID • Gate Drive Signal • VIN-VOUT • VOUT,RIPPLE • Output Inductor Voltage and Current All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1
  • 2. Synchronous-Buck Converter Circuit Duty Cycle (D) ≈ Vin/Vout, D = 0.368 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 2
  • 3. Test Setup Power Supply: Measurement Waveform VCC 12V VIN 5V Test Circuit All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 3
  • 4. Test Circuit Schematic Synchronous-Buck Converter using TPS5618 controller from Texas Instruments All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 4
  • 5. Test Circuit (Breadboard) Q1 Q2 Controller All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 5
  • 6. Test Circuit (Top View) L1 C9 C10 Controller All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 6
  • 7. Synchronous-Buck Controller (1/2) Synchronous-Buck Controller Circuit with IC Synchronous-Buck Controller Block Model TPS5618 from Texas Instruments (Open Loop Setting) HIDR High side gate driver Low side gate driver LODR • The Syn-Buck_Ctrl is a block model that generates gate drive pulse signal to control MOSFET switches of the Synchronous-Buck Converter. The duty cycle, switching frequency, and the switching dead-time are input into the model to match the real circuit. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 7
  • 8. Synchronous-Buck Controller (2/2) Parameters • FREQ = Switching frequency, set to match the measurement switching frequency. PARAMETERS: • D = Duty Cycle, calculated by D≈VOUT/VIN • FREQ = 152kHz D = 0.36 DHDR1 RHDR1 tdly = HDR and LDR dead-time, the tdly is U1 Dclmp 0.01 tdly = 80n AND2_ABM N7 set to match the measurement dead time Rdly 1 N4 N5 N6 HDR value. Dclmp RHDR2 CHDR Dead-time, the time 1k Cdly 1 VOH = 12 DHDR2 0.01 1n when QH and QL Pulse {tdly /1k} VOL = 0 0 are both off Control 0 Signal 1/frequency U5 U2 INV_ABM AND2_ABM N1 N2 Rdly 2 N3 LDR VOH = 1.709 VOL = 0 1k V1 Cdly 2 VOH = 8 {tdly /1k} VOL = 0 TD = {1/FREQ} TR = 1n 0 TF = 1n Dead-time 0 V1 = 0 V2 = 1.709 generator PW = {D/FREQ} PER = {1/FREQ} The Syn-Buck_Ctrl Equivalent Circuit Gate drive signal (measurement) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 8
  • 9. MOSFET: TPC8014 (1/2) *$ *PART NUMBER: TPC8014 *MANUFACTURER: TOSHIBA *VDSS=30V, ID=11A *All Rights Reserved Copyright (c) Bee Technologies Inc. 2011 .SUBCKT TPC8014 1 2 3 4 5 6 7 8 X_U1 6 4 3 MTPC8014_p X_U2 4 3 DZTPC8014 X_U3 3 6 DTPC8014_p R_R1 1 3 0.01m R_R2 2 3 0.01m R_R5 5 6 0.01m R_R7 7 6 0.01m Device mounted on an epoxy board R_R8 8 6 0.01m .ENDS *$ TPC8014 LTSpice Symbol All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 9
  • 10. MOSFET: TPC8014 (2/2) *$ *$ .SUBCKT DTPC8014_p A K .SUBCKT MTPC8014_p D G S R_R2 5 6 100 CGD 1 G 1.7n R_R1 3 4 1 R1 1 G 10MEG C_C1 5 6 195p S1 1 D G D SMOD1 E_E1 5 K 3 4 1 S_S1 6 K 4 K _S1 D1 2 D DGD RS_S1 4 K 1G R2 D 2 10MEG .MODEL _S1 VSWITCH S2 2 G D G SMOD1 + Roff=50MEG Ron=100m Voff=90mV Von=100mV M1 D G S S MTPC8014 G_G1 K A VALUE { V(3,4)-V(5,6) } D_D1 2 K DTPC8014 .MODEL SMOD1 VSWITCH D_D2 4 K DTPC8014 + VON=0V VOFF=-10mV RON=1m ROFF=1E12 F_F1 K 3 VF_F1 1 .MODEL DGD D (CJO=0.950E-9 M=.52396 VJ=.54785) VF_F1 A 2 0V .MODEL MTPC8014 NMOS .MODEL DTPC8014 D + LEVEL=3 L=720.00E-9 W=.45 KP=66.000E-6 RS=1.0000E-3 + IS=824.87E-12 N=1.2770 RS=6.2420E-3 IKF=7.3139 + CJO=3.0000E-12 BV=60 IBV=100.00E-6 TT=24.062E-9 + RD=6.8436E-3 VTO=2.3063 RDS=3.0000E6 TOX=40.000E-9 .ENDS + CGSO=2.7726E-9 CGDO=1E-12 RG=22.95 *$ + CBD=342.86E-12 MJ=.70573 PB=.3905 .subckt DZTPC8014 1 2 + RB=1 N=5 IS=1E-15 GAMMA=0 KAPPA=0 ETA=0.5m D2 1 3 DZ2 D1 2 3 DZ1 .ENDS .model DZ1 D *$ + IS=0.01p N=0.1 ISR=0 + CJO=3E-12 BV=22.423 IBV=0.001 RS=0 .model DZ2 D + IS=0.01p N=0.1 ISR=0 + CJO=3E-12 BV=22.423 IBV=0.001 RS=411.11 .ENDS *$ All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 10
  • 11. Inductor L1: Würth Elektronik Inductor *$ *PART NUMBER: L7447140 *MANUFACTURER: Würth Elektronik *All Rights Reserved Copyright (c) Bee Technologies Inc. 2011 .SUBCKT L7447140 1 2 R_RS 1 N1 10.366m L_L1 N1 2 4.84796uH C_C1 N1 2 0.357pF R_R1 N1 2 15.3375k .ENDS *$ Würth Elektronik Inductor part no. 7447140 LTSpice Symbol All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 11
  • 12. Capacitor C9: 820uF (25V) *$ *PART NUMBER: EEUFM1E821L *MANUFACTURER: Panasonic *CAP=820uF, Vmax=25V *All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 .SUBCKT C820U 1 2 L_L1 1 N1 8.16935nH C_C1 N1 N2 812.73uF R_R1 N2 2 15.695m .ENDS *$ Capacitor 820uF (25V) LTSpice Symbol All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 12
  • 13. Switching Waveform Measurement Simulation VDS(Q1) VDS(Q1) I(L1) I(L1) V(Vout) V(Vout) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 13
  • 14. High Side MOSFET(QH): VGS, VDS, ID Measurement Simulation VGS(Q1) VGS(Q1) VDS(Q1) VDS(Q1) ID(Q1) ID(Q1) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 14
  • 15. Low Side MOSFET(QL): VGS, VDS, ID Measurement Simulation VGS(Q2) VGS(Q2) VDS(Q2) VDS(Q2) ID(Q2) ID(Q2) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 15
  • 16. Gate Drive Signal Measurement Simulation VGS(Q1) VGS(Q1) VGS(Q2) VGS(Q2) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 16
  • 17. VIN – VOUT Measurement Simulation VIN VIN VOUT VOUT All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 17
  • 18. VOUT,RIPPLE Measurement Simulation VOUT,RIPPLE VOUT,RIPPLE All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 18
  • 19. Output Inductor Voltage and Current Measurement Simulation V(L) V(L) I(L) I(L) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 19