SlideShare uma empresa Scribd logo
1 de 25
Baixar para ler offline
Design Kit
PV Li-Ion Battery System

         All Rights Reserved Copyright (C) Bee Technologies Corporation 2010   1
Contents
                                                                                                                                    Slide #

    1. Lithium-Ion Batteries Pack
       1.1 Lithium-Ion Batteries Pack Specification..............................................................                   3
       1.2 Discharge Time Characteristics...........................................................................                4
       1.3 Single Cell Discharge Characteristics..................................................................                  5
       1.4 Charge Time Characteristics................................................................................              6
    2. Solar Cells
       2.1 Solar Cells Specification......................................................................................          7
       2.2 Output Characteristics vs. Incident Solar Radiation.............................................                         8
    3. Solar Cell Battery Charger.........................................................................................          9
       3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit.....................................                             10
       3.2 PV Li-Ion Battery Charger Circuit........................................................................                11
       3.3 Charging Time Characteristics vs. Weather Condition.........................................                             12
       3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current......                                         13
       3.5 Constant Current PV Li-Ion Battery Charger Circuit.............................................                          14
       3.6 Charging Time Characteristics vs. Weather Condition + Constant Current..........                                         15
    4. Simulation PV Li-Ion Battery System in 24hr.
       4.1 Concept of Simulation PV Li-Ion Battery System in 24hr.....................................                              16
       4.2 Short-Circuit Current vs. Time (24hr.)..................................................................                 17
       4.3 PV-Battery System Simulation Circuit..................................................................                   18
       4.3 PV-Battery System Simulation Result..................................................................                    19-23
    Simulations index............................................................................................................   24



                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                         2
1.1 Lithium-Ion Batteries Pack Specification


  BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001)

  • Capacity............................65[Wh], 4400[mAh] (Approximately)

  • Rated Current....................3[A]

  • Input Voltage.......................20.5 [Vdc]

  • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells )

  • Charging time......................5[hours] (Approximately)




                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2010   3
1.2 Discharge Time Characteristics


                                                                                                                          D1

                                                                                                                          DMOD

                                                                                PARAMETERS:                                         Voch
                                                                                rate = 1                                            16.8Vdc
                                                                                CAh = 4400m                                        0
                                                                                                                 Hi

                                0.2C ( 880 mA )                                                                                         0
                                                                                                            C1             U1
             0.5C ( 2200 mA )                                      IN+    OUT+                              1n    +   -    PBT-BAT-0001
                                                                   IN-    OUT-
                                                                G1                                      0                  TSCALE = 3600
                                                                GVALUE                                                     SOC1 = 100
       1C ( 4400 mA )                                           limit(V(%IN+, %IN-)/0.01, 0, rate*CAh )

                                                                                                                        TSCALE=3600
                                                                                  0                                    means time Scale
                                                                                                                       (Simulation time :
                                                           Batteries Pack Model Parameters                            Real time) is 1:3600
                                                           NS (number of batteries in series) = 4 cells
                                                           C (capacity) = 4400 mA
                                                           SOC1 (initial state of charge) = 100%
                                                           TSCALE (time scale) ,           simulation : real time
                                                                                           1 : 3600s or
                                                                                           1s : 1h

                                                           Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA)




                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                   4
1.3 Single Cell Discharge Characteristics

                    Single cell




                   Measurement                                                                               Simulation
                                                                            4.50
                                                                                                                             0.2C ( 880mA )
                                                                                                                             0.5C ( 2200mA )
                                                                                                                             1.0C ( 4400mA )
                                                                            4.00




                                                              VOLTAGE [V]
                                                                            3.50



                                                                            3.00



                                                                            2.50



                                                                            2.00
                                                                                   100   90   80   70   60    50   40   30   20   10    0      -10
                                                                                                         SOC [%]



•   Single cell discharge characteristics are compared between measurement data and simulation
    data.



                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                          5
1.4 Charge Time Characteristics

          SOC [%]                                                                                                      D1
                                                              PARAMETERS:
                                                              rate = 0.2                                               DMOD
                                                              CAh = 4400m

                                                                    G1                                                               Voch
                                                                    GVALUE                                                           16.8Vdc
                                                                    Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh )                          0
                                                                                                                      Hi




                                                                        OUT+
                                                                        OUT-
                                                                                                                 C1             U1           0
                                                                                                                 1n    +    -   PBT-BAT-0001




                                                                        IN+
                                                                        IN-
                                                                                                             0                  TSCALE = 3600
                                                                                                                                SOC1 = 0
                                                              Vin
                                                              20.5Vdc



Vbatt [V] ICharge [A]                                         0
                                                           Batteries Pack Model Parameters

                                                           NS (number of batteries in series) = 4 cells
                                                           C (capacity) = 4400 mA
                                                           SOC1 (initial state of charge) = 100%
                                                           TSCALE (time scale) ,           simulation : real time
                                                                                           1 : 3600s or
                                                                                           1s : 1h

                                                           Charger Adaptor

                                                           Input Voltage = 20.5 Vdc
                                                           Input Current = 880 mA(max.)




                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                6
2.1 Solar Cells Specification


  BP Solar’s photovoltaic module : SX330

  • Maximum power (Pmax)..............30[W]

  • Voltage at Pmax (Vmp).............16.8[V]

  • Current at Pmax (Imp)...............1.78[A]                                             502mm

  • Short-circuit current (Isc)...........1.94[A]

  • Open-circuit voltage(Voc)...........21.0[V]




                                                                                                    595mm
                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                   7
2.2 Output Characteristics vs. Incident Solar Radiation

                                                              SX330 Output Characteristics vs. Incident Solar Radiation


                                                                                   SOL=1




                                                       Current (A)
                                                                                   SOL=0.5
           +
                   U1                                                              SOL=0.16
                   SX330
         SX330     SOL = 1
                                                                                               SOL=1




                                                           Power (W)
       Parameter, SOL is added as                                                               SOL=0.5
       normalized incident radiation,
         where SOL=1 for AM1.5                                                                  SOL=0.16
                conditions



                                                                                            Voltage (V)



                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                             8
3. Solar Cell Battery Charger

•   Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect
    technique. Choose the solar cell that is able to provide current at charging rate or more
    with the maximum power voltage (Vmp) nears the batteries pack charging voltage.


•   PBT-BAT-0001 (Li-ion batteries pack)
     – Charging time is approximately 5 hours with charging rate 0.2C or 880mA
     – Voltage during charging with 0.2C is between 14.7 to 16.9 V


                                                                                     14.9 V

                                                                                     14.7 V




                                              0.2C or 880mA




                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009    9
3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit



                                                                    Over Voltage
                                                                    Protection Circuit
   Short circuit current ISC
 depends on condition: SOL
                                                                   16.8V Clamp Circuit



         Photovoltaic                                                          Lithium-Ion
         Module                                                                Batteries Pack



       SX 330 (BP Solar)                                                     PBT-BAT-0001 (BAYSUN)
       Vmp=16.8V                                                             DC12.8~16.4V (4 cells)
       Pmax=30W                                                              4400mAh




                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2009          10
3.2 PV Li-Ion Battery Charger Circuit

                                                                                       D1

          PARAMETERS:
                                                                                       DMOD
          sol = 1

                                                                                                      Voch
                                                                                                      16.8Vdc
                               pv                                                                    0
                                                                                     Hi


         +                                                             C1                        U1           0
                 U2                                                    1n               +   -    PBT-BAT-0001
                 SX330
        SX330    SOL = {sol}
                                                                   0                             TSCALE = 3600
                                                                                                 SOC1 = 0
             0

    •     Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident
          radiation, where SOL=1 for AM1.5 conditions.



                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                    11
3.3 Charging Time Characteristics vs. Weather Condition




                                                                                             sol = 1.00
                                                                                             sol = 0.50
                                                                                             sol = 0.16




   •   Simulation result shows the charging time for sol = 1, 0.5, and 0.16.



                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                12
3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit
+ Constant Current



                                                                         Over Voltage
                                                                         Protection Circuit
   Short circuit current ISC
 depends on condition: SOL
                                                                        16.8V Clamp Circuit


                                Constant
      Photovoltaic              Current                                             Lithium-Ion
      Module                    Control                                             Batteries Pack
                                Circuit


     SX 330 (BP Solar)         Icharge=0.2C (880mA)                               PBT-BAT-0001 (BAYSUN)
     Vmp=16.8V                                                                    DC12.8~16.4V (4 cells)
     Pmax=30W                                                                     4400mAh




                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2009               13
3.5 Constant Current PV Li-Ion Battery Charger Circuit


                                                                                              D1

          PARAMETERS:                PARAMETERS:
                                                                                              DMOD
          sol = 1                    rate = 0.2
                                     CAh = 4400m
                                                                                                              Voch
                                                                                                              16.8Vdc
                        pv                                                                                   0
                                                                                            Hi
                                      OUT+
                                      OUT-
         +                                                                     C1                        U1           0
                 U2                                                            1n             +      -   PBT-BAT-0001
                 SX330
                                      IN+
                                      IN-



        SX330    SOL = {sol}
                                                                           0                             TSCALE = 3600
                                     G1                                                                  SOC1 = 0
                                     GVALUE
             0                       Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh)



    •        Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the
    •        “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current.



                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                        14
3.6 Charging Time Characteristics vs. Weather Condition
(Constant Current)




                                                                                             sol = 1.00
                                                                                             sol = 0.50
                                                                                             sol = 0.16




   •   Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can
       generate current more than the constant charge rate (0.2A), battery can be fully
       charged in about 5 hour.


                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                15
4.1 Concept of Simulation PV Li-Ion Battery System in 24hr.


                                                                                     Over Voltage
   The model contains 24hr.                                                          Protection Circuit
  solar power data (example).
                                                                                   16.8V Clamp Circuit



  Photovoltaic                                                                       Lithium-Ion
  Module                                                                             Batteries Pack

                             Low-Voltage                                           PBT-BAT-0001 (BAYSUN)
 SX 330 (BP Solar)           Shutdown                                              DC12.8~16.4V (4 cells)
 Vmp=16.8V                   Circuit                                               4400mAh
 Pmax=30W
                        Vopen= (V)
                        Vclose= (V)
                                                  DC/DC
                                                                                 DC Load
                                                  Converter

                                                VIN=10~18V                      VIN = 5V
                                                VOUT=5V                         IIN = 1.5A


                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                  16
4.2 Short-Circuit Current vs. Time (24hr.)
                                                                                                The model contains
                                                                                               24hr. solar power data
                                                                                                     (example).



                                                                                               +

                                                                                                      U2
                                                                                              SX330   SX330_24H_TS3600




    •   Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours
        as the solar power profile (example) is included to the model.



                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                        17
4.3 PV-Battery System Simulation Circuit

Solar cell model                                                                                                                                                              D1
with 24hr. solar                                                                                                                 Set initial battery
                                                                                                                                                                              DMOD
 power data.                                                                                                                   voltage, IC=16.4, for
                                                                                                                                convergence aid.                                             Voch
                                                                                                                                                                                             16.8Vdc
                pv                                                                                                                                                                           0
                                D2
                                                                                                                                                                            batt
                                DMOD
                                                                                                                                                                C1
     +                                                                                                                                                          100n                   U1           0
                                                                                     Low-Voltage Shutdown Circuit                                               IC = 16.4     +    -   PBT-BAT-0001
             U2
    SX330    SX330_24H_TS3600
                                       VON = 0.7                                                                                                                0                      TSCALE = 3600
                                       VOFF = 0.3                             E1                                                                                                       SOC1 = 70
                                       RON = 0.01                   Ronof f   EVALUE
         0                             ROFF = 10MEG                 100       IF(V(batt1)>V(dchth),5,0)                        Ronof f 1
                                           +   +
                                                            Lctrl                                                    batt1
                                                                              OUT+    IN+
                                 C3
                                       -       -
                                                              Conof f
                                                                              OUT-    IN-       dchth                               100
                                 10n
                                       S2                     1n
                                                                                                                                                                              SOC1 value is initial
                                                   0                                             OUT+     IN+
                                       S                      IC = 5
                                                                                                 OUT-     IN-
                                                                                                                                 Conof f 1
                                                                                                                                 100n
                                                                                                                                                                               State Of Charge of
                                       PARAMETERS:                                                 E2                                                                         the battery, is set as
                                       Lopen = 14                                                  EVALUE
                                                                                        IF( V(lctrl) > 0.25 ,Lopen ,Lclose)                                                    70% of full voltage.
                                       Lclose = 15.2                                                                            0



    Lopen value is load                                                                                                       DC/DC Converter                                                    7.5W Load
     shutdown voltage.                                                                                                                                                                           (5Vx1.5A).
                                                                                                                      PARAMETERS:
    Lclose value is load                                                                                              n=1                                            out_dc

     reconnect voltage                                 IN                                                                                    OUT
                                                            G1                                       Iomax                                                                               I1
                                                                                                                      E3
                                                            IN+  OUT+                                                                                                             1.5Adc
                                                                                      IN+    OUT+                     IN+    OUT+
                                                            IN-  OUT-                 IN-    OUT-                     IN-    OUT-
                                                            GVALUE                    ecal_Iomax                      EVALUE
                                                                                      EVALUE                          IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 )
                                                                                                    0
                                                                                      n*V(%IN+, %IN-)*I(IN)/5

                                                       Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) )
                                                                                                                                                                                         0



                                       0                                                                          Simulation at 15W load, change I1 from 1.5A to 3A



                                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                          18
4.3.1 Simulation Result (SOC1=100)


PV generated current


                                                                    PV module charge the battery

Battery voltage

Battery current
                                                                                                          Battery supplies current when solar
                                                                                                          power drops.


Battery SOC                      SOC1=100                                       Fully charged,
                                                                                stop charging




DC output voltage
DC/DC input current



                                                             Charging
                                                             time


         •        C1: IC=16.4
         •        Run to time: 24s (24hours in real world)                  •     .Options ITL4=1000
         •        Step size: 0.01s



                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                         19
4.3.2 Simulation Result (SOC1=70)


PV generated current


                                                                     PV module charge the battery
                                       V=Lopen
Battery voltage

Battery current                                                  V=Lclose
                                                                                                          Battery supplies current when solar
                                                                                                          power drops.

                                 SOC1=70
Battery SOC                                                                      Fully charged,
                                                                                 stop charging




DC output voltage                                     Shutdown

DC/DC input current
                                                                 Reconnect



                                                             Charging
                                                             time

         •        C1: IC=16.4
         •        Run to time: 24s (24hours in real world)
                                                                             •     .Options ITL4=1000
         •        Step size: 0.01s
         •        SKIPBP


                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                         20
4.3.3 Simulation Result (SOC1=30)


PV generated current


                                                                    PV module charge the battery

Battery voltage                     V=Lopen

Battery current                                                  V=Lclose
                                                                                                          Battery supplies current when solar
                                                                                                          power drops.


Battery SOC                                                                        Fully charged,
                                    SOC1=30                                        stop charging




DC output voltage
                                        Shutdown
DC/DC input current
                                                                 Reconnect


                                                               Charging time


         •        C1: IC=15
         •        Run to time: 24s (24hours in real world)
                                                                               •    .Options ITL4=1000
         •        Step size: 0.01s
         •        Total job time = 2s


                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                         21
4.3.4 Simulation Result (SOC1=10)


PV generated current


                                                                    PV module charge the battery

Battery voltage

Battery current                                                  V=Lclose
                                                                                                          Battery supplies current when solar
                                                                                                          power drops.


Battery SOC                                                                        Fully charged,
                                 SOC1=10                                           stop charging




DC output voltage
                                  Shutdown
DC/DC input current
                                                                 Reconnect


                                                               Charging time


         •        C1: IC=14.4
         •        Run to time: 24s (24hours in real world)                     •    .Options RELTOL=0.01
         •        Step size: 0.01s                                             •    .Options ITL4=1000
         •        SKIPBP


                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                         22
4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load)


PV generated current


                                                                     PV module charge the battery
                                                                                                                      V=Lopen
Battery voltage                               V=Lopen

Battery current
                                                                                                           Battery supplies current when solar
                                                                                                           power drops.

Battery SOC                      SOC1=100                                                 Fully charged,
                                                                                          stop charging




DC output voltage                                                                                                           Shutdown
                                                   Shutdown
DC/DC input current



                                                              Charging
                                                              time


         •        C1: IC=16.4
         •        Run to time: 24s (24hours in real world)                   •     .Options ITL4=1000
         •        Step size: 0.001s



                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                          23
4.3.4 Simulation Result (Example of Conclusion)
The simulation start from midnight(time=0). The system supplies DC load 7.5W.
•   If initial SOC is 100%,
      – this system will never shutdown.
•   If initial SOC is 70%,
      – this system will shutdown after 5.185 hours (about 5:11AM.).
      – system load will reconnect again at 7:40AM (Morning).
•   If initial SOC is 30%,
      – this system will shutdown after 1.633 hours (about 1:38AM.).
      – system load will reconnect again at 7:37AM (Morning).
•   If initial SOC is 10%,
      – this system will start shutdown.
      – this system will reconnect again at 7:37AM (Morning).
•   With the PV generated current profile, battery will fully charged in about 4.25 hours.


The simulation start from midnight(time=0). The system supplies DC load 15W.
•   If initial SOC is 100%,
      – this system will shutdown after 3.897 hours (about 3:54AM.).
      – system load will reconnect again at 7:37AM (Morning).
      – this system will shutdown again at 8:28 PM (Night).
•   With the PV generated current profile, battery will fully charged in about 5.5 hours.

                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2009   24
Simulations index



 Simulations                                                                                  Folder name

 1.   PV Li-Ion Battery Charger Circuit...................................................    charge-sol

 2.   Constant Current PV Li-Ion Battery Charger Circuit......................                charge-sol-const

 3.   PV-Battery System Simulation Circuit (SOC1=100).......................                  sol_24h_soc100

 4.   PV-Battery System Simulation Circuit (SOC1=70).........................                 sol_24h_soc70

 5.   PV-Battery System Simulation Circuit (SOC1=30).........................                 sol_24h_soc30

 6.   PV-Battery System Simulation Circuit (SOC1=10).........................                 sol_24h_soc10

 7.   PV-Battery System Simulation Circuit (SOC1=100, 15W).............                       sol_24h_soc100_15W




                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                  25

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

SPICE MODEL of 2SC6081 in SPICE PARK
SPICE MODEL of 2SC6081 in SPICE PARKSPICE MODEL of 2SC6081 in SPICE PARK
SPICE MODEL of 2SC6081 in SPICE PARK
 
SPICE MODEL of 2SC6084 in SPICE PARK
SPICE MODEL of 2SC6084 in SPICE PARKSPICE MODEL of 2SC6084 in SPICE PARK
SPICE MODEL of 2SC6084 in SPICE PARK
 
SPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARKSPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARK
 
SPICE MODEL of TG6064 in SPICE PARK
SPICE MODEL of TG6064 in SPICE PARKSPICE MODEL of TG6064 in SPICE PARK
SPICE MODEL of TG6064 in SPICE PARK
 
SPICE MODEL of 2SC3632 in SPICE PARK
SPICE MODEL of 2SC3632 in SPICE PARKSPICE MODEL of 2SC3632 in SPICE PARK
SPICE MODEL of 2SC3632 in SPICE PARK
 
SPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKSPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARK
 
SPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARKSPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARK
 
SPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARKSPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARK
 
SPICE MODEL of 2SA1576AT106R in SPICE PARK
SPICE MODEL of 2SA1576AT106R in SPICE PARKSPICE MODEL of 2SA1576AT106R in SPICE PARK
SPICE MODEL of 2SA1576AT106R in SPICE PARK
 
SPICE MODEL of 2SA1037AKT146R in SPICE PARK
SPICE MODEL of 2SA1037AKT146R in SPICE PARKSPICE MODEL of 2SA1037AKT146R in SPICE PARK
SPICE MODEL of 2SA1037AKT146R in SPICE PARK
 
SPICE MODEL of 2SA1036KT146R in SPICE PARK
SPICE MODEL of 2SA1036KT146R in SPICE PARKSPICE MODEL of 2SA1036KT146R in SPICE PARK
SPICE MODEL of 2SA1036KT146R in SPICE PARK
 
SPICE MODEL of 2SA1774TLR in SPICE PARK
SPICE MODEL of 2SA1774TLR in SPICE PARKSPICE MODEL of 2SA1774TLR in SPICE PARK
SPICE MODEL of 2SA1774TLR in SPICE PARK
 
SPICE MODEL of QST7TR in SPICE PARK
SPICE MODEL of QST7TR in SPICE PARKSPICE MODEL of QST7TR in SPICE PARK
SPICE MODEL of QST7TR in SPICE PARK
 
SPICE MODEL of QST6TR in SPICE PARK
SPICE MODEL of QST6TR in SPICE PARKSPICE MODEL of QST6TR in SPICE PARK
SPICE MODEL of QST6TR in SPICE PARK
 
SPICE MODEL of US6T6TR in SPICE PARK
SPICE MODEL of US6T6TR in SPICE PARKSPICE MODEL of US6T6TR in SPICE PARK
SPICE MODEL of US6T6TR in SPICE PARK
 
SPICE MODEL of 2SC6102 in SPICE PARK
SPICE MODEL of 2SC6102 in SPICE PARKSPICE MODEL of 2SC6102 in SPICE PARK
SPICE MODEL of 2SC6102 in SPICE PARK
 
SPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKSPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARK
 
SPICE MODEL of 2SC2655 in SPICE PARK
SPICE MODEL of 2SC2655 in SPICE PARKSPICE MODEL of 2SC2655 in SPICE PARK
SPICE MODEL of 2SC2655 in SPICE PARK
 
SPICE MODEL of 2SC2878 in SPICE PARK
SPICE MODEL of 2SC2878 in SPICE PARKSPICE MODEL of 2SC2878 in SPICE PARK
SPICE MODEL of 2SC2878 in SPICE PARK
 
SPICE MODEL of 2SA2004 in SPICE PARK
SPICE MODEL of 2SA2004 in SPICE PARKSPICE MODEL of 2SA2004 in SPICE PARK
SPICE MODEL of 2SA2004 in SPICE PARK
 

Destaque

An Ultra-Compact and Efficient Li-ion Battery Charger
An Ultra-Compact and Efficient Li-ion Battery Charger An Ultra-Compact and Efficient Li-ion Battery Charger
An Ultra-Compact and Efficient Li-ion Battery Charger
I'am Ajas
 
17.вторичные энергетические ресурсы
17.вторичные энергетические ресурсы17.вторичные энергетические ресурсы
17.вторичные энергетические ресурсы
cpkia
 

Destaque (19)

Career options after your Chemistry Phd
Career options after your Chemistry PhdCareer options after your Chemistry Phd
Career options after your Chemistry Phd
 
An Ultra-Compact and Efficient Li-ion Battery Charger
An Ultra-Compact and Efficient Li-ion Battery Charger An Ultra-Compact and Efficient Li-ion Battery Charger
An Ultra-Compact and Efficient Li-ion Battery Charger
 
LT3650 - Li-Ion Battery Charger
LT3650 - Li-Ion  Battery ChargerLT3650 - Li-Ion  Battery Charger
LT3650 - Li-Ion Battery Charger
 
Ensalada de Sardinillas y Pimientos Piquillo Olmeda Origenes
Ensalada de Sardinillas y Pimientos Piquillo Olmeda OrigenesEnsalada de Sardinillas y Pimientos Piquillo Olmeda Origenes
Ensalada de Sardinillas y Pimientos Piquillo Olmeda Origenes
 
Yaseen-quraan
Yaseen-quraanYaseen-quraan
Yaseen-quraan
 
Insights into Youth Marketing
Insights into Youth Marketing Insights into Youth Marketing
Insights into Youth Marketing
 
Understanding the Past; Being Honest about the Present; Planning for the Future
Understanding the Past; Being Honest about the Present; Planning for the FutureUnderstanding the Past; Being Honest about the Present; Planning for the Future
Understanding the Past; Being Honest about the Present; Planning for the Future
 
Naveen Rama
Naveen RamaNaveen Rama
Naveen Rama
 
Actividad 2.3
Actividad 2.3Actividad 2.3
Actividad 2.3
 
Top 9 Misconceptions About Hair Thinning And The Truth Behind Them
Top 9 Misconceptions About Hair Thinning And The Truth Behind ThemTop 9 Misconceptions About Hair Thinning And The Truth Behind Them
Top 9 Misconceptions About Hair Thinning And The Truth Behind Them
 
Integrating Healthcare Informatics, Imaging, and Systems Biology-A Personal E...
Integrating Healthcare Informatics, Imaging, and Systems Biology-A Personal E...Integrating Healthcare Informatics, Imaging, and Systems Biology-A Personal E...
Integrating Healthcare Informatics, Imaging, and Systems Biology-A Personal E...
 
Sesion de aprendizaje
Sesion de aprendizajeSesion de aprendizaje
Sesion de aprendizaje
 
Data Science Governance
Data Science GovernanceData Science Governance
Data Science Governance
 
17.вторичные энергетические ресурсы
17.вторичные энергетические ресурсы17.вторичные энергетические ресурсы
17.вторичные энергетические ресурсы
 
Working with an Engineering Team
Working with an Engineering TeamWorking with an Engineering Team
Working with an Engineering Team
 
Makerspaces in Libraries: Education, innovation and maker culture in the libr...
Makerspaces in Libraries: Education, innovation and maker culture in the libr...Makerspaces in Libraries: Education, innovation and maker culture in the libr...
Makerspaces in Libraries: Education, innovation and maker culture in the libr...
 
Ilkay Gundogan's CV
Ilkay Gundogan's CVIlkay Gundogan's CV
Ilkay Gundogan's CV
 
Rapport de stage PFE
Rapport de stage PFERapport de stage PFE
Rapport de stage PFE
 
Leroy Sane's CV
Leroy Sane's CVLeroy Sane's CV
Leroy Sane's CV
 

Semelhante a デザインキット・PV Li-Ion Battery Systemの解説書

SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
spicepark
 

Semelhante a デザインキット・PV Li-Ion Battery Systemの解説書 (20)

PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーション
 
PV Lead Acid Battery System Simulation
PV Lead Acid Battery System SimulationPV Lead Acid Battery System Simulation
PV Lead Acid Battery System Simulation
 
Evaluation Report of TL431BILP
Evaluation Report of TL431BILPEvaluation Report of TL431BILP
Evaluation Report of TL431BILP
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
Simple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspiceSimple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspice
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARK
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpice
 
SPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKSPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARK
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARK
 
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
 
Nte2361
Nte2361Nte2361
Nte2361
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARK
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARK
 
Day1 02.Introduction
Day1 02.IntroductionDay1 02.Introduction
Day1 02.Introduction
 
Battery Basics
Battery BasicsBattery Basics
Battery Basics
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
 
Simple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspiceSimple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspice
 
ニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデル
 
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
 

Mais de Tsuyoshi Horigome

Mais de Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Último

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 

Último (20)

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 

デザインキット・PV Li-Ion Battery Systemの解説書

  • 1. Design Kit PV Li-Ion Battery System All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1
  • 2. Contents Slide # 1. Lithium-Ion Batteries Pack 1.1 Lithium-Ion Batteries Pack Specification.............................................................. 3 1.2 Discharge Time Characteristics........................................................................... 4 1.3 Single Cell Discharge Characteristics.................................................................. 5 1.4 Charge Time Characteristics................................................................................ 6 2. Solar Cells 2.1 Solar Cells Specification...................................................................................... 7 2.2 Output Characteristics vs. Incident Solar Radiation............................................. 8 3. Solar Cell Battery Charger......................................................................................... 9 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit..................................... 10 3.2 PV Li-Ion Battery Charger Circuit........................................................................ 11 3.3 Charging Time Characteristics vs. Weather Condition......................................... 12 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current...... 13 3.5 Constant Current PV Li-Ion Battery Charger Circuit............................................. 14 3.6 Charging Time Characteristics vs. Weather Condition + Constant Current.......... 15 4. Simulation PV Li-Ion Battery System in 24hr. 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr..................................... 16 4.2 Short-Circuit Current vs. Time (24hr.).................................................................. 17 4.3 PV-Battery System Simulation Circuit.................................................................. 18 4.3 PV-Battery System Simulation Result.................................................................. 19-23 Simulations index............................................................................................................ 24 All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 2
  • 3. 1.1 Lithium-Ion Batteries Pack Specification BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001) • Capacity............................65[Wh], 4400[mAh] (Approximately) • Rated Current....................3[A] • Input Voltage.......................20.5 [Vdc] • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells ) • Charging time......................5[hours] (Approximately) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
  • 4. 1.2 Discharge Time Characteristics D1 DMOD PARAMETERS: Voch rate = 1 16.8Vdc CAh = 4400m 0 Hi 0.2C ( 880 mA ) 0 C1 U1 0.5C ( 2200 mA ) IN+ OUT+ 1n + - PBT-BAT-0001 IN- OUT- G1 0 TSCALE = 3600 GVALUE SOC1 = 100 1C ( 4400 mA ) limit(V(%IN+, %IN-)/0.01, 0, rate*CAh ) TSCALE=3600 0 means time Scale (Simulation time : Batteries Pack Model Parameters Real time) is 1:3600 NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 4
  • 5. 1.3 Single Cell Discharge Characteristics Single cell Measurement Simulation 4.50 0.2C ( 880mA ) 0.5C ( 2200mA ) 1.0C ( 4400mA ) 4.00 VOLTAGE [V] 3.50 3.00 2.50 2.00 100 90 80 70 60 50 40 30 20 10 0 -10 SOC [%] • Single cell discharge characteristics are compared between measurement data and simulation data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5
  • 6. 1.4 Charge Time Characteristics SOC [%] D1 PARAMETERS: rate = 0.2 DMOD CAh = 4400m G1 Voch GVALUE 16.8Vdc Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh ) 0 Hi OUT+ OUT- C1 U1 0 1n + - PBT-BAT-0001 IN+ IN- 0 TSCALE = 3600 SOC1 = 0 Vin 20.5Vdc Vbatt [V] ICharge [A] 0 Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Charger Adaptor Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6
  • 7. 2.1 Solar Cells Specification BP Solar’s photovoltaic module : SX330 • Maximum power (Pmax)..............30[W] • Voltage at Pmax (Vmp).............16.8[V] • Current at Pmax (Imp)...............1.78[A] 502mm • Short-circuit current (Isc)...........1.94[A] • Open-circuit voltage(Voc)...........21.0[V] 595mm All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7
  • 8. 2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation SOL=1 Current (A) SOL=0.5 + U1 SOL=0.16 SX330 SX330 SOL = 1 SOL=1 Power (W) Parameter, SOL is added as SOL=0.5 normalized incident radiation, where SOL=1 for AM1.5 SOL=0.16 conditions Voltage (V) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8
  • 9. 3. Solar Cell Battery Charger • Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. • PBT-BAT-0001 (Li-ion batteries pack) – Charging time is approximately 5 hours with charging rate 0.2C or 880mA – Voltage during charging with 0.2C is between 14.7 to 16.9 V 14.9 V 14.7 V 0.2C or 880mA All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9
  • 10. 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Photovoltaic Lithium-Ion Module Batteries Pack SX 330 (BP Solar) PBT-BAT-0001 (BAYSUN) Vmp=16.8V DC12.8~16.4V (4 cells) Pmax=30W 4400mAh All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10
  • 11. 3.2 PV Li-Ion Battery Charger Circuit D1 PARAMETERS: DMOD sol = 1 Voch 16.8Vdc pv 0 Hi + C1 U1 0 U2 1n + - PBT-BAT-0001 SX330 SX330 SOL = {sol} 0 TSCALE = 3600 SOC1 = 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11
  • 12. 3.3 Charging Time Characteristics vs. Weather Condition sol = 1.00 sol = 0.50 sol = 0.16 • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12
  • 13. 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Constant Photovoltaic Current Lithium-Ion Module Control Batteries Pack Circuit SX 330 (BP Solar) Icharge=0.2C (880mA) PBT-BAT-0001 (BAYSUN) Vmp=16.8V DC12.8~16.4V (4 cells) Pmax=30W 4400mAh All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13
  • 14. 3.5 Constant Current PV Li-Ion Battery Charger Circuit D1 PARAMETERS: PARAMETERS: DMOD sol = 1 rate = 0.2 CAh = 4400m Voch 16.8Vdc pv 0 Hi OUT+ OUT- + C1 U1 0 U2 1n + - PBT-BAT-0001 SX330 IN+ IN- SX330 SOL = {sol} 0 TSCALE = 3600 G1 SOC1 = 0 GVALUE 0 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) • Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the • “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14
  • 15. 3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) sol = 1.00 sol = 0.50 sol = 0.16 • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15
  • 16. 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage The model contains 24hr. Protection Circuit solar power data (example). 16.8V Clamp Circuit Photovoltaic Lithium-Ion Module Batteries Pack Low-Voltage PBT-BAT-0001 (BAYSUN) SX 330 (BP Solar) Shutdown DC12.8~16.4V (4 cells) Vmp=16.8V Circuit 4400mAh Pmax=30W Vopen= (V) Vclose= (V) DC/DC DC Load Converter VIN=10~18V VIN = 5V VOUT=5V IIN = 1.5A All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16
  • 17. 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 24hr. solar power data (example). + U2 SX330 SX330_24H_TS3600 • Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17
  • 18. 4.3 PV-Battery System Simulation Circuit Solar cell model D1 with 24hr. solar Set initial battery DMOD power data. voltage, IC=16.4, for convergence aid. Voch 16.8Vdc pv 0 D2 batt DMOD C1 + 100n U1 0 Low-Voltage Shutdown Circuit IC = 16.4 + - PBT-BAT-0001 U2 SX330 SX330_24H_TS3600 VON = 0.7 0 TSCALE = 3600 VOFF = 0.3 E1 SOC1 = 70 RON = 0.01 Ronof f EVALUE 0 ROFF = 10MEG 100 IF(V(batt1)>V(dchth),5,0) Ronof f 1 + + Lctrl batt1 OUT+ IN+ C3 - - Conof f OUT- IN- dchth 100 10n S2 1n SOC1 value is initial 0 OUT+ IN+ S IC = 5 OUT- IN- Conof f 1 100n State Of Charge of PARAMETERS: E2 the battery, is set as Lopen = 14 EVALUE IF( V(lctrl) > 0.25 ,Lopen ,Lclose) 70% of full voltage. Lclose = 15.2 0 Lopen value is load DC/DC Converter 7.5W Load shutdown voltage. (5Vx1.5A). PARAMETERS: Lclose value is load n=1 out_dc reconnect voltage IN OUT G1 Iomax I1 E3 IN+ OUT+ 1.5Adc IN+ OUT+ IN+ OUT+ IN- OUT- IN- OUT- IN- OUT- GVALUE ecal_Iomax EVALUE EVALUE IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 ) 0 n*V(%IN+, %IN-)*I(IN)/5 Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) ) 0 0  Simulation at 15W load, change I1 from 1.5A to 3A All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18
  • 19. 4.3.1 Simulation Result (SOC1=100) PV generated current PV module charge the battery Battery voltage Battery current Battery supplies current when solar power drops. Battery SOC SOC1=100 Fully charged, stop charging DC output voltage DC/DC input current Charging time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19
  • 20. 4.3.2 Simulation Result (SOC1=70) PV generated current PV module charge the battery V=Lopen Battery voltage Battery current V=Lclose Battery supplies current when solar power drops. SOC1=70 Battery SOC Fully charged, stop charging DC output voltage Shutdown DC/DC input current Reconnect Charging time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s • SKIPBP All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20
  • 21. 4.3.3 Simulation Result (SOC1=30) PV generated current PV module charge the battery Battery voltage V=Lopen Battery current V=Lclose Battery supplies current when solar power drops. Battery SOC Fully charged, SOC1=30 stop charging DC output voltage Shutdown DC/DC input current Reconnect Charging time • C1: IC=15 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s • Total job time = 2s All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21
  • 22. 4.3.4 Simulation Result (SOC1=10) PV generated current PV module charge the battery Battery voltage Battery current V=Lclose Battery supplies current when solar power drops. Battery SOC Fully charged, SOC1=10 stop charging DC output voltage Shutdown DC/DC input current Reconnect Charging time • C1: IC=14.4 • Run to time: 24s (24hours in real world) • .Options RELTOL=0.01 • Step size: 0.01s • .Options ITL4=1000 • SKIPBP All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22
  • 23. 4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load) PV generated current PV module charge the battery V=Lopen Battery voltage V=Lopen Battery current Battery supplies current when solar power drops. Battery SOC SOC1=100 Fully charged, stop charging DC output voltage Shutdown Shutdown DC/DC input current Charging time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.001s All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23
  • 24. 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 7.5W. • If initial SOC is 100%, – this system will never shutdown. • If initial SOC is 70%, – this system will shutdown after 5.185 hours (about 5:11AM.). – system load will reconnect again at 7:40AM (Morning). • If initial SOC is 30%, – this system will shutdown after 1.633 hours (about 1:38AM.). – system load will reconnect again at 7:37AM (Morning). • If initial SOC is 10%, – this system will start shutdown. – this system will reconnect again at 7:37AM (Morning). • With the PV generated current profile, battery will fully charged in about 4.25 hours. The simulation start from midnight(time=0). The system supplies DC load 15W. • If initial SOC is 100%, – this system will shutdown after 3.897 hours (about 3:54AM.). – system load will reconnect again at 7:37AM (Morning). – this system will shutdown again at 8:28 PM (Night). • With the PV generated current profile, battery will fully charged in about 5.5 hours. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 24
  • 25. Simulations index Simulations Folder name 1. PV Li-Ion Battery Charger Circuit................................................... charge-sol 2. Constant Current PV Li-Ion Battery Charger Circuit...................... charge-sol-const 3. PV-Battery System Simulation Circuit (SOC1=100)....................... sol_24h_soc100 4. PV-Battery System Simulation Circuit (SOC1=70)......................... sol_24h_soc70 5. PV-Battery System Simulation Circuit (SOC1=30)......................... sol_24h_soc30 6. PV-Battery System Simulation Circuit (SOC1=10)......................... sol_24h_soc10 7. PV-Battery System Simulation Circuit (SOC1=100, 15W)............. sol_24h_soc100_15W All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 25