SlideShare uma empresa Scribd logo
1 de 73
Baixar para ler offline
© 2015 Pearson Education, Inc.
Introductory
Chemistry
Fifth Edition
Nivaldo J. Tro
Chapter 19
Biochemistry
Dr. Sylvia Esjornson
Southwestern Oklahoma State University
Weatherford, OK
© 2015 Pearson Education, Inc.
The Human Genome Project
• The similarities
between parents and
their children are
caused by genes,
inheritable
blueprints for
making organisms.
• The structure at the
bottom of this image
is DNA, the molecular
basis of genetic
information.
© 2015 Pearson Education, Inc.
The Human Genome Project
• A 15-year project to map the human genome, which
contains all of the genetic material of a human being.
• The Human Genome Project was possible because of
decades of research in biochemistry, the study of the
chemical substances and processes that occur in plants,
animals, and microorganisms.
• The mapping of the human genome revealed that humans
have 20,000–25,000 genes.
• Understanding single nucleotide polymorphisms,
differences from one individual to another, can help identify
individuals who are susceptible to certain diseases.
• An understanding of gene function can lead to smart drug
design.
© 2015 Pearson Education, Inc.
The Human Genome Project
• Human genes can provide the blueprint for certain
types of drugs.
• Interferon, a drug taken by people with multiple
sclerosis, is a complex compound normally found
in humans.
• The blueprint for making interferon is in the human
genome.
• Scientists have been able to take this blueprint out
of human cells and put it into bacteria, which then
synthesize the needed drug.
• The drug is harvested from bacteria, purified, and
given to patients.
© 2015 Pearson Education, Inc.
The Cell and Its Main Chemical Components
• The cell is the smallest structural unit of living
organisms that has the properties traditionally
associated with life.
• A cell can be an independent living organism or a
building block of a more complex organism.
• Some cells contain a nucleus, the part of the cell that
contains genetic material.
• The perimeter of the cell is bound by a cell
membrane that holds the contents of the cell together.
• The region between the nucleus and the cell
membrane is called the cytoplasm.
• The cytoplasm contains a number of specialized
structures that carry out much of the cell’s work.
© 2015 Pearson Education, Inc.
The Cell and Its Main Chemical Components
• The cell is the
smallest
structural unit
of living
organisms.
• The primary
genetic
material is
stored in the
nucleus.
© 2015 Pearson Education, Inc.
The Cell and Its Main Chemical Components
The main chemical components of the cell
can be divided into four classes:
• Carbohydrates
• Lipids
• Proteins
• Nucleic acids
© 2015 Pearson Education, Inc.
Carbohydrates: Sugar, Starch, and Fiber
• Carbohydrates are the primary molecules
responsible for short-term energy storage in
living organisms.
• Carbohydrates form the main structural
components of plants.
• Carbohydrates often have the general
formula (CH2O)n.
• Structurally, carbohydrates are aldehydes or
ketones containing multiple —OH groups.
© 2015 Pearson Education, Inc.
Glucose (C6H12O6), Fructose (C6H12O6), and Galactose
(C6H12O6)
• Glucose is an aldehyde
(it contains the —CHO
group) with —OH groups
on most of the carbon
atoms.
• The many —OH groups
make glucose soluble in
water and blood, which is
important in glucose’s
role as the primary fuel
of cells.
• Glucose is easily
transported in the
bloodstream and is
soluble within the
aqueous interior of a cell.
© 2015 Pearson Education, Inc.
Glucose Is an Example of a Monosaccharide
Monosaccharides cannot be broken down into simpler carbohydrates.
Monosaccharides such as glucose rearrange in aqueous solution to form
ring structures.
© 2015 Pearson Education, Inc.
Glucose, Fructose, and Galactose are Hexoses,
Six-Carbon Sugars
The most common monosaccharides in living organisms are
pentoses and hexoses. Fructose and galactose form rings
that are isomers of glucose.
© 2015 Pearson Education, Inc.
Glucose (C6H12O6), Fructose (C6H12O6), and Galactose
(C6H12O6)
• Fructose, also known as fruit sugar, is a
hexose found in many fruits and
vegetables and is a major component
of honey.
• Galactose, also known as brain sugar, is a
hexose usually found combined with other
monosaccharides in substances such as
lactose.
• Galactose is also present within the brain
and nervous system of most animals.
© 2015 Pearson Education, Inc.
Monosaccharides Combine to Form Disaccharides
• Two monosaccharides can react, eliminating
water to form a carbon–oxygen–carbon bond
called a glycosidic linkage that connects
the two rings. The resulting compound is a
disaccharide, a carbohydrate that can be
decomposed into two simpler carbohydrates.
• The link between individual monosaccharides
is broken during digestion, allowing the
individual monosaccharides to pass through
the intestinal wall and enter the bloodstream.
© 2015 Pearson Education, Inc.
Glucose and Fructose Condense to Form Sucrose
© 2015 Pearson Education, Inc.
Monosaccharides Can Link Together to Form
Polysaccharides
Polysaccharides are a type of polymer—chemical
compounds composed of repeating structural units in
a long chain.
© 2015 Pearson Education, Inc.
Carbohydrates: Sugar, Starch, and Fiber
• Monosaccharides and disaccharides are
simple sugars or simple carbohydrates.
• Polysaccharides are complex
carbohydrates.
• Some common polysacchharides include
starch and cellulose, both of which are
composed of repeating glucose units.
• A third kind of polysaccharide is glycogen.
Glycogen has a structure similar to starch,
but the chain is highly branched. In animals,
excess glucose in the blood is stored as
glycogen until it is needed.
© 2015 Pearson Education, Inc.
Difference between Starch and Cellulose
• The difference between starch and cellulose is
the link between the glucose units.
• In starch, the oxygen atom joining neighboring
glucose units points down (as conventionally
drawn) relative to the planes of the rings, a
configuration called an alpha linkage.
• In cellulose, the oxygen atoms are roughly
parallel with the planes of the rings but pointing
slightly up (as conventionally drawn), a
configuration called a beta linkage.
• This difference in linkage causes the
differences in the properties of starch and
cellulose.
© 2015 Pearson Education, Inc.
Difference between Starch and Cellulose
• Starch is common in potatoes and grains. It is a soft,
pliable substance that we can easily chew and swallow.
• During digestion, the links between individual glucose
units are broken, allowing glucose molecules to pass
through the intestinal wall and into the bloodstream.
• Cellulose—also known as fiber—is a stiffer and more
rigid substance. Cellulose is the main structural
component of plants.
• The bonding in cellulose makes it indigestible by
humans.
• When we eat cellulose, it passes right through the
intestine undigested.
© 2015 Pearson Education, Inc.
Lipids
• Lipids are chemical components of the
cell that are insoluble in water but soluble
in nonpolar solvents.
• Lipids include fatty acids, fats, oils,
phospholipids, glycolipids, and steroids.
• Insolubility in water makes lipids an ideal
structural component of cell membranes.
• Lipids are used for long-term energy
storage and for insulation.
© 2015 Pearson Education, Inc.
Lipids: Fatty Acids
• One class of lipids is the fatty acids,
carboxylic acids with long hydrocarbon
tails. The general structure for a fatty acid
is as follows:
where R represents a hydrocarbon chain containing 3 to
19 carbon atoms.
© 2015 Pearson Education, Inc.
Fatty Acids May Be Saturated or Unsaturated
• Myristic acid is an example of a saturated fatty acid;
its formula is CH3(CH2)12COOH. Its carbon chain
has no double bonds.
• Myristic acid occurs in butterfat and in coconut oil.
• Other fatty acids—called monounsaturated or
polyunsaturated fatty acids—have one or more
double bonds in their carbon chains.
• Oleic acid is an example of a monounsaturated fatty
acid; its formula is CH3(CH2)7CH:CH(CH2)7COOH.
• Oleic acid occurs in olive oil, peanut oil, and
human fat.
© 2015 Pearson Education, Inc.
Fatty Acids May Be Saturated or Unsaturated
© 2015 Pearson Education, Inc.
Fatty Acids Differ Only in Their R Group
The long hydrocarbon tails of fatty acids make them
insoluble in water.
© 2015 Pearson Education, Inc.
Lipids: Fats and Oils
• Fats and oils are
triglycerides,
triesters composed
of glycerol linked to
three fatty acids,
as shown in the
block diagram.
© 2015 Pearson Education, Inc.
Formation of Triglycerides
Triglycerides form by the reaction of glycerol with three fatty
acids. The bonds that join the glycerol to the fatty acids are
called ester linkages.
© 2015 Pearson Education, Inc.
Structure of Tristearin
Tristearin—the main component of beef fat—is formed from
the reaction of glycerol and three stearic acid molecules.
© 2015 Pearson Education, Inc.
Lipids: Fats and Oils
• If the fatty acids in a triglyceride are
saturated, the triglyceride is called a
saturated fat and tends to be solid at room
temperature.
• Lard and many animal fats are examples of
saturated fat.
• If the fatty acids in a triglyceride are
unsaturated, the triglyceride is called an
unsaturated fat, or an oil, and tends to be
liquid at room temperature.
• Canola oil, olive oil, and most other vegetable
oils are examples of unsaturated fats.
© 2015 Pearson Education, Inc.
Other Lipids: Phospholipids
• Unlike a fatty
acid, which is
nonpolar, a
phosphate group
is polar and often
has another
polar group
attached to it.
• The phospholipid
molecule has a
polar section
and a nonpolar
section.
The basic structure is the same as triglycerides, except
that one of the fatty acid groups is replaced with a
phosphate group.
© 2015 Pearson Education, Inc.
Structure of a Phospholipid
In the structure of a phosphatidylcholine, a phospholipid
found in the cell membranes, the polar part of the molecule
is hydrophilic (has a strong affinity for water), while the
nonpolar part is hydrophobic (avoids water).
© 2015 Pearson Education, Inc.
Other Lipids: Phospholipids and Glycolipids
• Glycolipids have similar structures and properties to
those of phospholipids.
• The nonpolar section of a glycolipid is composed of a
fatty acid chain and a hydrocarbon chain.
• The polar section is a sugar molecule such as
glucose.
• Phospholipids and glycolipids are often schematically
represented as a circle with two long tails.
• The structure of phospholipids and glycolipids is ideal
for constructing cell membranes; the polar parts
interact with the aqueous environments of the cell and
the nonpolar parts interact with each other.
• Lipid bilayer membranes encapsulate cells and many
cellular structures.
© 2015 Pearson Education, Inc.
Structure of Cell Membranes
Cell membranes are
composed of lipid bilayers, in
which phospholipids or
glycolipids form a double layer.
In this bilayer, the polar heads
of the molecules point outward
and the nonpolar tails point
inward.
The circle represents the polar
hydrophilic part of the molecule,
and the tails represent the
nonpolar hydrophobic parts.
© 2015 Pearson Education, Inc.
Other Lipids
Steroids are lipids
that contain the
four-ring structure
shown here. Some
common steroids
include cholesterol,
testosterone, and
estrogen.
© 2015 Pearson Education, Inc.
Other Lipids: Steroids
• Cholesterol serves many important
functions in the body.
• Like phospholipids and glycolipids,
cholesterol is part of cell membranes.
• Cholesterol serves as a precursor for the
body to synthesize other steroids such as
testosterone, a principal male hormone,
and estrogen, a principal female hormone.
• Hormones are chemical messengers that
regulate many body processes, such as
growth and metabolism. They are secreted
by specialized tissues and transported in
the blood.
© 2015 Pearson Education, Inc.
Chemistry and Health: Dietary Fats
• Most of the fats and oils in our diet are triglycerides.
• During digestion, triglycerides are broken down into fatty acids,
glycerol, monoglycerides, and diglycerides.
• These products pass through the intestinal wall and then reassemble
into triglycerides before they are absorbed into the blood. This process
is slower than the digestion of other food types, and eating fats and
oils gives a lasting feeling of fullness.
• The Food and Drug Administration (FDA) recommends that fats and
oils compose less than 30% of total caloric intake. The FDA also
recommends that no more than one-third of those fats (10% of total
caloric intake) should be saturated fats.
• A diet high in saturated fats increases the risk of artery blockages that
can lead to stroke and heart attack. Monounsaturated fats may help
protect against these threats.
© 2015 Pearson Education, Inc.
Proteins
• From a biochemical perspective, proteins have a
broad definition.
• Within living organisms, proteins do much of the work
of maintaining life.
• Most of the chemical reactions that occur in living
organisms are catalyzed or enabled by proteins.
• Proteins that act as catalysts are called enzymes.
Without enzymes, life would be impossible.
• Proteins are the structural components of muscle,
skin, and cartilage.
• Proteins transport oxygen in the blood, act as
antibodies to fight disease, and function as hormones
to regulate metabolic processes.
© 2015 Pearson Education, Inc.
What Are Proteins?
• Proteins are polymers of amino acids.
• Amino acids are molecules containing an amine group, a
carboxylic acid group, and an R group (also called a side
chain). The general structure of an amino acid is as follows:
In a protein, an R group does not necessarily mean a pure
alkyl group.
Amino acids differ from each other only in their R groups.
© 2015 Pearson Education, Inc.
What Are Proteins?
• The R groups, or side chains, of different
amino acids can be very different chemically.
• Alanine has a nonpolar side chain (—CH3),
while serine has a polar one (—CH2OH).
• Aspartic acid has an acidic side chain
(—CH2COOH), while lysine has a basic one
((—CH2)4NH2).
• When amino acids are strung together to
make a protein, these differences determine
the structure and properties of the protein.
© 2015 Pearson Education, Inc.
20 Common
Amino Acids
© 2015 Pearson Education, Inc.
Proteins Are Made from Amino Acids
• Amino acids link together because the amine end of
one amino acid reacts with the carboxylic acid end
of another amino acid.
• The resulting bond is a peptide bond, and the
resulting molecule is called a dipeptide. Short
chains of amino acids are called polypeptides.
• Functional proteins contain hundreds or even
thousands of amino acids joined by peptide bonds.
© 2015 Pearson Education, Inc.
Protein Structure
• In proteins, amino acids interact with one another, causing the
protein chain to twist and fold in a very specific way.
• The exact shape that a protein takes depends on the types of
amino acids and their sequence in the protein chain.
• Different amino acids and different sequences result in
different shapes.
• Insulin is a protein that recognizes muscle cells because their
surfaces contain insulin receptors, molecules that fit a specific
portion of the insulin protein. If insulin were a different shape,
it would not latch onto insulin receptors on muscle cells and
therefore would not do its job.
• The shape, or conformation, of proteins is crucial to their
function.
• There are four levels of protein structure analysis: primary
structure, secondary structure, tertiary structure, and
quaternary structure.
© 2015 Pearson Education, Inc.
Protein Structure
(a) Primary structure is
the amino acid
sequence.
(b) Secondary structure
refers to small-scale
repeating patterns
such as the helix or
the pleated sheet.
(c) Tertiary structure
refers to the large-
scale bends and
folds of the protein.
(d) Quaternary structure
is the arrangement of
individual polypeptide
chains.
© 2015 Pearson Education, Inc.
Proteins: Primary Structure
• The primary protein structure is the sequence of
amino acids in the protein chain. Primary structure is
maintained by the covalent peptide bonds between
individual amino acids.
• For example, one section of the insulin protein has the
sequence Gly-Ile-Val-Glu-Gln-Cys-Cys-Ala-Ser-Val-Cys.
• Each three-letter abbreviation represents an amino acid.
• The first amino acid sequences for proteins were
determined in the 1950s.
• Today, the amino acid sequences for thousands of
proteins are known.
• Changes in the amino acid sequence of a protein, even
minor ones, can have devastating effects on the
function of a protein.
© 2015 Pearson Education, Inc.
Proteins: Primary Structure
Hemoglobin is composed of four protein chains, each containing 146
amino acid units. The substitution of glutamic acid for valine in just one
position on two of these chains results in sickle-cell anemia, in which red
blood cells take on a sickle shape that ultimately leads to damage of
major organs.
© 2015 Pearson Education, Inc.
Secondary Protein Structure: The Alpha-Helix
The structure is maintained by hydrogen-bonding
interactions between NH and CO groups along the peptide
backbone of the coiled protein strand.
© 2015 Pearson Education, Inc.
Secondary Protein Structure: The Beta-Pleated Sheet
The beta-pleated
sheet is maintained
by interactions
between the
peptide backbones
of neighboring
protein strands.
In this structure,
the chain is
extended (as
opposed to coiled)
and forms a zigzag
pattern like an
accordion pleat.
© 2015 Pearson Education, Inc.
Secondary Protein Structure
• Some proteins—such as keratin, which composes
hair—have the α-helix pattern throughout their
entire chain.
• Some proteins—such as silk—have the β-pleated
sheet structure throughout their entire chain.
• Since its protein chains in the β-pleated sheet are
fully extended, silk is inelastic.
• Many proteins have some sections that are β-
pleated sheet, other sections that are α-helix, and
still other sections that have less regular patterns
called random coils.
© 2015 Pearson Education, Inc.
Why Hair Gets Longer When It Is Wet
• Hair is composed of a protein called
keratin. The secondary structure of
keratin is wound-up α-helix. This
structure is maintained by hydrogen
bonding.
• Individual hair fibers are composed
of several strands of keratin coiled
around each other.
• When hair is dry, the keratin protein
is tightly coiled, resulting in the
normal length of dry hair.
• When hair becomes wet, water
molecules interfere with the
hydrogen bonding that maintains
the α-helix structure. The α-helix
structure relaxes and the hair fiber
is lengthened.
• Completely wet hair is 10 to
12% longer than dry hair.
© 2015 Pearson Education, Inc.
Tertiary Protein Structure
TERTIARY STRUCTURE consists of the large-scale
bends and folds due to interactions between the
R groups of amino acids that are separated by large
distances in the linear sequence of the protein chain.
These interactions include the following:
• Hydrogen bonds
• Disulfide linkages (covalent bonds between sulfur
atoms on different R groups)
• Hydrophobic interactions (attractions between
large nonpolar groups)
• Salt bridges (acid–base interactions between
acidic and basic groups)
© 2015 Pearson Education, Inc.
Tertiary Protein Structure
• Proteins with structural functions—such as keratin,
which composes hair, or collagen, which composes
tendons and much of the skin—tend to have tertiary
structures in which coiled amino acid chains align
parallel to one another, forming long, water-insoluble
fibers.
• These kinds of proteins are called fibrous proteins.
• Proteins with nonstructural functions—such as
hemoglobin, which carries oxygen, or lysozyme, which
fights infections—tend to have tertiary structures in
which amino acid chains fold in on themselves, forming
water-soluble globules that can travel through the
bloodstream.
• These kinds of proteins are called globular proteins.
© 2015 Pearson Education, Inc.
Quaternary Protein Structure
• Many proteins are composed of more than
one amino acid chain.
• Recall that hemoglobin is composed of
four amino acid chains—each chain is
called a subunit.
• The quaternary protein structure
describes how these subunits fit together.
• The same kinds of interactions between
amino acids maintain quaternary structure
and tertiary structure.
© 2015 Pearson Education, Inc.
Tertiary and Quaternary Protein Structures
Interactions that create tertiary and quaternary structures include
hydrogen bonds, disulfide linkages, hydrophobic interactions, and
salt bridges.
© 2015 Pearson Education, Inc.
To Summarize Protein Structure
• Primary structure is simply the amino acid sequence. It is
maintained by the peptide bonds that hold amino acids
together.
• Secondary structure refers to the small-scale repeating
patterns often found in proteins. These are maintained
by interactions between the peptide backbones of amino
acids that are close together in the chain sequence or
adjacent to each other on neighboring chains.
• Tertiary structure refers to the large-scale twists and
folds within the protein. These are maintained by
interactions between the R groups of amino acids that
are separated by long distances in the chain sequence.
• Quaternary structure refers to the arrangement of chains
(or subunits) in proteins. It is maintained by interactions
between amino acids on the individual chains.
© 2015 Pearson Education, Inc.
Nucleic Acids: Molecular Blueprints
• What ensures that proteins have the correct amino
acid sequence? The answer lies in nucleic acids.
• Nucleic acids contain a chemical code that
specifies the correct amino acid sequences for
proteins.
• Nucleic acids can be divided into two types:
deoxyribonucleic acid, or DNA, which exists
primarily in the nucleus of the cell; and ribonucleic
acid, or RNA, which is found throughout the entire
interior of the cell.
• Like proteins, nucleic acids are polymers.
© 2015 Pearson Education, Inc.
The Sugar Part of a Nucleotide
The individual units composing nucleic acids are
nucleotides. Each nucleotide has three parts: a
phosphate, a sugar, and a base. In DNA, the sugar is
deoxyribose, while in RNA the sugar is ribose.
© 2015 Pearson Education, Inc.
Components of DNA
• DNA is a polymer
of nucleotides.
• Each nucleotide
has three parts: a
sugar group, a
phosphate group,
and a base.
• Nucleotides are
joined by
phosphate
linkages.
© 2015 Pearson Education, Inc.
The Bases in DNA
Every nucleotide in DNA has the
same phosphate and sugar but
can have one of four different
bases.
In DNA, the four bases are
adenine (A), cytosine (C),
guanine (G), and thymine (T).
In RNA, the sugar is different,
and the base uracil (U) replaces
thymine.
© 2015 Pearson Education, Inc.
Nucleic Acids: Molecular Blueprints
• The order of bases in a nucleic acid chain specifies the order
of amino acids in a protein.
• Since there are only four bases and about 20 different amino
acids to be specified, a single base cannot code for a single
amino acid.
• It takes a sequence of three bases—called a codon—to code
for one amino acid.
• The genetic code—the understanding of which amino acid is
coded for by which specific codon—was discovered in 1961.
• It is nearly universal—the same codons specify the same
amino acids in nearly all organisms.
• In DNA, the sequence AGT codes for the amino acid serine
and the sequence TGA codes for the amino acid threonine.
• In a rat, a bacterium, or a human, the code is the same.
© 2015 Pearson Education, Inc.
Nucleic Acids: Molecular Blueprints
Codons A sequence of three nucleotides with their
associated bases is called a codon. Each codon codes for
one amino acid.
© 2015 Pearson Education, Inc.
Nucleic Acids: Molecular Blueprints
• A gene is a sequence of codons within a DNA molecule
that codes for a single protein.
• Because proteins vary in size from 50 to thousands of
amino acids, genes vary in length from 50 to thousands
of codons.
• Each codon is like a three-letter word that specifies one
amino acid.
• String the correct number of codons together in the
correct sequence, and you have a gene, the instructions
for the amino acid sequence in a protein.
• Genes are contained in structures called
chromosomes—46 in humans—within the nuclei
of cells.
© 2015 Pearson Education, Inc.
Organization of the Genetic Material
• Chromosomes
• Genes
• Codons
• Nucleotides
© 2015 Pearson Education, Inc.
DNA Structure
• The ability of DNA to copy
itself is related to its
structure.
• DNA is stored in the
nucleus as a double-
stranded helix.
• The bases on each DNA
strand are directed
toward the interior of the
helix, where they
hydrogen-bond to bases
on the other strand.
• The hydrogen bonding
between bases is not
random.
© 2015 Pearson Education, Inc.
DNA Structure
• Each base is
complementary—
capable of precise
pairing—with only
one other base.
• Adenine (A)
hydrogen-bonds only
with thymine (T), and
cytosine (C)
hydrogen-bonds only
with guanine (G).
© 2015 Pearson Education, Inc.
DNA Replication
• When a cell is about to divide,
the DNA within its nucleus
unwinds and the hydrogen
bonds joining the
complementary bases break,
forming two single parent
strands.
• With the help of enzymes, a
daughter strand
complementary to each parent
strand—with the correct
complementary bases in the
correct order—is formed.
• The hydrogen bonds between
the strands then re-form,
resulting in two complete
copies of the original DNA,
one for each daughter cell.
© 2015 Pearson Education, Inc.
Nucleic Acids: Molecular Blueprints Protein Synthesis
• Humans and animals must synthesize the
proteins they need to survive from the
dietary proteins that they eat.
• Dietary protein is split into its constituent
amino acids during digestion.
• These amino acids are reconstructed into
the correct proteins—those needed by the
particular organism—in the organism’s
cells.
• Nucleic acids direct the process.
© 2015 Pearson Education, Inc.
Nucleic Acids: Molecular Blueprints Protein Synthesis
• When a cell needs to make a particular protein, the gene—the
section of the DNA that codes for that specific protein—unravels.
• The segment of DNA corresponding to the gene acts as a
template for the synthesis of a complementary copy of that gene
in the form of another kind of nucleic acid, messenger RNA (or
mRNA).
• The mRNA moves out of the cell’s nucleus to a cell structure
within the cytoplasm called a ribosome.
• At the ribosome, protein synthesis occurs.
• The mRNA chain that codes for the protein moves through the
ribosome.
• As the ribosome “reads” each codon, the corresponding amino
acid is brought into place and a peptide bond forms with the
previous amino acid.
• As the mRNA moves through the ribosome, the protein (or
polypeptide) is formed.
© 2015 Pearson Education, Inc.
Protein Synthesis
• The mRNA strand that codes for a protein moves through the
ribosome.
• At each codon, the correct amino acid is brought into place
and bonds with the previous amino acid.
© 2015 Pearson Education, Inc.
Nucleic Acids: Molecular Blueprints Protein Synthesis
To summarize:
• DNA contains the code for the sequence of amino acids in proteins.
• A codon—three nucleotides with their bases—codes for one amino
acid.
• DNA strands are composed of four bases, each of which is
complementary—capable of precise pairing—with only one other
base.
• A gene—a sequence of codons—codes for one protein.
• Chromosomes are molecules of DNA found in the nuclei of cells.
Humans have 46 chromosomes.
• When a cell divides, each daughter cell receives a complete copy of
the DNA—all 46 chromosomes in humans—within the parent cell’s
nucleus.
• When a cell synthesizes a protein, the base sequence of the gene
that codes for that protein is transferred to mRNA. The mRNA then
moves out to a ribosome, where the amino acids are linked in the
correct sequence to synthesize the protein.
• The general sequence is DNA  RNA  protein.
© 2015 Pearson Education, Inc.
Chemistry and Health: Drugs for Diabetes
• Diabetes is a disease in which a person’s body does not
make enough insulin, the substance that promotes the
absorption of sugar from the blood. Consequently, diabetics
have high blood sugar levels, which can—over time—lead
to a number of complications, including kidney failure, heart
attacks, strokes, blindness, and nerve damage.
• One treatment for diabetes is the injection of insulin, which
can help manage blood sugar levels and reduce the risk of
these complications.
• Insulin is a human protein and cannot be easily synthesized
in the laboratory.
• For many years, the primary source was animals,
particularly pigs and cattle. Although animal insulin worked
to lower blood sugar levels, some patients could not
tolerate it.
© 2015 Pearson Education, Inc.
Chemistry and Health: Drugs for Diabetes
• Today, diabetics inject human insulin.
• Scientists were able to remove the gene for insulin
from a sample of healthy human cells.
• They inserted that gene into bacteria, which
incorporated the gene into their genome.
• When the bacteria reproduced, they passed on exact
copies of the gene to their offspring. The result was a
colony of bacteria that all contained the human insulin
gene.
• The chemical machinery within the bacteria expressed
the gene—meaning the bacteria synthesized the
human insulin that the gene codes for.
• Today insulin made in this way is harvested from the
cell cultures and bottled for distribution to diabetics.
© 2015 Pearson Education, Inc.
Chapter 19 in Review
• The Cell: The main chemical components of the cell can be divided
into four categories: carbohydrates, lipids, proteins, and nucleic acids.
• Carbohydrates are aldehydes or ketones containing multiple —OH
groups. Monosaccharides include glucose and fructose.
Disaccharides, such as sucrose and lactose, are two
monosaccharides linked together by glycoside linkages.
Polysaccharides include starch and cellulose. Polysaccharides are
also called complex carbohydrates.
• Lipids are chemical components of the cell that are insoluble in water
but soluble in nonpolar solvents. Important lipids include fatty acids,
triglycerides, phospholipids, glycolipids, and steroids.
• Proteins are polymers of amino acids. Amino acids are molecules
composed of an amine group on one end and a carboxylic acid on the
other. Between these two groups is a central carbon atom that has an
R group attached. Amino acids link together by means of peptide
bonds. Functional proteins are composed of hundreds or thousands of
amino acids.
© 2015 Pearson Education, Inc.
Chapter 19 in Review
Protein Structure:
• Primary protein structure is the linear amino acid sequence in
the protein chain. It is maintained by the peptide bonds.
• Secondary structure refers to the small-scale repeating
patterns found in proteins. These are maintained by
interactions between the peptide backbones of amino acids
that are close together in the chain sequence or on
neighboring chains.
• Tertiary structure refers to the large-scale twists and folds
within the protein. These are maintained by interactions
between R groups of amino acids that are separated by long
distances in the chain sequence.
• Quaternary structure refers to the arrangement of chains in
proteins. Quaternary structure is maintained by interactions
between amino acids on the individual chains.
© 2015 Pearson Education, Inc.
Chapter 19 in Review
• Nucleic Acids, DNA Replication, and Protein Synthesis: Nucleic acids,
including DNA and RNA, are polymers of nucleotides.
• In DNA, each nucleotide contains one of four bases: adenine (A), cytosine
(C), thymine (T), and guanine (G). The order of these bases contains a
code that specifies the amino acid sequence in proteins.
• A codon, a sequence of three bases, codes for an amino acid.
• A gene, a sequence of hundreds to thousands of codons, codes for a
protein. Genes are contained in cellular structures called chromosomes.
• Complete copies of DNA are transferred from parent cells to daughter cells
via DNA replication.
• In this process, the two complementary strands of DNA within a cell unravel
and two new strands that complement the original strands are synthesized.
In this way, two complete copies of the DNA are made, one for each
daughter cell.
• When a cell synthesizes a protein, the base sequence of the gene that
codes for that protein is transferred to mRNA. The mRNA then moves out to
a ribosome, where the amino acids are linked in the correct sequence to
synthesize the protein.
• The general sequence is DNA  RNA  protein.
© 2015 Pearson Education, Inc.
Chemical Skills Learning Objectives
1. LO: Identify the key chemical components of the cell.
2. LO: Identify carbohydrates and compare and contrast
monosaccharides, disaccharides, and polysaccharides.
3. LO: Identify lipids.
4. LO: Compare and contrast saturated and unsaturated
triglycerides.
5. LO: Identify proteins.
6. LO: Describe how amino acids link together to form proteins.
7. LO: Describe primary structure, secondary structure, tertiary
structure, and quaternary structure in proteins.
8. LO: Describe the role that nucleic acids play in determining
the order of amino acids in a protein.
9. LO: Summarize the process of DNA replication and protein
synthesis.

Mais conteúdo relacionado

Mais procurados (13)

Biochemistry an overview
Biochemistry   an overviewBiochemistry   an overview
Biochemistry an overview
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Naming hydrocarbons
Naming hydrocarbonsNaming hydrocarbons
Naming hydrocarbons
 
Lesson 10 Lipids
Lesson 10 LipidsLesson 10 Lipids
Lesson 10 Lipids
 
Food chemistry
Food chemistryFood chemistry
Food chemistry
 
Section ii a biochemistry carbohydrate
Section ii a biochemistry carbohydrateSection ii a biochemistry carbohydrate
Section ii a biochemistry carbohydrate
 
Enzymes
EnzymesEnzymes
Enzymes
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Introduction to biochemistry
Introduction to biochemistryIntroduction to biochemistry
Introduction to biochemistry
 
Student'scopymodule1
Student'scopymodule1Student'scopymodule1
Student'scopymodule1
 
03 water and life
03 water and life03 water and life
03 water and life
 
Lipids
LipidsLipids
Lipids
 

Destaque

Destaque (15)

Biochemistry
BiochemistryBiochemistry
Biochemistry
 
01 lecture
01 lecture01 lecture
01 lecture
 
Tro3 lecture 06
Tro3 lecture 06Tro3 lecture 06
Tro3 lecture 06
 
Chap04
Chap04Chap04
Chap04
 
17 lecture
17 lecture17 lecture
17 lecture
 
11 lecture
11 lecture11 lecture
11 lecture
 
Tro3 lecture 02
Tro3 lecture 02Tro3 lecture 02
Tro3 lecture 02
 
03 lecture
03 lecture03 lecture
03 lecture
 
09 lecture
09 lecture09 lecture
09 lecture
 
14 lecture
14 lecture14 lecture
14 lecture
 
Chapter13 chemical kinetics
Chapter13 chemical kineticsChapter13 chemical kinetics
Chapter13 chemical kinetics
 
15 lecture
15 lecture15 lecture
15 lecture
 
10 lecture
10 lecture10 lecture
10 lecture
 
Chapter 2 introductory chemistry
Chapter 2  introductory chemistryChapter 2  introductory chemistry
Chapter 2 introductory chemistry
 
Introductory Chemistry Chapter 1 Power Point
Introductory Chemistry Chapter 1 Power PointIntroductory Chemistry Chapter 1 Power Point
Introductory Chemistry Chapter 1 Power Point
 

Semelhante a 19 lecture

Biological Macromolecules.pptx
Biological Macromolecules.pptxBiological Macromolecules.pptx
Biological Macromolecules.pptxGraceAceveda
 
05thestructureandfunctionoflargebiologicalmolecules 130311053304-phpapp01
05thestructureandfunctionoflargebiologicalmolecules 130311053304-phpapp0105thestructureandfunctionoflargebiologicalmolecules 130311053304-phpapp01
05thestructureandfunctionoflargebiologicalmolecules 130311053304-phpapp01Cleophas Rwemera
 
Physical Science: Biological Macromolecules.pptx
Physical Science: Biological Macromolecules.pptxPhysical Science: Biological Macromolecules.pptx
Physical Science: Biological Macromolecules.pptxAiraYamuyam1
 
Nut chapter 5_lecture
Nut chapter 5_lectureNut chapter 5_lecture
Nut chapter 5_lectureMahesh Thakur
 
Lipids metabolism introduction
Lipids metabolism introductionLipids metabolism introduction
Lipids metabolism introductionMuhammadasif909
 
Concept of Food and Nutrition. B. .pptx
Concept of Food and Nutrition.   B.            .pptxConcept of Food and Nutrition.   B.            .pptx
Concept of Food and Nutrition. B. .pptxShrutiGupta898257
 
Omega 3 juice for hyperlipidemia & essential elements for pregnancy
Omega 3 juice for hyperlipidemia & essential elements for pregnancyOmega 3 juice for hyperlipidemia & essential elements for pregnancy
Omega 3 juice for hyperlipidemia & essential elements for pregnancyAhmed AliKasem
 
Biological Macromolecules.pptx
Biological Macromolecules.pptxBiological Macromolecules.pptx
Biological Macromolecules.pptxRegieMagallanes1
 
biological molecules.pdf
biological molecules.pdfbiological molecules.pdf
biological molecules.pdfRiaHaryati2
 
Lipids biomolecule importance of lipids
Lipids biomolecule importance  of lipidsLipids biomolecule importance  of lipids
Lipids biomolecule importance of lipidsZainab Ashraf
 
Chemistry of Carbohydrates.pptx
Chemistry of Carbohydrates.pptxChemistry of Carbohydrates.pptx
Chemistry of Carbohydrates.pptxabeerarajput
 

Semelhante a 19 lecture (20)

Biological Macromolecules.pptx
Biological Macromolecules.pptxBiological Macromolecules.pptx
Biological Macromolecules.pptx
 
05thestructureandfunctionoflargebiologicalmolecules 130311053304-phpapp01
05thestructureandfunctionoflargebiologicalmolecules 130311053304-phpapp0105thestructureandfunctionoflargebiologicalmolecules 130311053304-phpapp01
05thestructureandfunctionoflargebiologicalmolecules 130311053304-phpapp01
 
09_BioMolecules.pdf
09_BioMolecules.pdf09_BioMolecules.pdf
09_BioMolecules.pdf
 
Physical Science: Biological Macromolecules.pptx
Physical Science: Biological Macromolecules.pptxPhysical Science: Biological Macromolecules.pptx
Physical Science: Biological Macromolecules.pptx
 
Fats, Oils, and Other Lipids
Fats, Oils, and Other LipidsFats, Oils, and Other Lipids
Fats, Oils, and Other Lipids
 
Nut chapter 5_lecture
Nut chapter 5_lectureNut chapter 5_lecture
Nut chapter 5_lecture
 
Lipids
LipidsLipids
Lipids
 
Lipids metabolism introduction
Lipids metabolism introductionLipids metabolism introduction
Lipids metabolism introduction
 
Concept of Food and Nutrition. B. .pptx
Concept of Food and Nutrition.   B.            .pptxConcept of Food and Nutrition.   B.            .pptx
Concept of Food and Nutrition. B. .pptx
 
Lipids.pdf
Lipids.pdfLipids.pdf
Lipids.pdf
 
life’s molecules
 life’s molecules  life’s molecules
life’s molecules
 
Omega 3 juice for hyperlipidemia & essential elements for pregnancy
Omega 3 juice for hyperlipidemia & essential elements for pregnancyOmega 3 juice for hyperlipidemia & essential elements for pregnancy
Omega 3 juice for hyperlipidemia & essential elements for pregnancy
 
The lipids
The lipidsThe lipids
The lipids
 
BIOMOLECULES.ppt.pptx
BIOMOLECULES.ppt.pptxBIOMOLECULES.ppt.pptx
BIOMOLECULES.ppt.pptx
 
Biological Macromolecules.pptx
Biological Macromolecules.pptxBiological Macromolecules.pptx
Biological Macromolecules.pptx
 
biological molecules.pdf
biological molecules.pdfbiological molecules.pdf
biological molecules.pdf
 
Lipids biomolecule importance of lipids
Lipids biomolecule importance  of lipidsLipids biomolecule importance  of lipids
Lipids biomolecule importance of lipids
 
Chapter 4 Power Point
Chapter 4 Power PointChapter 4 Power Point
Chapter 4 Power Point
 
Lipids
LipidsLipids
Lipids
 
Chemistry of Carbohydrates.pptx
Chemistry of Carbohydrates.pptxChemistry of Carbohydrates.pptx
Chemistry of Carbohydrates.pptx
 

Mais de TheSlaps

Med Surg Chapter 020
Med Surg Chapter 020Med Surg Chapter 020
Med Surg Chapter 020TheSlaps
 
Med Surg Chapter 019
Med Surg Chapter 019Med Surg Chapter 019
Med Surg Chapter 019TheSlaps
 
Med Surg Chapter 018
Med Surg Chapter 018Med Surg Chapter 018
Med Surg Chapter 018TheSlaps
 
Adams ch09 lecture
Adams ch09 lectureAdams ch09 lecture
Adams ch09 lectureTheSlaps
 
Adams ch08 lecture
Adams ch08 lectureAdams ch08 lecture
Adams ch08 lectureTheSlaps
 
Adams ch10 lecture
Adams ch10 lectureAdams ch10 lecture
Adams ch10 lectureTheSlaps
 
Adams ch05 lecture
Adams ch05 lectureAdams ch05 lecture
Adams ch05 lectureTheSlaps
 
Adams ch07 lecture
Adams ch07 lectureAdams ch07 lecture
Adams ch07 lectureTheSlaps
 
Adams ch06 lecture
Adams ch06 lectureAdams ch06 lecture
Adams ch06 lectureTheSlaps
 
Adams ch04 lecture
Adams ch04 lectureAdams ch04 lecture
Adams ch04 lectureTheSlaps
 
Adams ch02 lecture
Adams ch02 lectureAdams ch02 lecture
Adams ch02 lectureTheSlaps
 
Adams ch01 lecture
Adams ch01 lectureAdams ch01 lecture
Adams ch01 lectureTheSlaps
 
Adams ch03 lecture
Adams ch03 lectureAdams ch03 lecture
Adams ch03 lectureTheSlaps
 
Pathophysiology Chapter 52
Pathophysiology Chapter 52Pathophysiology Chapter 52
Pathophysiology Chapter 52TheSlaps
 
Pathophysiology Chapter 51
Pathophysiology Chapter 51Pathophysiology Chapter 51
Pathophysiology Chapter 51TheSlaps
 
Pathophysiology Chapter 47
Pathophysiology Chapter 47Pathophysiology Chapter 47
Pathophysiology Chapter 47TheSlaps
 
Pathophysiology Chapter 45
Pathophysiology Chapter 45Pathophysiology Chapter 45
Pathophysiology Chapter 45TheSlaps
 
Pathophysiology Chapter 44
Pathophysiology Chapter 44Pathophysiology Chapter 44
Pathophysiology Chapter 44TheSlaps
 
Pathophysiology Chapter 36
Pathophysiology Chapter 36Pathophysiology Chapter 36
Pathophysiology Chapter 36TheSlaps
 
Pathophysiology Chapter 37
Pathophysiology Chapter 37Pathophysiology Chapter 37
Pathophysiology Chapter 37TheSlaps
 

Mais de TheSlaps (20)

Med Surg Chapter 020
Med Surg Chapter 020Med Surg Chapter 020
Med Surg Chapter 020
 
Med Surg Chapter 019
Med Surg Chapter 019Med Surg Chapter 019
Med Surg Chapter 019
 
Med Surg Chapter 018
Med Surg Chapter 018Med Surg Chapter 018
Med Surg Chapter 018
 
Adams ch09 lecture
Adams ch09 lectureAdams ch09 lecture
Adams ch09 lecture
 
Adams ch08 lecture
Adams ch08 lectureAdams ch08 lecture
Adams ch08 lecture
 
Adams ch10 lecture
Adams ch10 lectureAdams ch10 lecture
Adams ch10 lecture
 
Adams ch05 lecture
Adams ch05 lectureAdams ch05 lecture
Adams ch05 lecture
 
Adams ch07 lecture
Adams ch07 lectureAdams ch07 lecture
Adams ch07 lecture
 
Adams ch06 lecture
Adams ch06 lectureAdams ch06 lecture
Adams ch06 lecture
 
Adams ch04 lecture
Adams ch04 lectureAdams ch04 lecture
Adams ch04 lecture
 
Adams ch02 lecture
Adams ch02 lectureAdams ch02 lecture
Adams ch02 lecture
 
Adams ch01 lecture
Adams ch01 lectureAdams ch01 lecture
Adams ch01 lecture
 
Adams ch03 lecture
Adams ch03 lectureAdams ch03 lecture
Adams ch03 lecture
 
Pathophysiology Chapter 52
Pathophysiology Chapter 52Pathophysiology Chapter 52
Pathophysiology Chapter 52
 
Pathophysiology Chapter 51
Pathophysiology Chapter 51Pathophysiology Chapter 51
Pathophysiology Chapter 51
 
Pathophysiology Chapter 47
Pathophysiology Chapter 47Pathophysiology Chapter 47
Pathophysiology Chapter 47
 
Pathophysiology Chapter 45
Pathophysiology Chapter 45Pathophysiology Chapter 45
Pathophysiology Chapter 45
 
Pathophysiology Chapter 44
Pathophysiology Chapter 44Pathophysiology Chapter 44
Pathophysiology Chapter 44
 
Pathophysiology Chapter 36
Pathophysiology Chapter 36Pathophysiology Chapter 36
Pathophysiology Chapter 36
 
Pathophysiology Chapter 37
Pathophysiology Chapter 37Pathophysiology Chapter 37
Pathophysiology Chapter 37
 

Último

In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxAditiChauhan701637
 
Benefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationBenefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationMJDuyan
 
How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17Celine George
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17Celine George
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICESayali Powar
 
How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17Celine George
 
How to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesHow to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesCeline George
 
UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17Celine George
 
Practical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxPractical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxKatherine Villaluna
 
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptx
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptxPractical Research 1: Lesson 8 Writing the Thesis Statement.pptx
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptxKatherine Villaluna
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17Celine George
 
5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...CaraSkikne1
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfMohonDas
 
Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.EnglishCEIPdeSigeiro
 
How to Use api.constrains ( ) in Odoo 17
How to Use api.constrains ( ) in Odoo 17How to Use api.constrains ( ) in Odoo 17
How to Use api.constrains ( ) in Odoo 17Celine George
 
The basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxThe basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxheathfieldcps1
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17Celine George
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxEduSkills OECD
 
Ultra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxUltra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxDr. Asif Anas
 

Último (20)

In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptx
 
Benefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationBenefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive Education
 
How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICE
 
How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17
 
How to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesHow to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 Sales
 
UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17
 
Practical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxPractical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptx
 
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptx
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptxPractical Research 1: Lesson 8 Writing the Thesis Statement.pptx
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptx
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17
 
5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdf
 
Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.
 
How to Use api.constrains ( ) in Odoo 17
How to Use api.constrains ( ) in Odoo 17How to Use api.constrains ( ) in Odoo 17
How to Use api.constrains ( ) in Odoo 17
 
The basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxThe basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptx
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
 
Ultra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxUltra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptx
 

19 lecture

  • 1. © 2015 Pearson Education, Inc. Introductory Chemistry Fifth Edition Nivaldo J. Tro Chapter 19 Biochemistry Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK
  • 2. © 2015 Pearson Education, Inc. The Human Genome Project • The similarities between parents and their children are caused by genes, inheritable blueprints for making organisms. • The structure at the bottom of this image is DNA, the molecular basis of genetic information.
  • 3. © 2015 Pearson Education, Inc. The Human Genome Project • A 15-year project to map the human genome, which contains all of the genetic material of a human being. • The Human Genome Project was possible because of decades of research in biochemistry, the study of the chemical substances and processes that occur in plants, animals, and microorganisms. • The mapping of the human genome revealed that humans have 20,000–25,000 genes. • Understanding single nucleotide polymorphisms, differences from one individual to another, can help identify individuals who are susceptible to certain diseases. • An understanding of gene function can lead to smart drug design.
  • 4. © 2015 Pearson Education, Inc. The Human Genome Project • Human genes can provide the blueprint for certain types of drugs. • Interferon, a drug taken by people with multiple sclerosis, is a complex compound normally found in humans. • The blueprint for making interferon is in the human genome. • Scientists have been able to take this blueprint out of human cells and put it into bacteria, which then synthesize the needed drug. • The drug is harvested from bacteria, purified, and given to patients.
  • 5. © 2015 Pearson Education, Inc. The Cell and Its Main Chemical Components • The cell is the smallest structural unit of living organisms that has the properties traditionally associated with life. • A cell can be an independent living organism or a building block of a more complex organism. • Some cells contain a nucleus, the part of the cell that contains genetic material. • The perimeter of the cell is bound by a cell membrane that holds the contents of the cell together. • The region between the nucleus and the cell membrane is called the cytoplasm. • The cytoplasm contains a number of specialized structures that carry out much of the cell’s work.
  • 6. © 2015 Pearson Education, Inc. The Cell and Its Main Chemical Components • The cell is the smallest structural unit of living organisms. • The primary genetic material is stored in the nucleus.
  • 7. © 2015 Pearson Education, Inc. The Cell and Its Main Chemical Components The main chemical components of the cell can be divided into four classes: • Carbohydrates • Lipids • Proteins • Nucleic acids
  • 8. © 2015 Pearson Education, Inc. Carbohydrates: Sugar, Starch, and Fiber • Carbohydrates are the primary molecules responsible for short-term energy storage in living organisms. • Carbohydrates form the main structural components of plants. • Carbohydrates often have the general formula (CH2O)n. • Structurally, carbohydrates are aldehydes or ketones containing multiple —OH groups.
  • 9. © 2015 Pearson Education, Inc. Glucose (C6H12O6), Fructose (C6H12O6), and Galactose (C6H12O6) • Glucose is an aldehyde (it contains the —CHO group) with —OH groups on most of the carbon atoms. • The many —OH groups make glucose soluble in water and blood, which is important in glucose’s role as the primary fuel of cells. • Glucose is easily transported in the bloodstream and is soluble within the aqueous interior of a cell.
  • 10. © 2015 Pearson Education, Inc. Glucose Is an Example of a Monosaccharide Monosaccharides cannot be broken down into simpler carbohydrates. Monosaccharides such as glucose rearrange in aqueous solution to form ring structures.
  • 11. © 2015 Pearson Education, Inc. Glucose, Fructose, and Galactose are Hexoses, Six-Carbon Sugars The most common monosaccharides in living organisms are pentoses and hexoses. Fructose and galactose form rings that are isomers of glucose.
  • 12. © 2015 Pearson Education, Inc. Glucose (C6H12O6), Fructose (C6H12O6), and Galactose (C6H12O6) • Fructose, also known as fruit sugar, is a hexose found in many fruits and vegetables and is a major component of honey. • Galactose, also known as brain sugar, is a hexose usually found combined with other monosaccharides in substances such as lactose. • Galactose is also present within the brain and nervous system of most animals.
  • 13. © 2015 Pearson Education, Inc. Monosaccharides Combine to Form Disaccharides • Two monosaccharides can react, eliminating water to form a carbon–oxygen–carbon bond called a glycosidic linkage that connects the two rings. The resulting compound is a disaccharide, a carbohydrate that can be decomposed into two simpler carbohydrates. • The link between individual monosaccharides is broken during digestion, allowing the individual monosaccharides to pass through the intestinal wall and enter the bloodstream.
  • 14. © 2015 Pearson Education, Inc. Glucose and Fructose Condense to Form Sucrose
  • 15. © 2015 Pearson Education, Inc. Monosaccharides Can Link Together to Form Polysaccharides Polysaccharides are a type of polymer—chemical compounds composed of repeating structural units in a long chain.
  • 16. © 2015 Pearson Education, Inc. Carbohydrates: Sugar, Starch, and Fiber • Monosaccharides and disaccharides are simple sugars or simple carbohydrates. • Polysaccharides are complex carbohydrates. • Some common polysacchharides include starch and cellulose, both of which are composed of repeating glucose units. • A third kind of polysaccharide is glycogen. Glycogen has a structure similar to starch, but the chain is highly branched. In animals, excess glucose in the blood is stored as glycogen until it is needed.
  • 17. © 2015 Pearson Education, Inc. Difference between Starch and Cellulose • The difference between starch and cellulose is the link between the glucose units. • In starch, the oxygen atom joining neighboring glucose units points down (as conventionally drawn) relative to the planes of the rings, a configuration called an alpha linkage. • In cellulose, the oxygen atoms are roughly parallel with the planes of the rings but pointing slightly up (as conventionally drawn), a configuration called a beta linkage. • This difference in linkage causes the differences in the properties of starch and cellulose.
  • 18. © 2015 Pearson Education, Inc. Difference between Starch and Cellulose • Starch is common in potatoes and grains. It is a soft, pliable substance that we can easily chew and swallow. • During digestion, the links between individual glucose units are broken, allowing glucose molecules to pass through the intestinal wall and into the bloodstream. • Cellulose—also known as fiber—is a stiffer and more rigid substance. Cellulose is the main structural component of plants. • The bonding in cellulose makes it indigestible by humans. • When we eat cellulose, it passes right through the intestine undigested.
  • 19. © 2015 Pearson Education, Inc. Lipids • Lipids are chemical components of the cell that are insoluble in water but soluble in nonpolar solvents. • Lipids include fatty acids, fats, oils, phospholipids, glycolipids, and steroids. • Insolubility in water makes lipids an ideal structural component of cell membranes. • Lipids are used for long-term energy storage and for insulation.
  • 20. © 2015 Pearson Education, Inc. Lipids: Fatty Acids • One class of lipids is the fatty acids, carboxylic acids with long hydrocarbon tails. The general structure for a fatty acid is as follows: where R represents a hydrocarbon chain containing 3 to 19 carbon atoms.
  • 21. © 2015 Pearson Education, Inc. Fatty Acids May Be Saturated or Unsaturated • Myristic acid is an example of a saturated fatty acid; its formula is CH3(CH2)12COOH. Its carbon chain has no double bonds. • Myristic acid occurs in butterfat and in coconut oil. • Other fatty acids—called monounsaturated or polyunsaturated fatty acids—have one or more double bonds in their carbon chains. • Oleic acid is an example of a monounsaturated fatty acid; its formula is CH3(CH2)7CH:CH(CH2)7COOH. • Oleic acid occurs in olive oil, peanut oil, and human fat.
  • 22. © 2015 Pearson Education, Inc. Fatty Acids May Be Saturated or Unsaturated
  • 23. © 2015 Pearson Education, Inc. Fatty Acids Differ Only in Their R Group The long hydrocarbon tails of fatty acids make them insoluble in water.
  • 24. © 2015 Pearson Education, Inc. Lipids: Fats and Oils • Fats and oils are triglycerides, triesters composed of glycerol linked to three fatty acids, as shown in the block diagram.
  • 25. © 2015 Pearson Education, Inc. Formation of Triglycerides Triglycerides form by the reaction of glycerol with three fatty acids. The bonds that join the glycerol to the fatty acids are called ester linkages.
  • 26. © 2015 Pearson Education, Inc. Structure of Tristearin Tristearin—the main component of beef fat—is formed from the reaction of glycerol and three stearic acid molecules.
  • 27. © 2015 Pearson Education, Inc. Lipids: Fats and Oils • If the fatty acids in a triglyceride are saturated, the triglyceride is called a saturated fat and tends to be solid at room temperature. • Lard and many animal fats are examples of saturated fat. • If the fatty acids in a triglyceride are unsaturated, the triglyceride is called an unsaturated fat, or an oil, and tends to be liquid at room temperature. • Canola oil, olive oil, and most other vegetable oils are examples of unsaturated fats.
  • 28. © 2015 Pearson Education, Inc. Other Lipids: Phospholipids • Unlike a fatty acid, which is nonpolar, a phosphate group is polar and often has another polar group attached to it. • The phospholipid molecule has a polar section and a nonpolar section. The basic structure is the same as triglycerides, except that one of the fatty acid groups is replaced with a phosphate group.
  • 29. © 2015 Pearson Education, Inc. Structure of a Phospholipid In the structure of a phosphatidylcholine, a phospholipid found in the cell membranes, the polar part of the molecule is hydrophilic (has a strong affinity for water), while the nonpolar part is hydrophobic (avoids water).
  • 30. © 2015 Pearson Education, Inc. Other Lipids: Phospholipids and Glycolipids • Glycolipids have similar structures and properties to those of phospholipids. • The nonpolar section of a glycolipid is composed of a fatty acid chain and a hydrocarbon chain. • The polar section is a sugar molecule such as glucose. • Phospholipids and glycolipids are often schematically represented as a circle with two long tails. • The structure of phospholipids and glycolipids is ideal for constructing cell membranes; the polar parts interact with the aqueous environments of the cell and the nonpolar parts interact with each other. • Lipid bilayer membranes encapsulate cells and many cellular structures.
  • 31. © 2015 Pearson Education, Inc. Structure of Cell Membranes Cell membranes are composed of lipid bilayers, in which phospholipids or glycolipids form a double layer. In this bilayer, the polar heads of the molecules point outward and the nonpolar tails point inward. The circle represents the polar hydrophilic part of the molecule, and the tails represent the nonpolar hydrophobic parts.
  • 32. © 2015 Pearson Education, Inc. Other Lipids Steroids are lipids that contain the four-ring structure shown here. Some common steroids include cholesterol, testosterone, and estrogen.
  • 33. © 2015 Pearson Education, Inc. Other Lipids: Steroids • Cholesterol serves many important functions in the body. • Like phospholipids and glycolipids, cholesterol is part of cell membranes. • Cholesterol serves as a precursor for the body to synthesize other steroids such as testosterone, a principal male hormone, and estrogen, a principal female hormone. • Hormones are chemical messengers that regulate many body processes, such as growth and metabolism. They are secreted by specialized tissues and transported in the blood.
  • 34. © 2015 Pearson Education, Inc. Chemistry and Health: Dietary Fats • Most of the fats and oils in our diet are triglycerides. • During digestion, triglycerides are broken down into fatty acids, glycerol, monoglycerides, and diglycerides. • These products pass through the intestinal wall and then reassemble into triglycerides before they are absorbed into the blood. This process is slower than the digestion of other food types, and eating fats and oils gives a lasting feeling of fullness. • The Food and Drug Administration (FDA) recommends that fats and oils compose less than 30% of total caloric intake. The FDA also recommends that no more than one-third of those fats (10% of total caloric intake) should be saturated fats. • A diet high in saturated fats increases the risk of artery blockages that can lead to stroke and heart attack. Monounsaturated fats may help protect against these threats.
  • 35. © 2015 Pearson Education, Inc. Proteins • From a biochemical perspective, proteins have a broad definition. • Within living organisms, proteins do much of the work of maintaining life. • Most of the chemical reactions that occur in living organisms are catalyzed or enabled by proteins. • Proteins that act as catalysts are called enzymes. Without enzymes, life would be impossible. • Proteins are the structural components of muscle, skin, and cartilage. • Proteins transport oxygen in the blood, act as antibodies to fight disease, and function as hormones to regulate metabolic processes.
  • 36. © 2015 Pearson Education, Inc. What Are Proteins? • Proteins are polymers of amino acids. • Amino acids are molecules containing an amine group, a carboxylic acid group, and an R group (also called a side chain). The general structure of an amino acid is as follows: In a protein, an R group does not necessarily mean a pure alkyl group. Amino acids differ from each other only in their R groups.
  • 37. © 2015 Pearson Education, Inc. What Are Proteins? • The R groups, or side chains, of different amino acids can be very different chemically. • Alanine has a nonpolar side chain (—CH3), while serine has a polar one (—CH2OH). • Aspartic acid has an acidic side chain (—CH2COOH), while lysine has a basic one ((—CH2)4NH2). • When amino acids are strung together to make a protein, these differences determine the structure and properties of the protein.
  • 38. © 2015 Pearson Education, Inc. 20 Common Amino Acids
  • 39. © 2015 Pearson Education, Inc. Proteins Are Made from Amino Acids • Amino acids link together because the amine end of one amino acid reacts with the carboxylic acid end of another amino acid. • The resulting bond is a peptide bond, and the resulting molecule is called a dipeptide. Short chains of amino acids are called polypeptides. • Functional proteins contain hundreds or even thousands of amino acids joined by peptide bonds.
  • 40. © 2015 Pearson Education, Inc. Protein Structure • In proteins, amino acids interact with one another, causing the protein chain to twist and fold in a very specific way. • The exact shape that a protein takes depends on the types of amino acids and their sequence in the protein chain. • Different amino acids and different sequences result in different shapes. • Insulin is a protein that recognizes muscle cells because their surfaces contain insulin receptors, molecules that fit a specific portion of the insulin protein. If insulin were a different shape, it would not latch onto insulin receptors on muscle cells and therefore would not do its job. • The shape, or conformation, of proteins is crucial to their function. • There are four levels of protein structure analysis: primary structure, secondary structure, tertiary structure, and quaternary structure.
  • 41. © 2015 Pearson Education, Inc. Protein Structure (a) Primary structure is the amino acid sequence. (b) Secondary structure refers to small-scale repeating patterns such as the helix or the pleated sheet. (c) Tertiary structure refers to the large- scale bends and folds of the protein. (d) Quaternary structure is the arrangement of individual polypeptide chains.
  • 42. © 2015 Pearson Education, Inc. Proteins: Primary Structure • The primary protein structure is the sequence of amino acids in the protein chain. Primary structure is maintained by the covalent peptide bonds between individual amino acids. • For example, one section of the insulin protein has the sequence Gly-Ile-Val-Glu-Gln-Cys-Cys-Ala-Ser-Val-Cys. • Each three-letter abbreviation represents an amino acid. • The first amino acid sequences for proteins were determined in the 1950s. • Today, the amino acid sequences for thousands of proteins are known. • Changes in the amino acid sequence of a protein, even minor ones, can have devastating effects on the function of a protein.
  • 43. © 2015 Pearson Education, Inc. Proteins: Primary Structure Hemoglobin is composed of four protein chains, each containing 146 amino acid units. The substitution of glutamic acid for valine in just one position on two of these chains results in sickle-cell anemia, in which red blood cells take on a sickle shape that ultimately leads to damage of major organs.
  • 44. © 2015 Pearson Education, Inc. Secondary Protein Structure: The Alpha-Helix The structure is maintained by hydrogen-bonding interactions between NH and CO groups along the peptide backbone of the coiled protein strand.
  • 45. © 2015 Pearson Education, Inc. Secondary Protein Structure: The Beta-Pleated Sheet The beta-pleated sheet is maintained by interactions between the peptide backbones of neighboring protein strands. In this structure, the chain is extended (as opposed to coiled) and forms a zigzag pattern like an accordion pleat.
  • 46. © 2015 Pearson Education, Inc. Secondary Protein Structure • Some proteins—such as keratin, which composes hair—have the α-helix pattern throughout their entire chain. • Some proteins—such as silk—have the β-pleated sheet structure throughout their entire chain. • Since its protein chains in the β-pleated sheet are fully extended, silk is inelastic. • Many proteins have some sections that are β- pleated sheet, other sections that are α-helix, and still other sections that have less regular patterns called random coils.
  • 47. © 2015 Pearson Education, Inc. Why Hair Gets Longer When It Is Wet • Hair is composed of a protein called keratin. The secondary structure of keratin is wound-up α-helix. This structure is maintained by hydrogen bonding. • Individual hair fibers are composed of several strands of keratin coiled around each other. • When hair is dry, the keratin protein is tightly coiled, resulting in the normal length of dry hair. • When hair becomes wet, water molecules interfere with the hydrogen bonding that maintains the α-helix structure. The α-helix structure relaxes and the hair fiber is lengthened. • Completely wet hair is 10 to 12% longer than dry hair.
  • 48. © 2015 Pearson Education, Inc. Tertiary Protein Structure TERTIARY STRUCTURE consists of the large-scale bends and folds due to interactions between the R groups of amino acids that are separated by large distances in the linear sequence of the protein chain. These interactions include the following: • Hydrogen bonds • Disulfide linkages (covalent bonds between sulfur atoms on different R groups) • Hydrophobic interactions (attractions between large nonpolar groups) • Salt bridges (acid–base interactions between acidic and basic groups)
  • 49. © 2015 Pearson Education, Inc. Tertiary Protein Structure • Proteins with structural functions—such as keratin, which composes hair, or collagen, which composes tendons and much of the skin—tend to have tertiary structures in which coiled amino acid chains align parallel to one another, forming long, water-insoluble fibers. • These kinds of proteins are called fibrous proteins. • Proteins with nonstructural functions—such as hemoglobin, which carries oxygen, or lysozyme, which fights infections—tend to have tertiary structures in which amino acid chains fold in on themselves, forming water-soluble globules that can travel through the bloodstream. • These kinds of proteins are called globular proteins.
  • 50. © 2015 Pearson Education, Inc. Quaternary Protein Structure • Many proteins are composed of more than one amino acid chain. • Recall that hemoglobin is composed of four amino acid chains—each chain is called a subunit. • The quaternary protein structure describes how these subunits fit together. • The same kinds of interactions between amino acids maintain quaternary structure and tertiary structure.
  • 51. © 2015 Pearson Education, Inc. Tertiary and Quaternary Protein Structures Interactions that create tertiary and quaternary structures include hydrogen bonds, disulfide linkages, hydrophobic interactions, and salt bridges.
  • 52. © 2015 Pearson Education, Inc. To Summarize Protein Structure • Primary structure is simply the amino acid sequence. It is maintained by the peptide bonds that hold amino acids together. • Secondary structure refers to the small-scale repeating patterns often found in proteins. These are maintained by interactions between the peptide backbones of amino acids that are close together in the chain sequence or adjacent to each other on neighboring chains. • Tertiary structure refers to the large-scale twists and folds within the protein. These are maintained by interactions between the R groups of amino acids that are separated by long distances in the chain sequence. • Quaternary structure refers to the arrangement of chains (or subunits) in proteins. It is maintained by interactions between amino acids on the individual chains.
  • 53. © 2015 Pearson Education, Inc. Nucleic Acids: Molecular Blueprints • What ensures that proteins have the correct amino acid sequence? The answer lies in nucleic acids. • Nucleic acids contain a chemical code that specifies the correct amino acid sequences for proteins. • Nucleic acids can be divided into two types: deoxyribonucleic acid, or DNA, which exists primarily in the nucleus of the cell; and ribonucleic acid, or RNA, which is found throughout the entire interior of the cell. • Like proteins, nucleic acids are polymers.
  • 54. © 2015 Pearson Education, Inc. The Sugar Part of a Nucleotide The individual units composing nucleic acids are nucleotides. Each nucleotide has three parts: a phosphate, a sugar, and a base. In DNA, the sugar is deoxyribose, while in RNA the sugar is ribose.
  • 55. © 2015 Pearson Education, Inc. Components of DNA • DNA is a polymer of nucleotides. • Each nucleotide has three parts: a sugar group, a phosphate group, and a base. • Nucleotides are joined by phosphate linkages.
  • 56. © 2015 Pearson Education, Inc. The Bases in DNA Every nucleotide in DNA has the same phosphate and sugar but can have one of four different bases. In DNA, the four bases are adenine (A), cytosine (C), guanine (G), and thymine (T). In RNA, the sugar is different, and the base uracil (U) replaces thymine.
  • 57. © 2015 Pearson Education, Inc. Nucleic Acids: Molecular Blueprints • The order of bases in a nucleic acid chain specifies the order of amino acids in a protein. • Since there are only four bases and about 20 different amino acids to be specified, a single base cannot code for a single amino acid. • It takes a sequence of three bases—called a codon—to code for one amino acid. • The genetic code—the understanding of which amino acid is coded for by which specific codon—was discovered in 1961. • It is nearly universal—the same codons specify the same amino acids in nearly all organisms. • In DNA, the sequence AGT codes for the amino acid serine and the sequence TGA codes for the amino acid threonine. • In a rat, a bacterium, or a human, the code is the same.
  • 58. © 2015 Pearson Education, Inc. Nucleic Acids: Molecular Blueprints Codons A sequence of three nucleotides with their associated bases is called a codon. Each codon codes for one amino acid.
  • 59. © 2015 Pearson Education, Inc. Nucleic Acids: Molecular Blueprints • A gene is a sequence of codons within a DNA molecule that codes for a single protein. • Because proteins vary in size from 50 to thousands of amino acids, genes vary in length from 50 to thousands of codons. • Each codon is like a three-letter word that specifies one amino acid. • String the correct number of codons together in the correct sequence, and you have a gene, the instructions for the amino acid sequence in a protein. • Genes are contained in structures called chromosomes—46 in humans—within the nuclei of cells.
  • 60. © 2015 Pearson Education, Inc. Organization of the Genetic Material • Chromosomes • Genes • Codons • Nucleotides
  • 61. © 2015 Pearson Education, Inc. DNA Structure • The ability of DNA to copy itself is related to its structure. • DNA is stored in the nucleus as a double- stranded helix. • The bases on each DNA strand are directed toward the interior of the helix, where they hydrogen-bond to bases on the other strand. • The hydrogen bonding between bases is not random.
  • 62. © 2015 Pearson Education, Inc. DNA Structure • Each base is complementary— capable of precise pairing—with only one other base. • Adenine (A) hydrogen-bonds only with thymine (T), and cytosine (C) hydrogen-bonds only with guanine (G).
  • 63. © 2015 Pearson Education, Inc. DNA Replication • When a cell is about to divide, the DNA within its nucleus unwinds and the hydrogen bonds joining the complementary bases break, forming two single parent strands. • With the help of enzymes, a daughter strand complementary to each parent strand—with the correct complementary bases in the correct order—is formed. • The hydrogen bonds between the strands then re-form, resulting in two complete copies of the original DNA, one for each daughter cell.
  • 64. © 2015 Pearson Education, Inc. Nucleic Acids: Molecular Blueprints Protein Synthesis • Humans and animals must synthesize the proteins they need to survive from the dietary proteins that they eat. • Dietary protein is split into its constituent amino acids during digestion. • These amino acids are reconstructed into the correct proteins—those needed by the particular organism—in the organism’s cells. • Nucleic acids direct the process.
  • 65. © 2015 Pearson Education, Inc. Nucleic Acids: Molecular Blueprints Protein Synthesis • When a cell needs to make a particular protein, the gene—the section of the DNA that codes for that specific protein—unravels. • The segment of DNA corresponding to the gene acts as a template for the synthesis of a complementary copy of that gene in the form of another kind of nucleic acid, messenger RNA (or mRNA). • The mRNA moves out of the cell’s nucleus to a cell structure within the cytoplasm called a ribosome. • At the ribosome, protein synthesis occurs. • The mRNA chain that codes for the protein moves through the ribosome. • As the ribosome “reads” each codon, the corresponding amino acid is brought into place and a peptide bond forms with the previous amino acid. • As the mRNA moves through the ribosome, the protein (or polypeptide) is formed.
  • 66. © 2015 Pearson Education, Inc. Protein Synthesis • The mRNA strand that codes for a protein moves through the ribosome. • At each codon, the correct amino acid is brought into place and bonds with the previous amino acid.
  • 67. © 2015 Pearson Education, Inc. Nucleic Acids: Molecular Blueprints Protein Synthesis To summarize: • DNA contains the code for the sequence of amino acids in proteins. • A codon—three nucleotides with their bases—codes for one amino acid. • DNA strands are composed of four bases, each of which is complementary—capable of precise pairing—with only one other base. • A gene—a sequence of codons—codes for one protein. • Chromosomes are molecules of DNA found in the nuclei of cells. Humans have 46 chromosomes. • When a cell divides, each daughter cell receives a complete copy of the DNA—all 46 chromosomes in humans—within the parent cell’s nucleus. • When a cell synthesizes a protein, the base sequence of the gene that codes for that protein is transferred to mRNA. The mRNA then moves out to a ribosome, where the amino acids are linked in the correct sequence to synthesize the protein. • The general sequence is DNA  RNA  protein.
  • 68. © 2015 Pearson Education, Inc. Chemistry and Health: Drugs for Diabetes • Diabetes is a disease in which a person’s body does not make enough insulin, the substance that promotes the absorption of sugar from the blood. Consequently, diabetics have high blood sugar levels, which can—over time—lead to a number of complications, including kidney failure, heart attacks, strokes, blindness, and nerve damage. • One treatment for diabetes is the injection of insulin, which can help manage blood sugar levels and reduce the risk of these complications. • Insulin is a human protein and cannot be easily synthesized in the laboratory. • For many years, the primary source was animals, particularly pigs and cattle. Although animal insulin worked to lower blood sugar levels, some patients could not tolerate it.
  • 69. © 2015 Pearson Education, Inc. Chemistry and Health: Drugs for Diabetes • Today, diabetics inject human insulin. • Scientists were able to remove the gene for insulin from a sample of healthy human cells. • They inserted that gene into bacteria, which incorporated the gene into their genome. • When the bacteria reproduced, they passed on exact copies of the gene to their offspring. The result was a colony of bacteria that all contained the human insulin gene. • The chemical machinery within the bacteria expressed the gene—meaning the bacteria synthesized the human insulin that the gene codes for. • Today insulin made in this way is harvested from the cell cultures and bottled for distribution to diabetics.
  • 70. © 2015 Pearson Education, Inc. Chapter 19 in Review • The Cell: The main chemical components of the cell can be divided into four categories: carbohydrates, lipids, proteins, and nucleic acids. • Carbohydrates are aldehydes or ketones containing multiple —OH groups. Monosaccharides include glucose and fructose. Disaccharides, such as sucrose and lactose, are two monosaccharides linked together by glycoside linkages. Polysaccharides include starch and cellulose. Polysaccharides are also called complex carbohydrates. • Lipids are chemical components of the cell that are insoluble in water but soluble in nonpolar solvents. Important lipids include fatty acids, triglycerides, phospholipids, glycolipids, and steroids. • Proteins are polymers of amino acids. Amino acids are molecules composed of an amine group on one end and a carboxylic acid on the other. Between these two groups is a central carbon atom that has an R group attached. Amino acids link together by means of peptide bonds. Functional proteins are composed of hundreds or thousands of amino acids.
  • 71. © 2015 Pearson Education, Inc. Chapter 19 in Review Protein Structure: • Primary protein structure is the linear amino acid sequence in the protein chain. It is maintained by the peptide bonds. • Secondary structure refers to the small-scale repeating patterns found in proteins. These are maintained by interactions between the peptide backbones of amino acids that are close together in the chain sequence or on neighboring chains. • Tertiary structure refers to the large-scale twists and folds within the protein. These are maintained by interactions between R groups of amino acids that are separated by long distances in the chain sequence. • Quaternary structure refers to the arrangement of chains in proteins. Quaternary structure is maintained by interactions between amino acids on the individual chains.
  • 72. © 2015 Pearson Education, Inc. Chapter 19 in Review • Nucleic Acids, DNA Replication, and Protein Synthesis: Nucleic acids, including DNA and RNA, are polymers of nucleotides. • In DNA, each nucleotide contains one of four bases: adenine (A), cytosine (C), thymine (T), and guanine (G). The order of these bases contains a code that specifies the amino acid sequence in proteins. • A codon, a sequence of three bases, codes for an amino acid. • A gene, a sequence of hundreds to thousands of codons, codes for a protein. Genes are contained in cellular structures called chromosomes. • Complete copies of DNA are transferred from parent cells to daughter cells via DNA replication. • In this process, the two complementary strands of DNA within a cell unravel and two new strands that complement the original strands are synthesized. In this way, two complete copies of the DNA are made, one for each daughter cell. • When a cell synthesizes a protein, the base sequence of the gene that codes for that protein is transferred to mRNA. The mRNA then moves out to a ribosome, where the amino acids are linked in the correct sequence to synthesize the protein. • The general sequence is DNA  RNA  protein.
  • 73. © 2015 Pearson Education, Inc. Chemical Skills Learning Objectives 1. LO: Identify the key chemical components of the cell. 2. LO: Identify carbohydrates and compare and contrast monosaccharides, disaccharides, and polysaccharides. 3. LO: Identify lipids. 4. LO: Compare and contrast saturated and unsaturated triglycerides. 5. LO: Identify proteins. 6. LO: Describe how amino acids link together to form proteins. 7. LO: Describe primary structure, secondary structure, tertiary structure, and quaternary structure in proteins. 8. LO: Describe the role that nucleic acids play in determining the order of amino acids in a protein. 9. LO: Summarize the process of DNA replication and protein synthesis.