SlideShare uma empresa Scribd logo
1 de 71
What can we learn from molecular dynamics simulations
of carbon nanotube and graphene growth?
Stephan Irle
Kyoto University Nagoya University
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp
ITC Research Seminar, Ding Lab, Institute of Textiles and Clothing
The Hong Kong Polytechnic University, Hong Kong, December 4, 2012
vs vs
Molecular Dynamics Thermodynamics Experiments
Kyoto University Nagoya University
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp
Dr. YasuhitoOhtaa
Dr. Yoshiko Okamoto
Dr. Alister J. Pageb
Dr. Ying Wangc
Acknowledgements
Prof. KeijiMorokuma
anow: Professor, Nara Women‟s University Dr. Hai-Bei Li
bnow: Lecturer, University of Newcastle (AUS)
cnow: Professor, Changchun Institute for Applied
Chemistry (CHINA)
Dr. Joonghan Kim
2
2
Computer resources :
CREST grant 2006-2012 (KM, SI) and AFOSR (to
KM)
Funding :
MEXT Tenure Track program (SI)
Acknowledgements
Research Center for Computational Science
(RCCS), Okazaki Research Facilities, National
Institutes for Natural Sciences.
Academic Center for Computing and Media
Studies (ACCMS), Kyoto University
3
Overview Our MD Studies
ADVERTISEMENT #1
4
Overview
 Overview
 Density-functional tight-binding (DFTB)-based MD
 DFTB/MD CNT Growth Simulations
 DFTB/MD Graphene Growth Simulations
 Key points: What did we learn?
 Comparison with thermodynamics and selected
experiments
 What is next?
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp5
5
Overview
 Overview
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp6
6
Overview Goal: SWNT Growth Control
The ultimate goal: (n,m)-specific SWNT Growth
(5,5) SWNT
high yield, desired length, defect-free, eventually catalyst-free
ACCVD etc …
Selection of
“appropriate” growth
conditions
diameter
yield
chirality
length
7
8
Overview Experimental Growth Studies
Look here … in situ environmental TEM studies of
SWNT nucleation and growth
H. Yoshida, et al. Atomic-Scale In-situ
Observation of Carbon Nanotube
Growth from Solid State Carbide
Nanoparticles, Nano Lett. 8, 2082 (2008)
Fe/SiO2 C2H2:H2 T=600°C
Fluctuating solid Fe3C
S. Hofmann, et al. In-situ Observations of
Catalyst Dynamics during Surface-Bound
Carbon Nanotube Nucleation, Nano Lett. 7,
602 (2007)
Ni/SiO2 C2H2:NH3 T=480 to 700°C
Fluctuating solid pure nickel
F. Ding, et al.
Appl. Phys. Lett.
88, 133110
(2006)
Fe2000, T=1007°C
REBO/MD
Lindemannindex(a.u.)
8
Overview Experimental Growth Studies
SWNT GrowthHyperdimensional“Parameter Space”
catalyst size [nm]
catalyst composition
T [°C]
Fe
Co
Ni
Co/Mo
Rh/Pd
600
1000
1 4 10
feedstock species
feeding rate/
pressure
substrate
etching agent
template
Fill all space with “blocks”/scan full
parameter space
Evaluate interdependence relations
⇒“perfect” (n,m)-specific synthesis
Systematic Investigation of
SWNT growth mechanism(s):
Experiments are difficult to tweak/tune
“Let Theory Do It!!” (computer time is
cheap )
Experimentalist:
Cat-free
…
9
A. A. Puretzky,et al. Appl. Surf. Sci. 197-198, 552 (2002)
Long Timescale of SWNT Formation Mechanism!
Example: Laser Vaporization Methods
Assumption: Direct correlation between time ~ temperature and growth

SWNT Nucleation and Growth: We are here, but msmay determine (n,m)!
Overview Experimental Growth Studies
10
Overview Theoretical Studies
What MD method should be used?
•SiC: sp3 hybridization, localized single bonds
•Graphene: sp2 hybridization, delocalized pbonds
E. Clar, Polycyclic Hydrocarbons, Academic Press: London (1964)
Resonance structures of phenanthrene
Graphenes and the Clar Rule
Polyaromatic hydrocarbons (PAHs): aromatic compounds
Degree of aromaticity can be different for each ring segment!
Clar‟s Rule: “Resonance structure with most disjoint aromatic p-
sextets is most important for characterization of ring properties”
Br2 addition
11
J.-Y. Raty et al, Growth of Carbon Nanotubes on Metal Nanoparticles: A Microscopic
Mechanism from Ab Initio Molecular Dynamics Simulations, Phys. Rev, Lett. 95, 096103 (2005)
Nano-diamond: Inappropriate model!
Change from diamond structure (sp3) to
fullerene cap (sp2) immediately!
simulation time~10 ps
Too short to demonstrate
self-assembly
Overview Previous CPMD
Previous Car-Parrinello Molecular Dynamics (CPMD)
J. Gavillet et al, Root-Growth Mechanism for SWNTs, Phys. Rev, Lett. 87, 275504 (2001)
Carbon precipitation on Co carbide
particle, 51 Co & 102 C atoms, 25
ps 1 hexagon, 2 pentagons
C30+44C on Co surface at 1500 K, 15
ps 5 carbon atoms diffused to cap
Heroic efforts on supercomputers, one-shot simulations!
12
Overview
 Density-functional tight-binding (DFTB)-based MD
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp13
13
Density-Functional Tight-Binding: Method using atomic parameters
from DFT (PBE, GGA-type), diatomic repulsive potentials from B3LYP
•Seifert, Eschrig (1980-86): minimum
STO-LCAO; 2-center approximation
•Porezag, Frauenheim, et al. (1995):
efficient parameterization scheme: NCC-
DFTB
•Elstneret al. (1998): charge self-consistency: SCC-DFTB
•Köhleret al. (2001): spin-polarized DFTB: SDFTB
Marcus Elstner
ChristofKöhler
Helmut
Eschrig
Gotthard
Seifert
Thomas
Frauenheim
DFTB Method
Tight Binding as Approximate DFT Method
DFTB
14
length
scale
atoms
MD time
scale accuracy
Ab initio
DFT
Semi-empirical
DFTB, PM3 …
force fields
MM
10 100 1000 10000
nm μm
fs
ps
ns
Key issues:
i). Cheap computational cost
ii). Accurately describe bond breaking/formation
DFTB (density-functional tight-binding) is a well established approximate
DFT method,butdiatomic parameters are required.Therefore, we started to
develop X-Y parameters for all elements.
Multiscale Simulations
15
DFTB
16
Optimized elemental electronic DFTB parameters
now available for Z=1-109!
Yoshifumi Nishimura, Chien-Pin Chou
Henryk A. Witek, Stephan Irle
Nagoya University National Chiao Tung
University, Taiwan
Henryk A. Witek
Yoshifumi
Nishimura
Chien-Pin Chou
DFTB ParameterizationADVERTISEMENT #2
Parameterization
Artificial crystal structures can be reproduced well
Example: DFTB Si bandstructures, parameters
optimized @ bcc only
W (orb) 3.33938
a (orb) 4.52314
r (orb) 4.22512
W (dens) 1.68162
a (dens) 2.55174
r (dens) 9.96376
εs -0.39735
εp -0.14998
εd 0.21210
3s23p23d0
bcc 3.081
fcc 3.868
scl 2.532
diamond 5.431
Parameter sets:
Lattice constants:bcc fcc
scl diamond
Expt
.
17
DFTB
20
A B C
DFT:PW91[1] -6.24 -5.63 -1.82
SCC-DFTB[2] -5.17 -4.68 -1.86
Adhesion energies (eV/atom)
A B C
[1]: PW91: An ultrasoftpseudopotential with a plane-wave cutoff of 290 eV for the single metal and the
projector augmented wave method with a plane-wave cutoff of 400 eV for the metal cluster
{2} Fe-Fe and Fe-C DFTB parameters from: G. Zhenget al., J. Chem. Theor. Comput. 3, 1349 (2007)
[1] Phys. Rev. B 75, 115419 (2007) [2] Fermi broadening=0.13 eV
H10C60Fe H10C60Fe
H10C60Fe55
Fe55icosahed
ron,
P. Larsson et
al. Phys. Rev.
B 75, 115419
(2007)
(5,5) armchair SWNT (H10C60) + Fe / Fe55
DFTB Performance
Y. Ohta, Y. Okamoto, SI, K. Morokuma, Phys. Rev. B 79, 195415 (2009)
Relative
energies often
OK!
20
Newton‟s equations of motion for the N-particle system:
Fi can be calculated as . There are several approximate methods
to solve this system of equations. Some commonly used methods are:
Verlet‟s algorithm
Beeman‟s algorithm
Velocity Verletalgorithm:
Reactant
Barrier
Product
     
 
i
i
iii
m
t
tttttt
2
)(
2 F
vrr 
   
   
i
ii
ii
m
ttt
tttt
2
FF
vv


MD for Chemical Reactions
BOMD Methods
Practical implementation requires discrete Dt
E is a potential energy function
In our case: DFTB total electronic energy
DFTB
21
Overview
 DFTB/MD CNT Growth Simulations
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp22
22
DFTB/MD CNT Growth Parameter Space
catalyst
composition
T [°C]
Fe
Co
Ni
feedstock
C C2 C2H4
727
1227
C2H2 C2H5OH
1727
Dr. Ying Wang
23
Initial model: Fe38
Annealed at
1500 K
10 ps
10 geometries are
randomly sampled
between 5 and 10 ps
for ten trajectories.
t = 0 ps
30 C2H2’s
30 ps
1 2 3 4 5
6 7 8 9 10
Polyacetylene formation, largest carbon cluster: C10Hx
Annealed at
1500 K50 to 65 ps
1 2 3 4 5
6 7 8 9 10
DFTB/MD CNT Growth Acetylene Decomposition
24
2.1421.341
2.265
2.142
1.362
3.0741.351
1.331
1.444
2.195
1.408
2.128
1.378
NImag=0
C-C Bond formation:
C2H2(ads)+C2H(ads) C4H3(ads)
NImag=0
NImag=1
nimag= 455i cm-1
0.0
22.5
-11.8
Relative energies in [kcal/mol]
including ZPE
IRC verified
NImag=0
NImag=1
nimag= 1377i cm-1
36.5
NImag=0
8.0
0.0
H abstraction:
C2H2(ads) C2H(ads) + H(ads)
Rare event:
Timescale
problem
DFTB/MD CNT Growth Acetylene Decomposition
25
C2H2supply/2H removal (every 5 ps until 60 carbon atoms attached)
55ps 60ps 45ps 40ps 40ps
55ps 60ps (61 C) 55ps 65ps
75ps
(61 C)
A B C D E
F G H I J
DFTB/MD CNT Growth Acetylene Decomposition
26
C2H2supply/2H removal (every 5 ps until 60 carbon atoms attached)
DFTB/MD CNT Growth Acetylene Decomposition
27
CxHy composition on Fe38 cluster
BEFORE AFTER
.C2H radicals are consumed/re-generated!
“dissipative small molecule organocatalyst”
Initial C2H2 supply
30 ps
Initial annealing
80 ps
Secondary C2H2 supply/2H
removal60 carbon on cluster
45-75 ps
A1
A3
Secondary annealing
350ps
Remove floating hydrocarbons, decrease box size to (20
Å)3
A2
DFTB/MD CNT Growth Acetylene Decomposition
28
Annealed at
1500 K
DFTB/MD CNT Growth Acetylene Decomposition
“standing wall” “PAHs” “cap”
“Final results” after secondary annealing
29
DFTB/MD CNT Growth Acetylene Decomposition
“Disproportionation Mechanism” of Acetylene Decomposition
unpublished
Fundamental problems:
-C-C bond breaking slow
-C-H bond breaking slow
-Acetylene addition “too fast”
No carbide formation in
simulations 30
catalyst
composition
T [°C]
Fe
Co
Ni
feedstock
C C2 C2H4
727
1227
C2H2 C2H5OH
1727
Dr. YasuhitoOhta
Dr. Yoshiko Okamoto
Dr. Alister J. Page
31
Parameter Space
Dr. Joonghan Kim
DFTB/MD CNT Growth
DFTB/MD CNT Growth Cap nucleation
C2 shooting and annealing on Fe38 particle
33
Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano3, 3413 (2009)
Yoshida et al., Nano. Lett. (2008)
SWNT nucleation:
driven by 5-/6-membered ring formation
Fe3C nanoparticle
SWNT „cap‟ formed without carbide phase...
DFTB/MD CNT Growth Cap nucleation
Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano3, 3413 (2009)
C2 shooting and annealing on Fe38 particle
34
(again!)
10 Trajectories after 45 ps C supply
Tubelength[Å]
Time [ps]
Schematic depiction of C atom insertion events Trajectory F
new 5-, 6-, 7-membered rings
Y. Ohta, Y. Okamoto, SI, K. Morokuma,
ACS Nano2, 1437 (2008)
Growth rate: ~10 pm/ps 35
DFTB/MD CNT Growth Sidewall growth
0 10 20 30 40
0
5
10
15
20
25
30
0 10 20 30 40
0
5
10
15
20
25
30
0 10 20 30 40
7
8
9
10
11
Time [ps]
Tubelength[Å]Numberofrings
0 10 20 30 40
7
8
9
10
11
Time [ps]
F H
Tubelength[Å]Numberofrings
Correlation between ring type and tube length
curvature
ring typeor
36
DFTB/MD CNT Growth Sidewall growth
Y. Ohta, Y. Okamoto, SI, K. Morokuma, J. Phys. Chem. C, 113, 159, (2009).
T=1500K T=2000KT=1000K
Continued SWNT growth as function of
temperature
10 Trajectories for 3 temperatures
727°C 1227°C 1727°C
T[°C] 727 1227 1727
Growth rate[pm/ps]a 3.48 5.07 4.13
Chain carbonsa 3.9 0.3 0.2
SWNT C atomsa 112.9 110.1 102.7
( (5,5) armchair SWNT)
Y. Ohta, Y. Okamoto, SI, K. Morokuma, J.
Phys. Chem. C, 113, 159, (2009).
aaveraged over 10 trajectories/T
DFTB/MD CNT Growth Sidewall growth
37
Y. Ohta, Y. Okamoto, SI, K. Morokuma,
J. Phys. Chem. C, 113, 159, (2009).
T=727°C
10 Trajectories after 45 ps
Encapsulation of Fe by polyyne
Trajectory C
A B C D E
F G H I J
(a)
8.60 ps7.40 ps 8.32 ps
(b) Dissociation of C2 from Fe/C
T=1727°C
10 Trajectories after 45 ps
Trajectory G
DFTB/MD CNT Growth Sidewall growth
38
Self-healing process of sidewall (annealing)
Fe-Carbon mobility at interface important!
Trajectory 6: Tn= 1500 K, Te = 10k K, Cint=1500 K
24.5 ps - 27.5 ps
Heptagon + changes into hexagon +
Movie
A. Page, Y. Ohta, Y.
Okamoto, SI, K. Morokuma, J.
Phys. Chem.
C, 113, 20198, (2009)
39
DFTB/MD CNT Growth Sidewall growth
Carbon Feeding Rate Effect: M38C40+nC
A. Page, S. Minami, Y. Ohta, SI, K. Morokuma, Carbon 48, 3014 (2010)
Timescale
problem
40
DFTB/MD CNT Growth Sidewall growth
A. J. Page, KRS Chandrakumar, SI, K.
Morokuma, J. Am. Chem. Soc. 133,621 (2011).
41
DFTB/MD CNT Growth SiO2 simulations
42
42
DFTB/MD CNT Growth SiO2 simulations
43
43
DFTB/MD CNT Growth SiO2 simulations
44
Poster:
Alister J. Page
DFTB/MD CNT Growth SiO2 simulations
A. J. Page, KRS Chandrakumar, SI, K.
Morokuma, J. Am. Chem. Soc. 133,621 (2011).
Overview
 DFTB/MD Graphene Growth Simulations
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp45
45
How Does Graphene Form on Ni(111)?
Geometries and energetics only
No information on structure
evolution with time (growth)!
DFTB/MDGraphene Growth Graphene Growth
46
Want QM/MD Simulations!!
Dr. Ying Wang
Image source:
Gaoet al. J. Am. Chem. Soc. 133, 5009 (2011), static DFT calculations
QM/MD of 30 C2 on Ni(111), 1180 K
Haeckelite!
47
DFTB/MDGraphene Growth Graphene formation
Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
QM/MD of 30 C2 on Ni(111), 1180 K
top side
48
DFTB/MDGraphene Growth Graphene formation
Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
A
t = 0 100 ps 410 ps
0 50 100 150 200 250 300 350 400
0
1
2
3
4
5
6
7
8
Numberofpolygonalrings
Time [ps]
five-membered ring
six-membered ring
seven-membered ring
200 ps 300 ps
0 50 100 150 200 250 300 350 400
0
1
2
3
4
5
6
7
8
Numberofpolygonalrings
Time [ps]
five-membered ring
six-membered ring
seven-membered ring
5
Average 5- and 6-ring
counts over 10 annealing
trajectories
Formation of first
condensed 2-ring
system (5/5 or 5/6)
Always
pentagon first!
Hollow in Fe is
required
Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano3, 3413 (2009)
Y-junctionsp2 carbon
DFTB/MDGraphene Growth Pentagon First!
49
50
Haeckelite
Crespiet al. Phys. Rev. B 53, R13303 (1996); Terroneset al. Phys. Rev. Lett.
84, 1716 (2000); Rocquefelteet al. NanoLett. 4, 805 (2004)
DE(TB) (meV/C atom)
DE(PBE) (meV/C atom)
0
0
307
261
304
246
408
375
419
380
C60:
Ernst Haeckel
(1834-1919)
Thrower-Stone-Wales Transformation
Radiolara
DFTB/MDGraphene Growth Graphene formation
51
QM/MD of 18 C2 + C24 on Ni(111), 1180 K
•Pentagon-first vs. template effect.
•Suppression of heptagons and
pentagons
Wang et al., NanoLett., (2011)
Graphene!
51
DFTB/MDGraphene Growth Graphene formation
Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
52
QM/MD of 18 C2 + C24 on Ni(111), 1180 K
•Pentagon-first vs. template effect.
•Suppression of heptagons and
pentagons
Wang et al., NanoLett., (2011)
Graphene!
52
DFTB/MDGraphene Growth Graphene formation
Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
QM/MD of 18 C2 + C24 on Ni(111), 1180 K
top side
53
DFTB/MDGraphene Growth Graphene formation
Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
DFTB/MD: Haeckelite is a Metastable Phase
F. W. Ostwald,
Z. Phys. Chem.
22, 289 (1897)
MC Study:
Karouiet al.,
ACS Nano4,
6114 (2010)
54
DFTB/MDGraphene Growth Graphene formation
DFTB/MD: Subsurface Nucleation
55
DFTB/MDGraphene Growth Graphene formation
Carbon cluster distribution, after 25
ps (50 C added)
Very high carbon concentration in Ni surface
H.-B. Li, A. J. Page, Y. Wang, SI, K. Morokuma,Chem. Commun. 48, 7937 (2012)
Overview
 Key points: What did we learn?
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp56
56
curvature
ring typeor
•What (fullerene, tube, graphene) we grow depends on the shape and
carbon adhesion strength of the catalyst
Ni Fe
Self-capping,
fullerenes
Fast, defective
CNT growth
Slow, less defective
CNT growth
Cap on SiC(C-face)
Graphene
•Carbon nanostructures grow dynamically
in simultaneous processes of chaotic
growth and defect healing
•Pentagons in nanocarbons are “fossils”
from pentagon-first mechanism, “frozen”
by shape of carbon superstructure on
surface
Key points learned Chicken or egg? Solved.
•Nanocarbons grow as CC(sp)C(sp2), via pentagon-first mechanism
Overview
 Comparison with thermodynamics and selected
experiments
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp58
58
•Growth at base is chaotic
•Annealing from pentagon to
hexagons takes place “very
slowly”

(n,m) chirality already
established in outer tube area
imprints hexagon addition
pattern during annealing
“constructed”
Nucleation and growth hypothesis:
A. J. Page, Y. Ohta, S. Irle, and K.
Morokuma, Acc. Chem. Res. 43, 1375 (2010)In sharp contrast to:
F. Ding, A. Harutyunyan, B. I.
Yakobson, Proc. Natl. Acad. Sci.
106, 2506 (2009)
59
Comparison MD vs thermodynamics
= C2
For (n,m) tube, m kinks serve as active sites for C2accretion,
Growth rate K ~ m/d~ sin (q) ~ q,0 <q< 30o
Comparison MD vs thermodynamics
Ding &Yacobsons Nucleation and Growth Hypothesis:
60Resasco, 2003
Bachilo, 2002
Hirahara, 2006
Maruyama, 2004
Source: Boris Yakobson
Frank 1949
“cozy corners” J Watson 1950
Comparison MD vs thermodynamics
Earlier Theoretical Studies Predicting (n,n)>(n,0)
61
D. A. Gomez-Gualdron, P. B. Balbuena,
Nanotechnology 19, 485604 (2008)
Red circled: previously added C2
Blue spheres: favorable C2 addition sites
Dashed spheres: possible new C2s
Number of cozy corners (n,n)>(n,0)
S. Reich, L. Li, J. Robertson, Chem. Phys.
Lett. 421, 469 (2006)
Both (9,1) and (6,5) caps are matching
the Ni(111) lattice, but (6,5) has greater
thermodynamic stability!
Edge energies (n,0)>(n,n)
Ecap ECM (excess energies/C [eV])
(12,0) 0.33 0.01 (lower is more stable)
(5,5) 0.42 0.00
(6,5) 0.33 0.10
(9,1) 0.35 0.22
Comparison MD vs thermodynamics
Later Theoretical Studies Predicting (n,n)>(n,0)
62
H. Dumlich, S. Reich, Phys. Rev. B
82, 085421 (2010)
Number of cozy corners (n,n)>(n,0)
Barriers of C2 addition (n,n)<(n,0)
Near-armchair tubes have many addition sites,
each addition in cozy corner, zero barrier addition
Y. Liu, A. Dobrinsky, B. I. Yakobson, Phys.
Rev. Lett. 105, 235502 (2010)
Edge energies (n,0)>(n,n)
A. Borjesson, K.
Bolton, ACS
Nano5, 771(2012
)
(10,0)@Ni55 (5,5)@Ni55
Edge adhesion (n,0)>(n,n)
Comparison MD vs thermodynamics
“Confirmation” of Ding/Yakobson Model by Experiment
63
Nat. Mater. 11, 231 (2012)
Measuring growth rates v of individual SWCNTsby Raman
= C2
Comparison MD vs thermodynamics
Ding &Yacobsons Nucleation and Growth Hypothesis:
64
Is there anything in MD simulations, that relates to both
Ding/Yakobson‟s “Theory” as well as experiments?
Requirement: Need to define tube chiral angle during growth,
even in the presence of defects!
Solution: Define chiral angle for each hexagon separately.
Comparison LOCI
Local Chirality Index (LOCI): Definition
Requires: i) System‟s global principal axis in tube direction (GPAZ)
ii) Hexagon‟s local principal axis normal to hexagon plane
Local chiral angle q1
65
J. Kim, SI, K. Morokuma, Phys. Rev. Lett. 107, 15505 (2011).
Slow simulations of (5,5) and (8,0) SWCNT growth on Fe38
CNT formation Interpretation
66
Comparison MD vs thermodynamics
J. Kim, A. J. Page, SI, K. Morokuma, J. Am. Chem. Soc. 134, 9311 (2012).
+30C
300 ps, 1500K
+30C
300 ps, 1500 K
Error bars: Standard deviation s
Trajectory B
Trajectory A
Slow simulations of (5,5) and (8,0) SWCNT growth on Fe38
CNT formation Interpretation
67
Comparison MD vs thermodynamics
J. Kim, A. J. Page, SI, K. Morokuma, J. Am. Chem. Soc. 134, 9311 (2012).
+30C
300 ps, 1500K
+30C
300 ps, 1500 K
Error bars: Standard deviation s
Trajectory D
Trajectory D
Slow simulations of (5,5) and (8,0) SWCNT growth on Fe38
CNT formation Interpretation
68
Comparison MD vs thermodynamics
J. Kim, A. J. Page, SI, K. Morokuma, J. Am. Chem. Soc. 134, 9311 (2012).
Statistics based on 10 trajectoriesa
Conclusions: (5,5) grows less defects than (8,0), heals faster!
Comparison MD vs thermodynamics
“Confirmation” of Defect/Healing Growth by Experiment
69
Carbon 50, 2407 (2012)
cf: DFTB/MD growth model
Comparison MD vs thermodynamics
Convergence of thermodynamics and defect/healing pictures
70
High quality tubes/graphene can be grown in the
thermodynamic regime: low feedstock pressure, high
temperature.
Temperature-tolerant templates such as CPPs or small
tubes, and C24 could be used for clean (n,m) SWCNTs and
graphene growth, resp.
H. Li, A. J., Page, SI, K. Morokuma,
ChemPhysChem13, 1479 (2012)L. T. Scott et al. JACS 134, 107 (2012)
Comparison MD vs thermodynamics
Convergence of thermodynamics and defect/healing pictures
71
Q. Yuan, Z. Xu, B. I.
Yakobson, F. Ding,
Phys. Rev. Lett. 108,
245505 (2012)
Activationbarrier
Reactionenergy
F. Ding, Phys. Rev.
B 72, 245409 (2004)
Overview
 What is next?
http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp72
72
CNT formation Interpretation
73
What is next?
We need to address the following urgent issues:
-Timescale problem in MD simulations, e.g. by KMC, will allow to study:
-Role of carbide formation
-Role of defect healing
-More precise mechanism
-Investigate possible mechanism for chirality control at time of nucleation
-Investigate role of hydrogen in greater detail
-Effect of various catalyst substrates
-Effect of etching gas [NH3, cf S. Taubert, K. Laasonen, JPCC 116, 18538
(2012)]
-Effect of water H2O

Mais conteúdo relacionado

Mais procurados

The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.ABDERRAHMANE REGGAD
 
Many-body Green functions theory for electronic and optical properties of or...
Many-body Green functions theory for  electronic and optical properties of or...Many-body Green functions theory for  electronic and optical properties of or...
Many-body Green functions theory for electronic and optical properties of or...Claudio Attaccalite
 
Nonlinear response of solids with Green's functions and TD-D(P)FT
Nonlinear response  of solids with Green's functions and TD-D(P)FTNonlinear response  of solids with Green's functions and TD-D(P)FT
Nonlinear response of solids with Green's functions and TD-D(P)FTClaudio Attaccalite
 
Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Claudio Attaccalite
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATKAnders Blom
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron CorrelationAlbert DeFusco
 
Non-linear response of two dimensional crystals and layered materials
Non-linear response of two dimensional crystals and layered materialsNon-linear response of two dimensional crystals and layered materials
Non-linear response of two dimensional crystals and layered materialsClaudio Attaccalite
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsClaudio Attaccalite
 
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response  of solids within the GW plus Bethe-Salpeter approximationNonlinear response  of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response of solids within the GW plus Bethe-Salpeter approximationClaudio Attaccalite
 
Density Functional Theory
Density Functional TheoryDensity Functional Theory
Density Functional TheoryWesley Chen
 
Dielectrics in a time-dependent electric field: density-polarization functi...
Dielectrics in a time-dependent electric field:   density-polarization functi...Dielectrics in a time-dependent electric field:   density-polarization functi...
Dielectrics in a time-dependent electric field: density-polarization functi...Claudio Attaccalite
 
Impact of electronic correlation on the electron-phonon coupling
Impact of electronic correlation on the electron-phonon couplingImpact of electronic correlation on the electron-phonon coupling
Impact of electronic correlation on the electron-phonon couplingClaudio Attaccalite
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processPFHub PFHub
 

Mais procurados (20)

Tight binding
Tight bindingTight binding
Tight binding
 
The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.
 
Many-body Green functions theory for electronic and optical properties of or...
Many-body Green functions theory for  electronic and optical properties of or...Many-body Green functions theory for  electronic and optical properties of or...
Many-body Green functions theory for electronic and optical properties of or...
 
Nonlinear response of solids with Green's functions and TD-D(P)FT
Nonlinear response  of solids with Green's functions and TD-D(P)FTNonlinear response  of solids with Green's functions and TD-D(P)FT
Nonlinear response of solids with Green's functions and TD-D(P)FT
 
Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1
 
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock ApproximationNANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
 
Bethe salpeter equation
Bethe salpeter equationBethe salpeter equation
Bethe salpeter equation
 
Localized Electrons with Wien2k
Localized Electrons with Wien2kLocalized Electrons with Wien2k
Localized Electrons with Wien2k
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATK
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 
Non-linear response of two dimensional crystals and layered materials
Non-linear response of two dimensional crystals and layered materialsNon-linear response of two dimensional crystals and layered materials
Non-linear response of two dimensional crystals and layered materials
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
 
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response  of solids within the GW plus Bethe-Salpeter approximationNonlinear response  of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
 
Density Functional Theory
Density Functional TheoryDensity Functional Theory
Density Functional Theory
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
Dielectrics in a time-dependent electric field: density-polarization functi...
Dielectrics in a time-dependent electric field:   density-polarization functi...Dielectrics in a time-dependent electric field:   density-polarization functi...
Dielectrics in a time-dependent electric field: density-polarization functi...
 
Wien2k getting started
Wien2k getting startedWien2k getting started
Wien2k getting started
 
Ewald summation
Ewald summationEwald summation
Ewald summation
 
Impact of electronic correlation on the electron-phonon coupling
Impact of electronic correlation on the electron-phonon couplingImpact of electronic correlation on the electron-phonon coupling
Impact of electronic correlation on the electron-phonon coupling
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation process
 

Semelhante a Molecular dynamics simulations reveal insights into carbon nanotube and graphene growth

Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discoveryAnubhav Jain
 
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...Stephan Irle
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellRajan K. Singh
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsTrinity College Dublin
 
Huge-Scale Molecular Dynamics Simulation of Multi-bubble Nuclei
Huge-Scale Molecular Dynamics Simulation of Multi-bubble NucleiHuge-Scale Molecular Dynamics Simulation of Multi-bubble Nuclei
Huge-Scale Molecular Dynamics Simulation of Multi-bubble NucleiHiroshi Watanabe
 
High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...Anubhav Jain
 
Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Anubhav Jain
 
Organic Charge Trapping Memory Transistors
Organic Charge Trapping Memory TransistorsOrganic Charge Trapping Memory Transistors
Organic Charge Trapping Memory TransistorsAndre Zamith Cardoso
 
polymers-07-01523
polymers-07-01523polymers-07-01523
polymers-07-01523Ondrej Dyck
 
polymers-07-01523
polymers-07-01523polymers-07-01523
polymers-07-01523Ondrej Dyck
 
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Dierk Raabe
 
Direct prelithiation of carbon nanotubes for flexible li ion batteries (vinse...
Direct prelithiation of carbon nanotubes for flexible li ion batteries (vinse...Direct prelithiation of carbon nanotubes for flexible li ion batteries (vinse...
Direct prelithiation of carbon nanotubes for flexible li ion batteries (vinse...Vinsensia Ade Sugiawati, Ph.D.
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangorcdtpv
 

Semelhante a Molecular dynamics simulations reveal insights into carbon nanotube and graphene growth (20)

Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Cnt Tm
Cnt TmCnt Tm
Cnt Tm
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
NREL PV seminar
NREL PV seminarNREL PV seminar
NREL PV seminar
 
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
 
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronics
 
Huge-Scale Molecular Dynamics Simulation of Multi-bubble Nuclei
Huge-Scale Molecular Dynamics Simulation of Multi-bubble NucleiHuge-Scale Molecular Dynamics Simulation of Multi-bubble Nuclei
Huge-Scale Molecular Dynamics Simulation of Multi-bubble Nuclei
 
High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...
 
Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...
 
Organic Charge Trapping Memory Transistors
Organic Charge Trapping Memory TransistorsOrganic Charge Trapping Memory Transistors
Organic Charge Trapping Memory Transistors
 
Modeling organic electronics with ADF
Modeling organic electronics with ADFModeling organic electronics with ADF
Modeling organic electronics with ADF
 
polymers-07-01523
polymers-07-01523polymers-07-01523
polymers-07-01523
 
polymers-07-01523
polymers-07-01523polymers-07-01523
polymers-07-01523
 
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
 
paper 2
paper 2paper 2
paper 2
 
Direct prelithiation of carbon nanotubes for flexible li ion batteries (vinse...
Direct prelithiation of carbon nanotubes for flexible li ion batteries (vinse...Direct prelithiation of carbon nanotubes for flexible li ion batteries (vinse...
Direct prelithiation of carbon nanotubes for flexible li ion batteries (vinse...
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
Highly efficient organic devices.
Highly efficient organic devices.Highly efficient organic devices.
Highly efficient organic devices.
 

Último

Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 

Último (20)

Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 

Molecular dynamics simulations reveal insights into carbon nanotube and graphene growth

  • 1. What can we learn from molecular dynamics simulations of carbon nanotube and graphene growth? Stephan Irle Kyoto University Nagoya University http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp ITC Research Seminar, Ding Lab, Institute of Textiles and Clothing The Hong Kong Polytechnic University, Hong Kong, December 4, 2012 vs vs Molecular Dynamics Thermodynamics Experiments
  • 2. Kyoto University Nagoya University http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp Dr. YasuhitoOhtaa Dr. Yoshiko Okamoto Dr. Alister J. Pageb Dr. Ying Wangc Acknowledgements Prof. KeijiMorokuma anow: Professor, Nara Women‟s University Dr. Hai-Bei Li bnow: Lecturer, University of Newcastle (AUS) cnow: Professor, Changchun Institute for Applied Chemistry (CHINA) Dr. Joonghan Kim 2 2
  • 3. Computer resources : CREST grant 2006-2012 (KM, SI) and AFOSR (to KM) Funding : MEXT Tenure Track program (SI) Acknowledgements Research Center for Computational Science (RCCS), Okazaki Research Facilities, National Institutes for Natural Sciences. Academic Center for Computing and Media Studies (ACCMS), Kyoto University 3
  • 4. Overview Our MD Studies ADVERTISEMENT #1 4
  • 5. Overview  Overview  Density-functional tight-binding (DFTB)-based MD  DFTB/MD CNT Growth Simulations  DFTB/MD Graphene Growth Simulations  Key points: What did we learn?  Comparison with thermodynamics and selected experiments  What is next? http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp5 5
  • 7. Overview Goal: SWNT Growth Control The ultimate goal: (n,m)-specific SWNT Growth (5,5) SWNT high yield, desired length, defect-free, eventually catalyst-free ACCVD etc … Selection of “appropriate” growth conditions diameter yield chirality length 7
  • 8. 8 Overview Experimental Growth Studies Look here … in situ environmental TEM studies of SWNT nucleation and growth H. Yoshida, et al. Atomic-Scale In-situ Observation of Carbon Nanotube Growth from Solid State Carbide Nanoparticles, Nano Lett. 8, 2082 (2008) Fe/SiO2 C2H2:H2 T=600°C Fluctuating solid Fe3C S. Hofmann, et al. In-situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation, Nano Lett. 7, 602 (2007) Ni/SiO2 C2H2:NH3 T=480 to 700°C Fluctuating solid pure nickel F. Ding, et al. Appl. Phys. Lett. 88, 133110 (2006) Fe2000, T=1007°C REBO/MD Lindemannindex(a.u.) 8
  • 9. Overview Experimental Growth Studies SWNT GrowthHyperdimensional“Parameter Space” catalyst size [nm] catalyst composition T [°C] Fe Co Ni Co/Mo Rh/Pd 600 1000 1 4 10 feedstock species feeding rate/ pressure substrate etching agent template Fill all space with “blocks”/scan full parameter space Evaluate interdependence relations ⇒“perfect” (n,m)-specific synthesis Systematic Investigation of SWNT growth mechanism(s): Experiments are difficult to tweak/tune “Let Theory Do It!!” (computer time is cheap ) Experimentalist: Cat-free … 9
  • 10. A. A. Puretzky,et al. Appl. Surf. Sci. 197-198, 552 (2002) Long Timescale of SWNT Formation Mechanism! Example: Laser Vaporization Methods Assumption: Direct correlation between time ~ temperature and growth  SWNT Nucleation and Growth: We are here, but msmay determine (n,m)! Overview Experimental Growth Studies 10
  • 11. Overview Theoretical Studies What MD method should be used? •SiC: sp3 hybridization, localized single bonds •Graphene: sp2 hybridization, delocalized pbonds E. Clar, Polycyclic Hydrocarbons, Academic Press: London (1964) Resonance structures of phenanthrene Graphenes and the Clar Rule Polyaromatic hydrocarbons (PAHs): aromatic compounds Degree of aromaticity can be different for each ring segment! Clar‟s Rule: “Resonance structure with most disjoint aromatic p- sextets is most important for characterization of ring properties” Br2 addition 11
  • 12. J.-Y. Raty et al, Growth of Carbon Nanotubes on Metal Nanoparticles: A Microscopic Mechanism from Ab Initio Molecular Dynamics Simulations, Phys. Rev, Lett. 95, 096103 (2005) Nano-diamond: Inappropriate model! Change from diamond structure (sp3) to fullerene cap (sp2) immediately! simulation time~10 ps Too short to demonstrate self-assembly Overview Previous CPMD Previous Car-Parrinello Molecular Dynamics (CPMD) J. Gavillet et al, Root-Growth Mechanism for SWNTs, Phys. Rev, Lett. 87, 275504 (2001) Carbon precipitation on Co carbide particle, 51 Co & 102 C atoms, 25 ps 1 hexagon, 2 pentagons C30+44C on Co surface at 1500 K, 15 ps 5 carbon atoms diffused to cap Heroic efforts on supercomputers, one-shot simulations! 12
  • 13. Overview  Density-functional tight-binding (DFTB)-based MD http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp13 13
  • 14. Density-Functional Tight-Binding: Method using atomic parameters from DFT (PBE, GGA-type), diatomic repulsive potentials from B3LYP •Seifert, Eschrig (1980-86): minimum STO-LCAO; 2-center approximation •Porezag, Frauenheim, et al. (1995): efficient parameterization scheme: NCC- DFTB •Elstneret al. (1998): charge self-consistency: SCC-DFTB •Köhleret al. (2001): spin-polarized DFTB: SDFTB Marcus Elstner ChristofKöhler Helmut Eschrig Gotthard Seifert Thomas Frauenheim DFTB Method Tight Binding as Approximate DFT Method DFTB 14
  • 15. length scale atoms MD time scale accuracy Ab initio DFT Semi-empirical DFTB, PM3 … force fields MM 10 100 1000 10000 nm μm fs ps ns Key issues: i). Cheap computational cost ii). Accurately describe bond breaking/formation DFTB (density-functional tight-binding) is a well established approximate DFT method,butdiatomic parameters are required.Therefore, we started to develop X-Y parameters for all elements. Multiscale Simulations 15 DFTB
  • 16. 16 Optimized elemental electronic DFTB parameters now available for Z=1-109! Yoshifumi Nishimura, Chien-Pin Chou Henryk A. Witek, Stephan Irle Nagoya University National Chiao Tung University, Taiwan Henryk A. Witek Yoshifumi Nishimura Chien-Pin Chou DFTB ParameterizationADVERTISEMENT #2
  • 17. Parameterization Artificial crystal structures can be reproduced well Example: DFTB Si bandstructures, parameters optimized @ bcc only W (orb) 3.33938 a (orb) 4.52314 r (orb) 4.22512 W (dens) 1.68162 a (dens) 2.55174 r (dens) 9.96376 εs -0.39735 εp -0.14998 εd 0.21210 3s23p23d0 bcc 3.081 fcc 3.868 scl 2.532 diamond 5.431 Parameter sets: Lattice constants:bcc fcc scl diamond Expt . 17 DFTB
  • 18. 20 A B C DFT:PW91[1] -6.24 -5.63 -1.82 SCC-DFTB[2] -5.17 -4.68 -1.86 Adhesion energies (eV/atom) A B C [1]: PW91: An ultrasoftpseudopotential with a plane-wave cutoff of 290 eV for the single metal and the projector augmented wave method with a plane-wave cutoff of 400 eV for the metal cluster {2} Fe-Fe and Fe-C DFTB parameters from: G. Zhenget al., J. Chem. Theor. Comput. 3, 1349 (2007) [1] Phys. Rev. B 75, 115419 (2007) [2] Fermi broadening=0.13 eV H10C60Fe H10C60Fe H10C60Fe55 Fe55icosahed ron, P. Larsson et al. Phys. Rev. B 75, 115419 (2007) (5,5) armchair SWNT (H10C60) + Fe / Fe55 DFTB Performance Y. Ohta, Y. Okamoto, SI, K. Morokuma, Phys. Rev. B 79, 195415 (2009) Relative energies often OK! 20
  • 19. Newton‟s equations of motion for the N-particle system: Fi can be calculated as . There are several approximate methods to solve this system of equations. Some commonly used methods are: Verlet‟s algorithm Beeman‟s algorithm Velocity Verletalgorithm: Reactant Barrier Product         i i iii m t tttttt 2 )( 2 F vrr          i ii ii m ttt tttt 2 FF vv   MD for Chemical Reactions BOMD Methods Practical implementation requires discrete Dt E is a potential energy function In our case: DFTB total electronic energy DFTB 21
  • 20. Overview  DFTB/MD CNT Growth Simulations http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp22 22
  • 21. DFTB/MD CNT Growth Parameter Space catalyst composition T [°C] Fe Co Ni feedstock C C2 C2H4 727 1227 C2H2 C2H5OH 1727 Dr. Ying Wang 23
  • 22. Initial model: Fe38 Annealed at 1500 K 10 ps 10 geometries are randomly sampled between 5 and 10 ps for ten trajectories. t = 0 ps 30 C2H2’s 30 ps 1 2 3 4 5 6 7 8 9 10 Polyacetylene formation, largest carbon cluster: C10Hx Annealed at 1500 K50 to 65 ps 1 2 3 4 5 6 7 8 9 10 DFTB/MD CNT Growth Acetylene Decomposition 24
  • 23. 2.1421.341 2.265 2.142 1.362 3.0741.351 1.331 1.444 2.195 1.408 2.128 1.378 NImag=0 C-C Bond formation: C2H2(ads)+C2H(ads) C4H3(ads) NImag=0 NImag=1 nimag= 455i cm-1 0.0 22.5 -11.8 Relative energies in [kcal/mol] including ZPE IRC verified NImag=0 NImag=1 nimag= 1377i cm-1 36.5 NImag=0 8.0 0.0 H abstraction: C2H2(ads) C2H(ads) + H(ads) Rare event: Timescale problem DFTB/MD CNT Growth Acetylene Decomposition 25
  • 24. C2H2supply/2H removal (every 5 ps until 60 carbon atoms attached) 55ps 60ps 45ps 40ps 40ps 55ps 60ps (61 C) 55ps 65ps 75ps (61 C) A B C D E F G H I J DFTB/MD CNT Growth Acetylene Decomposition 26
  • 25. C2H2supply/2H removal (every 5 ps until 60 carbon atoms attached) DFTB/MD CNT Growth Acetylene Decomposition 27 CxHy composition on Fe38 cluster BEFORE AFTER .C2H radicals are consumed/re-generated! “dissipative small molecule organocatalyst”
  • 26. Initial C2H2 supply 30 ps Initial annealing 80 ps Secondary C2H2 supply/2H removal60 carbon on cluster 45-75 ps A1 A3 Secondary annealing 350ps Remove floating hydrocarbons, decrease box size to (20 Å)3 A2 DFTB/MD CNT Growth Acetylene Decomposition 28
  • 27. Annealed at 1500 K DFTB/MD CNT Growth Acetylene Decomposition “standing wall” “PAHs” “cap” “Final results” after secondary annealing 29
  • 28. DFTB/MD CNT Growth Acetylene Decomposition “Disproportionation Mechanism” of Acetylene Decomposition unpublished Fundamental problems: -C-C bond breaking slow -C-H bond breaking slow -Acetylene addition “too fast” No carbide formation in simulations 30
  • 29. catalyst composition T [°C] Fe Co Ni feedstock C C2 C2H4 727 1227 C2H2 C2H5OH 1727 Dr. YasuhitoOhta Dr. Yoshiko Okamoto Dr. Alister J. Page 31 Parameter Space Dr. Joonghan Kim DFTB/MD CNT Growth
  • 30.
  • 31. DFTB/MD CNT Growth Cap nucleation C2 shooting and annealing on Fe38 particle 33 Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano3, 3413 (2009)
  • 32. Yoshida et al., Nano. Lett. (2008) SWNT nucleation: driven by 5-/6-membered ring formation Fe3C nanoparticle SWNT „cap‟ formed without carbide phase... DFTB/MD CNT Growth Cap nucleation Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano3, 3413 (2009) C2 shooting and annealing on Fe38 particle 34 (again!)
  • 33. 10 Trajectories after 45 ps C supply Tubelength[Å] Time [ps] Schematic depiction of C atom insertion events Trajectory F new 5-, 6-, 7-membered rings Y. Ohta, Y. Okamoto, SI, K. Morokuma, ACS Nano2, 1437 (2008) Growth rate: ~10 pm/ps 35 DFTB/MD CNT Growth Sidewall growth
  • 34. 0 10 20 30 40 0 5 10 15 20 25 30 0 10 20 30 40 0 5 10 15 20 25 30 0 10 20 30 40 7 8 9 10 11 Time [ps] Tubelength[Å]Numberofrings 0 10 20 30 40 7 8 9 10 11 Time [ps] F H Tubelength[Å]Numberofrings Correlation between ring type and tube length curvature ring typeor 36 DFTB/MD CNT Growth Sidewall growth Y. Ohta, Y. Okamoto, SI, K. Morokuma, J. Phys. Chem. C, 113, 159, (2009).
  • 35. T=1500K T=2000KT=1000K Continued SWNT growth as function of temperature 10 Trajectories for 3 temperatures 727°C 1227°C 1727°C T[°C] 727 1227 1727 Growth rate[pm/ps]a 3.48 5.07 4.13 Chain carbonsa 3.9 0.3 0.2 SWNT C atomsa 112.9 110.1 102.7 ( (5,5) armchair SWNT) Y. Ohta, Y. Okamoto, SI, K. Morokuma, J. Phys. Chem. C, 113, 159, (2009). aaveraged over 10 trajectories/T DFTB/MD CNT Growth Sidewall growth 37
  • 36. Y. Ohta, Y. Okamoto, SI, K. Morokuma, J. Phys. Chem. C, 113, 159, (2009). T=727°C 10 Trajectories after 45 ps Encapsulation of Fe by polyyne Trajectory C A B C D E F G H I J (a) 8.60 ps7.40 ps 8.32 ps (b) Dissociation of C2 from Fe/C T=1727°C 10 Trajectories after 45 ps Trajectory G DFTB/MD CNT Growth Sidewall growth 38
  • 37. Self-healing process of sidewall (annealing) Fe-Carbon mobility at interface important! Trajectory 6: Tn= 1500 K, Te = 10k K, Cint=1500 K 24.5 ps - 27.5 ps Heptagon + changes into hexagon + Movie A. Page, Y. Ohta, Y. Okamoto, SI, K. Morokuma, J. Phys. Chem. C, 113, 20198, (2009) 39 DFTB/MD CNT Growth Sidewall growth
  • 38. Carbon Feeding Rate Effect: M38C40+nC A. Page, S. Minami, Y. Ohta, SI, K. Morokuma, Carbon 48, 3014 (2010) Timescale problem 40 DFTB/MD CNT Growth Sidewall growth
  • 39. A. J. Page, KRS Chandrakumar, SI, K. Morokuma, J. Am. Chem. Soc. 133,621 (2011). 41 DFTB/MD CNT Growth SiO2 simulations
  • 40. 42 42 DFTB/MD CNT Growth SiO2 simulations
  • 41. 43 43 DFTB/MD CNT Growth SiO2 simulations
  • 42. 44 Poster: Alister J. Page DFTB/MD CNT Growth SiO2 simulations A. J. Page, KRS Chandrakumar, SI, K. Morokuma, J. Am. Chem. Soc. 133,621 (2011).
  • 43. Overview  DFTB/MD Graphene Growth Simulations http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp45 45
  • 44. How Does Graphene Form on Ni(111)? Geometries and energetics only No information on structure evolution with time (growth)! DFTB/MDGraphene Growth Graphene Growth 46 Want QM/MD Simulations!! Dr. Ying Wang Image source: Gaoet al. J. Am. Chem. Soc. 133, 5009 (2011), static DFT calculations
  • 45. QM/MD of 30 C2 on Ni(111), 1180 K Haeckelite! 47 DFTB/MDGraphene Growth Graphene formation Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
  • 46. QM/MD of 30 C2 on Ni(111), 1180 K top side 48 DFTB/MDGraphene Growth Graphene formation Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
  • 47. A t = 0 100 ps 410 ps 0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 6 7 8 Numberofpolygonalrings Time [ps] five-membered ring six-membered ring seven-membered ring 200 ps 300 ps 0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 6 7 8 Numberofpolygonalrings Time [ps] five-membered ring six-membered ring seven-membered ring 5 Average 5- and 6-ring counts over 10 annealing trajectories Formation of first condensed 2-ring system (5/5 or 5/6) Always pentagon first! Hollow in Fe is required Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano3, 3413 (2009) Y-junctionsp2 carbon DFTB/MDGraphene Growth Pentagon First! 49
  • 48. 50 Haeckelite Crespiet al. Phys. Rev. B 53, R13303 (1996); Terroneset al. Phys. Rev. Lett. 84, 1716 (2000); Rocquefelteet al. NanoLett. 4, 805 (2004) DE(TB) (meV/C atom) DE(PBE) (meV/C atom) 0 0 307 261 304 246 408 375 419 380 C60: Ernst Haeckel (1834-1919) Thrower-Stone-Wales Transformation Radiolara DFTB/MDGraphene Growth Graphene formation
  • 49. 51 QM/MD of 18 C2 + C24 on Ni(111), 1180 K •Pentagon-first vs. template effect. •Suppression of heptagons and pentagons Wang et al., NanoLett., (2011) Graphene! 51 DFTB/MDGraphene Growth Graphene formation Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
  • 50. 52 QM/MD of 18 C2 + C24 on Ni(111), 1180 K •Pentagon-first vs. template effect. •Suppression of heptagons and pentagons Wang et al., NanoLett., (2011) Graphene! 52 DFTB/MDGraphene Growth Graphene formation Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
  • 51. QM/MD of 18 C2 + C24 on Ni(111), 1180 K top side 53 DFTB/MDGraphene Growth Graphene formation Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, SI, K. Morokuma, J. Am. Chem. Soc. 133, 18837 (2011)
  • 52. DFTB/MD: Haeckelite is a Metastable Phase F. W. Ostwald, Z. Phys. Chem. 22, 289 (1897) MC Study: Karouiet al., ACS Nano4, 6114 (2010) 54 DFTB/MDGraphene Growth Graphene formation
  • 53. DFTB/MD: Subsurface Nucleation 55 DFTB/MDGraphene Growth Graphene formation Carbon cluster distribution, after 25 ps (50 C added) Very high carbon concentration in Ni surface H.-B. Li, A. J. Page, Y. Wang, SI, K. Morokuma,Chem. Commun. 48, 7937 (2012)
  • 54. Overview  Key points: What did we learn? http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp56 56
  • 55. curvature ring typeor •What (fullerene, tube, graphene) we grow depends on the shape and carbon adhesion strength of the catalyst Ni Fe Self-capping, fullerenes Fast, defective CNT growth Slow, less defective CNT growth Cap on SiC(C-face) Graphene •Carbon nanostructures grow dynamically in simultaneous processes of chaotic growth and defect healing •Pentagons in nanocarbons are “fossils” from pentagon-first mechanism, “frozen” by shape of carbon superstructure on surface Key points learned Chicken or egg? Solved. •Nanocarbons grow as CC(sp)C(sp2), via pentagon-first mechanism
  • 56. Overview  Comparison with thermodynamics and selected experiments http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp58 58
  • 57. •Growth at base is chaotic •Annealing from pentagon to hexagons takes place “very slowly”  (n,m) chirality already established in outer tube area imprints hexagon addition pattern during annealing “constructed” Nucleation and growth hypothesis: A. J. Page, Y. Ohta, S. Irle, and K. Morokuma, Acc. Chem. Res. 43, 1375 (2010)In sharp contrast to: F. Ding, A. Harutyunyan, B. I. Yakobson, Proc. Natl. Acad. Sci. 106, 2506 (2009) 59 Comparison MD vs thermodynamics
  • 58. = C2 For (n,m) tube, m kinks serve as active sites for C2accretion, Growth rate K ~ m/d~ sin (q) ~ q,0 <q< 30o Comparison MD vs thermodynamics Ding &Yacobsons Nucleation and Growth Hypothesis: 60Resasco, 2003 Bachilo, 2002 Hirahara, 2006 Maruyama, 2004 Source: Boris Yakobson Frank 1949 “cozy corners” J Watson 1950
  • 59. Comparison MD vs thermodynamics Earlier Theoretical Studies Predicting (n,n)>(n,0) 61 D. A. Gomez-Gualdron, P. B. Balbuena, Nanotechnology 19, 485604 (2008) Red circled: previously added C2 Blue spheres: favorable C2 addition sites Dashed spheres: possible new C2s Number of cozy corners (n,n)>(n,0) S. Reich, L. Li, J. Robertson, Chem. Phys. Lett. 421, 469 (2006) Both (9,1) and (6,5) caps are matching the Ni(111) lattice, but (6,5) has greater thermodynamic stability! Edge energies (n,0)>(n,n) Ecap ECM (excess energies/C [eV]) (12,0) 0.33 0.01 (lower is more stable) (5,5) 0.42 0.00 (6,5) 0.33 0.10 (9,1) 0.35 0.22
  • 60. Comparison MD vs thermodynamics Later Theoretical Studies Predicting (n,n)>(n,0) 62 H. Dumlich, S. Reich, Phys. Rev. B 82, 085421 (2010) Number of cozy corners (n,n)>(n,0) Barriers of C2 addition (n,n)<(n,0) Near-armchair tubes have many addition sites, each addition in cozy corner, zero barrier addition Y. Liu, A. Dobrinsky, B. I. Yakobson, Phys. Rev. Lett. 105, 235502 (2010) Edge energies (n,0)>(n,n) A. Borjesson, K. Bolton, ACS Nano5, 771(2012 ) (10,0)@Ni55 (5,5)@Ni55 Edge adhesion (n,0)>(n,n)
  • 61. Comparison MD vs thermodynamics “Confirmation” of Ding/Yakobson Model by Experiment 63 Nat. Mater. 11, 231 (2012) Measuring growth rates v of individual SWCNTsby Raman
  • 62. = C2 Comparison MD vs thermodynamics Ding &Yacobsons Nucleation and Growth Hypothesis: 64 Is there anything in MD simulations, that relates to both Ding/Yakobson‟s “Theory” as well as experiments? Requirement: Need to define tube chiral angle during growth, even in the presence of defects! Solution: Define chiral angle for each hexagon separately.
  • 63. Comparison LOCI Local Chirality Index (LOCI): Definition Requires: i) System‟s global principal axis in tube direction (GPAZ) ii) Hexagon‟s local principal axis normal to hexagon plane Local chiral angle q1 65 J. Kim, SI, K. Morokuma, Phys. Rev. Lett. 107, 15505 (2011).
  • 64. Slow simulations of (5,5) and (8,0) SWCNT growth on Fe38 CNT formation Interpretation 66 Comparison MD vs thermodynamics J. Kim, A. J. Page, SI, K. Morokuma, J. Am. Chem. Soc. 134, 9311 (2012). +30C 300 ps, 1500K +30C 300 ps, 1500 K Error bars: Standard deviation s Trajectory B Trajectory A
  • 65. Slow simulations of (5,5) and (8,0) SWCNT growth on Fe38 CNT formation Interpretation 67 Comparison MD vs thermodynamics J. Kim, A. J. Page, SI, K. Morokuma, J. Am. Chem. Soc. 134, 9311 (2012). +30C 300 ps, 1500K +30C 300 ps, 1500 K Error bars: Standard deviation s Trajectory D Trajectory D
  • 66. Slow simulations of (5,5) and (8,0) SWCNT growth on Fe38 CNT formation Interpretation 68 Comparison MD vs thermodynamics J. Kim, A. J. Page, SI, K. Morokuma, J. Am. Chem. Soc. 134, 9311 (2012). Statistics based on 10 trajectoriesa Conclusions: (5,5) grows less defects than (8,0), heals faster!
  • 67. Comparison MD vs thermodynamics “Confirmation” of Defect/Healing Growth by Experiment 69 Carbon 50, 2407 (2012) cf: DFTB/MD growth model
  • 68. Comparison MD vs thermodynamics Convergence of thermodynamics and defect/healing pictures 70 High quality tubes/graphene can be grown in the thermodynamic regime: low feedstock pressure, high temperature. Temperature-tolerant templates such as CPPs or small tubes, and C24 could be used for clean (n,m) SWCNTs and graphene growth, resp. H. Li, A. J., Page, SI, K. Morokuma, ChemPhysChem13, 1479 (2012)L. T. Scott et al. JACS 134, 107 (2012)
  • 69. Comparison MD vs thermodynamics Convergence of thermodynamics and defect/healing pictures 71 Q. Yuan, Z. Xu, B. I. Yakobson, F. Ding, Phys. Rev. Lett. 108, 245505 (2012) Activationbarrier Reactionenergy F. Ding, Phys. Rev. B 72, 245409 (2004)
  • 70. Overview  What is next? http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp72 72
  • 71. CNT formation Interpretation 73 What is next? We need to address the following urgent issues: -Timescale problem in MD simulations, e.g. by KMC, will allow to study: -Role of carbide formation -Role of defect healing -More precise mechanism -Investigate possible mechanism for chirality control at time of nucleation -Investigate role of hydrogen in greater detail -Effect of various catalyst substrates -Effect of etching gas [NH3, cf S. Taubert, K. Laasonen, JPCC 116, 18538 (2012)] -Effect of water H2O