SlideShare uma empresa Scribd logo
1 de 17
Baixar para ler offline
Chapter 7 
                                             
                                  Green Infrastructure 
 
                                     A. Introduction 
 
        “Green infrastructure” refers to natural and engineered ecological systems 
that act as living infrastructure, integrating natural vegetation and soils into a 
community’s infrastructure through a variety of techniques, approaches, 
technologies, and practices.  Green infrastructure is planned and managed primarily 
for stormwater control, but it also provides additional social, economic, and 
environmental benefits.  It can be a useful tool for communities that are looking to 
protect their natural water resources and stormwater management systems from 
the impacts of development and urbanization.  Green infrastructure methods can be 
implemented practically anywhere soil and vegetation can be worked into a 
landscape.   




                                                            Source: Southeast Watershed Forum

    Figure 7-1: Bioretention is one typical method used in green infrastructure.
                                               
                                               

                                            141
B. Types of Green Infrastructure 
 
       Communities may choose from a wide variety of green infrastructure 
techniques.  The choice of which techniques to employ and where to locate them is 
dependent on site specifications and the goals the community wishes to accomplish.  
Specific types of green infrastructure include: 
 
                                        1. Green Roofs 
 
       Green roofs are roofs of buildings that are covered with vegetation and soil, 
either partially or completely.  Green roofs are layered systems, with a waterproof 
membrane, drainage mat, root barrier, growing medium, and vegetation.  
Evaporation of water occurs due to the exposure of the plants and growing medium 
to wind and sun, and the plants transpire moisture into the air.  This helps to cool 
the roof.  It is vital that plants are chosen for the environment in which the roof is 
located.  It is also important to promote slow to moderate growth of the plants, so 
that they are in balance with their root systems during dormant winter periods.  
Green roofs can aid in stormwater management and can save energy.  They are also 
aesthetically pleasing. 




                                                   Source: Louisville Metro Development Center

     Figure 7-2: Green Roof Design




                                         142
2. Rain Gardens 
 
        Rain gardens, also called bioretention basins, are planted topographic 
depressions that are designed to absorb rainwater that drains from impervious 
areas, such as roofs, parking areas, streets, walkways, and compacted lawn areas.  
Rain gardens reduce runoff because the stormwater soaks into the ground instead 
of flowing into storm drains and surface waters.  This can help decrease erosion, 
water pollution, and flooding, and can help to recharge groundwater sources.  The 
Rain Garden Network provides a 10‐step synopsis of how to build a rain garden.  
This information is available at http://www.raingardennetwork.com/build.htm.  
Additionally, Burnsville, Minnesota has implemented a plan to install a rain garden 
system to infiltrate stormwater runoff that serves as an excellent example of 
utilizing this type of green infrastructure (City of Burnsville 2006). 
 




                                                       Source: Southeast Watershed Forum

   Figure 7-3: Rain Garden.




                                         143
3. Porous and Pervious Pavements 
 
        Porous and pervious pavements, also called permeable pavements, are 
paving methods that allow rainwater to infiltrate through them into the soil below.  
These pavements can be used for roads, parking lots, and walkways instead of 
traditional impervious pavements, which increase flow velocity of stormwater 
runoff.  Porous asphalt, concrete, paving stones, and bricks are examples of pervious 
pavements.  




                                                      Source: Southeast Watershed Forum 

    Figure 7-4: Pervious Pavement.




                                         144
4. Vegetated Swales 
 
       Vegetated swales, also known as bioswales, are wide, shallow channels that 
are covered on the side slopes and bottom by a dense stand of native vegetation.  
Vegetated swales are designed to promote infiltration, reduce the flow velocity of 
stormwater runoff, and trap particulate pollutants and silt.  They can be either 
natural or constructed, and are often used around parking lots so that pollution 
from automobiles that is picked up in stormwater can be treated before entering the 
watershed. 




                                                   Source: Southeast Watershed Forum 

      Figure 7-5: Vegetated Swale.



                                   5. Pocket Wetlands 
                                              
        Pocket wetlands receive, retain, and treat stormwater that has drained from 
a limited impervious area.  Not only do they reduce stormwater runoff, but they also 
provide for the filtering of pollutants.  Additionally, pocket wetlands are 
aesthetically pleasing and can even serve as a small wildlife habitat.  Pocket 
wetlands do not require as much space as other stormwater treatment, so they can 
be very helpful in congested urban areas.   
                                              

                                        145
6. Planter Boxes 
 
        There are two types of planter boxes, contained planters and infiltration 
planters.  Contained planters are planter boxes that are placed over impervious 
surfaces.  They hold trees, shrubs, and ground cover.  Infiltration planters are 
containers or structures with open bottoms that contain a layer of gravel, soil, and 
vegetation.  They are designed to allow stormwater runoff to temporarily pool on 
top of the soil and then slowly infiltrate into the ground.  Stone, concrete, brick, 
plastic lumber, or wood can all be used to construct infiltration planters.  Portland, 
Oregon provides an excellent example of utilizing planter boxes for stormwater 
management (City of Portland, 2004, pp. 49‐60). 
 
                                    7. Green Parking 
 
        Green parking refers to parking lot design that incorporates green 
infrastructure instead of only considering purely functional requirements.  Green 
parking involves managing stormwater on‐site, providing generous landscaped 
areas, planting trees, enhancing pedestrian and cycling infrastructure, and reducing 
the urban heat island effect.  Toronto has implemented a plan for “greening” surface 
parking lots (City of Toronto 2007). 




                                                                    Source: Rosetta Fackler 

  Figures 7-6 to 7-9: A green parking lot design at a Walmart in Nashville, TN.

                                            146
8. Rain Barrels 
 
        Rain barrels, also called rainwater tanks, are water containers that are used 
to collect and store rain water.  The rainwater is usually collected from rooftops via 
rain gutters.  Rain barrels help to reduce the amount of untreated stormwater runoff 
into wastewater systems and surface waters.  The water stored in rain barrels can 
be recycled for many uses, including water gardens, washing cars, agriculture, and 
home use.  They can also simply store stormwater to be released at a future time.  
         
                               9. Downspout Disconnection 
 
        Downspout disconnection systems redirect stormwater from traditional 
collection systems to vegetated areas.  By doing so, green infrastructure components 
can manage the runoff and stormwater volume is removed from collection systems. 
 
                            10. Community Forestry and Trees 
 
        Trees and forests are essential elements of a community’s green 
infrastructure.  These include not only public and private forest lands but also 
community forests: the canopy of trees in our communities’ yards, parks, roadsides 
and streetscapes, commercial centers, common areas, and public spaces.  They 
provide many environmental and economic benefits to property owners, 
communities, and watersheds.  The benefits of trees and community forests to water 
resources include: 
                 “Tree root networks filter contaminants in soils producing clean 
                   water. 
                 Trees prevent erosion by trapping soil that would otherwise 
                   become silt.  Silt destroys fish eggs and other aquatic wildlife and 
                   makes rivers and streams shallower, causing more frequent and 
                   more severe flooding.  Trees along streams also hold stream banks 
                   in place to protect against flooding. 
                 Trees reduce topsoil erosion, prevent harmful land pollutants 
                   contained in the soil from getting into our waterways, slow down 
                   water runoff, and ensure that our groundwater supplies are 
                   continually being replenished.  For every 5% of tree cover added 
                   to a community, stormwater runoff is reduced by approximately 
                   2%. 
                 Studies that have simulated urban forest effects on stormwater 
                   report annual runoff reductions of 2‐7%. 
                 In one study, a 32‐foot tall tree intercepting rainfall reduced 
                   stormwater runoff by 327 gallons.”  (Southeast Watershed Forum, 
                   p. 2) 
 
        In addition to water‐based benefits, trees and community forests provide air 
quality, climate moderation, energy conservation, and wildlife habitat benefits 

                                          147
(Southeast Watershed Forum, pp. 2‐3).  “According to USDA Forest Service, trees 
and vegetation reduce stormwater discharge by up to 40%, reduce home heating 
and cooling costs by up to 30%, increase the value of property by up to 20%, and 
reduce particulate airborne pollution by up to 80%.”  (Stormwater Manager’s 
Resource Center 2006)  In particular, the economic benefits are many.  These 
economic benefits to property owners, businesses, and communities, according to 
studies, include: 
                “Trees enhance community economic stability by attracting 
                   businesses and tourists. 
                People linger and shop longer along tree‐lined streets. 
                Apartments and offices in wooded areas rent more quickly and 
                   have higher occupancy rates. 
                Businesses leasing office space in developments with trees find 
                   their workers are more productive and absenteeism reduced. 
                Three trees located strategically around your house can cut air 
                   conditioning bills in half.  On a larger scale, the cooling effects of 
                   trees can save millions of energy dollars. 
                Property values of homes with trees in the landscape are 5% to 
                   20% higher than equivalent properties without trees.”  (Southeast 
                   Watershed Forum, p. 1) 
Moreover, studies show that the benefits of large trees are 4 to 16 times the benefits 
of small trees, depending on whether the benefits are analyzed over a short term or 
a long term and whether only benefits to the landowner are analyzed or whether 
benefits to the entire community are analyzed (Southeast Watershed Forum, p. 3). 
 
        Communities can do many different things to establish or protect trees as 
green infrastructure.  First, communities can establish a tree canopy goal as part of 
their comprehensive plan.  Studies recommend that healthy cities should seek to 
have at least 40% tree coverage, which is an average of 20 large trees per acre, in 
order to achieve ecological, economic, and social sustainability (Southeast 
Watershed Forum, p. 1).  Second, communities should establish a community 
forestry program that supports both public and private efforts to provide, maintain, 
and manage local tree canopies.  Whether or not a part of a community forestry 
program, government agencies should landscape public lands and facilities with 
watershed‐sustaining trees and invest in maintaining those trees.  Third, 
communities can use their codes and ordinances to protect existing trees and 
require tree planning and maintenance on development sites.  Fourth, communities 
can establish watershed reforestation projects that prioritize sites for reforestation 
under a comprehensive watershed forest management plan (Stormwater Manager’s 
Resource Center 2006). 
 
 
 
 
 

                                           148
 
               Case Study in Community Forestry: Fayetteville, Arkansas 
                          (Source: NALGEP et al. 2003, p. 21) 
 
        “A number of communities across the nation are partnering with groups like 
American Forests to identify how the “green infrastructure” of trees can help reduce 
stormwater runoff and nonpoint source pollution, protect the quality of surface and 
groundwater, save localities millions of dollars in gray infrastructure costs, and 
meet the regulatory mandates of storm‐water and TMDL rules.  One such 
community is the fast‐growing City of Fayetteville, Arkansas, where American 
Forests recently released a study demonstrating the environmental and economic 
benefits of maintaining – and increasing – local tree cover. 
 
        In Fayetteville, rapid 
growth and development has led 
to an 18 percent decline of 
heavy tree canopy in the last 15 
years.  American Forests 
recently conducted an “Urban 
Ecosystems Analysis” using 
satellite and aerial imagery, 
Geographic Information System 
technology, scientific research, 
and the organization’s 
CITYgreen® computer software 
to calculate the benefits trees 
provide to Fayetteville’s urban 
environment.  The findings 
show that the City of 
Fayetteville’s existing tree cover 
currently reduces stormwater 
runoff by 50 million cubic feet 
during a storm event.  The study 
also noted that, if the tree 
canopy in Fayetteville were 
increased from 27 to 40 percent, 
the environmental benefits 
                                                                       Source: Tony Arnold 
would be significant and the cost‐
saving benefits of stormwater         Figure 7-10: Forest in Kentucky.
reduction alone would be $135 
million.”  (NALGEP et al. 2003, p. 
21) 



                                              

                                           149
 
    11. Protecting Riparian Lands, Wetlands, Floodplains, and Native Landscapes 
 
        Nature has already provided much of the green infrastructure that we need 
in the forms of riparian zones (often with trees and other vegetation), wetlands, 
floodplains, and native vegetation.  Forest, discussed above, and native grasslands 
also are naturally provided green infrastructure.  Unfortunately, much of it has been 
lost to human land‐alteration activities and what remains is at risk of alteration or 
degradation.  Therefore, a critical green infrastructure strategy is to preserve and 
protect nature’s green infrastructure, while also restoring that which has been lost. 




                                                                    Source: Linda Pearsall 

 Figures 7-11 and 7-12: Wetland and Riparian Zone.



                12. Specific Examples of Green Infrastructure Features  
                          in Particular Development Settings 
 
       The following provides some examples of how these types of green 
infrastructure can be utilized in particular settings (WERF 2007): 
 
               Streetscape and roadway projects 
                  - Add tree boxes or infiltration gardens to capture street runoff. 

                                         150
-   Design medians as infiltration areas. 
                  -   Use porous pavement for parking lanes. 
           
                 Commercial areas with significant parking 
                  - Drain roofs to gardens, planters, or parking islands and 
                     medians. 
                  - Use permeable pavement in low‐traffic areas. 
                  - Drain parking to grass buffers and vegetated swales. 
           
                 Small infill building sites or retrofits 
                  - Install a green roof for buildings and parking structures. 
                  - Install permeable pavement in courtyards and plazas. 
                  - Drain roofs to grass buffers or swales. 
           
                 Residential areas 
                  - Drain roofs to rain gardens, grass swales, and grass buffers. 
                  - Drain driveways, walkways, and patios to adjacent rain 
                     gardens or grass buffers. 
                  - Construct driveways using permeable pavement. 
 
        Examples of green infrastructure and policies supporting green 
infrastructure can be found on the following websites: 
 
         Center for Neighborhood Technology, Green Infrastructure, 
           http://greenvalues.cnt.org/green‐infrastructure 
     
         State Environmental Resource Center, Green Infrastructure Policy Issues 
           Package, http://www.serconline.org/grInfrastructure/index.html 
     
         U.S.  Environmental Protection Agency, Managing Wet Weather with 
           Green Infrastructure, 
           http://cfpub.epa.gov/npdes/home.cfm?program_id=298 
     
         Water Environment Research Foundation, Livable Communities, 
           http://www.werf.org/livablecommunities  
 
             C. Choosing Green: The Benefits of Green Infrastructure 
 
        Green infrastructure can provide a variety of environmental, economic, and 
social benefits.  These benefits can be especially pronounced in developed area 
because environmental damage is usually greater and green space more limited in 
these locales.  The benefits of green infrastructure include: 

                                            

                                            
                                         151
1. Green infrastructure improves water quality. 

        Green infrastructure reduces the concentration of pollutants in stormwater 
runoff.  It does so by causing runoff to infiltrate close to its source, thus helping to 
prevent pollutants from being transported to surface waters.  Additionally, plants 
and microbes can naturally filter and breakdown stormwater pollutants in 
infiltrated runoff.    

        2. Green infrastructure reduces and delays stormwater runoff volumes. 
 
       Green infrastructure utilizes the natural retention and infiltration 
capabilities of vegetation and soils to naturally retain and absorb stormwater, thus 
reducing the volume of stormwater runoff, as well as reducing stormwater runoff 
peak flows.  Green infrastructure also increases the amount of pervious ground 
cover, which in turn increases stormwater infiltration rates.  This also reduces the 
volume of runoff.  By reducing runoff volumes and peak flows entering surface 
water bodies and wastewater systems, green infrastructure limits the frequency of 
flooding and system overflow events.    

                      3. Green infrastructure improves air quality. 
 
       Green infrastructure contributes to improved air quality.  Vegetation and 
trees absorb pollutants from the air, thus filtering many airborne pollutants.  They 
also cool the air, leading to decreased ground‐level ozone pollution.   

                    4. Green infrastructure enhances water supplies. 
 
       Green infrastructure increases natural infiltration, thus improving the rate at 
which groundwater aquifers are replenished.  Improved groundwater recharge can 
enhance private and public drinking water supplies, and can help to maintain 
normal base flow rates for streams and rivers.  In addition, green infrastructure 
techniques that capture and use stormwater help to conserve water supplies. 

                    5. Green infrastructure reduces energy demands  
                            and increases energy efficiency. 
 
       The increased amounts of green space and vegetation provided by green 
infrastructure in developed areas can reduce energy demands because they mitigate 
the urban heat island effect, thus lowering temperatures.  This can also lower the 
demand for air conditioning energy, thus decreasing power plant emissions.  If 
incorporated on and around buildings, green infrastructure can help with shade and 
insulation, thus decreasing the energy that is needed for heating and cooling.  
Additionally, diverting stormwater from wastewater systems reduces the energy 
needed to pump and treat the water.  All of this reduces energy costs to businesses, 
governments, and community residents. 


                                           152
6. Green infrastructure improves human health. 
 
      Green infrastructure can play a vital role in improving human health.  A large 
number of studies show that green space and vegetation can positively impact 
human health, including reduced levels of inner‐city crime, a stronger sense of 
community, and reduced symptoms associated with attention deficit and 
hyperactivity disorders (U.S. EPA 2009). 

          7. Green infrastructure enhances communities and neighborhoods. 
 
        Green infrastructure can improve the aesthetics of a community because of 
the increase in trees and plants.  It also provides increased access to recreational 
space and wildlife habitats, thus improving community livability.  Community 
cohesiveness can be enhanced by involving residents with the planning, 
implementation, and maintenance of green infrastructure sites.  Additionally, a 
number of studies show that green infrastructure can increase the property values 
in the surrounding area (U.S. EPA 2009). 

          8. Green infrastructure moderates the impacts of climate change. 
 
       Green infrastructure can benefit adaptability for a wide range of 
circumstances that result from climate change impacts.  This adaptability is possible 
because green infrastructure can conserve and reuse water, promote groundwater 
recharge, and reduce surface water discharges that can cause flooding.  Additionally, 
the vegetation utilized in green infrastructure can serve as sources of carbon 
sequestration, thus capturing carbon dioxide from the atmosphere.   

                         9. Green infrastructure saves money. 
        
       Green infrastructure can save capital costs associated with building,  
operating, and maintaining traditional forms of infrastructure.  The costs of 
repairing damage caused by stormwater can also be avoided.  
                
                 D. Implementing Green Infrastructure in Projects 
        
       Once a community has decided that utilizing green infrastructure may be an 
option, it must then assess if this is the best option.  One method that can be used 
when determining whether, or where, to incorporate green infrastructure is “value 
engineering.” This approach allows for a comparison of the costs and values of green 
infrastructure with that of traditional infrastructure.  “Value engineering” enables a 
community to consider the relative costs and benefits of the components of a 
project, and then suggests where changes may be made to provide more value for 
less cost.   
The “value engineering” approach involves the following steps (WERF 2007): 
 


                                         153
   Identify elements of value or benefit that can be used to measure and 
                   compare project components.  Factors that can be considered when 
                   identifying elements of value or benefit are land area requirements 
                   for flood storage and water quality treatment, allowable or desired 
                   runoff volume, on‐site water use requirements, groundwater recharge 
                   needs, landscape amenities opportunities, creation of habitat, and 
                   recreation opportunities. 
        
                  Develop a schematic of the project using traditional forms of 
                   infrastructure, and estimate the value or benefit provided, along with 
                   capital and life cycle costs. 
            
                  Develop an alternative schematic of the project using green 
                   infrastructure, and estimate value and costs of each component.” 
        
                  Compare the two different approaches to identify which provides the 
                   best value.  This is not strictly a cost‐based analysis.   
        
       Once it is decided that a green infrastructure approach will be utilized, and 
projects begin to be planned, the following principles and practices can help to 
ensure that a green infrastructure project succeeds: 
             Establish an interdisciplinary team at the beginning of the project.  
              This group should include, among others, community leaders, the 
              project owner, review agencies, engineers, and landscape architects.  
              Work to ensure that this team remains together through 
              implementation of the project. 
             Understand the regulatory and development review environment.   
             Understand which Best Management Practices work best in which 
              development settings. 
             Understand the context in which the project will be placed.  The type 
              of project, as well as its aesthetic qualities, should reflect surrounding 
              land uses and neighborhood character. 
             Design the project to mimic the natural environment. 
             Design sustainable projects that can be easily maintained (WERF 
              2007). 
 
        E. Implementing Green Infrastructure in Local Policies and Codes 
 
       Green infrastructure is a matter of public policy, as well as landowner and 
developer choices.  In general, when a community has determined that green 
infrastructure would be beneficial, certain policy recommendations can be used to 
encourage the use of green infrastructure: 
             get development right the first time; 
             incorporate green infrastructure into long‐term control plans for 
              managing combined sewer overflows; 

                                              154
   revise state and local stormwater regulations to encourage green 
              design;  
             establish dedicated funding for stormwater management that rewards 
              green design; 
             provide incentives for residential and commercial use of green 
              infrastructure;  
             review and revise local development ordinances; 
             preserve existing trees, open space, and stream buffers; 
             encourage and use smart growth; and 
             get the community involved (NRDC 2006, pp. 13‐15). 
 
        More specifically, though, incorporating green infrastructure into wet growth 
policies requires attention to local codes and ordinances.  Although some of a 
community’s green infrastructure will result from public projects (e.g., government 
buildings and facilities, landscape design and management along roads and 
highways, and wetlands or stream restoration initiatives) or from the management 
of public lands (including parks, nature areas, and recreational facilities, wet growth 
policies also include the creation of green infrastructure on private lands.  
Community officials and stakeholders should analyze their local codes and 
ordinances to determine whether they: 
                 allow green infrastructure as part of new or existing land uses; 
                 encourage green infrastructure as part of new or existing land 
                   uses; and 
                 require green infrastructure as part of new or existing land uses. 
 
        First, a community’s land development codes and ordinances might directly 
or indirectly prohibit landowners and developers from using green infrastructure 
and therefore need to be changed.  Examples might include: 1) minimum lot sizes or 
setback requirements that prevent clustering of structures and preservation of 
existing natural features of development sites; 2) barriers to shared ownership and 
management of swales, wetlands, and other green infrastructure; 3) requirements 
that structures connect downspouts directly to the stormwater sewer system; 4) 
roof design or structural requirements that do not allow for green roofs; or 5) 
parking requirements that prevent green parking lot design, among other 
regulatory requirements.  These provisions should be analyzed and amended to 
allow green infrastructure. 
 
        Second, a community’s land development codes and ordinances can actually 
facilitate decisions by landowners and developers to use green infrastructure.  
These might include density bonuses or other development bonuses (e.g., parking 
bonuses, height bonuses, streamlined/fast‐track permitting processes) for certain 
especially valuable or extensive green infrastructure features of a development 
project beyond normal requirements.  They might include rebates of or reductions 
in stormwater or sewer service or hook‐up fees for certain green infrastructure 
features that minimize runoff.  They might include relief from landscaping 

                                          155
requirements if existing mature trees and other existing natural landscape features 
are retained.  Local communities should analyze their codes and ordinances for 
opportunities to add incentives that encourage green infrastructure. 
 
        Third, communities should consider requiring landowners and developers to 
use green infrastructure features, especially for new development.  Examples 
include 1) tree preservation ordinances; 2) minimum tree canopy and/or 
landscaping requirements; 3) prohibitions on development of wetlands, riparian 
buffer zones, natural forests, native grasslands, or similar watershed‐supporting 
lands; 4) maximum site coverage ratios; and 5) requirements that developers select 
from a menu of green‐infrastructure best management practices (BMPs) in 
designing and developing sites, among other possible regulatory requirements.  
Protecting or requiring green infrastructure by regulation can be necessary, because 
developed sites without adequate stormwater management are imposing the costs 
and harms of their land uses onto neighbors, other property owners, businesses, 
government agencies, taxpayers, and the public.  Private property rights, even from 
highly libertarian or free‐market perspectives, have never allowed landowners to 
use their land in ways that harm others or transfer the costs of their land uses to 
others (i.e., known by economists as “negative externalities”), which is what is 
happening when developed land has high quantities, velocities, and/or pollution‐
levels of runoff flow.  However, protections of existing green infrastructure and 
regulations requiring harm‐preventing green infrastructure – especially when 
landowners can choose among a variety of green infrastructure methods – are 
cheaper, more efficient, and more effective at preventing harms (and externalized 
costs) for all relevant parties than the alternative ways of remedying these harms: 
litigation or fines.  Regulatory methods and examples are discussed further in 
Chapter 12.  In addition, Chapter 5 explores how green infrastructure might be 
incorporated into low impact development standards. 
 
 
 
Sources: 
 
Center for Neighborhood Technology.  Green Infrastructure.  Available at 
http://greenvalues.cnt.org/green‐infrastructure. 
 
City of Burnsville, Minnesota.  2006.  Burnsville Stormwater Retrofit Study.  
Available at http://www.ci.burnsville.mn.us/DocumentView.asp?DID=449.   
 
City of Portland, Oregon.  2004.  2004 Stormwater Management Manual, Chapter 2, 
Stormwater Management Facility Design.  Available at 
http://www.portlandonline.com/shared/cfm/image.cfm?id=55791&#page=49.  
 
City of Toronto.  2007.  Design Guidelines for “Greening” Surface Parking Lots.  
Available at 

                                        156
http://www.toronto.ca/planning/urbdesign/greening_parking_lots.htm#greenguid
elines.  
 
National Association of Local Government Environmental Professionals et al. 
(NALGEP et al.).  2003.  Smart Growth for Clean Water: Helping Communities 
Address the Water Quality Impacts of Sprawl.  Available at 
http://www.resourcesaver.com/file/toolmanager/CustomO93C337F42157.pdf. 
 
 
Natural Resources Defense Council (NRDC).  2006.  Rooftops to Rivers: Green 
Strategies for Controlling Stormwater and Combined Sewer Overflows.  Available at 
http://www.nrdc.org/water/pollution/rooftops/rooftops.pdf.  
 
Southeast Watershed Forum.  The Value of Community Forests. 
 
Stoner, Nancy and Alexandra Dapolito Dunn.  2008.  “From Rooftops to Rivers: 
Green Infrastructure Yields Economic and Environmental Benefits.”  American 
Public Works Association Reporter.  February: 1‐5.  Available at www.apwa.net.  
 
Stormwater Manager’s Resource Center.  2006.  Land Conservation Fact Sheet: 
Urban Watershed Reforestation. 
 
State Environmental Resource Center.  Green Infrastructure Policy Issues Package.  
Available at http://www.serconline.org/grInfrastructure/index.html. 
 
United States Environmental Protection Agency (U.S. EPA).  2009.  Managing Wet 
Weather with Green Infrastructure.  Available at 
http://cfpub.epa.gov/npdes/home.cfm?program_id=298. 
 
Water Environment Research Foundation (WERF).  2007.  When Does Green 
Infrastructure Make Sense.  Available at 
http://www.werf.org/livablecommunities/pdf/greenpay.pdf. 
 
Water Environment Research Foundation.  Livable Communities.  Available at 
http://www.werf.org/livablecommunities.   




                                        157

Mais conteúdo relacionado

Mais procurados

Sustainable Landscaping and Companion Planting - Massachusetts
Sustainable Landscaping and Companion Planting - MassachusettsSustainable Landscaping and Companion Planting - Massachusetts
Sustainable Landscaping and Companion Planting - MassachusettsFayina19z
 
Rainwater harvesting and watershed management
Rainwater harvesting and watershed managementRainwater harvesting and watershed management
Rainwater harvesting and watershed managementPranay Krishnan
 
Using Trees To Reduce Stormwater Runoff
Using Trees To Reduce Stormwater Runoff Using Trees To Reduce Stormwater Runoff
Using Trees To Reduce Stormwater Runoff watershedprotection
 
RAIN WATER HARVESTING
RAIN WATER HARVESTING RAIN WATER HARVESTING
RAIN WATER HARVESTING DEEPAK SAHU
 
PA: Green Infrastructure Rising
PA: Green Infrastructure RisingPA: Green Infrastructure Rising
PA: Green Infrastructure RisingSotirakou964
 
Stormwater Planters
Stormwater PlantersStormwater Planters
Stormwater PlantersSotirakou964
 
Pomegranate Center Green Roof Manual
Pomegranate Center Green Roof ManualPomegranate Center Green Roof Manual
Pomegranate Center Green Roof ManualSotirakou964
 
Green Infrastructure Stormwater Management Applications in the Pinelands
Green Infrastructure Stormwater Management Applications in the PinelandsGreen Infrastructure Stormwater Management Applications in the Pinelands
Green Infrastructure Stormwater Management Applications in the PinelandsNew Jersey Future
 
IN: Green Infrastructure and Low Impact Development
IN: Green Infrastructure and Low Impact DevelopmentIN: Green Infrastructure and Low Impact Development
IN: Green Infrastructure and Low Impact DevelopmentSotirakou964
 
ME: Manual on Low Impact Development practices for Communities
ME: Manual on Low Impact Development practices for CommunitiesME: Manual on Low Impact Development practices for Communities
ME: Manual on Low Impact Development practices for CommunitiesSotirakou964
 
Gray vs. Green: The Role of Watershed-scale Green Infrastructure Systems for ...
Gray vs. Green: The Role of Watershed-scale Green Infrastructure Systems for ...Gray vs. Green: The Role of Watershed-scale Green Infrastructure Systems for ...
Gray vs. Green: The Role of Watershed-scale Green Infrastructure Systems for ...Mcrpc Staff
 
Constructed Wetlands
Constructed WetlandsConstructed Wetlands
Constructed WetlandsZainab Arshad
 
Constucted wetlands for waste water treatment
Constucted wetlands for waste water treatmentConstucted wetlands for waste water treatment
Constucted wetlands for waste water treatmentAglaia Connect
 
Canada: Green Communities Guide
Canada: Green Communities GuideCanada: Green Communities Guide
Canada: Green Communities GuideSotirakou964
 
Unit -5 RESERVOIR PLANNING
Unit -5  RESERVOIR PLANNINGUnit -5  RESERVOIR PLANNING
Unit -5 RESERVOIR PLANNINGramuKasagani2
 
Stream buffer 20131108
Stream buffer 20131108Stream buffer 20131108
Stream buffer 20131108Mcrpc Staff
 
A Builder's Introduction to LID: How to Make LID Pencil Out for Your Project
A Builder's Introduction to LID:  How to Make LID Pencil Out for Your ProjectA Builder's Introduction to LID:  How to Make LID Pencil Out for Your Project
A Builder's Introduction to LID: How to Make LID Pencil Out for Your ProjectJodiSlavik
 
Constructed Wetlands
Constructed WetlandsConstructed Wetlands
Constructed WetlandsAsif Awan
 

Mais procurados (19)

Sustainable Landscaping and Companion Planting - Massachusetts
Sustainable Landscaping and Companion Planting - MassachusettsSustainable Landscaping and Companion Planting - Massachusetts
Sustainable Landscaping and Companion Planting - Massachusetts
 
Rainwater harvesting and watershed management
Rainwater harvesting and watershed managementRainwater harvesting and watershed management
Rainwater harvesting and watershed management
 
Using Trees To Reduce Stormwater Runoff
Using Trees To Reduce Stormwater Runoff Using Trees To Reduce Stormwater Runoff
Using Trees To Reduce Stormwater Runoff
 
RAIN WATER HARVESTING
RAIN WATER HARVESTING RAIN WATER HARVESTING
RAIN WATER HARVESTING
 
PA: Green Infrastructure Rising
PA: Green Infrastructure RisingPA: Green Infrastructure Rising
PA: Green Infrastructure Rising
 
Stormwater Planters
Stormwater PlantersStormwater Planters
Stormwater Planters
 
Pomegranate Center Green Roof Manual
Pomegranate Center Green Roof ManualPomegranate Center Green Roof Manual
Pomegranate Center Green Roof Manual
 
Green Infrastructure Stormwater Management Applications in the Pinelands
Green Infrastructure Stormwater Management Applications in the PinelandsGreen Infrastructure Stormwater Management Applications in the Pinelands
Green Infrastructure Stormwater Management Applications in the Pinelands
 
IN: Green Infrastructure and Low Impact Development
IN: Green Infrastructure and Low Impact DevelopmentIN: Green Infrastructure and Low Impact Development
IN: Green Infrastructure and Low Impact Development
 
ME: Manual on Low Impact Development practices for Communities
ME: Manual on Low Impact Development practices for CommunitiesME: Manual on Low Impact Development practices for Communities
ME: Manual on Low Impact Development practices for Communities
 
Gray vs. Green: The Role of Watershed-scale Green Infrastructure Systems for ...
Gray vs. Green: The Role of Watershed-scale Green Infrastructure Systems for ...Gray vs. Green: The Role of Watershed-scale Green Infrastructure Systems for ...
Gray vs. Green: The Role of Watershed-scale Green Infrastructure Systems for ...
 
Constructed Wetlands
Constructed WetlandsConstructed Wetlands
Constructed Wetlands
 
Constucted wetlands for waste water treatment
Constucted wetlands for waste water treatmentConstucted wetlands for waste water treatment
Constucted wetlands for waste water treatment
 
Canada: Green Communities Guide
Canada: Green Communities GuideCanada: Green Communities Guide
Canada: Green Communities Guide
 
Unit -5 RESERVOIR PLANNING
Unit -5  RESERVOIR PLANNINGUnit -5  RESERVOIR PLANNING
Unit -5 RESERVOIR PLANNING
 
Stream buffer 20131108
Stream buffer 20131108Stream buffer 20131108
Stream buffer 20131108
 
Why Watersheds
Why WatershedsWhy Watersheds
Why Watersheds
 
A Builder's Introduction to LID: How to Make LID Pencil Out for Your Project
A Builder's Introduction to LID:  How to Make LID Pencil Out for Your ProjectA Builder's Introduction to LID:  How to Make LID Pencil Out for Your Project
A Builder's Introduction to LID: How to Make LID Pencil Out for Your Project
 
Constructed Wetlands
Constructed WetlandsConstructed Wetlands
Constructed Wetlands
 

Destaque

La Plaza Garden CA: Water Efficient Gardening
La Plaza Garden CA: Water Efficient GardeningLa Plaza Garden CA: Water Efficient Gardening
La Plaza Garden CA: Water Efficient GardeningSotirakou964
 
MI: Landscaping For Water Quality
MI: Landscaping For Water QualityMI: Landscaping For Water Quality
MI: Landscaping For Water QualitySotirakou964
 
Pennsylvania native plants for rain gardens
Pennsylvania native plants for rain gardensPennsylvania native plants for rain gardens
Pennsylvania native plants for rain gardensSotirakou964
 
Canada: Allston Brighton: Green Streets Guide
Canada: Allston Brighton: Green Streets Guide Canada: Allston Brighton: Green Streets Guide
Canada: Allston Brighton: Green Streets Guide Sotirakou964
 
PA: Philadelphia: Green Roof Demonstration Project
PA: Philadelphia: Green Roof Demonstration ProjectPA: Philadelphia: Green Roof Demonstration Project
PA: Philadelphia: Green Roof Demonstration ProjectSotirakou964
 
CA: Bay Friendly Landscaping Guidlines
CA: Bay Friendly Landscaping GuidlinesCA: Bay Friendly Landscaping Guidlines
CA: Bay Friendly Landscaping GuidlinesSotirakou964
 
New Zealand Rain Garden Information Guide
New Zealand Rain Garden Information GuideNew Zealand Rain Garden Information Guide
New Zealand Rain Garden Information GuideSotirakou964
 
Rain Gardens for Clean Streams
Rain Gardens for Clean StreamsRain Gardens for Clean Streams
Rain Gardens for Clean StreamsSotirakou964
 
Stormwater and Your Rain Garden
Stormwater and Your Rain GardenStormwater and Your Rain Garden
Stormwater and Your Rain GardenSotirakou964
 
Watershed Impact - for Public Lands
Watershed Impact - for Public LandsWatershed Impact - for Public Lands
Watershed Impact - for Public LandsSotirakou964
 
Rain Garden - How to Guide Sheets
Rain Garden - How to Guide SheetsRain Garden - How to Guide Sheets
Rain Garden - How to Guide SheetsSotirakou964
 
MA: WaterWise Landscaping to Fight the Water Crisis and Drought
MA: WaterWise Landscaping to Fight the Water Crisis and DroughtMA: WaterWise Landscaping to Fight the Water Crisis and Drought
MA: WaterWise Landscaping to Fight the Water Crisis and DroughtSotirakou964
 
Georgia Rain Garden Manual
Georgia Rain Garden ManualGeorgia Rain Garden Manual
Georgia Rain Garden ManualSotirakou964
 
TX: Efficient Irrigation for Water Conservation in the Rio Grande Basin
TX: Efficient Irrigation for Water Conservation in the Rio Grande BasinTX: Efficient Irrigation for Water Conservation in the Rio Grande Basin
TX: Efficient Irrigation for Water Conservation in the Rio Grande BasinSotirakou964
 
MN: Anoka County: Curb-Cut Raingardens - Reducing Stormwater Going into Lakes
MN: Anoka County: Curb-Cut Raingardens - Reducing Stormwater Going into LakesMN: Anoka County: Curb-Cut Raingardens - Reducing Stormwater Going into Lakes
MN: Anoka County: Curb-Cut Raingardens - Reducing Stormwater Going into LakesSotirakou964
 
Impact of Urbanization and Development of Megacities on Mobility and Vehicle ...
Impact of Urbanization and Development of Megacities on Mobility and Vehicle ...Impact of Urbanization and Development of Megacities on Mobility and Vehicle ...
Impact of Urbanization and Development of Megacities on Mobility and Vehicle ...ReportLinker.com
 
An analysis the overcrowding in Mina
An analysis the overcrowding in MinaAn analysis the overcrowding in Mina
An analysis the overcrowding in MinaMohammed Alghamdi
 
AK: Planting a Rain Garden for Your Home
AK: Planting a Rain Garden for Your HomeAK: Planting a Rain Garden for Your Home
AK: Planting a Rain Garden for Your HomeSotirakou964
 
Bilan activités de proximité été 2012
Bilan activités de proximité été 2012Bilan activités de proximité été 2012
Bilan activités de proximité été 2012sjpalby
 
Thiyagu measurement scale
Thiyagu   measurement scaleThiyagu   measurement scale
Thiyagu measurement scaleThiyagu K
 

Destaque (20)

La Plaza Garden CA: Water Efficient Gardening
La Plaza Garden CA: Water Efficient GardeningLa Plaza Garden CA: Water Efficient Gardening
La Plaza Garden CA: Water Efficient Gardening
 
MI: Landscaping For Water Quality
MI: Landscaping For Water QualityMI: Landscaping For Water Quality
MI: Landscaping For Water Quality
 
Pennsylvania native plants for rain gardens
Pennsylvania native plants for rain gardensPennsylvania native plants for rain gardens
Pennsylvania native plants for rain gardens
 
Canada: Allston Brighton: Green Streets Guide
Canada: Allston Brighton: Green Streets Guide Canada: Allston Brighton: Green Streets Guide
Canada: Allston Brighton: Green Streets Guide
 
PA: Philadelphia: Green Roof Demonstration Project
PA: Philadelphia: Green Roof Demonstration ProjectPA: Philadelphia: Green Roof Demonstration Project
PA: Philadelphia: Green Roof Demonstration Project
 
CA: Bay Friendly Landscaping Guidlines
CA: Bay Friendly Landscaping GuidlinesCA: Bay Friendly Landscaping Guidlines
CA: Bay Friendly Landscaping Guidlines
 
New Zealand Rain Garden Information Guide
New Zealand Rain Garden Information GuideNew Zealand Rain Garden Information Guide
New Zealand Rain Garden Information Guide
 
Rain Gardens for Clean Streams
Rain Gardens for Clean StreamsRain Gardens for Clean Streams
Rain Gardens for Clean Streams
 
Stormwater and Your Rain Garden
Stormwater and Your Rain GardenStormwater and Your Rain Garden
Stormwater and Your Rain Garden
 
Watershed Impact - for Public Lands
Watershed Impact - for Public LandsWatershed Impact - for Public Lands
Watershed Impact - for Public Lands
 
Rain Garden - How to Guide Sheets
Rain Garden - How to Guide SheetsRain Garden - How to Guide Sheets
Rain Garden - How to Guide Sheets
 
MA: WaterWise Landscaping to Fight the Water Crisis and Drought
MA: WaterWise Landscaping to Fight the Water Crisis and DroughtMA: WaterWise Landscaping to Fight the Water Crisis and Drought
MA: WaterWise Landscaping to Fight the Water Crisis and Drought
 
Georgia Rain Garden Manual
Georgia Rain Garden ManualGeorgia Rain Garden Manual
Georgia Rain Garden Manual
 
TX: Efficient Irrigation for Water Conservation in the Rio Grande Basin
TX: Efficient Irrigation for Water Conservation in the Rio Grande BasinTX: Efficient Irrigation for Water Conservation in the Rio Grande Basin
TX: Efficient Irrigation for Water Conservation in the Rio Grande Basin
 
MN: Anoka County: Curb-Cut Raingardens - Reducing Stormwater Going into Lakes
MN: Anoka County: Curb-Cut Raingardens - Reducing Stormwater Going into LakesMN: Anoka County: Curb-Cut Raingardens - Reducing Stormwater Going into Lakes
MN: Anoka County: Curb-Cut Raingardens - Reducing Stormwater Going into Lakes
 
Impact of Urbanization and Development of Megacities on Mobility and Vehicle ...
Impact of Urbanization and Development of Megacities on Mobility and Vehicle ...Impact of Urbanization and Development of Megacities on Mobility and Vehicle ...
Impact of Urbanization and Development of Megacities on Mobility and Vehicle ...
 
An analysis the overcrowding in Mina
An analysis the overcrowding in MinaAn analysis the overcrowding in Mina
An analysis the overcrowding in Mina
 
AK: Planting a Rain Garden for Your Home
AK: Planting a Rain Garden for Your HomeAK: Planting a Rain Garden for Your Home
AK: Planting a Rain Garden for Your Home
 
Bilan activités de proximité été 2012
Bilan activités de proximité été 2012Bilan activités de proximité été 2012
Bilan activités de proximité été 2012
 
Thiyagu measurement scale
Thiyagu   measurement scaleThiyagu   measurement scale
Thiyagu measurement scale
 

Semelhante a KY: Introduction Green Infrastructure

Group 5 sustainable stormwater management(building services1)
Group 5   sustainable stormwater management(building services1)Group 5   sustainable stormwater management(building services1)
Group 5 sustainable stormwater management(building services1)kohwenqi
 
Literature study on site planning and landscaping
Literature study on site planning and landscapingLiterature study on site planning and landscaping
Literature study on site planning and landscapingArchistudent Portal
 
Green Stormwater Infrastructure
Green Stormwater InfrastructureGreen Stormwater Infrastructure
Green Stormwater InfrastructureAndrew Demers
 
GA: Rain Gardens - University of Georgia
GA: Rain Gardens - University of GeorgiaGA: Rain Gardens - University of Georgia
GA: Rain Gardens - University of GeorgiaSotirakou964
 
BEST & BAD URBAN DRAINAGE PRACTICES 2.pptx
BEST & BAD URBAN DRAINAGE PRACTICES 2.pptxBEST & BAD URBAN DRAINAGE PRACTICES 2.pptx
BEST & BAD URBAN DRAINAGE PRACTICES 2.pptxAdedoyin Lasisi
 
Bioswales: Green Alternative for Storm Water Management & Flash Flooding
Bioswales: Green Alternative for Storm Water Management & Flash FloodingBioswales: Green Alternative for Storm Water Management & Flash Flooding
Bioswales: Green Alternative for Storm Water Management & Flash FloodingIRJET Journal
 
Water-Wise Plants for Salt Lake City
Water-Wise Plants for Salt Lake CityWater-Wise Plants for Salt Lake City
Water-Wise Plants for Salt Lake CityFiorella58v
 
Presentation on Green infrastructure for Urban Areas
Presentation on Green infrastructure for Urban AreasPresentation on Green infrastructure for Urban Areas
Presentation on Green infrastructure for Urban AreasVijeta Nigam
 
Florida Rain Gardens: Your Personal Contribution to Clean Water
Florida Rain Gardens: Your Personal Contribution to Clean WaterFlorida Rain Gardens: Your Personal Contribution to Clean Water
Florida Rain Gardens: Your Personal Contribution to Clean WaterSotirakou964
 
Local agenda 21
Local agenda 21Local agenda 21
Local agenda 21noorizzah
 
Urban Water Quality Issues - Green Design & Development
Urban Water Quality Issues - Green Design & DevelopmentUrban Water Quality Issues - Green Design & Development
Urban Water Quality Issues - Green Design & Developmentnacaa
 
Water%20 Efficient%20 Landscaping%20 Design
Water%20 Efficient%20 Landscaping%20 DesignWater%20 Efficient%20 Landscaping%20 Design
Water%20 Efficient%20 Landscaping%20 Designsherylwil
 
Is Your Yard Water Efficient - Holliston, Massachusetts
Is Your Yard Water Efficient - Holliston, MassachusettsIs Your Yard Water Efficient - Holliston, Massachusetts
Is Your Yard Water Efficient - Holliston, MassachusettsFarica46m
 
Water Efficient Practices for Saving Your Landscape - Texas A&M
Water Efficient Practices for Saving Your Landscape - Texas A&MWater Efficient Practices for Saving Your Landscape - Texas A&M
Water Efficient Practices for Saving Your Landscape - Texas A&MKaila694m
 
The Green Fuse: Using Plants to Provide Ecosystem Services
The Green Fuse: Using Plants to Provide Ecosystem ServicesThe Green Fuse: Using Plants to Provide Ecosystem Services
The Green Fuse: Using Plants to Provide Ecosystem ServicesElisaMendelsohn
 

Semelhante a KY: Introduction Green Infrastructure (20)

Group 5 sustainable stormwater management(building services1)
Group 5   sustainable stormwater management(building services1)Group 5   sustainable stormwater management(building services1)
Group 5 sustainable stormwater management(building services1)
 
Literature study on site planning and landscaping
Literature study on site planning and landscapingLiterature study on site planning and landscaping
Literature study on site planning and landscaping
 
Green Stormwater Infrastructure
Green Stormwater InfrastructureGreen Stormwater Infrastructure
Green Stormwater Infrastructure
 
Grass pavers
Grass paversGrass pavers
Grass pavers
 
GA: Rain Gardens - University of Georgia
GA: Rain Gardens - University of GeorgiaGA: Rain Gardens - University of Georgia
GA: Rain Gardens - University of Georgia
 
BEST & BAD URBAN DRAINAGE PRACTICES 2.pptx
BEST & BAD URBAN DRAINAGE PRACTICES 2.pptxBEST & BAD URBAN DRAINAGE PRACTICES 2.pptx
BEST & BAD URBAN DRAINAGE PRACTICES 2.pptx
 
Oklahoma Farm to School: Rain Gardens
Oklahoma Farm to School: Rain GardensOklahoma Farm to School: Rain Gardens
Oklahoma Farm to School: Rain Gardens
 
Kansas Rain Garden Design and Implementation Manual ~ Kansas State University
Kansas Rain Garden Design and Implementation Manual ~ Kansas State UniversityKansas Rain Garden Design and Implementation Manual ~ Kansas State University
Kansas Rain Garden Design and Implementation Manual ~ Kansas State University
 
Bioswales: Green Alternative for Storm Water Management & Flash Flooding
Bioswales: Green Alternative for Storm Water Management & Flash FloodingBioswales: Green Alternative for Storm Water Management & Flash Flooding
Bioswales: Green Alternative for Storm Water Management & Flash Flooding
 
Green infrastructure
Green infrastructureGreen infrastructure
Green infrastructure
 
Water-Wise Plants for Salt Lake City
Water-Wise Plants for Salt Lake CityWater-Wise Plants for Salt Lake City
Water-Wise Plants for Salt Lake City
 
Presentation on Green infrastructure for Urban Areas
Presentation on Green infrastructure for Urban AreasPresentation on Green infrastructure for Urban Areas
Presentation on Green infrastructure for Urban Areas
 
Florida Rain Gardens: Your Personal Contribution to Clean Water
Florida Rain Gardens: Your Personal Contribution to Clean WaterFlorida Rain Gardens: Your Personal Contribution to Clean Water
Florida Rain Gardens: Your Personal Contribution to Clean Water
 
Local agenda 21
Local agenda 21Local agenda 21
Local agenda 21
 
Urban Water Quality Issues - Green Design & Development
Urban Water Quality Issues - Green Design & DevelopmentUrban Water Quality Issues - Green Design & Development
Urban Water Quality Issues - Green Design & Development
 
Water%20 Efficient%20 Landscaping%20 Design
Water%20 Efficient%20 Landscaping%20 DesignWater%20 Efficient%20 Landscaping%20 Design
Water%20 Efficient%20 Landscaping%20 Design
 
Is Your Yard Water Efficient - Holliston, Massachusetts
Is Your Yard Water Efficient - Holliston, MassachusettsIs Your Yard Water Efficient - Holliston, Massachusetts
Is Your Yard Water Efficient - Holliston, Massachusetts
 
Water Efficient Practices for Saving Your Landscape - Texas A&M
Water Efficient Practices for Saving Your Landscape - Texas A&MWater Efficient Practices for Saving Your Landscape - Texas A&M
Water Efficient Practices for Saving Your Landscape - Texas A&M
 
The Green Fuse: Using Plants to Provide Ecosystem Services
The Green Fuse: Using Plants to Provide Ecosystem ServicesThe Green Fuse: Using Plants to Provide Ecosystem Services
The Green Fuse: Using Plants to Provide Ecosystem Services
 
Local agenda 21
Local agenda 21Local agenda 21
Local agenda 21
 

Mais de Sotirakou964

Water harvesting: Past and Future
Water harvesting: Past and FutureWater harvesting: Past and Future
Water harvesting: Past and FutureSotirakou964
 
Water harvesting and development for improving productivity - Part 2
Water harvesting and development for improving productivity - Part 2Water harvesting and development for improving productivity - Part 2
Water harvesting and development for improving productivity - Part 2Sotirakou964
 
Santa Monica CA Rainwater Harvesting Manual
Santa Monica CA Rainwater Harvesting ManualSanta Monica CA Rainwater Harvesting Manual
Santa Monica CA Rainwater Harvesting ManualSotirakou964
 
Santa Barbarba Sustainable Landscaping Manual
Santa Barbarba Sustainable Landscaping ManualSanta Barbarba Sustainable Landscaping Manual
Santa Barbarba Sustainable Landscaping ManualSotirakou964
 
Sacaramento CA: Lawnless and Loving It Manual
Sacaramento CA: Lawnless and Loving It ManualSacaramento CA: Lawnless and Loving It Manual
Sacaramento CA: Lawnless and Loving It ManualSotirakou964
 
Restoring Chesapeake Landscapes
Restoring Chesapeake LandscapesRestoring Chesapeake Landscapes
Restoring Chesapeake LandscapesSotirakou964
 
Rainwater Tanks and Jars Construction Manual - Rainwater Harvesting
Rainwater Tanks and Jars Construction Manual - Rainwater HarvestingRainwater Tanks and Jars Construction Manual - Rainwater Harvesting
Rainwater Tanks and Jars Construction Manual - Rainwater HarvestingSotirakou964
 
Organic Gardening: Natural Insecticides
Organic Gardening: Natural InsecticidesOrganic Gardening: Natural Insecticides
Organic Gardening: Natural InsecticidesSotirakou964
 
OR: Portland: Multnomah Building Green Roof
OR: Portland: Multnomah Building Green RoofOR: Portland: Multnomah Building Green Roof
OR: Portland: Multnomah Building Green RoofSotirakou964
 
New York City: Rainwater Harvesting Manual
New York City: Rainwater Harvesting ManualNew York City: Rainwater Harvesting Manual
New York City: Rainwater Harvesting ManualSotirakou964
 
Los Angeles Rainwater Harvesting Manual
Los Angeles Rainwater Harvesting ManualLos Angeles Rainwater Harvesting Manual
Los Angeles Rainwater Harvesting ManualSotirakou964
 
Beyond More Crop per Drop: Farming & Sustainable Development
Beyond More Crop per Drop: Farming & Sustainable DevelopmentBeyond More Crop per Drop: Farming & Sustainable Development
Beyond More Crop per Drop: Farming & Sustainable DevelopmentSotirakou964
 
Caribbean Rainwater Harvesting Manual
Caribbean Rainwater Harvesting ManualCaribbean Rainwater Harvesting Manual
Caribbean Rainwater Harvesting ManualSotirakou964
 
AK: Green Roofs For Your Home
AK: Green Roofs For Your HomeAK: Green Roofs For Your Home
AK: Green Roofs For Your HomeSotirakou964
 
Waterbird Conservation for the Americas
Waterbird Conservation for the AmericasWaterbird Conservation for the Americas
Waterbird Conservation for the AmericasSotirakou964
 
Nisqually National Wildlife Refuge Educator's Guide
Nisqually National Wildlife Refuge Educator's GuideNisqually National Wildlife Refuge Educator's Guide
Nisqually National Wildlife Refuge Educator's GuideSotirakou964
 
AWARE Kid's Teacher's Guide
AWARE Kid's Teacher's GuideAWARE Kid's Teacher's Guide
AWARE Kid's Teacher's GuideSotirakou964
 
Stream Ecosystem Teacher's Guide
Stream Ecosystem Teacher's GuideStream Ecosystem Teacher's Guide
Stream Ecosystem Teacher's GuideSotirakou964
 
Coldwater Conservation Education Guide
Coldwater Conservation Education GuideColdwater Conservation Education Guide
Coldwater Conservation Education GuideSotirakou964
 
Coldwater Conservation Education Guide
Coldwater Conservation Education GuideColdwater Conservation Education Guide
Coldwater Conservation Education GuideSotirakou964
 

Mais de Sotirakou964 (20)

Water harvesting: Past and Future
Water harvesting: Past and FutureWater harvesting: Past and Future
Water harvesting: Past and Future
 
Water harvesting and development for improving productivity - Part 2
Water harvesting and development for improving productivity - Part 2Water harvesting and development for improving productivity - Part 2
Water harvesting and development for improving productivity - Part 2
 
Santa Monica CA Rainwater Harvesting Manual
Santa Monica CA Rainwater Harvesting ManualSanta Monica CA Rainwater Harvesting Manual
Santa Monica CA Rainwater Harvesting Manual
 
Santa Barbarba Sustainable Landscaping Manual
Santa Barbarba Sustainable Landscaping ManualSanta Barbarba Sustainable Landscaping Manual
Santa Barbarba Sustainable Landscaping Manual
 
Sacaramento CA: Lawnless and Loving It Manual
Sacaramento CA: Lawnless and Loving It ManualSacaramento CA: Lawnless and Loving It Manual
Sacaramento CA: Lawnless and Loving It Manual
 
Restoring Chesapeake Landscapes
Restoring Chesapeake LandscapesRestoring Chesapeake Landscapes
Restoring Chesapeake Landscapes
 
Rainwater Tanks and Jars Construction Manual - Rainwater Harvesting
Rainwater Tanks and Jars Construction Manual - Rainwater HarvestingRainwater Tanks and Jars Construction Manual - Rainwater Harvesting
Rainwater Tanks and Jars Construction Manual - Rainwater Harvesting
 
Organic Gardening: Natural Insecticides
Organic Gardening: Natural InsecticidesOrganic Gardening: Natural Insecticides
Organic Gardening: Natural Insecticides
 
OR: Portland: Multnomah Building Green Roof
OR: Portland: Multnomah Building Green RoofOR: Portland: Multnomah Building Green Roof
OR: Portland: Multnomah Building Green Roof
 
New York City: Rainwater Harvesting Manual
New York City: Rainwater Harvesting ManualNew York City: Rainwater Harvesting Manual
New York City: Rainwater Harvesting Manual
 
Los Angeles Rainwater Harvesting Manual
Los Angeles Rainwater Harvesting ManualLos Angeles Rainwater Harvesting Manual
Los Angeles Rainwater Harvesting Manual
 
Beyond More Crop per Drop: Farming & Sustainable Development
Beyond More Crop per Drop: Farming & Sustainable DevelopmentBeyond More Crop per Drop: Farming & Sustainable Development
Beyond More Crop per Drop: Farming & Sustainable Development
 
Caribbean Rainwater Harvesting Manual
Caribbean Rainwater Harvesting ManualCaribbean Rainwater Harvesting Manual
Caribbean Rainwater Harvesting Manual
 
AK: Green Roofs For Your Home
AK: Green Roofs For Your HomeAK: Green Roofs For Your Home
AK: Green Roofs For Your Home
 
Waterbird Conservation for the Americas
Waterbird Conservation for the AmericasWaterbird Conservation for the Americas
Waterbird Conservation for the Americas
 
Nisqually National Wildlife Refuge Educator's Guide
Nisqually National Wildlife Refuge Educator's GuideNisqually National Wildlife Refuge Educator's Guide
Nisqually National Wildlife Refuge Educator's Guide
 
AWARE Kid's Teacher's Guide
AWARE Kid's Teacher's GuideAWARE Kid's Teacher's Guide
AWARE Kid's Teacher's Guide
 
Stream Ecosystem Teacher's Guide
Stream Ecosystem Teacher's GuideStream Ecosystem Teacher's Guide
Stream Ecosystem Teacher's Guide
 
Coldwater Conservation Education Guide
Coldwater Conservation Education GuideColdwater Conservation Education Guide
Coldwater Conservation Education Guide
 
Coldwater Conservation Education Guide
Coldwater Conservation Education GuideColdwater Conservation Education Guide
Coldwater Conservation Education Guide
 

KY: Introduction Green Infrastructure

  • 1. Chapter 7    Green Infrastructure    A. Introduction    “Green infrastructure” refers to natural and engineered ecological systems  that act as living infrastructure, integrating natural vegetation and soils into a  community’s infrastructure through a variety of techniques, approaches,  technologies, and practices.  Green infrastructure is planned and managed primarily  for stormwater control, but it also provides additional social, economic, and  environmental benefits.  It can be a useful tool for communities that are looking to  protect their natural water resources and stormwater management systems from  the impacts of development and urbanization.  Green infrastructure methods can be  implemented practically anywhere soil and vegetation can be worked into a  landscape.    Source: Southeast Watershed Forum Figure 7-1: Bioretention is one typical method used in green infrastructure.     141
  • 2. B. Types of Green Infrastructure      Communities may choose from a wide variety of green infrastructure  techniques.  The choice of which techniques to employ and where to locate them is  dependent on site specifications and the goals the community wishes to accomplish.   Specific types of green infrastructure include:    1. Green Roofs      Green roofs are roofs of buildings that are covered with vegetation and soil,  either partially or completely.  Green roofs are layered systems, with a waterproof  membrane, drainage mat, root barrier, growing medium, and vegetation.   Evaporation of water occurs due to the exposure of the plants and growing medium  to wind and sun, and the plants transpire moisture into the air.  This helps to cool  the roof.  It is vital that plants are chosen for the environment in which the roof is  located.  It is also important to promote slow to moderate growth of the plants, so  that they are in balance with their root systems during dormant winter periods.   Green roofs can aid in stormwater management and can save energy.  They are also  aesthetically pleasing.  Source: Louisville Metro Development Center Figure 7-2: Green Roof Design 142
  • 3. 2. Rain Gardens      Rain gardens, also called bioretention basins, are planted topographic  depressions that are designed to absorb rainwater that drains from impervious  areas, such as roofs, parking areas, streets, walkways, and compacted lawn areas.   Rain gardens reduce runoff because the stormwater soaks into the ground instead  of flowing into storm drains and surface waters.  This can help decrease erosion,  water pollution, and flooding, and can help to recharge groundwater sources.  The  Rain Garden Network provides a 10‐step synopsis of how to build a rain garden.   This information is available at http://www.raingardennetwork.com/build.htm.   Additionally, Burnsville, Minnesota has implemented a plan to install a rain garden  system to infiltrate stormwater runoff that serves as an excellent example of  utilizing this type of green infrastructure (City of Burnsville 2006).    Source: Southeast Watershed Forum Figure 7-3: Rain Garden. 143
  • 4. 3. Porous and Pervious Pavements      Porous and pervious pavements, also called permeable pavements, are  paving methods that allow rainwater to infiltrate through them into the soil below.   These pavements can be used for roads, parking lots, and walkways instead of  traditional impervious pavements, which increase flow velocity of stormwater  runoff.  Porous asphalt, concrete, paving stones, and bricks are examples of pervious  pavements.   Source: Southeast Watershed Forum  Figure 7-4: Pervious Pavement. 144
  • 5. 4. Vegetated Swales      Vegetated swales, also known as bioswales, are wide, shallow channels that  are covered on the side slopes and bottom by a dense stand of native vegetation.   Vegetated swales are designed to promote infiltration, reduce the flow velocity of  stormwater runoff, and trap particulate pollutants and silt.  They can be either  natural or constructed, and are often used around parking lots so that pollution  from automobiles that is picked up in stormwater can be treated before entering the  watershed.  Source: Southeast Watershed Forum  Figure 7-5: Vegetated Swale. 5. Pocket Wetlands    Pocket wetlands receive, retain, and treat stormwater that has drained from  a limited impervious area.  Not only do they reduce stormwater runoff, but they also  provide for the filtering of pollutants.  Additionally, pocket wetlands are  aesthetically pleasing and can even serve as a small wildlife habitat.  Pocket  wetlands do not require as much space as other stormwater treatment, so they can  be very helpful in congested urban areas.      145
  • 6. 6. Planter Boxes      There are two types of planter boxes, contained planters and infiltration  planters.  Contained planters are planter boxes that are placed over impervious  surfaces.  They hold trees, shrubs, and ground cover.  Infiltration planters are  containers or structures with open bottoms that contain a layer of gravel, soil, and  vegetation.  They are designed to allow stormwater runoff to temporarily pool on  top of the soil and then slowly infiltrate into the ground.  Stone, concrete, brick,  plastic lumber, or wood can all be used to construct infiltration planters.  Portland,  Oregon provides an excellent example of utilizing planter boxes for stormwater  management (City of Portland, 2004, pp. 49‐60).    7. Green Parking      Green parking refers to parking lot design that incorporates green  infrastructure instead of only considering purely functional requirements.  Green  parking involves managing stormwater on‐site, providing generous landscaped  areas, planting trees, enhancing pedestrian and cycling infrastructure, and reducing  the urban heat island effect.  Toronto has implemented a plan for “greening” surface  parking lots (City of Toronto 2007).  Source: Rosetta Fackler  Figures 7-6 to 7-9: A green parking lot design at a Walmart in Nashville, TN. 146
  • 7. 8. Rain Barrels      Rain barrels, also called rainwater tanks, are water containers that are used  to collect and store rain water.  The rainwater is usually collected from rooftops via  rain gutters.  Rain barrels help to reduce the amount of untreated stormwater runoff  into wastewater systems and surface waters.  The water stored in rain barrels can  be recycled for many uses, including water gardens, washing cars, agriculture, and  home use.  They can also simply store stormwater to be released at a future time.     9. Downspout Disconnection      Downspout disconnection systems redirect stormwater from traditional  collection systems to vegetated areas.  By doing so, green infrastructure components  can manage the runoff and stormwater volume is removed from collection systems.    10. Community Forestry and Trees      Trees and forests are essential elements of a community’s green  infrastructure.  These include not only public and private forest lands but also  community forests: the canopy of trees in our communities’ yards, parks, roadsides  and streetscapes, commercial centers, common areas, and public spaces.  They  provide many environmental and economic benefits to property owners,  communities, and watersheds.  The benefits of trees and community forests to water  resources include:   “Tree root networks filter contaminants in soils producing clean  water.   Trees prevent erosion by trapping soil that would otherwise  become silt.  Silt destroys fish eggs and other aquatic wildlife and  makes rivers and streams shallower, causing more frequent and  more severe flooding.  Trees along streams also hold stream banks  in place to protect against flooding.   Trees reduce topsoil erosion, prevent harmful land pollutants  contained in the soil from getting into our waterways, slow down  water runoff, and ensure that our groundwater supplies are  continually being replenished.  For every 5% of tree cover added  to a community, stormwater runoff is reduced by approximately  2%.   Studies that have simulated urban forest effects on stormwater  report annual runoff reductions of 2‐7%.   In one study, a 32‐foot tall tree intercepting rainfall reduced  stormwater runoff by 327 gallons.”  (Southeast Watershed Forum,  p. 2)      In addition to water‐based benefits, trees and community forests provide air  quality, climate moderation, energy conservation, and wildlife habitat benefits  147
  • 8. (Southeast Watershed Forum, pp. 2‐3).  “According to USDA Forest Service, trees  and vegetation reduce stormwater discharge by up to 40%, reduce home heating  and cooling costs by up to 30%, increase the value of property by up to 20%, and  reduce particulate airborne pollution by up to 80%.”  (Stormwater Manager’s  Resource Center 2006)  In particular, the economic benefits are many.  These  economic benefits to property owners, businesses, and communities, according to  studies, include:   “Trees enhance community economic stability by attracting  businesses and tourists.   People linger and shop longer along tree‐lined streets.   Apartments and offices in wooded areas rent more quickly and  have higher occupancy rates.   Businesses leasing office space in developments with trees find  their workers are more productive and absenteeism reduced.   Three trees located strategically around your house can cut air  conditioning bills in half.  On a larger scale, the cooling effects of  trees can save millions of energy dollars.   Property values of homes with trees in the landscape are 5% to  20% higher than equivalent properties without trees.”  (Southeast  Watershed Forum, p. 1)  Moreover, studies show that the benefits of large trees are 4 to 16 times the benefits  of small trees, depending on whether the benefits are analyzed over a short term or  a long term and whether only benefits to the landowner are analyzed or whether  benefits to the entire community are analyzed (Southeast Watershed Forum, p. 3).      Communities can do many different things to establish or protect trees as  green infrastructure.  First, communities can establish a tree canopy goal as part of  their comprehensive plan.  Studies recommend that healthy cities should seek to  have at least 40% tree coverage, which is an average of 20 large trees per acre, in  order to achieve ecological, economic, and social sustainability (Southeast  Watershed Forum, p. 1).  Second, communities should establish a community  forestry program that supports both public and private efforts to provide, maintain,  and manage local tree canopies.  Whether or not a part of a community forestry  program, government agencies should landscape public lands and facilities with  watershed‐sustaining trees and invest in maintaining those trees.  Third,  communities can use their codes and ordinances to protect existing trees and  require tree planning and maintenance on development sites.  Fourth, communities  can establish watershed reforestation projects that prioritize sites for reforestation  under a comprehensive watershed forest management plan (Stormwater Manager’s  Resource Center 2006).            148
  • 9.   Case Study in Community Forestry: Fayetteville, Arkansas  (Source: NALGEP et al. 2003, p. 21)      “A number of communities across the nation are partnering with groups like  American Forests to identify how the “green infrastructure” of trees can help reduce  stormwater runoff and nonpoint source pollution, protect the quality of surface and  groundwater, save localities millions of dollars in gray infrastructure costs, and  meet the regulatory mandates of storm‐water and TMDL rules.  One such  community is the fast‐growing City of Fayetteville, Arkansas, where American  Forests recently released a study demonstrating the environmental and economic  benefits of maintaining – and increasing – local tree cover.      In Fayetteville, rapid  growth and development has led  to an 18 percent decline of  heavy tree canopy in the last 15  years.  American Forests  recently conducted an “Urban  Ecosystems Analysis” using  satellite and aerial imagery,  Geographic Information System  technology, scientific research,  and the organization’s  CITYgreen® computer software  to calculate the benefits trees  provide to Fayetteville’s urban  environment.  The findings  show that the City of  Fayetteville’s existing tree cover  currently reduces stormwater  runoff by 50 million cubic feet  during a storm event.  The study  also noted that, if the tree  canopy in Fayetteville were  increased from 27 to 40 percent,  the environmental benefits  Source: Tony Arnold  would be significant and the cost‐ saving benefits of stormwater  Figure 7-10: Forest in Kentucky. reduction alone would be $135  million.”  (NALGEP et al. 2003, p.  21)    149
  • 10.   11. Protecting Riparian Lands, Wetlands, Floodplains, and Native Landscapes      Nature has already provided much of the green infrastructure that we need  in the forms of riparian zones (often with trees and other vegetation), wetlands,  floodplains, and native vegetation.  Forest, discussed above, and native grasslands  also are naturally provided green infrastructure.  Unfortunately, much of it has been  lost to human land‐alteration activities and what remains is at risk of alteration or  degradation.  Therefore, a critical green infrastructure strategy is to preserve and  protect nature’s green infrastructure, while also restoring that which has been lost.  Source: Linda Pearsall  Figures 7-11 and 7-12: Wetland and Riparian Zone. 12. Specific Examples of Green Infrastructure Features   in Particular Development Settings      The following provides some examples of how these types of green  infrastructure can be utilized in particular settings (WERF 2007):     Streetscape and roadway projects  - Add tree boxes or infiltration gardens to capture street runoff.  150
  • 11. - Design medians as infiltration areas.  - Use porous pavement for parking lanes.     Commercial areas with significant parking  - Drain roofs to gardens, planters, or parking islands and  medians.  - Use permeable pavement in low‐traffic areas.  - Drain parking to grass buffers and vegetated swales.     Small infill building sites or retrofits  - Install a green roof for buildings and parking structures.  - Install permeable pavement in courtyards and plazas.  - Drain roofs to grass buffers or swales.     Residential areas  - Drain roofs to rain gardens, grass swales, and grass buffers.  - Drain driveways, walkways, and patios to adjacent rain  gardens or grass buffers.  - Construct driveways using permeable pavement.      Examples of green infrastructure and policies supporting green  infrastructure can be found on the following websites:     Center for Neighborhood Technology, Green Infrastructure,  http://greenvalues.cnt.org/green‐infrastructure     State Environmental Resource Center, Green Infrastructure Policy Issues  Package, http://www.serconline.org/grInfrastructure/index.html     U.S.  Environmental Protection Agency, Managing Wet Weather with  Green Infrastructure,  http://cfpub.epa.gov/npdes/home.cfm?program_id=298     Water Environment Research Foundation, Livable Communities,  http://www.werf.org/livablecommunities     C. Choosing Green: The Benefits of Green Infrastructure    Green infrastructure can provide a variety of environmental, economic, and  social benefits.  These benefits can be especially pronounced in developed area  because environmental damage is usually greater and green space more limited in  these locales.  The benefits of green infrastructure include:      151
  • 12. 1. Green infrastructure improves water quality.  Green infrastructure reduces the concentration of pollutants in stormwater  runoff.  It does so by causing runoff to infiltrate close to its source, thus helping to  prevent pollutants from being transported to surface waters.  Additionally, plants  and microbes can naturally filter and breakdown stormwater pollutants in  infiltrated runoff.     2. Green infrastructure reduces and delays stormwater runoff volumes.    Green infrastructure utilizes the natural retention and infiltration  capabilities of vegetation and soils to naturally retain and absorb stormwater, thus  reducing the volume of stormwater runoff, as well as reducing stormwater runoff  peak flows.  Green infrastructure also increases the amount of pervious ground  cover, which in turn increases stormwater infiltration rates.  This also reduces the  volume of runoff.  By reducing runoff volumes and peak flows entering surface  water bodies and wastewater systems, green infrastructure limits the frequency of  flooding and system overflow events.     3. Green infrastructure improves air quality.    Green infrastructure contributes to improved air quality.  Vegetation and  trees absorb pollutants from the air, thus filtering many airborne pollutants.  They  also cool the air, leading to decreased ground‐level ozone pollution.    4. Green infrastructure enhances water supplies.    Green infrastructure increases natural infiltration, thus improving the rate at  which groundwater aquifers are replenished.  Improved groundwater recharge can  enhance private and public drinking water supplies, and can help to maintain  normal base flow rates for streams and rivers.  In addition, green infrastructure  techniques that capture and use stormwater help to conserve water supplies.  5. Green infrastructure reduces energy demands   and increases energy efficiency.    The increased amounts of green space and vegetation provided by green  infrastructure in developed areas can reduce energy demands because they mitigate  the urban heat island effect, thus lowering temperatures.  This can also lower the  demand for air conditioning energy, thus decreasing power plant emissions.  If  incorporated on and around buildings, green infrastructure can help with shade and  insulation, thus decreasing the energy that is needed for heating and cooling.   Additionally, diverting stormwater from wastewater systems reduces the energy  needed to pump and treat the water.  All of this reduces energy costs to businesses,  governments, and community residents.  152
  • 13. 6. Green infrastructure improves human health.    Green infrastructure can play a vital role in improving human health.  A large  number of studies show that green space and vegetation can positively impact  human health, including reduced levels of inner‐city crime, a stronger sense of  community, and reduced symptoms associated with attention deficit and  hyperactivity disorders (U.S. EPA 2009).  7. Green infrastructure enhances communities and neighborhoods.    Green infrastructure can improve the aesthetics of a community because of  the increase in trees and plants.  It also provides increased access to recreational  space and wildlife habitats, thus improving community livability.  Community  cohesiveness can be enhanced by involving residents with the planning,  implementation, and maintenance of green infrastructure sites.  Additionally, a  number of studies show that green infrastructure can increase the property values  in the surrounding area (U.S. EPA 2009).  8. Green infrastructure moderates the impacts of climate change.    Green infrastructure can benefit adaptability for a wide range of  circumstances that result from climate change impacts.  This adaptability is possible  because green infrastructure can conserve and reuse water, promote groundwater  recharge, and reduce surface water discharges that can cause flooding.  Additionally,  the vegetation utilized in green infrastructure can serve as sources of carbon  sequestration, thus capturing carbon dioxide from the atmosphere.    9. Green infrastructure saves money.    Green infrastructure can save capital costs associated with building,   operating, and maintaining traditional forms of infrastructure.  The costs of  repairing damage caused by stormwater can also be avoided.     D. Implementing Green Infrastructure in Projects        Once a community has decided that utilizing green infrastructure may be an  option, it must then assess if this is the best option.  One method that can be used  when determining whether, or where, to incorporate green infrastructure is “value  engineering.” This approach allows for a comparison of the costs and values of green  infrastructure with that of traditional infrastructure.  “Value engineering” enables a  community to consider the relative costs and benefits of the components of a  project, and then suggests where changes may be made to provide more value for  less cost.    The “value engineering” approach involves the following steps (WERF 2007):    153
  • 14. Identify elements of value or benefit that can be used to measure and  compare project components.  Factors that can be considered when  identifying elements of value or benefit are land area requirements  for flood storage and water quality treatment, allowable or desired  runoff volume, on‐site water use requirements, groundwater recharge  needs, landscape amenities opportunities, creation of habitat, and  recreation opportunities.     Develop a schematic of the project using traditional forms of  infrastructure, and estimate the value or benefit provided, along with  capital and life cycle costs.     Develop an alternative schematic of the project using green  infrastructure, and estimate value and costs of each component.”     Compare the two different approaches to identify which provides the  best value.  This is not strictly a cost‐based analysis.      Once it is decided that a green infrastructure approach will be utilized, and  projects begin to be planned, the following principles and practices can help to  ensure that a green infrastructure project succeeds:   Establish an interdisciplinary team at the beginning of the project.   This group should include, among others, community leaders, the  project owner, review agencies, engineers, and landscape architects.   Work to ensure that this team remains together through  implementation of the project.   Understand the regulatory and development review environment.     Understand which Best Management Practices work best in which  development settings.   Understand the context in which the project will be placed.  The type  of project, as well as its aesthetic qualities, should reflect surrounding  land uses and neighborhood character.   Design the project to mimic the natural environment.   Design sustainable projects that can be easily maintained (WERF  2007).    E. Implementing Green Infrastructure in Local Policies and Codes      Green infrastructure is a matter of public policy, as well as landowner and  developer choices.  In general, when a community has determined that green  infrastructure would be beneficial, certain policy recommendations can be used to  encourage the use of green infrastructure:   get development right the first time;   incorporate green infrastructure into long‐term control plans for  managing combined sewer overflows;  154
  • 15. revise state and local stormwater regulations to encourage green  design;    establish dedicated funding for stormwater management that rewards  green design;   provide incentives for residential and commercial use of green  infrastructure;    review and revise local development ordinances;   preserve existing trees, open space, and stream buffers;   encourage and use smart growth; and   get the community involved (NRDC 2006, pp. 13‐15).      More specifically, though, incorporating green infrastructure into wet growth  policies requires attention to local codes and ordinances.  Although some of a  community’s green infrastructure will result from public projects (e.g., government  buildings and facilities, landscape design and management along roads and  highways, and wetlands or stream restoration initiatives) or from the management  of public lands (including parks, nature areas, and recreational facilities, wet growth  policies also include the creation of green infrastructure on private lands.   Community officials and stakeholders should analyze their local codes and  ordinances to determine whether they:   allow green infrastructure as part of new or existing land uses;   encourage green infrastructure as part of new or existing land  uses; and   require green infrastructure as part of new or existing land uses.      First, a community’s land development codes and ordinances might directly  or indirectly prohibit landowners and developers from using green infrastructure  and therefore need to be changed.  Examples might include: 1) minimum lot sizes or  setback requirements that prevent clustering of structures and preservation of  existing natural features of development sites; 2) barriers to shared ownership and  management of swales, wetlands, and other green infrastructure; 3) requirements  that structures connect downspouts directly to the stormwater sewer system; 4)  roof design or structural requirements that do not allow for green roofs; or 5)  parking requirements that prevent green parking lot design, among other  regulatory requirements.  These provisions should be analyzed and amended to  allow green infrastructure.      Second, a community’s land development codes and ordinances can actually  facilitate decisions by landowners and developers to use green infrastructure.   These might include density bonuses or other development bonuses (e.g., parking  bonuses, height bonuses, streamlined/fast‐track permitting processes) for certain  especially valuable or extensive green infrastructure features of a development  project beyond normal requirements.  They might include rebates of or reductions  in stormwater or sewer service or hook‐up fees for certain green infrastructure  features that minimize runoff.  They might include relief from landscaping  155
  • 16. requirements if existing mature trees and other existing natural landscape features  are retained.  Local communities should analyze their codes and ordinances for  opportunities to add incentives that encourage green infrastructure.      Third, communities should consider requiring landowners and developers to  use green infrastructure features, especially for new development.  Examples  include 1) tree preservation ordinances; 2) minimum tree canopy and/or  landscaping requirements; 3) prohibitions on development of wetlands, riparian  buffer zones, natural forests, native grasslands, or similar watershed‐supporting  lands; 4) maximum site coverage ratios; and 5) requirements that developers select  from a menu of green‐infrastructure best management practices (BMPs) in  designing and developing sites, among other possible regulatory requirements.   Protecting or requiring green infrastructure by regulation can be necessary, because  developed sites without adequate stormwater management are imposing the costs  and harms of their land uses onto neighbors, other property owners, businesses,  government agencies, taxpayers, and the public.  Private property rights, even from  highly libertarian or free‐market perspectives, have never allowed landowners to  use their land in ways that harm others or transfer the costs of their land uses to  others (i.e., known by economists as “negative externalities”), which is what is  happening when developed land has high quantities, velocities, and/or pollution‐ levels of runoff flow.  However, protections of existing green infrastructure and  regulations requiring harm‐preventing green infrastructure – especially when  landowners can choose among a variety of green infrastructure methods – are  cheaper, more efficient, and more effective at preventing harms (and externalized  costs) for all relevant parties than the alternative ways of remedying these harms:  litigation or fines.  Regulatory methods and examples are discussed further in  Chapter 12.  In addition, Chapter 5 explores how green infrastructure might be  incorporated into low impact development standards.        Sources:    Center for Neighborhood Technology.  Green Infrastructure.  Available at  http://greenvalues.cnt.org/green‐infrastructure.    City of Burnsville, Minnesota.  2006.  Burnsville Stormwater Retrofit Study.   Available at http://www.ci.burnsville.mn.us/DocumentView.asp?DID=449.      City of Portland, Oregon.  2004.  2004 Stormwater Management Manual, Chapter 2,  Stormwater Management Facility Design.  Available at  http://www.portlandonline.com/shared/cfm/image.cfm?id=55791&#page=49.     City of Toronto.  2007.  Design Guidelines for “Greening” Surface Parking Lots.   Available at  156
  • 17. http://www.toronto.ca/planning/urbdesign/greening_parking_lots.htm#greenguid elines.     National Association of Local Government Environmental Professionals et al.  (NALGEP et al.).  2003.  Smart Growth for Clean Water: Helping Communities  Address the Water Quality Impacts of Sprawl.  Available at  http://www.resourcesaver.com/file/toolmanager/CustomO93C337F42157.pdf.      Natural Resources Defense Council (NRDC).  2006.  Rooftops to Rivers: Green  Strategies for Controlling Stormwater and Combined Sewer Overflows.  Available at  http://www.nrdc.org/water/pollution/rooftops/rooftops.pdf.     Southeast Watershed Forum.  The Value of Community Forests.    Stoner, Nancy and Alexandra Dapolito Dunn.  2008.  “From Rooftops to Rivers:  Green Infrastructure Yields Economic and Environmental Benefits.”  American  Public Works Association Reporter.  February: 1‐5.  Available at www.apwa.net.     Stormwater Manager’s Resource Center.  2006.  Land Conservation Fact Sheet:  Urban Watershed Reforestation.    State Environmental Resource Center.  Green Infrastructure Policy Issues Package.   Available at http://www.serconline.org/grInfrastructure/index.html.    United States Environmental Protection Agency (U.S. EPA).  2009.  Managing Wet  Weather with Green Infrastructure.  Available at  http://cfpub.epa.gov/npdes/home.cfm?program_id=298.    Water Environment Research Foundation (WERF).  2007.  When Does Green  Infrastructure Make Sense.  Available at  http://www.werf.org/livablecommunities/pdf/greenpay.pdf.    Water Environment Research Foundation.  Livable Communities.  Available at  http://www.werf.org/livablecommunities.    157