SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
Nonlinear electrodynamics: The missing trigger for the formation of astrophysical
charged black holes in gravitational core collapse supernovae
Herman J. Mosquera Cuesta∗
Instituto Federal de Educa¸c˜ao, Ciˆencia e Tecnologia do Cear´a,
Avenida Treze de Maio, 2081, Benfica, Fortaleza/CE, CEP 60040-531, Brazil
(Dated: July 22, 2014)
Theorists of the general theory of relativity have since long contended that in nature there exists electrically
charged black holes (CBH), celestial objects which a distant observer would characterize by their mass and
charge. Notwithstanding, none astrophysical mechanism has been proved to self-consistently break up for
long the universal global charge neutrality of most cosmic systems. Foundational arguments from nonlinear
electrodynamics (NLED) provide a mechanism able to drive the formation of an astrophysical CBH after a
phase transition in a massive proto-neutron star (P-NS) and the subsequent gravitational collapse of its core.
Due to its repulsive action (nonlinear exponential grow of the initial field in a rotating P-NS caused by positive
feedback to itself) NLED allows, as compared to the gravitational timescale (∆Tgrav ≃ 1/
√
GρNS 10−4
s), to make it longer the timescale for Coulombian (electrostatic) neutralization (∆T ≃ λDebye/c 10−20
s). With no NLED effects such neutralization would take place at the P-NS inner crust-upper mantle charge
interface much earlier than the gravitational core collapse would take over. In such stalled state of charge
separation held up by NLED, the aftermath of gravitational collapse of the positively charged inner core can
be an astrophysical CBH.
PACS numbers: 97.60.Jd , 97.60.Lf , 97.60.-s , 03.50.De , 04.70.-s , 04.40.Dg
General relativity (GR) and charged black holes.—
It has since long been contended that Einstein equa-
tions (EEs) must somehow be realized in nature, a
statement based on their exact mathematical solu-
tions. One of those describes the space-time (S-T) of
a Reissner-Nordstrom CBH, the metric of which is writ-
ten (t, r, θ, φ Schwarzschild coordinates, signature +,-,-,-,
units G, c=1, M, Q: mass, charge|∞ :: dΩ2
= r2
dθ2
+
r2
sin2
θdϕ2
)
ds2
= (1 −
2M
r
+
Q2
r2
)dt2
−
dr2
(1 − 2M
r + Q2
r2 )
− dΩ2
, (1)
In spite of this superb theoretical argument, most as-
trophysicists still pose the question on the nature and
mechanism able to break up the otherwise eternal global
charge neutrality characterizing any astronomical object.
To the best of our knowledge, the debate on this puzzle
has not conclusively been shut off (for related works see
[1]). The issue then remains a very open problem in rel-
ativistic astrophysics. Notwithstanding see Ref. [? ]
Nonlinear electrodynamics.— NLED is a theory for
describing electromagnetic interactions in a relativistic
invariance set up. Several approaches were envisioned:
Heisenberg; Euler and Kochel; Euler; Heisenberg and
Euler (added F2
-term); Weisskopf (added logarithmic-
like term) [2], Born; Born and Infeld [3] (bounded the
electric field strength by giving to the electron a fi-
nite radius), and Plebanski (robust framework, including
plasma physics) [4], to extend Maxwell electrodynamics
(linear in Lorentz invariants F, G) so as to deal with di-
vergences in analysis of electromagnetic (EM) phenom-
ena (see Eq.(2)). Among those problems are the ionized
gas for which a naive (even a quantum mechanical) calcu-
lation of the ground-state energy density yields infinity,
the electric field of point charges (infinite self-energy), or
the catastrophic instability of the semi-classical Bohr’s
atomic model, in which the orbiting electron should in-
escapably plunge onto the proton due to radiation reac-
tion. Examples of Lagrangians read (G = 0, µ, b const.)
a)LH
E = −
1
4
F +
µ
4
F2
, b)LB
I =
b2
2
− 1 +
F
b2
1
2
+ 1
(2)
Applications of NLED have been extensively studied in
the literature, extending from cosmological and astro-
physical contexts [5], to nonlinear optics [6], high power
laser technology and plasma physics [7], and the field
nonlinear exponential grow due to chiral plasma insta-
bility during the weak parity-violating electron-capture
(chirality imbalance) process in core collapse SNe [8] [?
].
In many respects, the feature highlighted above can
be understood as if the dynamics of the EM field in a
vacuum were afforded with some sort of (dark energy)
repulsive action or back reaction effect [9, 10], i.e. EM
field feedback to itself (see Eq.(4) next), which appears
due to self-interaction of the electron, proton and EM
field amidst of (simplest atom semi-classical model), or
quantum vacuum frictional effect [11]. The repulsive ac-
tion is a fundamental property of the quantum vacuum
[12], often overlooked. Onwards we consider it to be the
key piece to pave the pathway to conclusively work out
the since long GR puzzle: How to form a charged black
hole in an astrophysical process such as gravitational core
collapse of (electrically ever neutral) massive P-NS?
Theoretical framework.— NLED can be formulated: a)
by realizing that the electric permittivity (ǫ0) and mag-
netic susceptibility (µ0) can be functional of the elec-
tric (E) and magnetic field (B), b) upon the Maxwell
invariant (F) and its dual (G), e.g., the power series
2
L =
∞
j,k=0 cj,kFj
Gk
, or c) via a 4-dim effective the-
ory from strings, M-theory, or AdS/CFT correspondence.
The simplest NLED theory is described by the action
S =
√
−g L(F, G) d4
x :: F = Fµν Fµν
:: G = Fµν
∗
Fµν
(3)
with Fµν ≡ ∇µAν − ∇νAµ, ∇ν covariant derivative
(used as |ν below), ∗
Fµν
= ǫµνρσ
Fρσ dual bivector,
ǫαβγδ
= 1
2
√
−g
εαβγδ
: εαβγδ
Levi-Civita tensor (ε0123=-
1). By extremalizing Lagrangian L(F(Aµ)), w.r.t. the
potentials Aµ yields (LF n = dn
L
dF n , n int., G = 0) [4]
∇ν (LF Fµν
) = 0 → ∇µFµν
= Jν
≡ −
LF 2
LF
Fµν
F|µ . (4)
It describes the propagation of the field discontinuities as
gµν
− 4
LF F
LF
Fµα
F ν
α kµkν = 0 . (5)
Hence, photons propagate on an effective metric func-
tional of the background field Fµα
, a geodesic = gµν on
the background S-T. The derivative of Eq.(5) gives
kν
∇ν kα = 4
LF F
LF
Fµβ
F ν
β kµkν
|α
, (6)
showing that NLED brings in a field retarded self-energy
or backreaction force accelerating
+
−
the photon along its
path. (Astrophysical or cosmological consequences in[5]).
NLED inherent repulsion.— A general L(F) leads to a
perfect fluidlike energy-momentum tensor (E-M T)
Tµν =
2
√
−g
δL(F)
√
−g
δgµν
≡ Tµν = (ρ+p)vµvν −pgµν. (7)
The left-hand-side of Eq.(7) yields (F = 2(ǫ0E2
− B2
µ0
))
Tµν = −4LF F α
µ Fαν − Lgµν. (8)
By equating terms in Eqs.(7, 8), one gets (recall that
Maxwell Lagrangian yields: ρ = 3p = 1
2 (E2
+ B2
))
ρ = −L − 4E2
LF , p = L +
4
3
(E2
− 2B2
)LF . (9)
In virtue of the Lagrangian and E-M T structure the
magnetic fluid can be thought of as a collection of non-
interacting fluids indexed by k = −, 0, +, each of which
obeys the equation of state (EoS) : pk = 4k
3 − 1 ρk [14].
This means that there is room for the EoS to exert nega-
tive pressure. i.e. reverting its action to push outwards.
Let us have a look on other Lagrangians exhibiting
repulsive force (EM field positive feedback to itself):
a) an interesting one is based on a truncated Laurent
series (α, β, µ are coupling constants) [14]
L = α2
F2
−
1
4
F −
µ2
F
+
β2
F2
. (10)
That way, one obtains EoS describing ordinary radiation
ρ1 = −α2
F2
= −4α2
B4
s
1
R8 :: p1 = 5
3 ρ1 :::: ρ2 = 1
4 F =
Bs
2
1
R4 :: p2 = 1
3 ρ2, plus fluids exerting repulsive action
ρ3 =
µ2
F
=
µ2
2B2
s
R4
:: p3 = −
7
3
ρ3 (11)
ρ4 = −
β2
F2
= −
β2
4B4
s
R8
:: p4 = −
11
3
ρ4 . (12)
b) or extending the standard LB
I Eq.(2) to the form [14]
L = −γ2
1 + βF − α2F2, b)p + ρ =
γ2
F(1 − 4α2
γ2
F)
3ρ
.(13)
One can check for such a property by noticing that
Eq.(13-b) hints at a field transition value F ≡ Ftrans,
so that ρ + p is positive for F < Ftrans, while ρ + p is
negative (violation of strong energy condition) for val-
ues larger than Ftrans! (see details in [14]). This way,
Lagrangian (13) enters the set producing repulsive dy-
namics. Further, E-M T conservation preserves Gauss
law: B = Bs
R2
NS
, a law often called for in high energy
astrophysics to estimate the B-field strength of nascent,
glitching pulsars [10, 15], e.g. Eq.(11) in [8], or after
a P-NS structural rearrangement, usually a catastrophic
phase transition [10, 16], which inevitably leads to the
formation of a black hole.[19]
Pulsar charge separation state stalled by NLED.— It is
decidedly attractive this EoS feature of producing nega-
tive pressure, since such property can allow, following the
onset of the P-NS phase transition (PT), to keep stalled
the P-NS charge separation state, preventing the overlay-
ing crust to plunge onto the core, while its gravitational
collapse can take over, whose dynamics is described by
[21] (c stands for core, of radial coordinate rc at collapse
time tc, and A2
= 1 − 2M
r + Q2
r2 )
drc
dtc
= −
A2
(rc)
H(rc)
H2
(rc) − A2
(rc)
1
2
, (14)
with H(rc) = M
Mc
−
M2
c +Q2
2Mcrc
, Mc core rest mass. At this
stage the characteristic timescale for Coulombian neu-
tralization can grow longer in virtue of conservation of
the large magnetic helicity associated to the B-field pos-
itive exponential grow via self-feeding [8], so that the
gravitational core collapse can proceed first. (Bunch of
astrophysical mechanisms for the PT to happen have
been envisaged [10, 16–18, 20]. Yet a huge amount of
work has been done to realistically characterize the struc-
tural configuration of static, rotating and collapsing NSs
[17, 18, 20, 22]). This astrophysical stage is of fundamen-
tal incidence for, according to workers in field, it is the
prelude of the formation of a CBH [21]. Indeed, the PT
may transiently produce a hybrid star or a quark star
[16], before inevitably producing a second SN explosion
driven by the just formed CBH.
3
Vacuum induced magnetization.— In classical electro-
dynamics [24] magnetization: magnetic dipole moment
per unit volume is defined by (E = 0 → F = −2B2
µ0
)
H = −
∂L
∂B
=
B
µ0
− mbr . (15)
On this prescription, the induced magnetization in the
PT created vacuum interface, i.e. the response (mbr) to
the action of the pulsar dipole magnetic field, reads
a) Born-Infeld in Eq.(2),
∂LB
I
∂B
= (
1
1 − 2B2
b2µ0
)
B
µ0
::: mbr|B
I = (
1
2 1 − 2B2
b2µ0
)
B
µ0
(16)
b) Heisenberg-Euler in Eq.(2) (with µ = 2α2
45
( /mc)3
mc2 ),
(Note: this Lagrangian is used only to illustrate the pro-
cedure, in the discussion below the Lagrangian of Ref.
[11] used instead)
∂LH
E
∂B
=
B
µ0
− 4µ
B2
µ0
B
µ0
::: mbr|H
E = 4µ
B2
µ0
B
µ0
(17)
c) extended Born-Infeld :: LF = −γ2
2 ( β−2α2
F√
1+βF −α2F 2
),
∂LB−I
Ext
∂B
= −
γ2
2


−4β − 16α2 B2
µ0
1 − 2β B2
µ0
− 4α2
µ2
0
B4

 B
µ0
:::
mbr|B−I
Ext =


8α2
γ2 B2
µ0
1 − 2β B2
µ0
− 4α2
µ2
0
B4

 B
µ0
. (18)
Eq.(17) can be compared to Eq.(6) in Ref. [11] obtained
through a computation up to the first order in the fine
structure constant (α = e2
c ≃ 1
137 ). Thus, from Eqs.(16,
17, 18) the induced magnetization as functional F of the
Lagrangian defining the P-NS external field reads
mbr = F
B
µ0 L
B
µ0
. (19)
Meanwhile, in collapse theory some pre-SN stellar cores
can achieve enough spin as to rotate near Keplerian equa-
torial break-up frequency: ΩK ≥ ([2
3 ]3 GN M
R3 )1/2
, imply-
ing a period PK ∼ 0.6 s, after core bounce. Moreover,
submillisecond PSRs spinning at Ω ≃ 1122 Hz have been
discovered [28]. Thus, P −→ ΩR
c ≪ 1 indicates the (spin)
range where vacuum magnetization is at work. Hence,
by defining the P-NS by its m magnetic dipole moment,
R radius and Bs surface B-field strength (Bs ≃ µ0m
4πR3 ::
m = m ), the dipole B-field leading term reads [24]
B(r,t) ≃
µ0
4π
3r(m(t − r
c ) · r)
r5
−
m(t − r
c )
r3
. (20)
The term t − r
c in m accounts for retardation effects.
Eq.(20) states that at point r the induced magnetic mo-
ment of the vacuum back reaction reads (its origin can be
traced back to Eq.(4): ∇µFµν
= Jµ
, Jµ
= Jµ
ind + Jµ
ext =
−LFF
LF
Fµν
F|ν, i.e. even if Jµ
ext = 0, the vacuum induced
current stems from field feedback on itself (retarded self-
energy))
dmbr(r,t) = F
B
µ0
B
I
,
H
E
,
B−I
Ext
B(r,t) dV (r, θ, φ),
(21)
with dV = r2
sin θdrdθdφ, (r, θ, φ) and (x, y, z) spherical,
and cartesian coordinates. Thus, at time t+ r
c the B-field
dBbr produced by dmbr(r,t) at the pulsar center r is
dBbr(0,t +
r
c
) ≃
µ0
4π
3r(dmbr(r,t) · r)
r5
−
dmbr(r,t)
r3
.(22)
This induced magnetization interacts with the P-NS spin-
ning magnetic dipole moment by dissipating energy.
As stressed above, (quantum) vacuum can ever be
thought of as an ordinary medium. [6] To this, classical
electrodynamics dictates the rate at which energy is lost
[24] (unit vector uz||Ωz :: Ω = 2π
P rotation frequency)
d ˙Ebr = − m(t +
r
c
) × dBbr(0,t +
r
c
) Ω · uz . (23)
By integration from the star radius to infinity, and aver-
aging over several periods (P), Eq. (23) yields
˙Ebr =
∞
R
π
θ=0
2π
φ=0
d ˙Ebr P . (24)
Now, for the moment, let us focus on the study case `a
la Heisenberg-Euler using the full Lagrangian in Eq.(21).
(For P-NS we showed in Ref.[23] that the Lagrangian in
Eq.(2) leads to p = 1
3 ρ − ργ, with ργ = 16
3 c1B4
. For su-
percritical fields ργ dominates, so that the EoS becomes
negative, i.e. the condition to provide repulsive dynamics
is reached). In connection to Eq.(24), Ref. [11] showed,
after performing the analysis of the dissipation rate using
the infinite series characteristic of the full Heisenberg-
Euler Lagrangian, that for nearly overcritical B-fields
(≃ 6 × 1014
G) it reduces to
˙Ebr ≃ α
18π2
45
sin2
θ
µ0c
R4
B2
c P2
B4
s , (25)
while `a la Maxwell the energy dissipation rate reads [10]
˙EMaxw =
128π5
3
sin2
θ
µ0c3
R6
P4
B2
s . (26)
A confrontation of these energy losses hints at funda-
mental changes w.r.t. the method currently in use to
estimate the B-field strength of pulsars [10, 15]. First,
one can verify that the backreaction energy lost depends
on B4
s , while the standard one grows as B2
s . Then, the B-
field strength is inferred by assuming that the pulsar EM
power release is explained by the classical dipole model
4
[10, 15]. It can thus be conceded that in order to consis-
tently infer the B-field strength of extremely magnetized,
slow pulsars one should take into account the backreac-
tion or vacuum frictional effects, otherwise such fields
would be severely overstimated, as is the case for the so-
called “magnetars” [11]. Let us now proceed to estimate
the B-field strength needed to delay the electrostatic neu-
tralization process at the charged interface.
Making it longer the (+, -) neutralization timescale.—
Let us first summarize the astrophysical situation under
analysis: a charged black hole (CBH) is to form. First, a
PNS phase transition should take place [16, 18–20]. In a
∼ 2.6 M⊙ supermassive PNS [22] it happens catching in
the crust mainly the swiftest relativistic electrons and the
precipitated protons in the core. NLED acts via a repul-
sive action helping to avoid a quick neutralization, thus
making longer the electrostatic timescale. Several forms
of energy are relevant to this process: gravitational, ro-
tational, magnetic, etc. Forming the CBH exhausts most
of those energies, except for the non extractable part as
discussed in Ref.[25]. Dissipative effects are mainly elec-
tromagnetic: vacuum friction and Maxwell radiation (no
gravitational waves, nor plasma viscosity, etc). Because
the gravitational timescale of collapse to form the CBH is
not modified, it is w.r.t. it that the timescale dictated by
electromagnetism must be compared to. The extractable
energy becomes the source of the supernovalike event fol-
lowing the CBH formation, via vacuum polarization and
pair creation which self-propels outward, while also con-
sumes the total BH charge [21, 26, 27]. Finally, this su-
pernovalike event should produce a late time bump in the
lightcurve of the already expanding host SN. It is a key
matter to check for this signature in SNe data.
A typical neutron star has density ρNS = 5 × 1014
g
cm−3
, radius RNS ≃ 10 km, and mass 1.4 M⊙. The NS
total mechanical energy reads: ENS = Egrav + Espin +
Emagn. Bearing in mind that NLED dictates the dynam-
ics of the B-field permeating the charge interface, thereby
generating repulsive action to transiently avoid the neu-
tralization, one can estimate how much longer can the
electrostatic timescale go on: ∆T NLED
= ENS
˙EMaxw+ ˙Ebr
,
by equating it to the timescale dictated by gravity:
∆T grav
= 1√
Gρ
10−4
s. Such a relation can be cast
in the form
1
√
Gρ
=
G
M2
NS
RNS
+ 2
5 MNSΩ2
NSR2
NS +
B2
s
8π R3
NS
α 18π2
45
sin2 θ
µ0c
R4
B2
c P 2 B4
s + 128π5
3
sin2 θ
µ0c3
R6
P 4 B2
s
(27)
By solving for Bs this fourth order quadratic equation
using as fiducial period P ∼ 1 ms [28] and sin θ = [1, 1
2 ],
the B-field strength at the charge separation interface is:
Bs ≃ [∼ 3.5 × 1014
− 1015
] G. This estimated B-field
strength at the charge interface accomplishes the condi-
tion of validity of the (25) formula. Then, this timescale
could be made even more longer in virtue of either the
magneto-differential rotation [29] or the conservation of
the large magnetic helicity (H = dxA · B :: A vector
potential) associated to exponential grow of the P-NS
B-field caused by the large chiral imbalance of electrons
(plasma instability) in the parity-violating weak process
of deleptonization during the SN core collapse [8]. There-
after, the gravitational collapse of the electrically-charged
core can take over to produce a CBH.
B-field amplification via differential rotation.— The
state-of-the-art in astrophysics is called for next, see
[10, 15]. A newly-born NS may undergo vigorous con-
vection during the first 30-60 s. If the P-NS spins dif-
ferentially extremely fast (P 1 ms) conditions are cre-
ated for the α − Ω dynamo to get into action, which may
survive depletion due to turbulent diffusion. In a dif-
ferentially rotating P-NS, the poloidal (Hφ) and radial-
dependent toroidal (Hr) B-fields are connected through
the relation [29]:
dHφ
dt = Hr rdΩ
dr . At the initial stage:
Hφ < H⋆
φ (poloidal B-field at the beginning of exponen-
tial grow), so that one can assume Hr rdΩ
dr = const.
This leads to the formation of multiple poloidal dif-
ferentially rotating vortexes (v) governed by the law:
dHr
dt = Hr:t⋆ rdωv
dλ λ , with λ the vortex length scale. In
general, one can approximate: rdωv
dλ λ ≃ α(Hφ − H⋆
φ),
with Hr:t⋆ initial toroidal B-field. By assuming for the
sake of simplicity that rdΩ
dr = A is a constant during
the first stages, and taking H⋆
φ as a constant, one arrives
to the following equation:
d2
dt2
(Hφ − H⋆
φ) = AHr:t⋆ α(Hφ − H⋆
φ) (28)
which leads to exponential grow of the B-fields, with
Hφ(t) = H⋆
φ + Hr:t⋆ e
√
AαHr:t⋆ (t−t⋆
)
(29)
Hr(t) = Hr:t⋆ +
H
3/2
r:t⋆ α1/2
√
A
[e
√
AαHr:t⋆ (t−t⋆
)
− 1](30)
Thus, both magnetic field (r, φ) components grow ex-
ponentially, ending up with ratio Hr(t)
Hφ(t) ∼ 10−2
[8, 29,
30]. Hence, under collapse conditions, B-fields B ∼
1017−18 P
1ms G may be generated as long as the differ-
ential rotation is dragged out by the growing magnetic
stresses. For this process to efficiently operate the ra-
tio: spin rate (P)/convection overturn timescale (τconv),
the Rossby number (R0), should be R0 ≤ 1. Then, an
ordinary dipole Bdip ∼ [1012
−1013
] G can be built by in-
coherent superposition of small dipoles of characteristic
size λ ∼ [1
3 − 1] km, so that a surface saturation strength
Bsat = (4πρ)1/2 λ
τconv
≃ 1016−17
G can be reached, as
very recently proved by [29, 30]. Indeed, in the dipole B-
field scheme, this means that an induced magnetization
B ∼ 1020
G can be reached at the very km-scale deep
inner core, catastrophically destabilizing it.
Chiral plasma instability and large magnetic helicity
— Basic idea from Ref. [8].— In core collapse SN the
5
electron (e−
) capture on protons leads to a right-to-left
handed Fermi surface imbalance µR > µL, i.e. to a
nonzero (time-integrated) chiral e−
chemical potential
µ5 = (µR−µL)
2 > 0. Thus, the number of neutrons (n)
is equal to the number difference of right-to-left handed
e−
(N5), so that n5 = µ5
3π2 (µ2
5 +3µ2
) ≃ ∆Nn, is the chiral
number density at low temperature, with µ ≡ (µR+µL)
2
the chemical potential associated to the U(1) vector-
like particle number, and n5 the e−
chiral density, and
∆Nn = (0.1−1) fm−3
is the n number due to e−
capture
at the P-NS (1 km size-scale) core. Using natural units
( , c = 1): ∆Nn = (0.1 − 1)Λ3
, where Λ = 200 MeV is
the QCD energy scale. Thence, the well known charac-
teristic e−
chemical potential at the P-NS core: µ Λ
implies that µ5 ∼ Λ. In the above arguments was implicit
that the state with chemical potential µ5 is unstable, and
quickly decays by converting its energy into a magnetic
field a cause of the chiral plasma instability. Hence the
B-field can be derived from energy conservation: e−
en-
ergy density from the chiral asymmetry, equals to the
B-field pressure
∆E =
1
4π2
(µ4
5 + 6µ2
5µ2
) ≡
1
2
∆B2
inst , (31)
which leads to Bmax ∼ Λ2
∼ 1018
G!
Meanwhile, magnetic helicity, which is a MHD invari-
ant, guarantees that
d
dt
N5 +
α
π
H = 0, N5 = n5dx , (32)
with N5 the global chiral charge of electrons, and H is
the magnetic helicity, which can be computed as: ∆H =
−π
α ∆N5 ∼ − 1
α VNSΛ3
, with V = 4π
3 R3
core the volume
of the NS core. Such large helicity ensures for long the
stability of the super strong (P-NS core) magnetic field.
Conclusion.— At the phase transition interface, mag-
netic fields this high surely drive the P-NS to collapse
to form a CBH, triggering a sort of second SN: a giant
explosion inside a SN. The signature of this vacuum ex-
plosion in the light curve of the host SN can be similar
to that from r-process heavy n-rech nuclei decay due to
the P-NS crust abundance of neutrons, which is blown
off after the CBH formation. This should produce a late
time bump or re-brightening in the light curve of the
host already expanding SN. This picture may find proper
realization in many astrophysical contexts, especially in
models of gamma-ray bursts (GRBs), including binary
system-driven GRBs, in which the very central engine has
to be (at least) a Reissner-Nordstrom black hole, which
can then afford vacuum polarization and `a la Schwinger
pair creation and the full relativistic hydrodynamics and
light curve evolution characterizing GRBs.
CAPES/ICRANet Program support is acknowledged
for the Sabbatical Fellowship 0153-14-1 (2014)
∗
Electronic address: herman@icra.it
[1] R. Ruffini, L. Vitagliano, Int. J. Mod. Phys. D 12, 121
(2003); C. Cherubini, R. Ruffini, L. Vitagliano, Phys.
Lett. B 545, 226 (2002); R. Ruffini, L. Vitagliano, S.-S
Xue, Phys. Lett. B 559, 12 (2003)
[2] H. Euler, B. Kochel, Naturwissenchaften 23, 246 (1935);
H. Euler, Ann. Phys. Lpz. 5, 398 (1936); W. Heisen-
berg, H. Euler, Z. Phys. 98, 714 (1936); V. Weisskopf,
Kong. Dans. Videns. Selskab, Math-fys. Meddeltser 14,
6 (1936); V. F. Weisskopf, “On the Self-energy and the
Electromagnetic Field of the Electron”, Phys. Rev. 56,
72-85 (1939). See also the complete review by G. V.
Dunne, Int. J. Mod. Phys. A 27, 1260004 (2012) and
refs. thereof; G. V. Dunne, Int. J. Mod. Phys. Conf. Ser.
14, 42-56 (2012); arXiv:1202.1557 [hep-th]; R Battesti,
C Rizzo. (2013), “Magnetic and electric properties of a
quantum vacuum”, Rep. Prog. Phys. 76:1, 016401 (2013)
[3] M. Born, Nature (London) 132, 282 (1933); Proc. R. Soc.
A 143, 410 (1934). M. Born, L. Infeld, Nature (London)
132, 970 (1933); Proc. R. Soc. A 144, 425 (1934). J.
Schwinger, Phys. Rev. 82, 664 (1951)
[4] J.F. Plebanski, “Lectures on nonlinear electrodynamics”.
Monograph of the Niels Bohr Institute (Nordita, Copen-
hagen 1968)
[5] H. J. Mosquera Cuesta, G. Lambiase, JCAP 1103, 033
(2011); C. Corda, H.J. Mosquera Cuesta, Astropart.
Phys. 34, 587 (2011); H.J. Mosquera Cuesta, J.M. Salim,
M. Novello, arXiv:0710.5188 [astro-ph].; H.J. Mosquera
Cuesta, G. Lambiase, Phys. Rev. D 80, 023013 (20009);
H.J. Mosquera Cuesta and J.M. Salim, MNRAS 354,
L55 (2004; H.J. Mosquera Cuesta and J.M. Salim, ApJ
608, 925 (2004); H.J. Mosquera Cuesta, J.A. de Fre-
itas Pacheco and J.M. Salim, IJMP A21, 43 (2006); J-
P. Mbelek, H.J. Mosquera Cuesta, M. Novello and J.M.
Salim, Eur. Phys. Letts. 77, 19001 (2007); J.P. Mbelek,
H.J. Mosquera Cuesta, MNRAS 389, 199 (2008)
[6] D. H. Delphenich,“Nonlinear optical analogies in quan-
tum electrodynamics”, arXiv: hep-th/0610088 (2006)
[7] M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591
(2006). J. Lundin, G. Brodin, M. Marklund, Phys. of
Plasmas 13, 102102 (2006). E. Lundstrom, etal. Phys.
Rev. Lett. 96, 083602 (2006); T. Heinzl, “Strong-field
QED, high-power lasers”, Int.J.Mod.Phys. A27,15 (2012)
[8] A. Ohnishi, N. Yamamoto, “Magnetars and chiral plasma
instability”, arXiv: 1402.4760 v1 (2014). See theory
of chiral plasma instabilities in Y. Akamatsu, N. Ya-
mamoto, Phys. Rev. Lett. 111, 052002 (2013)
[9] R. Ruffini, S-S. Xue, Phys. Lett. A 377, 2450 (2013)
[10] Thomas Gold, Nature 218, 731 (1968); P. Goldreich, W.
H. Julian, “Pulsar Electrodynamics”, Astrophys. J. 157,
869 (1969); Y. B. Zeldovich, I. D. Novikov, “Stars and
Relativity” (University of Chicago Press, Chicago 1971);
S. L. Shapiro, S. A. Teukolsky, “Black holes, white dwarfs
and neutron stars: The physics of compact objects” (Wi-
ley & Sons Inc., New York 1985); N.K. Glendenning,
“Compact stars: Nuclear physics, particle physics and
general relativity” (Springer, New York 1997); and T.
Padmanabhan, “Theoretical astrophysics, Vol. II” (Cam-
bridge University Press, Cambridge, England 2001)
[11] A. Dupays, C. Rizzo, D. Bakalov, and G. F. Bignami,
Eur. Phys. Lett. 82, 69002 (2008)
6
[12] P. C. W. Davies, J. Opt. B 7, S40-S46 (2005)
[13] J. Hadamard, “Le¸cons sur la propagation des ondes et les
equations de l’Hydrodynamique” (Hermann, Paris 1903)
[14] M. Novello, J. M. Salim and A.N. Ara´ujo, Phys. Rev.
D 85, 023528 (2012); M. Novello, S.E. P´erez Bergliaffa,
J.M. Salim, Phys. Rev. D 69, 127301 (2004); V.A. De
Lorenci et al., Phys. Rev. D 65, 063501 (2002); V.A. De
Lorenci et al., Phys. Lett. B 482:134-140 (2000).
[15] J. M. Lattimer, M. Prakash, “The Physics of Neutron
Stars”, Science 304, 5670, 536-542 (2004); J. M. Lat-
timer, Ann. Rev. Nucl. Part. Sc. 62, 485-515 (2012); A.
K. Harding, D. Lai, Rept. Prog. Phys. 69, 2631 (2006). A.
P´erez Mart´ınez, H. P´erez Rojas, H. J. Mosquera Cuesta,
Eur. Phys. J. C 29, 111123 (2003)
[16] I.N. Mishustin, M. Hanauske, A. Bhattacharyya, L. M.
Satarov, H. Stoecker, W. Greiner, Phys. Lett. B 552, 1
(2003); G. F. Marranghello, T. Regimbau, J. A. de Fre-
itas Pacheco, Int. J. Mod. Phys. D 16, 313-318 (2007); G.
F. Marranghello, C. A. Z. Vasconcellos, J. A. de Freitas
Pacheco, Phys. Rev. D 66, 064027 (2002)
[17] J. Schaffner-Bielich, Nucl. Phys. A 804, 309-321 (2008)
[18] G. F. Marranghello, C. A. Z. Vasconcellos, M. Dillig, J.
A. de Freitas Pacheco, Int. J. Mod. Phys. B 17, 5191
(2003); C. A. Z. Vasconcellos, R. O. Gomes, V. Dex-
heimer, et al., e-print arXiv:1402.5624 v1 [astro-ph.SR]
(2014). A. R. Taurines, C. A. Z. Vasconcellos, M. Mal-
heiro, M. Chiapparini, Phys. Rev. C 63, 065801 (2001)
[19] G. E. Brown, H. A. Bethe, Astrophys. J. 423, 659 (1994)
[20] H. Heiselberg, M. Hjorth-Jensen, Phys. Rept. 328, 237
(2000), Pag.327
[21] R. Ruffini, L. Vitagliano, S.-S Xue, Phys. Lett. B 573, 33
(2003), and Refs. therein
[22] R. Belvedere, D. Pugliese, J.A. Rueda, etal., Nucl. Phys.
A883, 1 (2012); R. Belvedere, K. Boshkayev, J.A. Rueda,
R. Ruffini, Nucl. Phys. A921, 33 (2014)
[23] C. Corda, H. J. Mosquera Cuesta, Mod. Phys. Lett. A
25, 28, 2423 (2010)
[24] A. Sommerfeld, “Electrodynamics” (Academic Press,
New York 1952); J. D. Jackson, Classical Electrodynam-
ics, Chap. 5, pag.168 (Wiley & Sons Inc., New York
1975); L.D. Landau, E.M. Lifshitz, “Electrodynamics
of continuous media” (Pergamon, New York 1963); W.
Greiner, “Classical Electrodynamics” (Springer, 1st Edi-
tion 1998); L. D. Landau, E. M. Lifshitz, “The classical
theory of fields” (Pergamon, New York 1970)
[25] J. P. Pereira, H. J. Mosquera Cuesta, J. A.
Rueda, R. Ruffini, Physics Letters B (2014)
http://dx.doi.org/10.1016/j.physletb.2014.04.047
[26] T. Damour, R. Ruffini, Phys. Rev. Lett. 35, 463 (1975)
[27] C. Cherubini, A. Geralico, J. A. Rueda, R. Ruffini, Phys.
Rev. D 79, 124002 (2009)
[28] P. Kaaret, Z. Prieskorn, J. J. M. in ’t Zand, et al., As-
trophys. J. 657, L97 (2007)
[29] S. Moiseenko, G. Bisnovagti-Kogan, talk at Zeldovich
100th Aniversary Meeting, Minsk, Bielorus (2014)
[30] D. M. Siegel, R. Ciolfi, L. Rezzolla, “Magnetically driven
winds from differentially rotating neutron stars and ...”
e-print: arXiv:1401.4544 v2 (2014)
[31] With regard to this tantalizing issue, in an earlier paper
[Mosquera Cuesta etal., Phys. Rev. D67 (2003) 087702]
a mechanism inspired in brane-world physics was intro-
duced which allows for mass disappearance (electrons,
rather that protons, leaking) from the brane to the bulk
producing an asymmetry in an otherwise endlessly global
neutral (+ , -) charge distribution lying on the brane, e.g.
a star. As a result, an astrophysical charged black hole
may come out by end of a supernova (SN) gravitational
core collapse. This mass leaking mechanism might have
also been at work during the very early universe driving
a matter-antimatter primordial asymmetry.
[32] These authors conceded not having identified what mech-
anism helps to enlarge the NS magnetic helicity, though
they stress that the original B-field gives a positive feed-
back to itself, to grow exponentially, being this last the
actual chiral plasma instability. In our understanding,
this field nonlinear enlargement is a prove that NLED
is doubtlessly at action inside just-born pulsars (see
Eq.(4)). Besides, it is clear that an amplification of the
B-field via magneto-differential rotation is concomitant
with this chiral plasma instability.

Mais conteúdo relacionado

Mais procurados

Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Rene Kotze
 
N. Bilić: AdS Braneworld with Back-reaction
N. Bilić: AdS Braneworld with Back-reactionN. Bilić: AdS Braneworld with Back-reaction
N. Bilić: AdS Braneworld with Back-reactionSEENET-MTP
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Rene Kotze
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. BilicSEENET-MTP
 
"When the top is not single: a theory overview from monotop to multitops" to...
"When the top is not single: a theory overview from monotop to multitops"  to..."When the top is not single: a theory overview from monotop to multitops"  to...
"When the top is not single: a theory overview from monotop to multitops" to...Rene Kotze
 
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...Rene Kotze
 
A. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
A. Morozov - Black Hole Motion in Entropic Reformulation of General RelativityA. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
A. Morozov - Black Hole Motion in Entropic Reformulation of General RelativitySEENET-MTP
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis Lake Como School of Advanced Studies
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergySEENET-MTP
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesRene Kotze
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...SEENET-MTP
 

Mais procurados (20)

Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
 
N. Bilić: AdS Braneworld with Back-reaction
N. Bilić: AdS Braneworld with Back-reactionN. Bilić: AdS Braneworld with Back-reaction
N. Bilić: AdS Braneworld with Back-reaction
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
Ecl17
Ecl17Ecl17
Ecl17
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic
 
"When the top is not single: a theory overview from monotop to multitops" to...
"When the top is not single: a theory overview from monotop to multitops"  to..."When the top is not single: a theory overview from monotop to multitops"  to...
"When the top is not single: a theory overview from monotop to multitops" to...
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Quantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž ProsenQuantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž Prosen
 
A. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
A. Morozov - Black Hole Motion in Entropic Reformulation of General RelativityA. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
A. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
Part VIII - The Standard Model
Part VIII - The Standard ModelPart VIII - The Standard Model
Part VIII - The Standard Model
 
Caldwellcolloquium
CaldwellcolloquiumCaldwellcolloquium
Caldwellcolloquium
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
 
PART X.1 - Superstring Theory
PART X.1 - Superstring TheoryPART X.1 - Superstring Theory
PART X.1 - Superstring Theory
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
 
Part IX - Supersymmetry
Part IX - SupersymmetryPart IX - Supersymmetry
Part IX - Supersymmetry
 

Destaque

The Sky this Week: September 18-27, 2015
The Sky this Week: September 18-27, 2015The Sky this Week: September 18-27, 2015
The Sky this Week: September 18-27, 2015SOCIEDAD JULIO GARAVITO
 
Apartes de la Charla: Solsticio, Equinoxio y Analema-25 de Junio de 2016
Apartes de la Charla: Solsticio,  Equinoxio y Analema-25 de Junio de 2016Apartes de la Charla: Solsticio,  Equinoxio y Analema-25 de Junio de 2016
Apartes de la Charla: Solsticio, Equinoxio y Analema-25 de Junio de 2016SOCIEDAD JULIO GARAVITO
 
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...SOCIEDAD JULIO GARAVITO
 
Clair Cameron Patterson Obituario New York Time
Clair Cameron Patterson  Obituario New York TimeClair Cameron Patterson  Obituario New York Time
Clair Cameron Patterson Obituario New York TimeSOCIEDAD JULIO GARAVITO
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...SOCIEDAD JULIO GARAVITO
 
Charlas itm 7 y 8 abril 2015-El Año de la Luz
Charlas itm 7 y 8 abril 2015-El Año de la LuzCharlas itm 7 y 8 abril 2015-El Año de la Luz
Charlas itm 7 y 8 abril 2015-El Año de la LuzSOCIEDAD JULIO GARAVITO
 
Catalogo Navidad 2012 Bodegas Collado
Catalogo Navidad 2012 Bodegas ColladoCatalogo Navidad 2012 Bodegas Collado
Catalogo Navidad 2012 Bodegas ColladoSalvador S
 
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...SOCIEDAD JULIO GARAVITO
 

Destaque (9)

The Sky this Week: September 18-27, 2015
The Sky this Week: September 18-27, 2015The Sky this Week: September 18-27, 2015
The Sky this Week: September 18-27, 2015
 
Apartes de la Charla: Solsticio, Equinoxio y Analema-25 de Junio de 2016
Apartes de la Charla: Solsticio,  Equinoxio y Analema-25 de Junio de 2016Apartes de la Charla: Solsticio,  Equinoxio y Analema-25 de Junio de 2016
Apartes de la Charla: Solsticio, Equinoxio y Analema-25 de Junio de 2016
 
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Alternative...
 
New horizon press kit12
New horizon press kit12New horizon press kit12
New horizon press kit12
 
Clair Cameron Patterson Obituario New York Time
Clair Cameron Patterson  Obituario New York TimeClair Cameron Patterson  Obituario New York Time
Clair Cameron Patterson Obituario New York Time
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
 
Charlas itm 7 y 8 abril 2015-El Año de la Luz
Charlas itm 7 y 8 abril 2015-El Año de la LuzCharlas itm 7 y 8 abril 2015-El Año de la Luz
Charlas itm 7 y 8 abril 2015-El Año de la Luz
 
Catalogo Navidad 2012 Bodegas Collado
Catalogo Navidad 2012 Bodegas ColladoCatalogo Navidad 2012 Bodegas Collado
Catalogo Navidad 2012 Bodegas Collado
 
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
 

Semelhante a Nled and formation_of_astrophysical_charged_b_hs_03_june_2014

Technicalities about the LHAASO experiment
Technicalities about the LHAASO experimentTechnicalities about the LHAASO experiment
Technicalities about the LHAASO experimentOrchidea Maria Lecian
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...SOCIEDAD JULIO GARAVITO
 
A colleague of yours has given you mathematical expressions for the f.pdf
A colleague of yours has given you mathematical expressions for the f.pdfA colleague of yours has given you mathematical expressions for the f.pdf
A colleague of yours has given you mathematical expressions for the f.pdfarjuntiwari586
 
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...ijrap
 
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...ijrap
 
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...ijrap
 
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...Sérgio Sacani
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...SEENET-MTP
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...SEENET-MTP
 
Binping xiao superconducting surface impedance under radiofrequency field
Binping xiao   superconducting surface impedance under radiofrequency fieldBinping xiao   superconducting surface impedance under radiofrequency field
Binping xiao superconducting surface impedance under radiofrequency fieldthinfilmsworkshop
 
Surface Polaritons in GAAS/ALGAAS/LH Hetrojunction Structure in a High Magnet...
Surface Polaritons in GAAS/ALGAAS/LH Hetrojunction Structure in a High Magnet...Surface Polaritons in GAAS/ALGAAS/LH Hetrojunction Structure in a High Magnet...
Surface Polaritons in GAAS/ALGAAS/LH Hetrojunction Structure in a High Magnet...ijrap
 
Final parsec problem of black hole mergers and ultralight dark matter
Final parsec problem of black hole mergers and ultralight dark matterFinal parsec problem of black hole mergers and ultralight dark matter
Final parsec problem of black hole mergers and ultralight dark matterSérgio Sacani
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Lewis Larsen
 

Semelhante a Nled and formation_of_astrophysical_charged_b_hs_03_june_2014 (20)

Technicalities about the LHAASO experiment
Technicalities about the LHAASO experimentTechnicalities about the LHAASO experiment
Technicalities about the LHAASO experiment
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
 
A colleague of yours has given you mathematical expressions for the f.pdf
A colleague of yours has given you mathematical expressions for the f.pdfA colleague of yours has given you mathematical expressions for the f.pdf
A colleague of yours has given you mathematical expressions for the f.pdf
 
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
 
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
 
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
 
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
SV-InclusionSOcouplinginNaCs
SV-InclusionSOcouplinginNaCsSV-InclusionSOcouplinginNaCs
SV-InclusionSOcouplinginNaCs
 
Instantons in 1D QM
Instantons in 1D QMInstantons in 1D QM
Instantons in 1D QM
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
PART II.1 - Modern Physics
PART II.1 - Modern PhysicsPART II.1 - Modern Physics
PART II.1 - Modern Physics
 
en_qu_sch
en_qu_schen_qu_sch
en_qu_sch
 
Binping xiao superconducting surface impedance under radiofrequency field
Binping xiao   superconducting surface impedance under radiofrequency fieldBinping xiao   superconducting surface impedance under radiofrequency field
Binping xiao superconducting surface impedance under radiofrequency field
 
5460 chap1 2
5460 chap1 25460 chap1 2
5460 chap1 2
 
Surface Polaritons in GAAS/ALGAAS/LH Hetrojunction Structure in a High Magnet...
Surface Polaritons in GAAS/ALGAAS/LH Hetrojunction Structure in a High Magnet...Surface Polaritons in GAAS/ALGAAS/LH Hetrojunction Structure in a High Magnet...
Surface Polaritons in GAAS/ALGAAS/LH Hetrojunction Structure in a High Magnet...
 
Andreev levels
Andreev levelsAndreev levels
Andreev levels
 
Riconda_Catarina.pptx
Riconda_Catarina.pptxRiconda_Catarina.pptx
Riconda_Catarina.pptx
 
Final parsec problem of black hole mergers and ultralight dark matter
Final parsec problem of black hole mergers and ultralight dark matterFinal parsec problem of black hole mergers and ultralight dark matter
Final parsec problem of black hole mergers and ultralight dark matter
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
 

Mais de SOCIEDAD JULIO GARAVITO

STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...SOCIEDAD JULIO GARAVITO
 
V Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasV Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasSOCIEDAD JULIO GARAVITO
 
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...SOCIEDAD JULIO GARAVITO
 
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfInterface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfSOCIEDAD JULIO GARAVITO
 
The deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfThe deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfSOCIEDAD JULIO GARAVITO
 
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comCómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comSOCIEDAD JULIO GARAVITO
 
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSOCIEDAD JULIO GARAVITO
 
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603SOCIEDAD JULIO GARAVITO
 
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024SOCIEDAD JULIO GARAVITO
 
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024SOCIEDAD JULIO GARAVITO
 
Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024SOCIEDAD JULIO GARAVITO
 
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...SOCIEDAD JULIO GARAVITO
 
¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdfSOCIEDAD JULIO GARAVITO
 
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfEstimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfSOCIEDAD JULIO GARAVITO
 
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfConjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfSOCIEDAD JULIO GARAVITO
 
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfEL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfSOCIEDAD JULIO GARAVITO
 
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...SOCIEDAD JULIO GARAVITO
 

Mais de SOCIEDAD JULIO GARAVITO (20)

STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
 
V Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasV Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de Galaxias
 
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
 
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfInterface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
 
The deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfThe deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdf
 
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comCómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
 
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
 
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
 
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
 
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
 
Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024
 
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
 
¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf
 
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfEstimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
 
WWF- GuiaAnimalesOrigami.pdf
WWF- GuiaAnimalesOrigami.pdfWWF- GuiaAnimalesOrigami.pdf
WWF- GuiaAnimalesOrigami.pdf
 
ARTICULO GEMINIDAS 2023.
ARTICULO GEMINIDAS 2023.ARTICULO GEMINIDAS 2023.
ARTICULO GEMINIDAS 2023.
 
POSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdfPOSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdf
 
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfConjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
 
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfEL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
 
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
 

Nled and formation_of_astrophysical_charged_b_hs_03_june_2014

  • 1. Nonlinear electrodynamics: The missing trigger for the formation of astrophysical charged black holes in gravitational core collapse supernovae Herman J. Mosquera Cuesta∗ Instituto Federal de Educa¸c˜ao, Ciˆencia e Tecnologia do Cear´a, Avenida Treze de Maio, 2081, Benfica, Fortaleza/CE, CEP 60040-531, Brazil (Dated: July 22, 2014) Theorists of the general theory of relativity have since long contended that in nature there exists electrically charged black holes (CBH), celestial objects which a distant observer would characterize by their mass and charge. Notwithstanding, none astrophysical mechanism has been proved to self-consistently break up for long the universal global charge neutrality of most cosmic systems. Foundational arguments from nonlinear electrodynamics (NLED) provide a mechanism able to drive the formation of an astrophysical CBH after a phase transition in a massive proto-neutron star (P-NS) and the subsequent gravitational collapse of its core. Due to its repulsive action (nonlinear exponential grow of the initial field in a rotating P-NS caused by positive feedback to itself) NLED allows, as compared to the gravitational timescale (∆Tgrav ≃ 1/ √ GρNS 10−4 s), to make it longer the timescale for Coulombian (electrostatic) neutralization (∆T ≃ λDebye/c 10−20 s). With no NLED effects such neutralization would take place at the P-NS inner crust-upper mantle charge interface much earlier than the gravitational core collapse would take over. In such stalled state of charge separation held up by NLED, the aftermath of gravitational collapse of the positively charged inner core can be an astrophysical CBH. PACS numbers: 97.60.Jd , 97.60.Lf , 97.60.-s , 03.50.De , 04.70.-s , 04.40.Dg General relativity (GR) and charged black holes.— It has since long been contended that Einstein equa- tions (EEs) must somehow be realized in nature, a statement based on their exact mathematical solu- tions. One of those describes the space-time (S-T) of a Reissner-Nordstrom CBH, the metric of which is writ- ten (t, r, θ, φ Schwarzschild coordinates, signature +,-,-,-, units G, c=1, M, Q: mass, charge|∞ :: dΩ2 = r2 dθ2 + r2 sin2 θdϕ2 ) ds2 = (1 − 2M r + Q2 r2 )dt2 − dr2 (1 − 2M r + Q2 r2 ) − dΩ2 , (1) In spite of this superb theoretical argument, most as- trophysicists still pose the question on the nature and mechanism able to break up the otherwise eternal global charge neutrality characterizing any astronomical object. To the best of our knowledge, the debate on this puzzle has not conclusively been shut off (for related works see [1]). The issue then remains a very open problem in rel- ativistic astrophysics. Notwithstanding see Ref. [? ] Nonlinear electrodynamics.— NLED is a theory for describing electromagnetic interactions in a relativistic invariance set up. Several approaches were envisioned: Heisenberg; Euler and Kochel; Euler; Heisenberg and Euler (added F2 -term); Weisskopf (added logarithmic- like term) [2], Born; Born and Infeld [3] (bounded the electric field strength by giving to the electron a fi- nite radius), and Plebanski (robust framework, including plasma physics) [4], to extend Maxwell electrodynamics (linear in Lorentz invariants F, G) so as to deal with di- vergences in analysis of electromagnetic (EM) phenom- ena (see Eq.(2)). Among those problems are the ionized gas for which a naive (even a quantum mechanical) calcu- lation of the ground-state energy density yields infinity, the electric field of point charges (infinite self-energy), or the catastrophic instability of the semi-classical Bohr’s atomic model, in which the orbiting electron should in- escapably plunge onto the proton due to radiation reac- tion. Examples of Lagrangians read (G = 0, µ, b const.) a)LH E = − 1 4 F + µ 4 F2 , b)LB I = b2 2 − 1 + F b2 1 2 + 1 (2) Applications of NLED have been extensively studied in the literature, extending from cosmological and astro- physical contexts [5], to nonlinear optics [6], high power laser technology and plasma physics [7], and the field nonlinear exponential grow due to chiral plasma insta- bility during the weak parity-violating electron-capture (chirality imbalance) process in core collapse SNe [8] [? ]. In many respects, the feature highlighted above can be understood as if the dynamics of the EM field in a vacuum were afforded with some sort of (dark energy) repulsive action or back reaction effect [9, 10], i.e. EM field feedback to itself (see Eq.(4) next), which appears due to self-interaction of the electron, proton and EM field amidst of (simplest atom semi-classical model), or quantum vacuum frictional effect [11]. The repulsive ac- tion is a fundamental property of the quantum vacuum [12], often overlooked. Onwards we consider it to be the key piece to pave the pathway to conclusively work out the since long GR puzzle: How to form a charged black hole in an astrophysical process such as gravitational core collapse of (electrically ever neutral) massive P-NS? Theoretical framework.— NLED can be formulated: a) by realizing that the electric permittivity (ǫ0) and mag- netic susceptibility (µ0) can be functional of the elec- tric (E) and magnetic field (B), b) upon the Maxwell invariant (F) and its dual (G), e.g., the power series
  • 2. 2 L = ∞ j,k=0 cj,kFj Gk , or c) via a 4-dim effective the- ory from strings, M-theory, or AdS/CFT correspondence. The simplest NLED theory is described by the action S = √ −g L(F, G) d4 x :: F = Fµν Fµν :: G = Fµν ∗ Fµν (3) with Fµν ≡ ∇µAν − ∇νAµ, ∇ν covariant derivative (used as |ν below), ∗ Fµν = ǫµνρσ Fρσ dual bivector, ǫαβγδ = 1 2 √ −g εαβγδ : εαβγδ Levi-Civita tensor (ε0123=- 1). By extremalizing Lagrangian L(F(Aµ)), w.r.t. the potentials Aµ yields (LF n = dn L dF n , n int., G = 0) [4] ∇ν (LF Fµν ) = 0 → ∇µFµν = Jν ≡ − LF 2 LF Fµν F|µ . (4) It describes the propagation of the field discontinuities as gµν − 4 LF F LF Fµα F ν α kµkν = 0 . (5) Hence, photons propagate on an effective metric func- tional of the background field Fµα , a geodesic = gµν on the background S-T. The derivative of Eq.(5) gives kν ∇ν kα = 4 LF F LF Fµβ F ν β kµkν |α , (6) showing that NLED brings in a field retarded self-energy or backreaction force accelerating + − the photon along its path. (Astrophysical or cosmological consequences in[5]). NLED inherent repulsion.— A general L(F) leads to a perfect fluidlike energy-momentum tensor (E-M T) Tµν = 2 √ −g δL(F) √ −g δgµν ≡ Tµν = (ρ+p)vµvν −pgµν. (7) The left-hand-side of Eq.(7) yields (F = 2(ǫ0E2 − B2 µ0 )) Tµν = −4LF F α µ Fαν − Lgµν. (8) By equating terms in Eqs.(7, 8), one gets (recall that Maxwell Lagrangian yields: ρ = 3p = 1 2 (E2 + B2 )) ρ = −L − 4E2 LF , p = L + 4 3 (E2 − 2B2 )LF . (9) In virtue of the Lagrangian and E-M T structure the magnetic fluid can be thought of as a collection of non- interacting fluids indexed by k = −, 0, +, each of which obeys the equation of state (EoS) : pk = 4k 3 − 1 ρk [14]. This means that there is room for the EoS to exert nega- tive pressure. i.e. reverting its action to push outwards. Let us have a look on other Lagrangians exhibiting repulsive force (EM field positive feedback to itself): a) an interesting one is based on a truncated Laurent series (α, β, µ are coupling constants) [14] L = α2 F2 − 1 4 F − µ2 F + β2 F2 . (10) That way, one obtains EoS describing ordinary radiation ρ1 = −α2 F2 = −4α2 B4 s 1 R8 :: p1 = 5 3 ρ1 :::: ρ2 = 1 4 F = Bs 2 1 R4 :: p2 = 1 3 ρ2, plus fluids exerting repulsive action ρ3 = µ2 F = µ2 2B2 s R4 :: p3 = − 7 3 ρ3 (11) ρ4 = − β2 F2 = − β2 4B4 s R8 :: p4 = − 11 3 ρ4 . (12) b) or extending the standard LB I Eq.(2) to the form [14] L = −γ2 1 + βF − α2F2, b)p + ρ = γ2 F(1 − 4α2 γ2 F) 3ρ .(13) One can check for such a property by noticing that Eq.(13-b) hints at a field transition value F ≡ Ftrans, so that ρ + p is positive for F < Ftrans, while ρ + p is negative (violation of strong energy condition) for val- ues larger than Ftrans! (see details in [14]). This way, Lagrangian (13) enters the set producing repulsive dy- namics. Further, E-M T conservation preserves Gauss law: B = Bs R2 NS , a law often called for in high energy astrophysics to estimate the B-field strength of nascent, glitching pulsars [10, 15], e.g. Eq.(11) in [8], or after a P-NS structural rearrangement, usually a catastrophic phase transition [10, 16], which inevitably leads to the formation of a black hole.[19] Pulsar charge separation state stalled by NLED.— It is decidedly attractive this EoS feature of producing nega- tive pressure, since such property can allow, following the onset of the P-NS phase transition (PT), to keep stalled the P-NS charge separation state, preventing the overlay- ing crust to plunge onto the core, while its gravitational collapse can take over, whose dynamics is described by [21] (c stands for core, of radial coordinate rc at collapse time tc, and A2 = 1 − 2M r + Q2 r2 ) drc dtc = − A2 (rc) H(rc) H2 (rc) − A2 (rc) 1 2 , (14) with H(rc) = M Mc − M2 c +Q2 2Mcrc , Mc core rest mass. At this stage the characteristic timescale for Coulombian neu- tralization can grow longer in virtue of conservation of the large magnetic helicity associated to the B-field pos- itive exponential grow via self-feeding [8], so that the gravitational core collapse can proceed first. (Bunch of astrophysical mechanisms for the PT to happen have been envisaged [10, 16–18, 20]. Yet a huge amount of work has been done to realistically characterize the struc- tural configuration of static, rotating and collapsing NSs [17, 18, 20, 22]). This astrophysical stage is of fundamen- tal incidence for, according to workers in field, it is the prelude of the formation of a CBH [21]. Indeed, the PT may transiently produce a hybrid star or a quark star [16], before inevitably producing a second SN explosion driven by the just formed CBH.
  • 3. 3 Vacuum induced magnetization.— In classical electro- dynamics [24] magnetization: magnetic dipole moment per unit volume is defined by (E = 0 → F = −2B2 µ0 ) H = − ∂L ∂B = B µ0 − mbr . (15) On this prescription, the induced magnetization in the PT created vacuum interface, i.e. the response (mbr) to the action of the pulsar dipole magnetic field, reads a) Born-Infeld in Eq.(2), ∂LB I ∂B = ( 1 1 − 2B2 b2µ0 ) B µ0 ::: mbr|B I = ( 1 2 1 − 2B2 b2µ0 ) B µ0 (16) b) Heisenberg-Euler in Eq.(2) (with µ = 2α2 45 ( /mc)3 mc2 ), (Note: this Lagrangian is used only to illustrate the pro- cedure, in the discussion below the Lagrangian of Ref. [11] used instead) ∂LH E ∂B = B µ0 − 4µ B2 µ0 B µ0 ::: mbr|H E = 4µ B2 µ0 B µ0 (17) c) extended Born-Infeld :: LF = −γ2 2 ( β−2α2 F√ 1+βF −α2F 2 ), ∂LB−I Ext ∂B = − γ2 2   −4β − 16α2 B2 µ0 1 − 2β B2 µ0 − 4α2 µ2 0 B4   B µ0 ::: mbr|B−I Ext =   8α2 γ2 B2 µ0 1 − 2β B2 µ0 − 4α2 µ2 0 B4   B µ0 . (18) Eq.(17) can be compared to Eq.(6) in Ref. [11] obtained through a computation up to the first order in the fine structure constant (α = e2 c ≃ 1 137 ). Thus, from Eqs.(16, 17, 18) the induced magnetization as functional F of the Lagrangian defining the P-NS external field reads mbr = F B µ0 L B µ0 . (19) Meanwhile, in collapse theory some pre-SN stellar cores can achieve enough spin as to rotate near Keplerian equa- torial break-up frequency: ΩK ≥ ([2 3 ]3 GN M R3 )1/2 , imply- ing a period PK ∼ 0.6 s, after core bounce. Moreover, submillisecond PSRs spinning at Ω ≃ 1122 Hz have been discovered [28]. Thus, P −→ ΩR c ≪ 1 indicates the (spin) range where vacuum magnetization is at work. Hence, by defining the P-NS by its m magnetic dipole moment, R radius and Bs surface B-field strength (Bs ≃ µ0m 4πR3 :: m = m ), the dipole B-field leading term reads [24] B(r,t) ≃ µ0 4π 3r(m(t − r c ) · r) r5 − m(t − r c ) r3 . (20) The term t − r c in m accounts for retardation effects. Eq.(20) states that at point r the induced magnetic mo- ment of the vacuum back reaction reads (its origin can be traced back to Eq.(4): ∇µFµν = Jµ , Jµ = Jµ ind + Jµ ext = −LFF LF Fµν F|ν, i.e. even if Jµ ext = 0, the vacuum induced current stems from field feedback on itself (retarded self- energy)) dmbr(r,t) = F B µ0 B I , H E , B−I Ext B(r,t) dV (r, θ, φ), (21) with dV = r2 sin θdrdθdφ, (r, θ, φ) and (x, y, z) spherical, and cartesian coordinates. Thus, at time t+ r c the B-field dBbr produced by dmbr(r,t) at the pulsar center r is dBbr(0,t + r c ) ≃ µ0 4π 3r(dmbr(r,t) · r) r5 − dmbr(r,t) r3 .(22) This induced magnetization interacts with the P-NS spin- ning magnetic dipole moment by dissipating energy. As stressed above, (quantum) vacuum can ever be thought of as an ordinary medium. [6] To this, classical electrodynamics dictates the rate at which energy is lost [24] (unit vector uz||Ωz :: Ω = 2π P rotation frequency) d ˙Ebr = − m(t + r c ) × dBbr(0,t + r c ) Ω · uz . (23) By integration from the star radius to infinity, and aver- aging over several periods (P), Eq. (23) yields ˙Ebr = ∞ R π θ=0 2π φ=0 d ˙Ebr P . (24) Now, for the moment, let us focus on the study case `a la Heisenberg-Euler using the full Lagrangian in Eq.(21). (For P-NS we showed in Ref.[23] that the Lagrangian in Eq.(2) leads to p = 1 3 ρ − ργ, with ργ = 16 3 c1B4 . For su- percritical fields ργ dominates, so that the EoS becomes negative, i.e. the condition to provide repulsive dynamics is reached). In connection to Eq.(24), Ref. [11] showed, after performing the analysis of the dissipation rate using the infinite series characteristic of the full Heisenberg- Euler Lagrangian, that for nearly overcritical B-fields (≃ 6 × 1014 G) it reduces to ˙Ebr ≃ α 18π2 45 sin2 θ µ0c R4 B2 c P2 B4 s , (25) while `a la Maxwell the energy dissipation rate reads [10] ˙EMaxw = 128π5 3 sin2 θ µ0c3 R6 P4 B2 s . (26) A confrontation of these energy losses hints at funda- mental changes w.r.t. the method currently in use to estimate the B-field strength of pulsars [10, 15]. First, one can verify that the backreaction energy lost depends on B4 s , while the standard one grows as B2 s . Then, the B- field strength is inferred by assuming that the pulsar EM power release is explained by the classical dipole model
  • 4. 4 [10, 15]. It can thus be conceded that in order to consis- tently infer the B-field strength of extremely magnetized, slow pulsars one should take into account the backreac- tion or vacuum frictional effects, otherwise such fields would be severely overstimated, as is the case for the so- called “magnetars” [11]. Let us now proceed to estimate the B-field strength needed to delay the electrostatic neu- tralization process at the charged interface. Making it longer the (+, -) neutralization timescale.— Let us first summarize the astrophysical situation under analysis: a charged black hole (CBH) is to form. First, a PNS phase transition should take place [16, 18–20]. In a ∼ 2.6 M⊙ supermassive PNS [22] it happens catching in the crust mainly the swiftest relativistic electrons and the precipitated protons in the core. NLED acts via a repul- sive action helping to avoid a quick neutralization, thus making longer the electrostatic timescale. Several forms of energy are relevant to this process: gravitational, ro- tational, magnetic, etc. Forming the CBH exhausts most of those energies, except for the non extractable part as discussed in Ref.[25]. Dissipative effects are mainly elec- tromagnetic: vacuum friction and Maxwell radiation (no gravitational waves, nor plasma viscosity, etc). Because the gravitational timescale of collapse to form the CBH is not modified, it is w.r.t. it that the timescale dictated by electromagnetism must be compared to. The extractable energy becomes the source of the supernovalike event fol- lowing the CBH formation, via vacuum polarization and pair creation which self-propels outward, while also con- sumes the total BH charge [21, 26, 27]. Finally, this su- pernovalike event should produce a late time bump in the lightcurve of the already expanding host SN. It is a key matter to check for this signature in SNe data. A typical neutron star has density ρNS = 5 × 1014 g cm−3 , radius RNS ≃ 10 km, and mass 1.4 M⊙. The NS total mechanical energy reads: ENS = Egrav + Espin + Emagn. Bearing in mind that NLED dictates the dynam- ics of the B-field permeating the charge interface, thereby generating repulsive action to transiently avoid the neu- tralization, one can estimate how much longer can the electrostatic timescale go on: ∆T NLED = ENS ˙EMaxw+ ˙Ebr , by equating it to the timescale dictated by gravity: ∆T grav = 1√ Gρ 10−4 s. Such a relation can be cast in the form 1 √ Gρ = G M2 NS RNS + 2 5 MNSΩ2 NSR2 NS + B2 s 8π R3 NS α 18π2 45 sin2 θ µ0c R4 B2 c P 2 B4 s + 128π5 3 sin2 θ µ0c3 R6 P 4 B2 s (27) By solving for Bs this fourth order quadratic equation using as fiducial period P ∼ 1 ms [28] and sin θ = [1, 1 2 ], the B-field strength at the charge separation interface is: Bs ≃ [∼ 3.5 × 1014 − 1015 ] G. This estimated B-field strength at the charge interface accomplishes the condi- tion of validity of the (25) formula. Then, this timescale could be made even more longer in virtue of either the magneto-differential rotation [29] or the conservation of the large magnetic helicity (H = dxA · B :: A vector potential) associated to exponential grow of the P-NS B-field caused by the large chiral imbalance of electrons (plasma instability) in the parity-violating weak process of deleptonization during the SN core collapse [8]. There- after, the gravitational collapse of the electrically-charged core can take over to produce a CBH. B-field amplification via differential rotation.— The state-of-the-art in astrophysics is called for next, see [10, 15]. A newly-born NS may undergo vigorous con- vection during the first 30-60 s. If the P-NS spins dif- ferentially extremely fast (P 1 ms) conditions are cre- ated for the α − Ω dynamo to get into action, which may survive depletion due to turbulent diffusion. In a dif- ferentially rotating P-NS, the poloidal (Hφ) and radial- dependent toroidal (Hr) B-fields are connected through the relation [29]: dHφ dt = Hr rdΩ dr . At the initial stage: Hφ < H⋆ φ (poloidal B-field at the beginning of exponen- tial grow), so that one can assume Hr rdΩ dr = const. This leads to the formation of multiple poloidal dif- ferentially rotating vortexes (v) governed by the law: dHr dt = Hr:t⋆ rdωv dλ λ , with λ the vortex length scale. In general, one can approximate: rdωv dλ λ ≃ α(Hφ − H⋆ φ), with Hr:t⋆ initial toroidal B-field. By assuming for the sake of simplicity that rdΩ dr = A is a constant during the first stages, and taking H⋆ φ as a constant, one arrives to the following equation: d2 dt2 (Hφ − H⋆ φ) = AHr:t⋆ α(Hφ − H⋆ φ) (28) which leads to exponential grow of the B-fields, with Hφ(t) = H⋆ φ + Hr:t⋆ e √ AαHr:t⋆ (t−t⋆ ) (29) Hr(t) = Hr:t⋆ + H 3/2 r:t⋆ α1/2 √ A [e √ AαHr:t⋆ (t−t⋆ ) − 1](30) Thus, both magnetic field (r, φ) components grow ex- ponentially, ending up with ratio Hr(t) Hφ(t) ∼ 10−2 [8, 29, 30]. Hence, under collapse conditions, B-fields B ∼ 1017−18 P 1ms G may be generated as long as the differ- ential rotation is dragged out by the growing magnetic stresses. For this process to efficiently operate the ra- tio: spin rate (P)/convection overturn timescale (τconv), the Rossby number (R0), should be R0 ≤ 1. Then, an ordinary dipole Bdip ∼ [1012 −1013 ] G can be built by in- coherent superposition of small dipoles of characteristic size λ ∼ [1 3 − 1] km, so that a surface saturation strength Bsat = (4πρ)1/2 λ τconv ≃ 1016−17 G can be reached, as very recently proved by [29, 30]. Indeed, in the dipole B- field scheme, this means that an induced magnetization B ∼ 1020 G can be reached at the very km-scale deep inner core, catastrophically destabilizing it. Chiral plasma instability and large magnetic helicity — Basic idea from Ref. [8].— In core collapse SN the
  • 5. 5 electron (e− ) capture on protons leads to a right-to-left handed Fermi surface imbalance µR > µL, i.e. to a nonzero (time-integrated) chiral e− chemical potential µ5 = (µR−µL) 2 > 0. Thus, the number of neutrons (n) is equal to the number difference of right-to-left handed e− (N5), so that n5 = µ5 3π2 (µ2 5 +3µ2 ) ≃ ∆Nn, is the chiral number density at low temperature, with µ ≡ (µR+µL) 2 the chemical potential associated to the U(1) vector- like particle number, and n5 the e− chiral density, and ∆Nn = (0.1−1) fm−3 is the n number due to e− capture at the P-NS (1 km size-scale) core. Using natural units ( , c = 1): ∆Nn = (0.1 − 1)Λ3 , where Λ = 200 MeV is the QCD energy scale. Thence, the well known charac- teristic e− chemical potential at the P-NS core: µ Λ implies that µ5 ∼ Λ. In the above arguments was implicit that the state with chemical potential µ5 is unstable, and quickly decays by converting its energy into a magnetic field a cause of the chiral plasma instability. Hence the B-field can be derived from energy conservation: e− en- ergy density from the chiral asymmetry, equals to the B-field pressure ∆E = 1 4π2 (µ4 5 + 6µ2 5µ2 ) ≡ 1 2 ∆B2 inst , (31) which leads to Bmax ∼ Λ2 ∼ 1018 G! Meanwhile, magnetic helicity, which is a MHD invari- ant, guarantees that d dt N5 + α π H = 0, N5 = n5dx , (32) with N5 the global chiral charge of electrons, and H is the magnetic helicity, which can be computed as: ∆H = −π α ∆N5 ∼ − 1 α VNSΛ3 , with V = 4π 3 R3 core the volume of the NS core. Such large helicity ensures for long the stability of the super strong (P-NS core) magnetic field. Conclusion.— At the phase transition interface, mag- netic fields this high surely drive the P-NS to collapse to form a CBH, triggering a sort of second SN: a giant explosion inside a SN. The signature of this vacuum ex- plosion in the light curve of the host SN can be similar to that from r-process heavy n-rech nuclei decay due to the P-NS crust abundance of neutrons, which is blown off after the CBH formation. This should produce a late time bump or re-brightening in the light curve of the host already expanding SN. This picture may find proper realization in many astrophysical contexts, especially in models of gamma-ray bursts (GRBs), including binary system-driven GRBs, in which the very central engine has to be (at least) a Reissner-Nordstrom black hole, which can then afford vacuum polarization and `a la Schwinger pair creation and the full relativistic hydrodynamics and light curve evolution characterizing GRBs. CAPES/ICRANet Program support is acknowledged for the Sabbatical Fellowship 0153-14-1 (2014) ∗ Electronic address: herman@icra.it [1] R. Ruffini, L. Vitagliano, Int. J. Mod. Phys. D 12, 121 (2003); C. Cherubini, R. Ruffini, L. Vitagliano, Phys. Lett. B 545, 226 (2002); R. Ruffini, L. Vitagliano, S.-S Xue, Phys. Lett. B 559, 12 (2003) [2] H. Euler, B. Kochel, Naturwissenchaften 23, 246 (1935); H. Euler, Ann. Phys. Lpz. 5, 398 (1936); W. Heisen- berg, H. Euler, Z. Phys. 98, 714 (1936); V. Weisskopf, Kong. Dans. Videns. Selskab, Math-fys. Meddeltser 14, 6 (1936); V. F. Weisskopf, “On the Self-energy and the Electromagnetic Field of the Electron”, Phys. Rev. 56, 72-85 (1939). See also the complete review by G. V. Dunne, Int. J. Mod. Phys. A 27, 1260004 (2012) and refs. thereof; G. V. Dunne, Int. J. Mod. Phys. Conf. Ser. 14, 42-56 (2012); arXiv:1202.1557 [hep-th]; R Battesti, C Rizzo. (2013), “Magnetic and electric properties of a quantum vacuum”, Rep. Prog. Phys. 76:1, 016401 (2013) [3] M. Born, Nature (London) 132, 282 (1933); Proc. R. Soc. A 143, 410 (1934). M. Born, L. Infeld, Nature (London) 132, 970 (1933); Proc. R. Soc. A 144, 425 (1934). J. Schwinger, Phys. Rev. 82, 664 (1951) [4] J.F. Plebanski, “Lectures on nonlinear electrodynamics”. Monograph of the Niels Bohr Institute (Nordita, Copen- hagen 1968) [5] H. J. Mosquera Cuesta, G. Lambiase, JCAP 1103, 033 (2011); C. Corda, H.J. Mosquera Cuesta, Astropart. Phys. 34, 587 (2011); H.J. Mosquera Cuesta, J.M. Salim, M. Novello, arXiv:0710.5188 [astro-ph].; H.J. Mosquera Cuesta, G. Lambiase, Phys. Rev. D 80, 023013 (20009); H.J. Mosquera Cuesta and J.M. Salim, MNRAS 354, L55 (2004; H.J. Mosquera Cuesta and J.M. Salim, ApJ 608, 925 (2004); H.J. Mosquera Cuesta, J.A. de Fre- itas Pacheco and J.M. Salim, IJMP A21, 43 (2006); J- P. Mbelek, H.J. Mosquera Cuesta, M. Novello and J.M. Salim, Eur. Phys. Letts. 77, 19001 (2007); J.P. Mbelek, H.J. Mosquera Cuesta, MNRAS 389, 199 (2008) [6] D. H. Delphenich,“Nonlinear optical analogies in quan- tum electrodynamics”, arXiv: hep-th/0610088 (2006) [7] M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006). J. Lundin, G. Brodin, M. Marklund, Phys. of Plasmas 13, 102102 (2006). E. Lundstrom, etal. Phys. Rev. Lett. 96, 083602 (2006); T. Heinzl, “Strong-field QED, high-power lasers”, Int.J.Mod.Phys. A27,15 (2012) [8] A. Ohnishi, N. Yamamoto, “Magnetars and chiral plasma instability”, arXiv: 1402.4760 v1 (2014). See theory of chiral plasma instabilities in Y. Akamatsu, N. Ya- mamoto, Phys. Rev. Lett. 111, 052002 (2013) [9] R. Ruffini, S-S. Xue, Phys. Lett. A 377, 2450 (2013) [10] Thomas Gold, Nature 218, 731 (1968); P. Goldreich, W. H. Julian, “Pulsar Electrodynamics”, Astrophys. J. 157, 869 (1969); Y. B. Zeldovich, I. D. Novikov, “Stars and Relativity” (University of Chicago Press, Chicago 1971); S. L. Shapiro, S. A. Teukolsky, “Black holes, white dwarfs and neutron stars: The physics of compact objects” (Wi- ley & Sons Inc., New York 1985); N.K. Glendenning, “Compact stars: Nuclear physics, particle physics and general relativity” (Springer, New York 1997); and T. Padmanabhan, “Theoretical astrophysics, Vol. II” (Cam- bridge University Press, Cambridge, England 2001) [11] A. Dupays, C. Rizzo, D. Bakalov, and G. F. Bignami, Eur. Phys. Lett. 82, 69002 (2008)
  • 6. 6 [12] P. C. W. Davies, J. Opt. B 7, S40-S46 (2005) [13] J. Hadamard, “Le¸cons sur la propagation des ondes et les equations de l’Hydrodynamique” (Hermann, Paris 1903) [14] M. Novello, J. M. Salim and A.N. Ara´ujo, Phys. Rev. D 85, 023528 (2012); M. Novello, S.E. P´erez Bergliaffa, J.M. Salim, Phys. Rev. D 69, 127301 (2004); V.A. De Lorenci et al., Phys. Rev. D 65, 063501 (2002); V.A. De Lorenci et al., Phys. Lett. B 482:134-140 (2000). [15] J. M. Lattimer, M. Prakash, “The Physics of Neutron Stars”, Science 304, 5670, 536-542 (2004); J. M. Lat- timer, Ann. Rev. Nucl. Part. Sc. 62, 485-515 (2012); A. K. Harding, D. Lai, Rept. Prog. Phys. 69, 2631 (2006). A. P´erez Mart´ınez, H. P´erez Rojas, H. J. Mosquera Cuesta, Eur. Phys. J. C 29, 111123 (2003) [16] I.N. Mishustin, M. Hanauske, A. Bhattacharyya, L. M. Satarov, H. Stoecker, W. Greiner, Phys. Lett. B 552, 1 (2003); G. F. Marranghello, T. Regimbau, J. A. de Fre- itas Pacheco, Int. J. Mod. Phys. D 16, 313-318 (2007); G. F. Marranghello, C. A. Z. Vasconcellos, J. A. de Freitas Pacheco, Phys. Rev. D 66, 064027 (2002) [17] J. Schaffner-Bielich, Nucl. Phys. A 804, 309-321 (2008) [18] G. F. Marranghello, C. A. Z. Vasconcellos, M. Dillig, J. A. de Freitas Pacheco, Int. J. Mod. Phys. B 17, 5191 (2003); C. A. Z. Vasconcellos, R. O. Gomes, V. Dex- heimer, et al., e-print arXiv:1402.5624 v1 [astro-ph.SR] (2014). A. R. Taurines, C. A. Z. Vasconcellos, M. Mal- heiro, M. Chiapparini, Phys. Rev. C 63, 065801 (2001) [19] G. E. Brown, H. A. Bethe, Astrophys. J. 423, 659 (1994) [20] H. Heiselberg, M. Hjorth-Jensen, Phys. Rept. 328, 237 (2000), Pag.327 [21] R. Ruffini, L. Vitagliano, S.-S Xue, Phys. Lett. B 573, 33 (2003), and Refs. therein [22] R. Belvedere, D. Pugliese, J.A. Rueda, etal., Nucl. Phys. A883, 1 (2012); R. Belvedere, K. Boshkayev, J.A. Rueda, R. Ruffini, Nucl. Phys. A921, 33 (2014) [23] C. Corda, H. J. Mosquera Cuesta, Mod. Phys. Lett. A 25, 28, 2423 (2010) [24] A. Sommerfeld, “Electrodynamics” (Academic Press, New York 1952); J. D. Jackson, Classical Electrodynam- ics, Chap. 5, pag.168 (Wiley & Sons Inc., New York 1975); L.D. Landau, E.M. Lifshitz, “Electrodynamics of continuous media” (Pergamon, New York 1963); W. Greiner, “Classical Electrodynamics” (Springer, 1st Edi- tion 1998); L. D. Landau, E. M. Lifshitz, “The classical theory of fields” (Pergamon, New York 1970) [25] J. P. Pereira, H. J. Mosquera Cuesta, J. A. Rueda, R. Ruffini, Physics Letters B (2014) http://dx.doi.org/10.1016/j.physletb.2014.04.047 [26] T. Damour, R. Ruffini, Phys. Rev. Lett. 35, 463 (1975) [27] C. Cherubini, A. Geralico, J. A. Rueda, R. Ruffini, Phys. Rev. D 79, 124002 (2009) [28] P. Kaaret, Z. Prieskorn, J. J. M. in ’t Zand, et al., As- trophys. J. 657, L97 (2007) [29] S. Moiseenko, G. Bisnovagti-Kogan, talk at Zeldovich 100th Aniversary Meeting, Minsk, Bielorus (2014) [30] D. M. Siegel, R. Ciolfi, L. Rezzolla, “Magnetically driven winds from differentially rotating neutron stars and ...” e-print: arXiv:1401.4544 v2 (2014) [31] With regard to this tantalizing issue, in an earlier paper [Mosquera Cuesta etal., Phys. Rev. D67 (2003) 087702] a mechanism inspired in brane-world physics was intro- duced which allows for mass disappearance (electrons, rather that protons, leaking) from the brane to the bulk producing an asymmetry in an otherwise endlessly global neutral (+ , -) charge distribution lying on the brane, e.g. a star. As a result, an astrophysical charged black hole may come out by end of a supernova (SN) gravitational core collapse. This mass leaking mechanism might have also been at work during the very early universe driving a matter-antimatter primordial asymmetry. [32] These authors conceded not having identified what mech- anism helps to enlarge the NS magnetic helicity, though they stress that the original B-field gives a positive feed- back to itself, to grow exponentially, being this last the actual chiral plasma instability. In our understanding, this field nonlinear enlargement is a prove that NLED is doubtlessly at action inside just-born pulsars (see Eq.(4)). Besides, it is clear that an amplification of the B-field via magneto-differential rotation is concomitant with this chiral plasma instability.