Uso de redes neurais na
classificação de frutas
Romualdo André da Costa
Introdução
● Maiores produtores mundiais de frutas:
1)China
2)Índia
3)Brasil
Introdução
● Desperdício de 20% segundo a IBRAF.
● Segundo a FAO 1,3 bi de ton. de alimentos
são desperdiçados no mundo
Introdução
● Classificação das frutas
– Maturação, qualidade, variedade
● Substituir a classificação manual
– Fatores subj...
Seleção de tomates para processamento industrial
por meio de redes neurais aplicadas em sistema de
visão computacional (De...
● Matlab®
● 10 tomates de cada classificação
● Entrada: Cores no padrão La*b*
● L (brilho, preto até branco), a* (verde at...
Classificação de laranjas baseada em padrões
visuais (da Silva Simões, A. e Costa, A. H. R., 2003)
● Fatores de iluminação interferem
● RNA para determinar o vetor de cores
● Fuzzy C-means para criar a classificação
● Ace...
Application of neural networks to the color grading of
apples (Nakano, K., 1997)
● 9 características de cor da fruta
● RNA 1:
– pixel da imagem
● RNA 2:
– qualidade da fruta
● 5 categorias: AA, A, B, C, ...
Classification of three varieties of peach fruit using
artificial neural network assisted with image
processing techniques...
● Matlab®
● Características de cor e forma
● 70% treino, 20% validação e 10% teste
● Algoritmo de Levenberg-Marquardt e
fu...
Análise de Qualidade de Frutas por imagens
multiespectrais (Rodrigues, J. C., Lavoier Filho, J. M.
e de Castro Jorge, L. A...
● Java Advanced Image API (JAI)
● Waikato Environment Analysis (WEKA) para redes
neurais
● CIE La*b*
● Espectro R (vermelh...
Development of a Neural Network Classifier for Date
Fruit Varieties Using Some Physical Attributes
(Hobani, A. I., Thottam...
● A qualidade das tâmaras é melhor medida pela forma,
tamanho e cor
● Quantidade de água
● 100 de cada variedade
● 70% tre...
Neural Network Model for Predicting and Classifying Exotic
Tropical Fruits Based on Its Maturity and Ripeness (Purwadaria,...
● Para o durião:
– melhor rede foi com 10 camadas escondidas
5000 iterações e EQM 0.003.
– O acerto foi de 79% para frutas...
● Para o mangostão:
– 3 RNA
– frutas inteiras das defeituosas, maturidade e doçura
– 9 neurônios na camada escondida, 2500...
Próximos SlideShares
Carregando em…5
×

Uso de redes neurais na classificação de frutas

647 visualizações

Publicada em

Exemplos de uso das redes neurais artificiais para a classificação de frutas

Publicada em: Tecnologia
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
647
No SlideShare
0
A partir de incorporações
0
Número de incorporações
7
Ações
Compartilhamentos
0
Downloads
15
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Uso de redes neurais na classificação de frutas

  1. 1. Uso de redes neurais na classificação de frutas Romualdo André da Costa
  2. 2. Introdução ● Maiores produtores mundiais de frutas: 1)China 2)Índia 3)Brasil
  3. 3. Introdução ● Desperdício de 20% segundo a IBRAF. ● Segundo a FAO 1,3 bi de ton. de alimentos são desperdiçados no mundo
  4. 4. Introdução ● Classificação das frutas – Maturação, qualidade, variedade ● Substituir a classificação manual – Fatores subjetivos ● Técnicas destrutivas e não destrutivas ● Redes Neurais Artificiais em diversas topologias.
  5. 5. Seleção de tomates para processamento industrial por meio de redes neurais aplicadas em sistema de visão computacional (Denis, C. e Assis, W., 2007)
  6. 6. ● Matlab® ● 10 tomates de cada classificação ● Entrada: Cores no padrão La*b* ● L (brilho, preto até branco), a* (verde até vermelho) e b* (amarelo até azul) ● Camada interna: 5 neurônios ● Saída: pintando, colorido e vermelho ● 10000 épocas ● EQM: 1.52726x10-12
  7. 7. Classificação de laranjas baseada em padrões visuais (da Silva Simões, A. e Costa, A. H. R., 2003)
  8. 8. ● Fatores de iluminação interferem ● RNA para determinar o vetor de cores ● Fuzzy C-means para criar a classificação ● Acerto de 100% e rejeição de frutas fora do padrão. Classificação de laranjas baseada em padrões visuais (da Silva Simões, A. e Costa, A. H. R., 2003)
  9. 9. Application of neural networks to the color grading of apples (Nakano, K., 1997)
  10. 10. ● 9 características de cor da fruta ● RNA 1: – pixel da imagem ● RNA 2: – qualidade da fruta ● 5 categorias: AA, A, B, C, D ● A 33%, AA 92%, B 65%,C 87,2%,D 75% Application of neural networks to the color grading of apples (Nakano, K., 1997)
  11. 11. Classification of three varieties of peach fruit using artificial neural network assisted with image processing techniques (Alipasand, A., Ghaffari, H. e Alibeygl, S. Z.,2013)
  12. 12. ● Matlab® ● Características de cor e forma ● 70% treino, 20% validação e 10% teste ● Algoritmo de Levenberg-Marquardt e função de ativação tangente sigmoide ● 94,1% e 98,5% para frutas maduras e verdes Classification of three varieties of peach fruit using artificial neural network assisted with image processing techniques (Alipasand, A., Ghaffari, H. e Alibeygl, S. Z.,2013)
  13. 13. Análise de Qualidade de Frutas por imagens multiespectrais (Rodrigues, J. C., Lavoier Filho, J. M. e de Castro Jorge, L. A., 2013)
  14. 14. ● Java Advanced Image API (JAI) ● Waikato Environment Analysis (WEKA) para redes neurais ● CIE La*b* ● Espectro R (vermelho), G (verde) e IR (infravermelho) ● O uso de Infravermelho possibilitou medir a região com mais água e assim o grau de maturação da fruta Análise de Qualidade de Frutas por imagens multiespectrais (Rodrigues, J. C., Lavoier Filho, J. M. e de Castro Jorge, L. A., 2013)
  15. 15. Development of a Neural Network Classifier for Date Fruit Varieties Using Some Physical Attributes (Hobani, A. I., Thottam, A. M., & Ahmed, K. A., 2003)
  16. 16. ● A qualidade das tâmaras é melhor medida pela forma, tamanho e cor ● Quantidade de água ● 100 de cada variedade ● 70% treinamento e 30% teste ● NeuroSolutions ● RNA comparada com análise discriminantes linear no SPSS. ● 99,6% de acerto na RNA e 99,4% no SPSS. Development of a Neural Network Classifier for Date Fruit Varieties Using Some Physical Attributes (Hobani, A. I., Thottam, A. M., & Ahmed, K. A., 2003)
  17. 17. Neural Network Model for Predicting and Classifying Exotic Tropical Fruits Based on Its Maturity and Ripeness (Purwadaria, H. K., Budiastra, I. W., Rejo, A., & Nasution, D. A., 2011) Mangostão Durião
  18. 18. ● Para o durião: – melhor rede foi com 10 camadas escondidas 5000 iterações e EQM 0.003. – O acerto foi de 79% para frutas inteiras e 71% para defeituosas. – Exatidão 94% para a fruta parcialmente madura, 82% totalmente madura, 100% amadurecida e 60% muito amadurecida. Neural Network Model for Predicting and Classifying Exotic Tropical Fruits Based on Its Maturity and Ripeness (Purwadaria, H. K., Budiastra, I. W., Rejo, A., & Nasution, D. A., 2011)
  19. 19. ● Para o mangostão: – 3 RNA – frutas inteiras das defeituosas, maturidade e doçura – 9 neurônios na camada escondida, 25000 iterações, 80% frutas inteiras e 100% defeituosas. – 21 neurônios na camada escondida 100% para as classes 0, 1, 2 e 4 e 33,3% para classe 3. – 10 neurônios na camada escondida e EQM 0.003. Classe não doce 100%, muito doce 66,7% e doce 93.8%. Neural Network Model for Predicting and Classifying Exotic Tropical Fruits Based on Its Maturity and Ripeness (Purwadaria, H. K., Budiastra, I. W., Rejo, A., & Nasution, D. A., 2011)

×