Mef 110808224140-phpapp01

6.770 visualizações

Publicada em

2 comentários
3 gostaram
Estatísticas
Notas
Sem downloads
Visualizações
Visualizações totais
6.770
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
117
Comentários
2
Gostaram
3
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Mef 110808224140-phpapp01

  1. 1. Mecânica dos Fluidos Aula 1 – Definição de Mecânicados Fluidos, Sistema de Unidades Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  2. 2. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Apresentação do Curso e da Bibliografia. Definição de Mecânica dos Fluidos. Conceitos Fundamentais. Sistema de Unidades. Mecânica dos Fluidos
  3. 3. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesConteúdo do Curso Definição de Mecânica dos Fluidos, Conceitos Fundamentais e Sistema Internacional de Unidades Propriedades dos Fluidos, Massa Específica, Peso Específico e Peso Específico Relativo Estática dos Fluidos, Definição de Pressão Estática Teorema de Stevin e Princípio de Pascal Manômetros e Manometria Flutuação e Empuxo Cinemática dos Fluidos, Definição de Vazão Volumétrica, Vazão em Massa e Vazão em Peso Escoamento Laminar e Turbulento, Cálculo do Número de Reynolds Equação da Continuidade para Regime Permanente Equação da Energia para Fluido Ideal Equação da Energia na Presença de uma Máquina Equação da Energia para Fluido Real - Estudo da Perda de Carga Instalações de Recalque - Uma Entrada, Uma Saída Instalações de Recalque - Várias Entradas, Várias Saídas Curvas Características da Bomba e da Instalação Associação de Bombas Mecânica dos Fluidos
  4. 4. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesBibliografia BRUNETTI, Franco. Mecânica dos fluidos. São Paulo: Pearson, 2005. 410 p. WHITE, Frank M. Mecânica dos fluidos. 4. ed. Rio de janeiro: McGraw-Hill, c1999. 570 p. POTTER, Merle C.; WIGGERT, D. C.; HONDZO, Midhat. Mecânica dos fluidos. São Paulo: Pioneira Thomson Learning, 2004. 688 p. FOX, Robert W.; MCDONALD, Alan T. Introdução à mecânica dos fluidos. 4. ed. Rio de Janeiro: LTC - Livros Técnicos e Científicos, c1998. 662 p. Mecânica dos Fluidos
  5. 5. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDefinição de Mecânica dos Fluidos A mecânica dos fluidos é o ramo da mecânica que estuda o comportamento físico dos fluidos e suas propriedades. Os aspectos teóricos e práticos da mecânica dos fluidos são de fundamental importância para a solução de diversos problemas encontrados habitualmente na engenharia, sendo suas principais aplicações destinadas ao estudo de escoamentos de líquidos e gases, máquinas hidráulicas, aplicações de pneumática e hidráulica industrial, sistemas de ventilação e ar condicionado além de diversas aplicações na área de aerodinâmica voltada para a indústria aeroespacial. O estudo da mecânica dos fluidos é dividido basicamente em dois ramos, a estática dos fluidos e a dinâmica dos fluidos. A estática dos fluidos trata das propriedades e leis físicas que regem o comportamento dos fluidos livre da ação de forças externas, ou seja, nesta situação o fluido se encontra em repouso ou então com deslocamento em velocidade constante, já a dinâmica dos fluidos é responsável pelo estudo e comportamento dos fluidos em regime de movimento acelerado no qual se faz presente a ação de forças externas responsáveis pelo transporte de massa. Dessa forma, pode-se perceber que o estudo da mecânica dos fluidos está relacionado a muitos processos industriais presentes na engenharia e sua compreensão representa um dos pontos fundamentais para a solução de problemas geralmente encontrados nos processos industriais. Mecânica dos Fluidos
  6. 6. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDefinição de Fluido Um fluido é caracterizado como uma substância que se deforma continuamente quando submetida a uma tensão de cisalhamento, não importando o quão pequena possa ser essa tensão. Os fluidos incluem os líquidos, os gases, os plasmas e, de certa maneira, os sólidos plásticos. A principal característica dos fluidos está relacionada a propriedade de não resistir a deformação e apresentam a capacidade de fluir, ou seja, possuem a habilidade de tomar a forma de seus recipientes. Esta propriedade é proveniente da sua incapacidade de suportar uma tensão de cisalhamento em equilíbrio estático. Os fluidos podem ser classificados como: Fluido Newtoniano ou Fluido Não Newtoniano. Esta classificação está associada à caracterização da tensão, como linear ou não-linear no que diz respeito à dependência desta tensão com relação à deformação e à sua derivada. Mecânica dos Fluidos
  7. 7. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDivisão dos Fluidos Os fluidos também são divididos em líquidos e gases, os líquidos formam uma superfície livre, isto é, quando em repouso apresentam uma superfície estacionária não determinada pelo recipiente que contém o líquido. Os gases apresentam a propriedade de se expandirem livremente quando não confinados (ou contidos) por um recipiente, não formando portanto uma superfície livre.A superfície livre característica dos líquidos é uma propriedade da presença de tensão interna e atração/repulsão entre as moléculas do fluido, bem como da relação entre as tensões internas do líquido com o fluido ou sólido que o limita. Um fluido que apresenta resistência à redução de volume próprio é denominado fluido incompressível, enquanto o fluido que responde com uma redução de seu volume próprio ao ser submetido a ação de uma força é denominado fluido compressível. Mecânica dos Fluidos
  8. 8. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesUnidades de Medida Antes de iniciar o estudo de qualquer disciplina técnica, é importante entender alguns conceitos básicos e fundamentais. Percebe-se que muitos alunos acabam não avançando nos estudos, e por isso não aprendem direito a disciplina em estudo, por não terem contato com estes conceitos. Nesta primeira aula serão estudadas as unidades e a importância do Sistema Internacional de Unidades (SI). No nosso dia-a-dia expressamos quantidades ou grandezas em termos de outras unidades que nos servem de padrão. Um bom exemplo é quando vamos à padaria e compramos 2 litros de leite ou 400g de queijo. Na Física é de extrema importância a utilização correta das unidades de medida. Existe mais de uma unidade para a mesma grandeza, por exemplo, 1metro é o mesmo que 100 centímetros ou 0,001 quilômetro. Em alguns países é mais comum a utilização de graus Fahrenheit (°F) ao invés de graus Celsius (°C) como no Brasil. Isso porque, como não existia um padrão para as unidades, cada pesquisador ou profissional utilizava o padrão que considerava melhor. Mecânica dos Fluidos
  9. 9. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSistema Internacional de Unidades Como diferentes pesquisadores utilizavam unidades de medida diferentes, existia um grande problema nas comunicações internacionais. Como poderia haver um acordo quando não se falava a mesma língua? Para resolver este problema, a Conferência Geral de Pesos e Medidas (CGPM) criou o Sistema Internacional de Unidades (SI). O Sistema Internacional de Unidades (SI) é um conjunto de definições, ou sistema de unidades, que tem como objetivo uniformizar as medições. Na 14ª CGPM foi acordado que no Sistema Internacional teríamos apenas uma unidade para cada grandeza. No Sistema Internacional de Unidades (SI) existem sete unidades básicas que podem ser utilizadas para derivar todas as outras. Mecânica dos Fluidos
  10. 10. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesUnidades Básicas do Sistema Internacional (SI) Grandeza Nome Símbolo Comprimento metro m Massa quilograma kg Tempo segundo s Intensidade de corrente elétrica ampère A Temperatura termodinâmica kelvin K Quantidade de substância mole mol Intensidade luminosa candela cd Mecânica dos Fluidos
  11. 11. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesResumo das Unidades Básicas Unidade de comprimento - O metro é o comprimento do trajeto percorrido pela luz no vácuo, durante um intervalo de 1 / 299 792 458 do segundo. Unidade de massa - O quilograma é a unidade de massa; é igual à massa do protótipo internacional do quilograma. Unidade de tempo - O segundo é a duração de 9 192 631 770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133. Unidade de intensidade de corrente elétrica - O ampere é a intensidade de uma corrente constante que, mantida em dois condutores paralelos, retilíneos, de comprimento infinito, de seção circular desprezível e colocados à distância de 1 metro um do outro no vácuo, produziria entre estes condutores uma força igual a 2 x 10-7 newton por metro de comprimento. Unidade de temperatura termodinâmica - O kelvin, unidade de temperatura termodinâmica, é a fração 1/273,16 da temperatura termodinâmica do ponto triplo da água. Unidade de quantidade de matéria - O mole é a quantidade de matéria de um sistema contendo tantas entidades elementares quantos os átomos que existem em 0,012 quilograma de carbono 12. Quando se utiliza o mole, as entidades elementares devem ser especificadas e podem ser átomos, moléculas, íons, elétrons, outras partículas ou agrupamentos especificados de tais partículas. Unidade de intensidade luminosa - A candela é a intensidade luminosa, numa dada direção, de uma fonte que emite uma radiação monocromática de freqüência 540x1012 hertz e cuja intensidade energética nessa direção é 1 / 683 watt por esterorradiano. Mecânica dos Fluidos
  12. 12. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesUnidades Suplementares (Ângulos) Unidade de ângulo plano - O radiano (rad) é o ângulo plano compreendido entre dois raios de um círculo que, sobre a circunferência deste círculo, interceptam um arco cujo comprimento é igual ao do raio. Unidade de ângulo sólido - O esterorradiano (sr) é o ângulo sólido que, tendo seu vértice no centro de uma esfera, intercepta sobre a superfície desta esfera um área igual a de um quadrado que tem por lado o raio da esfera. Grandeza Nome Símbolo Unidades do SI Ângulo plano radiano rad m.m-1 = 1 Ângulo sólido esterorradiano sr m2.m-2 = 1 Mecânica dos Fluidos
  13. 13. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesUnidades Derivadas do (SI) As unidades derivadas do SI são definidas de forma que sejam coerentes com as unidades básicas e suplementares, ou seja, são definidas por expressões algébricas sob a forma de produtos de potências das unidades básicas do SI e/ou suplementares, com um fator numérico igual a 1. Várias unidades derivadas no SI são expressas diretamente a partir das unidades básicas e suplementares, enquanto que outras recebem uma denominação especial (Nome) e um símbolo particular. Se uma dada unidade derivada no SI puder ser expressa de várias formas equivalentes utilizando, quer nomes de unidades básicas/suplementares, quer nomes especiais de outras unidades derivadas SI, admite-se o emprego preferencial de certas combinações ou de certos nomes especiais, com a finalidade de facilitar a distinção entre grandezas que tenham as mesmas dimensões. Por exemplo, o hertz é preferível em lugar do segundo elevado á potência menos um; para o momento de uma força, o newton.metro tem preferência sobre o joule. Mecânica dos Fluidos
  14. 14. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTabela de Unidades Derivadas Grandeza Nome Símbolo Superfície metro quadrado m2 Volume metro cúbico m3 Velocidade metro por segundo m/s Aceleração metro por segundo ao quadrado m/s2 Número de ondas metro á potencia menos um m-1 massa específica quilograma por metro cúbico kg/m3 Velocidade angular radiano por segundo rad/s Aceleração angular radiano por segundo ao quadrado rad/s2 Mecânica dos Fluidos
  15. 15. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesResumo das Unidades Derivadas Unidade de velocidade - Um metro por segundo (m/s ou m s-1) é a velocidade de um corpo que, com movimento uniforme, percorre, o comprimento de um metro em 1 segundo. Unidade de aceleração - Um metro por segundo quadrado (m/s2 ou m s-2) é a aceleração de um corpo, animado de movimento uniformemente variado, cuja velocidade varia, a cada segundo, de 1 m/s. Unidade de número de ondas - Um metro á potência menos um (m-1) é o número de ondas de uma radiação monocromática cujo comprimento de onda é igual a 1 metro. Unidade de velocidade angular - Um radiano por segundo (rad/s ou rad s-1) é a velocidade de um corpo que, com uma rotação uniforme ao redor de um eixo fixo, gira em 1 segundo, 1 radiano. Unidade de aceleração angular - Um radiano por segundo quadrado (rad/s2 ou rad s-2) é a aceleração angular de um corpo animado de uma rotação uniformemente variada, ao redor de um eixo fixo, cuja velocidade angular, varia de 1 radiano por segundo,em 1 segundo. Mecânica dos Fluidos
  16. 16. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesUnidades Derivadas com Nomes e SímbolosEspeciais Grandeza Nome Símbolo Expressão em Expressão em outras unidades SI unidades básicas SI Freqüência hertz Hz s-1 Força newton N m kg s-2 Pressão pascal Pa N m-2 m-1 kg s-2 Energia, trabalho, joule J Nm m2 kg s-2 Quantidade de calor Potência watt W J s-1 m2 kg s-3 Quantidade de eletricidade coulomb C sA carga elétrica Potencial elétrico volt V W A-1 m2 kg s-3 A-1 força eletromotriz Resistência elétrica ohm Ω V A-1 m2 kg s-3 A-2 Capacitância elétrica farad F C V-1 m-2 kg-1 s4 A2 Fluxo magnético weber Wb Vs m2 kg s-2 A-1 Indução magnética tesla T Wb m2 kg s-2 A1 Indutância henry H Wb A-1 m2 kg s-2 A-2 Mecânica dos Fluidos
  17. 17. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesResumo das Unidades Unidade de freqüência - Um hertz (Hz) é a freqüência de um fenômeno periódico cujo período é de 1 segundo. Unidade de intensidade de força - Um newton (N) é a intensidade de uma força que, aplicada a um corpo que tem uma massa de 1 quilograma, lhe comunica uma aceleração de 1 metro por segundo quadrado. Unidade de pressão - Um pascal (Pa) é a pressão uniforme que, exercida sobre uma superfície plana de área 1 metro quadrado, aplica perpendicularmente a esta superfície uma força total de intensidade 1 newton. Unidade de Energia, trabalho, Quantidade de calor - Um joule (J) é o trabalho realizado por uma força de intensidade 1 newton, cujo ponto de aplicação se desloca de 1 metro na direção da força. Unidade de potência, fluxo radiante - Um watt (W) é a potência que dá lugar a uma produção de Energia igual a 1 joule por segundo. Unidade de Quantidade de carga elétrica - Um coulomb (C) é a quantidade de carga transportada em 1 segundo por uma corrente elétrica de intensidade igual a 1 ampère. Unidade de potencial elétrico, força eletromotriz - Um volt (V) é a diferencia de potencial elétrico que existe entre dois pontos de um condutor elétrico que transporta uma corrente de intensidade constante de 1 ampère quando a potencia dissipada entre estes pontos é igual a 1 watt. Unidade de resistência elétrica - Um ohm (W) é a resistência elétrica que existe entre dois pontos de um condutor quando uma diferença de potencial constante de 1 volt aplicada entre estes dois pontos produz, nesse condutor, uma corrente de intensidade 1 ampère. (não há força eletromotriz no condutor). Mecânica dos Fluidos
  18. 18. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesResumo das Unidades Unidade de capacitância elétrica - Um farad (F) é a capacitância de um capacitor elétrico que entre suas armaduras aparece uma diferença de potencial elétrico de 1 volt, quando armazena uma quantidade de carga igual a 1 coulomb. Unidade de fluxo magnético - Um weber (Wb) é o fluxo magnético que, ao atravessar um circuito de uma só espira produz na mesma uma força eletromotriz de 1 volt, quando se anula esse fluxo em um segundo por decaimento uniforme. Unidade de indução magnética - Um tesla (T) é a indução magnética uniforme que, distribuída normalmente sobre una superfície de área 1 metro quadrado, produz através desta superfície um fluxo magnético total de 1 weber. Unidade de indutância - Um henry (H) é a indutância elétrica de um circuito fechado no qual se produz uma força eletromotriz de 1 volt, quando a corrente elétrica que percorre o circuito varia uniformemente á razão de um ampère por segundo. Mecânica dos Fluidos
  19. 19. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesUnidades Derivadas Usando Aquelas que temNomes Especiais no (SI) Grandeza Nome Símbolo Expressão em unidades básicas SI Viscosidade dinâmica pascal segundo Pa s m-1 kg s-1 Entropia joule por kelvin J/K m2 kg s-2 K-1 Capacidade térmica específica joule por quilograma. kelvin J/(kg K) m2 s-2 K-1 Condutividade térmica watt por metro kelvin W/(m K) m kg s-3 K-1 Intensidade de campo elétrico volt por metro V/m m kg s-3 A-1 Mecânica dos Fluidos
  20. 20. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesResumo das Unidades Unidade de viscosidade dinâmica - Um pascal segundo (Pa s) é a viscosidade dinâmica de um fluido homogêneo, no qual, o movimento retilíneo e uniforme de uma superfície plana de 1 metro quadrado, da lugar a uma força resistente de intensidade 1 newton, quando há uma diferença de velocidade de 1 metro por segundo entre dois planos paralelos separados por 1 metro de distância. Unidade de entropia - Um joule por kelvin (J/K) é o aumento de entropia de um sistema que recebe uma quantidade de calor de 1 joule, na temperatura termodinâmica constante de 1 kelvin, sempre que no sistema no tenha lugar nenhuma transformação irreversível. Unidade de capacidade térmica específica (calor específico) - Um joule por quilograma kelvin (J/(kg K) é a capacidade térmica específica de um corpo homogêneo com massa de 1 quilograma, no qual a adição de uma quantidade de calor de um joule, produz uma elevação de temperatura termodinâmica de 1 kelvin. Unidade de condutividade térmica - Um watt por metro kelvin (W/ m.K) é a condutividade térmica de um corpo homogêneo isótropo, no qual uma diferença de temperatura de 1 kelvin entre dois planos paralelos, de área 1 metro quadrado e distantes 1 metro, produz entre estes planos um fluxo térmico de 1 watt. Unidade de intensidade de campo elétrico - Um volt por metro (V/m) é a intensidade de um campo elétrico, que aplica uma força de intensidade 1 newton sobre um corpo eletrizado com quantidade de carga de 1 coulomb. Mecânica dos Fluidos
  21. 21. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPrefixos no Sistema Internacional Fator Nome Símbolo Fator Nome Símbolo 1024 yotta Y 10-1 deci d 1021 zetta Z 10-2 centi c 1018 exa E 10-3 milli m 1015 peta P 10-6 micro 1012 tera T 10-9 nano n 109 giga G 10-12 pico p 106 mega M 10-15 femto f 103 quilo k 10-18 atto a 102 hecto h 10-21 zepto z 101 deka da 10-24 yocto y Mecânica dos Fluidos
  22. 22. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Tabela de Conversão de Unidades TABELA DE CONVERSÃO DE UNIDADES: COMPRIMENTO cm m km in ft mi1 centímetro (cm) 1 0,01 0,00001 0,3937 0,0328 0,0000062141 metro (m) 100 1 0,001 39,3 3,281 0,00062141 quilômetro (km) 100000 1000 1 39370 3281 0,62141 polegada (in) 2,54 0,0254 0,0000254 1 0,08333 0,000015781 pé (ft) 30,48 0,3048 3,048 12 1 0,00018941 milha terrestre (mi) 160900 1609 1,609 63360 5280 1 Mecânica dos Fluidos
  23. 23. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Tabela de Conversão de Unidades TABELA DE CONVERSÃO DE UNIDADES: MASSA g Kg slug u.m.a. onça lb ton1 grama (g) 1 0,001 0,00006852 6,024x1023 0,03527 0,002205 0,0000011021quilograma (Kg) 1000 1 0,06852 6,024x1026 35,27 2,205 0,0011021 slug 14590 14,59 1 8,789x1027 514,8 32,17 0,016091 u.m.a. 1,66x10-24 1,66x10-27 1,137x10-28 1 5,855x10-26 3,66x10-27 1,829x10-301 onça 28,35 0,02835 0,001943 1,708x1025 1 0,0625 0,000031251 libra (lb) 453,6 0,4536 0,03108 2,732x1026 16 1 0,00051 ton 907200 907,2 62,16 5,465x1029 32000 2000 1 Mecânica dos Fluidos
  24. 24. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Tabela de Conversão de Unidades TABELA DE CONVERSÃO DE UNIDADES: ÁREA m² cm² ft² in² 1 metro quadrado(m²) 1 10000 10,76 15501 centímetro quadrado(cm²) 0,0001 1 0,001076 0,1550 1 pé quadrado(ft²) 0,0929 929 1 144 1 polegada quadrada(in²) 0,0006452 6,452 0,006944 1 Mecânica dos Fluidos
  25. 25. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTabela de Conversão de Unidades TABELA DE CONVERSÃO DE UNIDADES: VOLUME m³ cm³ l ft³ in³1 metro cúbico(m³) 1 1000000 1000 35,31 61020 1 centímetro 0,000001 1 0,001 0,00003531 0,06102 cúbico(cm³) 1 litro(l) 0,001 1000 1 0,03531 61,02 1 pé cúbico(ft³) 0,02832 28320 28,32 1 1728 1 polegada 0,00001639 16,39 0,01639 0,0005787 1 cúbica(in³) Mecânica dos Fluidos
  26. 26. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTabela de Conversão de Unidades TABELA DE CONVERSÃO DE UNIDADES: VÁRIOS Comprimento 1m=3,281pés=39,37pol Área 1m²=10,76pés²=1.550pol² Volume 1m³=35,3pés³=1.000litros Volume 1galão(USA)=3,8litros 1galão(GB)=4,5 litros Massa 1kg=2,2 lb 1lb=0,45kg 1 onça=28,35g Pressão 1atm=1,033kgf/cm²=14,7lbf/pol²(PSI) Pressão 1bar=100kPa=1,02atm=29,5polHg Energia 1kWh=860kcal 1kcal=3,97Btu Energia 1kgm=9,8J 1Btu=0,252kcal Potência 1kW=102kgm/s=1,36HP=1,34BHP=3.413Btu/h Potência 1TR=3.024kcal/h=200Btu/min=12.000Btu/h Temperatura ºF=32+1,8.ºC K=273+ºC R=460+ºF Mecânica dos Fluidos
  27. 27. Aula 1 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Propriedades dos Fluidos. Massa Específica. Peso Específico. Peso Específico Relativo. Mecânica dos Fluidos
  28. 28. Mecânica dos FluidosAula 2 – Propriedades dos Fluidos Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  29. 29. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Propriedades dos Fluidos. Massa Específica. Peso Específico. Peso Específico Relativo. Mecânica dos Fluidos
  30. 30. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesAlfabeto Grego Mecânica dos Fluidos
  31. 31. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPropriedades dos Fluidos Algumas propriedades são fundamentais para a análise de um fluido e representam a base para o estudo da mecânica dos fluidos, essas propriedades são específicas para cada tipo de substância avaliada e são muito importantes para uma correta avaliação dos problemas comumente encontrados na indústria. Dentre essas propriedades podem-se citar: a massa específica, o peso específico e o peso específico relativo. Mecânica dos Fluidos
  32. 32. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesMassa Específica Representa a relação entre a massa de uma determinada substância e o volume ocupado por ela. A massa específica pode ser quantificada através da aplicação da equação a seguir. onde, ρ é a massa específica, m representa a massa da substância e V o volume por ela ocupado. No Sistema Internacional de Unidades (SI), a massa é quantificada em kg e o volume em m³, assim, a unidade de massa específica é kg/m³. m ρ= V Mecânica dos Fluidos
  33. 33. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPeso Específico É a relação entre o peso de um fluido e volume ocupado, seu valor pode ser obtido pela aplicação da equação a seguir W γ= V Como o peso é definido pelo princípio fundamental da dinâmica (2ª Lei de Newton) por , a equação pode ser reescrita do seguinte modo: m⋅g γ= V A partir da análise das equações é possível verificar que existe uma relação entre a massa específica de um fluido e o seu peso específico, e assim, pode-se escrever que: γ =ρ⋅g onde, γ é o peso específico do fluido, W é o peso do fluido e g representa a aceleração da gravidade, em unidades do (SI), o peso é dado em N, a aceleração da gravidade em m/s² e o peso específico em N/m³. Mecânica dos Fluidos
  34. 34. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPeso Específico Relativo Representa a relação entre o peso específico do fluido em estudo e o peso específico da água. Em condições de atmosfera padrão o peso específico da água é 10000N/m³, e como o peso específico relativo é a relação entre dois pesos específicos, o mesmo é um número adimensional, ou seja não contempla unidades. γ γr = γH O 2 Mecânica dos Fluidos
  35. 35. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTabela de Propriedades dos Fluidos Líquido Massa Específica - ρ (kg/m³) Peso Específico - γ (N/m³) Peso específico Relativo - γr Água 1000 10000 1 Água do mar 1025 10250 1,025 Benzeno 879 8790 0,879 Gasolina 720 7200 0,720 Mercúrio 13600 136000 13,6 Óleo lubrificante 880 8800 0,880 Petróleo bruto 850 8500 0,850 Querosene 820 8200 0,820 Etanol 789 7890 0,789 Acetona 791 7910 0,791 Mecânica dos Fluidos
  36. 36. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 1 1) Sabendo-se que 1500kg de massa de uma determinada substância ocupa um volume de 2m³, determine a massa específica, o peso específico e o peso específico relativo dessa substância. Dados: γH2O = 10000N/m³, g = 10m/s². Mecânica dos Fluidos
  37. 37. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSolução do Exercício 1Massa Específica: Peso Específico: Peso Específico Relativo: m γ = ρ⋅g γ ρ= γr = V γH 2O 1500 ρ= γ = 750 ⋅ 10 γr = 7500 2 10000 ρ = 750 kg/m³ γ = 7500 N/m³ γ r = 0,75 Mecânica dos Fluidos
  38. 38. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 2 2) Um reservatório cilíndrico possui diâmetro de base igual a 2m e altura de 4m, sabendo-se que o mesmo está totalmente preenchido com gasolina (ver propriedades na Tabela), determine a massa de gasolina presente no reservatório. Mecânica dos Fluidos
  39. 39. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSolução do Exercício 2 Volume do Reservatório π ⋅d2 π ⋅ 22 V = 12,56 m³ V = Ab ⋅ h V= ⋅h V= ⋅4 4 4Massa Específicaρ = 720 kg/m³ (obtido na tabela de propriedades dos fluidos) m ρ= m = ρ ⋅V m = 720 ⋅ 12,56 m = 9047 ,78kg V Mecânica dos Fluidos
  40. 40. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 1) A massa específica de uma determinada substância é igual a 740kg/m³, determine o volume ocupado por uma massa de 500kg dessa substância. Mecânica dos Fluidos
  41. 41. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 2) Sabe-se que 400kg de um líquido ocupa um reservatório com volume de 1500 litros, determine sua massa específica, seu peso específico e o peso específico relativo. Dados: γH2O = 10000N/m³, g = 10m/s², 1000 litros = 1m³. Mecânica dos Fluidos
  42. 42. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 3) Determine a massa de mercúrio presente em uma garrafa de 2 litros. (Ver propriedades do mercúrio na Tabela). Dados: g = 10m/s², 1000 litros = 1m³. Mecânica dos Fluidos
  43. 43. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 4) Um reservatório cúbico com 2m de aresta está completamente cheio de óleo lubrificante (ver propriedaes na Tabela). Determine a massa de óleo quando apenas ¾ do tanque estiver ocupado. Dados: γH2O = 10000N/m³, g = 10m/s². Mecânica dos Fluidos
  44. 44. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 5) Sabendo-se que o peso específico relativo de um determinado óleo é igual a 0,8, determine seu peso específico em N/m³. Dados: γH2O = 10000N/m³, g = 10m/s². Mecânica dos Fluidos
  45. 45. Aula 2 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Estática dos Fluidos. Definição de Pressão Estática. Unidades de Pressão. Conversão de Unidades de Pressão. Mecânica dos Fluidos
  46. 46. Mecânica dos FluidosAula 3 – Estática dos Fluidos, Definição de Pressão Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  47. 47. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Estática dos Fluidos. Definição de Pressão Estática. Unidades de Pressão. Conversão de Unidades de Pressão. Mecânica dos Fluidos
  48. 48. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesEstática dos Fluidos A estática dos fluidos é a ramificação da mecânica dos fluidos que estuda o comportamento de um fluido em uma condição de equilíbrio estático, ao longo dessa aula são apresentados os conceitos fundamentais para a quantificação e solução de problemas relacionados à pressão estática e escalas de pressão. Mecânica dos Fluidos
  49. 49. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDefinição de Pressão A pressão média aplicada sobre uma superfície pode ser definida pela relação entre a força aplicada e a área dessa superfície e pode ser numericamente calculada pela aplicação da equação a seguir. F P= A Mecânica dos Fluidos
  50. 50. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesUnidade de Pressão no Sistema Internacional Como a força aplicada é dada em Newtons [N] e a área em metro ao quadrado [m²], o resultado dimensional será o quociente entre essas duas unidades, portanto a unidade básica de pressão no sistema internacional de unidades (SI) é N/m² (Newton por metro ao quadrado). A unidade N/m² também é usualmente chamada de Pascal (Pa), portanto é muito comum na indústria se utilizar a unidade Pa e os seus múltiplos kPa (quilo pascal) e MPa (mega pascal). Desse modo, as seguintes relações são aplicáveis: 1N/m² = 1Pa 1kPa = 1000Pa = 10³Pa 1MPa = 1000000Pa = 106Pa Mecânica dos Fluidos
  51. 51. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesOutras Unidades de Pressão Na prática industrial, muitas outras unidades para a especificação da pressão também são utilizadas, essas unidades são comuns nos mostradores dos manômetros industriais e as mais comuns são: atm, mmHg, kgf/cm², bar, psi e mca. A especificação de cada uma dessas unidades está apresentada a seguir. atm (atmosfera) mmHg (milímetro de mercúrio) kgf/cm² (quilograma força por centímetro ao quadrado) bar (nomenclatura usual para pressão barométrica) psi (libra por polegada ao quadrado) mca (metro de coluna d’água) Mecânica dos Fluidos
  52. 52. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTabela de Conversão de Unidades de Pressão Dentre as unidades definidas de pressão, tem-se um destaque maior para a atm (atmosfera) que teoricamente representa a pressão necessária para se elevar em 760mm uma coluna de mercúrio, assim, a partir dessa definição, a seguinte tabela para a conversão entre unidades de pressão pode ser utilizada. 1atm = 760mmHg 1atm = 760mmHg = 101230Pa 1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm² 1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm² = 1,01bar 1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm² = 1,01bar = 14,7psi 1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm² = 1,01bar = 14,7psi = 10,33mca Mecânica dos Fluidos
  53. 53. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPressão Atmosférica e Barômetro de Torricelli Sabe-se que o ar atmosférico exerce uma pressão sobre tudo que existe na superfície da Terra. A medida dessa pressão foi realizada por um discípulo de Galileu chamado Evangelista Torricelli, em 1643. Para executar a medição, Torricelli tomou um tubo longo de vidro, fechado em uma das pontas, e encheu-o até a borda com mercúrio. Depois tampou a ponta aberta e, invertendo o tubo, mergulhou essa ponta em uma bacia com mercúrio. Soltando a ponta aberta notou que a coluna de mercúrio descia até um determinado nível e estacionava quando alcançava uma altura de cerca de 760 milímetros. Acima do mercúrio, Torricelli logo percebeu que havia vácuo e que o peso do mercúrio dentro do tubo estava em equilíbrio estático com a força que a pressão do ar exercia sobre a superfície livre de mercúrio na bacia, assim, definiu que a pressão atmosférica local era capaz de elevar uma coluna de mercúrio em 760mm, definindo desse modo a pressão atmosférica padrão. O mercúrio foi utilizado na experiência devido a sua elevada densidade, se o líquido fosse água, a coluna deveria ter mais de 10 metros de altura para haver equilíbrio, pois a água é cerca de 14 vezes mais leve que o mercúrio. Mecânica dos Fluidos
  54. 54. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesO Barômetro de Torricelli Dessa forma, Torricelli concluiu que essas variações mostravam que a pressão atmosférica podia variar e suas flutuações eram medidas pela variação na altura da coluna de mercúrio. Torricelli não apenas demonstrou a existência da pressão do ar, mas inventou o aparelho capaz de realizar sua medida, o barômetro como pode se observar na figura. Mecânica dos Fluidos
  55. 55. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 1 1) Uma placa circular com diâmetro igual a 0,5m possui um peso de 200N, determine em Pa a pressão exercida por essa placa quando a mesma estiver apoiada sobre o solo. Mecânica dos Fluidos
  56. 56. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSolução do Exercício 1Área da Placa: Determinação da Pressão: π ⋅d2 F A= P= A 4 200 π ⋅ 0,52 P= A= 0,19625 4A = 0,19625 m2 P = 1019,1 N/m2 P = 1019,1 Pa Mecânica dos Fluidos
  57. 57. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 2 2) Determine o peso em N de uma placa retangular de área igual a 2m² de forma a produzir uma pressão de 5000Pa. Mecânica dos Fluidos
  58. 58. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSolução do Exercício 2Cálculo do Peso: F P= A F = P⋅ A A Força calculada F = 10000 N corresponde ao pesoF = 5000⋅ 2 da placa Mecânica dos Fluidos
  59. 59. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 1) Uma caixa dágua de área de base 1,2m X 0.5 m e altura de 1 m pesa 1000N que pressão ela exerce sobre o solo? a) Quando estiver vazia b) Quando estiver cheia com água Dados: γH2O = 10000N/m³, g = 10m/s². Mecânica dos Fluidos
  60. 60. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 2) Uma placa circular com diâmetro igual a 1m possui um peso de 500N, determine em Pa a pressão exercida por essa placa quando a mesma estiver apoiada sobre o solo. Mecânica dos Fluidos
  61. 61. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 3) Converta as unidades de pressão para o sistema indicado. (utilize os fatores de conversão apresentados na tabela). a) converter 20psi em Pa. b) converter 3000mmHg em Pa. c) converter 200kPa em kgf/cm². d) converter 30kgf/cm² em psi. e) converter 5bar em Pa. f) converter 25mca em kgf/cm². g) converter 500mmHg em bar. h) converter 10psi em mmHg. i) converter 80000Pa em mca. j) converter 18mca em mmHg. Mecânica dos Fluidos
  62. 62. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 4) Converta as unidades de pressão para o sistema indicado. (utilize os fatores de conversão apresentados na tabela). a) converter 2atm em Pa. b) converter 3000mmHg em psi. c) converter 30psi em bar. d) converter 5mca em kgf/cm². e) converter 8bar em Pa. f) converter 10psi em Pa. Mecânica dos Fluidos
  63. 63. Aula 3 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Teorema de Stevin. Princípio de Pascal. Mecânica dos Fluidos
  64. 64. Mecânica dos FluidosAula 4 – Teorema de Stevin e Princípio de Pascal Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  65. 65. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Teorema de Stevin. Princípio de Pascal. Mecânica dos Fluidos
  66. 66. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTeorema de Stevin O teorema de Stevin também é conhecido por teorema fundamental da hidrostática e sua definição é de grande importância para a determinação da pressão atuante em qualquer ponto de uma coluna de líquido. O teorema de Stevin diz que “A diferença de pressão entre dois pontos de um fluido em repouso é igual ao produto do peso específico do fluido pela diferença de cota entre os dois pontos avaliados”, matematicamente essa relação pode ser escrita do seguinte modo: ∆P = γ ⋅ ∆h Mecânica dos Fluidos
  67. 67. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesAplicação do Teorema de Stevin Avaliando-se a figura, é possível observar que o teorema de Stevin permite a determinação da pressão atuante em qualquer ponto de um fluido em repouso e que a diferença de cotas ∆h é dada pela diferença entre a cota do ponto B e a cota do ponto A medidas a partir da superfície livre do líquido, assim, pode- se escrever que: ∆P = ρ ⋅ g ⋅ ∆h ∆P = PB − PA = ρ ⋅ g ⋅ ( h B − h A ) ∆h = h B − h A Mecânica dos Fluidos
  68. 68. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 1 1) Um reservatório aberto em sua superfície possui 8m de profundidade e contém água, determine a pressão hidrostática no fundo do mesmo. Dados: γH2O = 10000N/m³, g = 10m/s². Mecânica dos Fluidos
  69. 69. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSolução do Exercício 1Determinação da Pressão: P = ρ ⋅ g ⋅h P =γ ⋅h P = 10000⋅ 8 P = 80000 Pa Mecânica dos Fluidos
  70. 70. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPrincípio de Pascal O Principio de Pascal representa uma das mais significativas contribuições práticas para a mecânica dos fluidos no que tange a problemas que envolvem a transmissão e a ampliação de forças através da pressão aplicada a um fluido. O seu enunciado diz que: “quando um ponto de um líquido em equilíbrio sofre uma variação de pressão, todos os outros pontos também sofrem a mesma variação”. Mecânica dos Fluidos
  71. 71. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesAplicações do Princípio de Pascal Pascal, físico e matemático francês, descobriu que, ao se aplicar uma pressão em um ponto qualquer de um líquido em equilíbrio, essa pressão se transmite a todos os demais pontos do líquido, bem como às paredes do recipiente. Essa propriedade dos líquidos, expressa pela lei de Pascal, é utilizada em diversos dispositivos, tanto para amplificar forças como para transmiti- las de um ponto a outro. Um exemplo disso é a prensa hidráulica e os freios hidráulicos dos automóveis. Mecânica dos Fluidos
  72. 72. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesElevador Hidráulico Os elevadores para veículos automotores, utilizados em postos de serviço e oficinas, por exemplo, baseiam-se nos princípios da prensa hidráulica. Ela é constituída de dois cilindros de seções diferentes. Em cada um, desliza um pistão. Um tubo comunica ambos os cilindros desde a base. A prensa hidráulica permite equilibrar uma força muito grande a partir da aplicação de uma força pequena. Isso é possível porque as pressões sobre as duas superfícies são iguais (Pressão = Força / Área). Assim, a grande força resistente (F2) que age na superfície maior é equilibrada por uma pequena força motora (F1) aplicada sobre a superfície menor F1 F2 (F2/A2 = F1/A1) como pode se observar na = figura. A1 A2 Mecânica dos Fluidos
  73. 73. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 2 2) Na figura apresentada a seguir, os êmbolos A e B possuem áreas de 80cm² e 20cm² respectivamente. Despreze os pesos dos êmbolos e considere o sistema em equilíbrio estático. Sabendo-se que a massa do corpo colocado em A é igual a 100kg, determine a massa do corpo colocado em B. Mecânica dos Fluidos
  74. 74. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSolução do Exercício 2Força atuante em A: Força atuante em B: Massa em B: FA = mA ⋅ g FA FB FB = mB ⋅ g = AA AB FB FA = 100 ⋅ 10 1000 FB mB = = g 80 20 FA = 1000N 250 1000 ⋅ 20 mB = FB = 10 80 FB = 250 N mB = 25 kg Mecânica dos Fluidos
  75. 75. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 1) Qual a pressão, em kgf/cm2, no fundo de um reservatório que contém água, com 3m de profundidade? Faça o mesmo cálculo para um reservatório que contém gasolina (peso específico relativo = 0,72). Mecânica dos Fluidos
  76. 76. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 2) O nível de água contida em uma caixa d’água aberta à atmosfera se encontra 10m acima do nível de uma torneira, determine a pressão de saída da água na torneira. Dados: γH2O = 10000N/m³, g = 10m/s². Mecânica dos Fluidos
  77. 77. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 3) As áreas dos pistões do dispositivo hidráulico mostrado na figura mantêm a relação 50:2. Verifica-se que um peso P colocado sobre o pistão maior é equilibrado por uma força de 30N no pistão menor, sem que o nível de fluido nas duas colunas se altere. Aplicando-se o principio de Pascal determine o valor do peso P. Mecânica dos Fluidos
  78. 78. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 4) A prensa hidráulica mostrada na figura está em equilíbrio. Sabendo-se que os êmbolos possuem uma relação de áreas de 5:2, determine a intensidade da força F. Mecânica dos Fluidos
  79. 79. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 5) Na prensa hidráulica mostrada na figura, os diâmetros dos tubos 1 e 2 são, respectivamente, 4cm e 20cm. Sendo o peso do carro igual a 10000N, determine: a) a força que deve ser aplicada no tubo 1 para equilibrar o carro. b) o deslocamento do nível de óleo no tubo 1, quando o carro sobe 20cm. Mecânica dos Fluidos
  80. 80. Aula 4 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Manômetros. Manometria. Mecânica dos Fluidos
  81. 81. Mecânica dos Fluidos Aula 5 – Manômetros e Manometria Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  82. 82. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Manômetros. Manometria. Mecânica dos Fluidos
  83. 83. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDefinição de Manômetro O manômetro é o instrumento utilizado na mecânica dos fluidos para se efetuar a medição da pressão, no setor industrial existem diversos tipos e aplicações para os manômetros. Mecânica dos Fluidos
  84. 84. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTipos de Manômetros a) Manômetros utilitários: Recomendo para compressores de ar, equipamentos pneumáticos, linhas de ar, de gases, de líquidos e instalações em geral. b) Manômetros industriais: São manômetros de construção robusta, com mecanismo reforçado e recursos para ajuste. São aplicados como componentes de quase todos os tipos de equipamentos industriais. c) Manômetros herméticos ou com glicerina: São manômetros de construção robusta, com mecanismo reforçado e recursos para ajuste. Com a caixa estanque, pode ser enchida com líquido amortecedor (glicerina ou silicone). Adaptam-se especialmente às instalações submetidas a vibrações ou pulsações da linha quando preenchida com líquido amortecedor. d) Manômetros de aço inoxidável: São manômetros totalmente feitos de aço inoxidável, caixa estanque, à prova de tempo, para aplicações nas indústrias petroquímicas, papel e celulose, alimentares, nos produtos corrosivos, nas usinas e outras que exijam durabilidade, precisão e qualidade. e) Manômetros petroquímicos: São manômetros de processo em caixa de aço inoxidável, fenol, alumínio fundido e nylon, com componentes em aço inoxidável, estanque, a prova de tempo, para aplicação nas indústrias petroquímicas, químicas, alimentícias, equipamentos industriais e outras que exijam durabilidade, precisão e qualidade. Mecânica dos Fluidos
  85. 85. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTipos de Manômetros f) Manômetros de baixa pressão (mmca): São manômetros capsular de latão ou de aço inox, para medir pressões baixas, aplicadas nos equipamentos de respiração artificial, ventilação e ar condicionado, teste de vazamentos, queimadores, secadores, etc. Recomenda-se não operar diretamente com líquidos, pois estes alteram seu funcionamento. g) Manômetros de teste: Os manômetros de teste são aparelhos de precisão destinados a aferições e calibração de outros manômetros. Recomenda-se que o instrumento padrão seja pelo menos quatro vezes mais preciso que o instrumento em teste. h) Manômetros sanitários: Os manômetros com selo sanitário, são construídos totalmente de aço inoxidável para aplicações em indústrias alimentícias, químicas e farmacêuticas e nos locais onde se requerem facilidade de desmontagem para a limpeza e inspeção. A superfície plana da membrana corrugada de aço inoxidável evita a incrustação dos produtos. i) Manômetros de mostrador quadrado para painel: Os manômetros de mostrador quadrado são aparelhos especialmente concebidos para montagem embutida em painéis. j) Manômetros para freon: Os manômetros destinados especialmente à indústria de refrigeração, utilizam o Freon 11, 12, 13, 22, 114 e 502. Os mostradores desses manômetros possuem uma escala de equivalência em temperatura e pressão. Mecânica dos Fluidos
  86. 86. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTipos de Manômetros k) Manômetros para amônia (NH3): São manômetros totalmente de aço inoxidável ou partes em contato com o processo em aço inox para trabalhar com gás de amônia. Os mostradores desses manômetros possuem uma escala de equivalência em temperatura e pressão. l) Manômetros de dupla ação: São manômetros construídos especialmente para indicar as pressões no cilindro e no sistema de freios pneumáticos de locomotivas ou poderá ser usado para fins industriais. O manômetro compõe- se na realidade de dois sistemas independentes em que os eixos dos ponteiros são coaxiais para indicar duas pressões. m) Manômetros diferencial: O elemento elástico deste aparelho é composto de um conjunto de 2 foles ou tubo - bourdon em aço inoxidável, recebendo de um lado, a pressão alta, e do outro a baixa pressão. O deslocamento relativo do conjunto dos foles ou tubo - bourdon movimenta o mecanismo e o ponteiro indicará diretamente a pressão diferencial. n) Manômetros com contato elétrico: São projetados para serem adaptados aos manômetros para ligar, desligar, acionar alarmes ou manter a pressão dentro de uma faixa. o) Manômetros com selo de diafragma: Os selos de diafragma são utilizados nos manômetros para separar e proteger o instrumento de medição do processo. Aplicadas nas instalações em que o material do processo seja corrosivo, altamente viscoso, temperatura excessiva, material tóxico ou perigoso, materiais em suspensão, etc. p) Manômetros com transmissão mecânica: Os manômetros com transmissão mecânica (MEC) funcionam sem o tubo - bourdon, o elemento sensor é a própria membrana. Recomendado para trabalhar com substâncias pastosas, líquidas e gases, e nas temperaturas excessivas onde o fluído não entra em contato com o instrumento. As vantagens dos manômetros com transmissão mecânica em relação aos outros, incluem uma menor sensibilidade aos efeitos de choque e vibrações e os efeitos de temperaturas são reduzidos além de facilidade de manutenção. q) Manômetros digitais: Podem ser utilizados em sistemas de controle de processos, sistemas pneumáticos, sistemas hidráulicos, refrigeração, instrumentação, compressores, bombas, controle de vazão e medição de nível. r) Manômetro de mercúrio: Utilizado em diversos processos, sua principal característica é a utilização de fluidos manométricos como por exemplo mercúrio. Mecânica dos Fluidos
  87. 87. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDeterminação da Pressão Para se determinar a pressão do ponto A em função das várias alturas das colunas presentes na figura aplica-se o teorema de Stevin em cada um dos trechos preenchidos com o mesmo fluido. Ponto 3: P2 = P3 P2 = P3 = ρ1 ⋅ g ⋅ h1 + PA PA = P3 − ρ1 ⋅ g ⋅ h1 Ponto 4:Ponto 2: P4 = P3 − γ 2 ⋅ h2 P4 = P3 − ρ 2 ⋅ g ⋅ h2 P1 = PA P2 = γ 1 ⋅ h1 + PA P4 = ρ 1 ⋅ g ⋅ h1 + PA − ρ 2 ⋅ g ⋅ h2 P2 = ρ 1 ⋅ g ⋅ h1 + PA 0 = ρ 1 ⋅ g ⋅ h1 − ρ 2 ⋅ g ⋅ h2 + PA PA = P2 − ρ 1 ⋅ g ⋅ h1 PA = ρ 2 ⋅ g ⋅ h2 − ρ 1 ⋅ g ⋅ h1 Mecânica dos Fluidos
  88. 88. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 1 1) No manômetro diferencial mostrado na figura, o fluido A é água, B é óleo e o fluido manométrico é mercúrio. Sendo h1 = 25cm, h2 = 100cm, h3 = 80cm e h4 = 10cm, determine qual é a diferença de pressão entre os pontos A e B. Dados: γh20 = 10000N/m³, γHg = 136000N/m³, γóleo = 8000N/m³. água óleo mercúrio Mecânica dos Fluidos
  89. 89. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Solução do Exercício 1 água Ponto 3: óleo (1) P3 = P2 Mesmo fluido e nível (2) (3) P3 = PA + γ h 2 o ⋅ h1 + γ Hg ⋅ h2 mercúrio Diferença de pressão: PB = P3 − γ óleo ⋅ h3 Ponto 1:P1 = PA + γ h 2 o ⋅ h1 PB = PA + γ h 2 o ⋅ h1 + γ Hg ⋅ h2 − γ óleo ⋅ h3 Ponto 2: PB − PA = γ h 2 o ⋅ h1 + γ Hg ⋅ h2 − γ óleo ⋅ h3P2 = P1 + γ Hg ⋅ h2 PB − PA = 10000 ⋅ 0,25 + 136000 ⋅ 1 − 8000 ⋅ 0,8P2 = PA + γ h 2 o ⋅ h1 + γ Hg ⋅ h2 PB − PA = 132100 Pa Mecânica dos Fluidos
  90. 90. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 2 2) O tubo A da figura contém tetracloreto de carbono com peso específico relativo de 1,6 e o tanque B contém uma solução salina com peso específico relativo da 1,15. Determine a pressão do ar no tanque B sabendo-se que a pressão no tubo A é igual a 1,72bar. Mecânica dos Fluidos
  91. 91. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSolução do Exercício 2 Peso específico: Ponto 2: Tetracloreto: P2 = P1 Mesmo fluido e nível (5)(1) γ TC = γ rTC ⋅ γ h 2o P2 = 157991,68 Pa (2) γ TC = 1,6 ⋅ 10000 Ponto 3: (3) (4) γ TC = 16000N/m³ P3 = P2 + γ SS ⋅ 0,9 Solução Salina: P3 = 157991,68 + 11500 ⋅ 0,9 Pressão em A: γ SS = γ rSS ⋅ γ h 2 o P3 = 168341,68Pa 1,01bar = 101230Pa γ SS = 1,15 ⋅ 10000 Ponto 4: 1,72bar = PA γ SS = 11500 N/m³ P4 = P3 Mesmo fluido e nível Determinação da Pressão: P4 = 168341,68Pa 1,72 ⋅ 101230 Ponto 1: PA = Ponto 5: 1,01 P1 = PA − γ TC ⋅ 0,9 P5 = P4 − γ SS ⋅ 1,22 PA = 172391,68 Pa P1 = 172391,68 − 16000 ⋅ 0,9 P5 = 168341,68 − 11500 ⋅ 1,22 P1 = 157991,68Pa P5 = 154311,68 Pa Mecânica dos Fluidos
  92. 92. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 1) O manômetro em U mostrado na figura contém óleo, mercúrio e água. Utilizando os valores indicados, determine a diferença de pressões entre os pontos A e B. Dados: γh20 = 10000N/m³, γHg = 136000N/m³, γóleo = 8000N/m³. Mecânica dos Fluidos
  93. 93. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 2) A pressão da água numa torneira fechada (A) é de 0,28 kgf/cm2. Se a diferença de nível entre (A) e o fundo da caixa é de 2m, Calcular: a) a altura da água (H) na caixa. b) a pressão no ponto (B), situado 3m abaixo de (A). Mecânica dos Fluidos
  94. 94. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 3) Um manômetro diferencial de mercúrio (massa específica 13600kg/m3)é utilizado como indicador do nível de uma caixa dágua, conforme ilustra a figura abaixo. Qual o nível da água na caixa (hl) sabendo-se que h2 = 15m e h3 = 1,3m. Mecânica dos Fluidos
  95. 95. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 4) Qual o peso específico do líquido (B) do esquema abaixo: Mecânica dos Fluidos
  96. 96. Aula 5 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Solução de Exercícios - Manometria. Manômetros em U. Manômetros Diferenciais. Mecânica dos Fluidos
  97. 97. Mecânica dos Fluidos Aula 6 – Manômetros Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  98. 98. Aula 6 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Solução de Exercícios - Manometria. Manômetros em U. Manômetros Diferenciais. Mecânica dos Fluidos
  99. 99. Aula 6 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 1) Na figura abaixo, o tubo A contém óleo (γr = 0,80) e o tubo B, água. Calcular as pressões em A e em B. Mecânica dos Fluidos
  100. 100. Aula 6 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 2) A figura abaixo apresenta esquematicamente um manômetro diferencial. Pede-se a diferença de pressões entre os pontos A e B em Pascal, conhecendo-se os seguintes dados de peso específico relativo e alturas: Peso específico relativo: γr l = γr 5 = 1; γr 2 = 13,6; γr 3 = 0,8; γr 4 = 1,2. Alturas: z1 = 1,0 m; z2 = 2,0 m; z3 = 2,5 m; z4 = 5,0 m; z5 = 6,0 m. Mecânica dos Fluidos
  101. 101. Aula 6 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 3) Um tubo em “U”, cujas extremidades se abrem na atmosfera, está cheio de mercúrio na base. Num ramo, uma coluna d’água eleva-se 750mm acima do mercúrio, no outro, uma coluna de óleo (peso específico relativo = 0,80) tem 450mm acima do mercúrio. Qual a diferença de altura entre as superfícies livres de água e óleo? Mecânica dos Fluidos
  102. 102. Aula 6 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Flutuação e Empuxo. Mecânica dos Fluidos
  103. 103. Mecânica dos FluidosAula 7 – Flutuação e Empuxo Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  104. 104. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Flutuação e Empuxo. Solução de Exercícios. Mecânica dos Fluidos
  105. 105. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDefinição de Empuxo Quando se mergulha um corpo em um líquido, seu peso aparente diminui, chegando às vezes a parecer totalmente anulado (quando o corpo flutua). Esse fato se deve à existência de uma força vertical de baixo para cima, exercida no corpo pelo líquido, a qual recebe o nome de empuxo. O empuxo se deve à diferença das pressões exercidas pelo fluido nas superfícies inferior e superior do corpo. Sendo as forças aplicadas pelo fluido na parte inferior maiores que as exercidas na parte superior, a resultante dessas forças fornece uma força vertical de baixo para cima, que é o empuxo. Mecânica dos Fluidos
  106. 106. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPrincípio de Arquimedes A teoria para obtenção da força de empuxo está diretamente relacionada ao Princípio de Arquimedes que diz: “Todo corpo imerso, total ou parcialmente, num fluido em equilíbrio, dentro de um campo gravitacional, fica sob a ação de uma força vertical, com sentido ascendente, aplicada pelo fluido. Esta força é denominada empuxo (E), cuja intensidade é igual ao peso do líquido deslocado pelo corpo.” Mecânica dos Fluidos
  107. 107. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDemonstração do Princípio de Arquimedes O Princípio de Arquimedes permite calcular a força que um fluido (líquido ou gás) exerce sobre um sólido nele mergulhado. Para entender o Princípio de Arquimedes, imagine a seguinte situação: um copo totalmente cheio d’água e uma esfera de chumbo. Se colocarmos a esfera na superfície da água, ela vai afundar e provocar o extravasamento de uma certa quantidade de água. A força que a água exerce sobre a esfera terá direção vertical, sentido para cima e módulo igual ao do peso da água que foi deslocada como mostra a figura. Mecânica dos Fluidos
  108. 108. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExemplo de Aplicação Um exemplo clássico da aplicação do Princípio de Arquimedes são os movimentos de um submarino. Quando o mesmo estiver flutuando na superfície, o seu peso terá a mesma intensidade do empuxo recebido. Para que o submarino afunde, deve-se aumentar o seu peso, o que se consegue armazenando água em reservatórios adequados em seu interior. Controlando a quantidade de água em seus reservatórios, é possível ajustar o peso do submarino para o valor desejado, a figura mostra as duas situações acima citadas. Mecânica dos Fluidos
  109. 109. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesFlutuação do Submarino Para que o submarino volte a flutuar, a água deve ser expulsa de seus reservatórios para reduzir o peso do submarino e fazer com que o empuxo se torne maior que o peso. Mecânica dos Fluidos
  110. 110. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesFormulação Matemática do Empuxo Como citado, o Princípio de Aquimedes diz que o empuxo é igual ao peso do líquido deslocado, portanto, pode-se escrever que: E = WL E = mL ⋅ g Na equação apresentada, E representa o empuxo e mL a massa do líquido deslocado. Essa mesma equação pode ser reescrita utilizando-se considerações de massa específica, pois como visto anteriormente ρ = m V, portanto, m L = ρ L ⋅ VL , assim: E = ρ L ⋅ VL ⋅ g Nesta equação, ρL representa a massa específica do líquido e VL o volume de líquido deslocado. Pela análise realizada é possível perceber que o empuxo será tento maior quanto maior for o volume de líquido deslocado e quanto maior for a densidade deste líquido. E = ρ L ⋅ Vc ⋅ g P = ρ c ⋅ Vc ⋅ g Mecânica dos Fluidos
  111. 111. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesConsiderações sobre o Empuxo Três importantes considerações podem ser feitas com relação ao empuxo: a) se ρL < ρc, tem-se E < P e, neste caso, o corpo afundará no líquido. b) se ρL = ρc, tem-se E = P e, neste caso, o corpo ficará em equilíbrio quando estiver totalmente mergulhado no líquido. c) se ρL > ρc, tem-se E > P e, neste caso, o corpo permanecerá boiando na superfície do líquido. Dessa forma, é possível se determinar quando um sólido flutuará ou afundará em um líquido, simplesmente conhecendo o valor de sua massa específica. Mecânica dos Fluidos
  112. 112. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 1 1) Um objeto com massa de 10kg e volume de 0,002m³ está totalmente imerso dentro de um reservatório de água (ρH2O = 1000kg/m³), determine: a) Qual é o valor do peso do objeto? (utilize g = 10m/s²) b) Qual é a intensidade da força de empuxo que a água exerce sobre o objeto? c) Qual o valor do peso aparente do objeto quando imerso na água? Mecânica dos Fluidos
  113. 113. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesSolução do Exercício 1a) Peso do Corpo: c) Peso Aparente:Pc = m ⋅ g PA = Pc − EPc = 10 ⋅ 10 PA = 100 − 20Pc = 100N PA = 80 Nb) Empuxo:E = ρ ⋅ g ⋅ Vc EE = 1000 ⋅ 10 ⋅ 0,002E = 20 N Pc Mecânica dos Fluidos
  114. 114. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 1) Um bloco cúbico de madeira com peso específico γ = 6500N/m³, com 20 cm de aresta, flutua na água (ρH2O = 1000kg/m³). Determine a altura do cubo que permanece dentro da água. 2) Um bloco pesa 50N no ar e 40N na água. Determine a massa específica do material do bloco. Dados: ρH2O = 1000kg/m³ e g = 10m/s². 3) Um corpo com volume de 2,0m³ e massa 3000kg encontra-se totalmente imerso na água, cuja massa específica é (ρH2O = 1000kg/m³). Determine a força de empuxo sobre o corpo. Mecânica dos Fluidos
  115. 115. Aula 7 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Cinemática dos Fluidos. Definição de Vazão Volumétrica. Vazão em Massa e Vazão em Peso. Mecânica dos Fluidos
  116. 116. Mecânica dos Fluidos Aula 8 – Introdução aCinemática dos Fluidos Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  117. 117. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Cinemática dos Fluidos. Definição de Vazão Volumétrica. Vazão em Massa e Vazão em Peso. Mecânica dos Fluidos
  118. 118. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesDefinição A cinemática dos fluidos é a ramificação da mecânica dos fluidos que estuda o comportamento de um fluido em uma condição movimento. Mecânica dos Fluidos
  119. 119. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesVazão Volumétrica Em hidráulica ou em mecânica dos fluidos, define-se vazão como a relação entre o volume e o tempo. A vazão pode ser determinada a partir do escoamento de um fluido através de determinada seção transversal de um conduto livre (canal, rio ou tubulação aberta) ou de um conduto forçado (tubulação com pressão positiva ou negativa). Isto significa que a vazão representa a rapidez com a qual um volume escoa. As unidades de medida adotadas são geralmente o m³/s, m³/h, l/h ou o l/s. Mecânica dos Fluidos
  120. 120. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesCálculo da Vazão Volumétrica A forma mais simples para se calcular a vazão volumétrica é apresentada a seguir na equação mostrada. V Qv = t Qv representa a vazão volumétrica, V é o volume e t o intervalo de tempo para se encher o reservatório. Mecânica dos Fluidos
  121. 121. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesMétodo Experimental Um exemplo clássico para a medição de vazão é a realização do cálculo a partir do enchimento completo de um reservatório através da água que escoa por uma torneira aberta como mostra a figura. Considere que ao mesmo tempo em que a torneira é aberta um cronômetro é acionado. Supondo que o cronômetro foi desligado assim que o balde ficou completamente cheio marcando um tempo t, uma vez conhecido o volume V do balde e o tempo t para seu completo enchimento, a equação é facilmente aplicável resultando na vazão volumétrica desejada. V Qv = t Mecânica dos Fluidos
  122. 122. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesRelação entre Área e Velocidade Uma outra forma matemática de se determinar a vazão volumétrica é através do produto entre a área da seção transversal do conduto e a velocidade do escoamento neste conduto como pode ser observado na figura a seguir. Pela análise da figura, é possível observar que o volume do cilindro tracejado é dado por: V =d⋅A Substituindo essa equação na equação de vazão volumétrica, pode-se escrever que: d⋅A Qv = t A partir dos conceitos básicos de cinemática aplicados em Física, sabe-se que a relação d/t é a velocidade do escoamento, portanto, pode-se escrever a vazão volumétrica da seguinte forma: Qv = v ⋅ A Qv representa a vazão volumétrica, v é a velocidade do escoamento e A é a área da seção transversal da tubulação. Mecânica dos Fluidos
  123. 123. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesRelações Importantes 1m³=1000litros 1h=3600s 1min=60s Área da seção transversal circular: π ⋅d2 A= 4 π = 3,14 Mecânica dos Fluidos
  124. 124. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesVazão em Massa e em PesoDe modo análogo à definição da vazãovolumétrica é possível se definir as vazõesem massa e em peso de um fluido, essasvazões possuem importância fundamentalquando se deseja realizar medições emfunção da massa e do peso de umasubstância. Mecânica dos Fluidos
  125. 125. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesVazão em Massa Vazão em Massa: A vazão em massa é caracterizada pela massa do fluido que escoa em um determinado intervalo de tempo, dessa forma tem-se que: m Qm = t Onde m representa a massa do fluido. Como definido anteriormente, sabe-se que ρ = m/V, portanto, a massa pode ser escrita do seguinte modo: ρ ⋅V m = ρ ⋅V Qm = t Assim, pode-se escrever que: Qm = ρ ⋅ Qv Qm = ρ ⋅ v ⋅ A Portanto, para se obter a vazão em massa basta multiplicar a vazão em volume pela massa específica do fluido em estudo, o que também pode ser expresso em função da velocidade do escoamento e da área da seção do seguinte modo: As unidades usuais para a vazão em massa são o kg/s ou então o kg/h. Mecânica dos Fluidos
  126. 126. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesVazão em PesoVazão em Peso: A vazão em peso se caracteriza pelo peso do fluido que escoa emum determinado intervalo de tempo, assim, tem-se que: W QW = tSabe-se que o peso é dado pela relação W = m ⋅ g , como a massa é m = ρ ⋅ V ,pode-se escrever que: W = ρ ⋅V ⋅ gAssim, pode-se escrever que: γ ⋅V QW = γ ⋅ Qv QW = tPortanto, para se obter a vazão em massa basta multiplicar a vazão em volume pelopeso específico do fluido em estudo, o que também pode ser expresso em função davelocidade do escoamento e da área da seção do seguinte modo: QW = γ ⋅ v ⋅ AAs unidades usuais para a vazão em massa são o N/s ou então o N/h. Mecânica dos Fluidos
  127. 127. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 1 1) Calcular o tempo que levará para encher um tambor de 214 litros, sabendo-se que a velocidade de escoamento do líquido é de 0,3m/s e o diâmetro do tubo conectado ao tambor é igual a 30mm. Mecânica dos Fluidos
  128. 128. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Solução do Exercício 1Cálculo da vazão volumétrica: Cálculo do tempo: Qv = v ⋅ A V Qv = t π ⋅d2 Qv = v ⋅ V 4 t= Qv π ⋅ 0,03 2 Qv = 0,3 ⋅ 214 4 t= 0,21 Qv = 0,00021m³/s t = 1014,22 s Qv = 0,21 l/s t = 16,9 min Mecânica dos Fluidos
  129. 129. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercício 2 2) Calcular o diâmetro de uma tubulação, sabendo-se que pela mesma, escoa água a uma velocidade de 6m/s. A tubulação está conectada a um tanque com volume de 12000 litros e leva 1 hora, 5 minutos e 49 segundos para enchê-lo totalmente. Mecânica dos Fluidos
  130. 130. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Solução do Exercício 2Cálculo do tempo em segundos: Cálculo do diâmetro: Qv = v ⋅ A 1h=3600s 5min=300s π ⋅d2 Qv = v ⋅ t=3600+300+49 4 t = 3949 s 4 ⋅ Qv = v ⋅ π ⋅ d 2Cálculo da vazão volumétrica: 4 ⋅ Qv d2 = v ⋅π V Qv = 4 ⋅ Qv 4 ⋅ 0,00303 t d= d= 12 v ⋅π 6 ⋅π Qv = 3949 d = 0,0254 m Qv = 0,00303m³/s d = 25,4 mm Mecânica dos Fluidos
  131. 131. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 1) Uma mangueira é conectada em um tanque com capacidade de 10000 litros. O tempo gasto para encher totalmente o tanque é de 500 minutos. Calcule a vazão volumétrica máxima da mangueira. 2) Calcular a vazão volumétrica de um fluido que escoa por uma tubulação com uma velocidade média de 1,4 m/s, sabendo-se que o diâmetro interno da seção da tubulação é igual a 5cm. Mecânica dos Fluidos
  132. 132. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 3) Calcular o volume de um reservatório, sabendo-se que a vazão de escoamento de um líquido é igual a 5 l/s. Para encher o reservatório totalmente são necessárias 2 horas. 4) No entamboramento de um determinado produto são utilizados tambores de 214 litros. Para encher um tambor levam-se 20 min. Calcule: a) A vazão volumétrica da tubulação utilizada para encher os tambores. b) O diâmetro da tubulação, em milímetros, sabendo-se que a velocidade de escoamento é de 5 m/s. c) A produção após 24 horas, desconsiderando-se o tempo de deslocamento dos tambores. Mecânica dos Fluidos
  133. 133. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 5) Um determinado líquido é descarregado de um tanque cúbico de 5m de aresta por um tubo de 5cm de diâmetro. A vazão no tubo é 10 l/s, determinar: a) a velocidade do fluído no tubo. b) o tempo que o nível do líquido levará para descer 20cm. 6) Calcule a vazão em massa de um produto que escoa por uma tubulação de 0,3m de diâmetro, sendo que a velocidade de escoamento é igual a 1,0m/s. Dados: massa específica do produto = 1200kg/m³ 7) Baseado no exercício anterior, calcule o tempo necessário para carregar um tanque com 500 toneladas do produto. Mecânica dos Fluidos
  134. 134. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 8) A vazão volumétrica de um determinado fluído é igual a 10 l/s. Determine a vazão mássica desse fluído, sabendo-se que a massa específica do fluído é 800 kg/m3. 9) Um tambor de 214 litros é enchido com óleo de peso específico relativo 0,8, sabendo-se que para isso é necessário 15 min. Calcule: a) A vazão em peso da tubulação utilizada para encher o tambor. b) O peso de cada tambor cheio, sendo que somente o tambor vazio pesa 100N c) Quantos tambores um caminhão pode carregar, sabendo-se que o peso máximo que ele suporta é 15 toneladas. Mecânica dos Fluidos
  135. 135. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesExercícios Propostos 10) Os reservatórios I e II da figura abaixo, são cúbicos. Eles são cheios pelas tubulações, respectivamente em 100s e 500s. Determinar a velocidade da água na seção A indicada, sabendo-se que o diâmetro da tubulação é 1m. Mecânica dos Fluidos
  136. 136. Aula 8 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Avaliação 1. Mecânica dos Fluidos
  137. 137. Mecânica dos FluidosAula 9 – Avaliação 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  138. 138. Aula 9 Prof. MSc. Luiz Eduardo Miranda J. RodriguesAvaliação 1 Matéria da Prova: Aula 1 - Definição de Mecânica dos Fluidos, Conceitos Fundamentais e Sistema Internacional de Unidades Aula 2 - Propriedades dos Fluidos, Massa Específica, Peso Específico e Peso Específico Relativo Aula 3 - Estática dos Fluidos, Definição de Pressão Estática Aula 4 - Teorema de Stevin e Princípio de Pascal Aula 5 - Manômetros e Manometria Aula 6 - Manometria, Manômetros em U e Manômetros Diferenciais Aula 7 - Flutuação e Empuxo Aula 8 - Cinemática dos Fluidos, Definição de Vazão Volumétrica, Vazão em Massa e Vazão em Peso Mecânica dos Fluidos
  139. 139. Aula 9 Prof. MSc. Luiz Eduardo Miranda J. RodriguesPróxima Aula Escoamento Laminar e Turbulento Cálculo do Número de Reynolds Mecânica dos Fluidos
  140. 140. Mecânica dos FluidosAula 10 – Escoamento Laminar e Turbulento Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
  141. 141. Aula 10 Prof. MSc. Luiz Eduardo Miranda J. RodriguesTópicos Abordados Nesta Aula Escoamento Laminar e Turbulento. Cálculo do Número de Reynolds. Mecânica dos Fluidos

×