SlideShare uma empresa Scribd logo
1 de 38
Baixar para ler offline
1




     Control relevant modeling and
    nonlinear state estimation applied
      to SOFC-GT power systems

             Rambabu Kandepu
                04-12-2007
2



                 Contents
    • Motivation
    • Modeling and control of SOFC-GT
      power system
    • Nonlinear state estimation
    • Conclusions
3



                  Motivation
    • Increase in energy demand
      – Population growth
      – Industrialization
    • Dependency on oil and gas
    • Global warming
4



                        Motivation
    • Solution to energy demand increase
       – Efficient of energy conversion
       – Technology with low emissions
       – Using renewable energy sources
    • Distributed generation
       – Avoid transmission and distribution losses
       – Wind turbines, biomass, small scale hydro, fuel cells etc
5



    Fuel cells
          •   Electrochemical device
          •   Advantages
               – High efficiency
               – Low emissions
               – No moving parts
          •   Different types
               – Electrolyte
               – Temperature
          •   SOFC
               – Solid components
               – High operating temperature
               – More fuel flexibility
               – Internal reforming
6



          SOFC-GT system
           Fuel       Fuel cell
                       stack
                                  Load

                       Gas
            Air       turbine



    • Tight integration between SOFC and GT
    • Low complexity models
      – Relevant dynamics
7



    SOFC-GT system
8



               Modeling - SOFC
    • Assumptions
      –   All variables are uniform
      –   Thermal inertia of gases is neglected
      –   Pressure losses are neglected for energy balance
      –   Ideal gas behavior
    • Reactions

                                                    CH 4 + H 2O ⇔ CO + 3H 2
                   1 O + 2e − → O 2 −
                    2 2                             CO + H 2O ⇔ CO2 + H 2
                            2−                  −
                   H2 + O        → H 2 O + 2e       CH 4 + 2 H 2O ⇔ CO2 + 4 H 2
9



                     Modeling - SOFC
     • Mass balance (anode and cathode)


                                        dN i •          •          M
                                            = N i ,in − N i ,out + ∑ aij rj
               Anode

             Electrolyte
                                         dt                        j =1
              Cathode




    • Energy balance (one volume)
                      N                         N                        M
         dTs
    ms C s
         P   = − P + ∑ Fan ,i (han ,i − hi ) + ∑ Fca ,i (hca ,i − hi ) − ∑ ΔH j rj
          dt         i =1                      i =1                      j =1
10



                Modeling - SOFC
     • Voltage
                         RT ⎛ pH 2 pO22          ⎞
                                             1


                E = E0 +    ln ⎜                 ⎟           V = E − Vloss
                         2 F ⎜ pH 2O
                               ⎝
                                                 ⎟
                                                 ⎠
     • Fuel Utilization (FU) = fuel utilized / fuel supplied
     • Distributed nature of SOFC
     • All models are developed in gPROMS

      Fuel   Anode inlet     Anode outlet   Anode inlet      Anode outlet
                     Volume − I                      Volume − II
       Air   Cathode inlet Cathode outlet   Cathode inlet Cathode outlet
11



         SOFC model evaluation
     • Evaluated against a detailed model
                           1200
                                               Detailed model
                                               Simple model with one volume
                           1150                Simple model with two volumes
         Temperature (K)




                           1100

                           1050

                           1000

                            950
                               0   100   200   300    400   500    600     700
                                               Time (min)
12



         Control structure design
     • Dynamic load operation is necessary
     • Manipulated variable (1)
       – Fuel flow rate
     • Controlled variables (2)
       – Fuel utilization (FU)
       – SOFC temperature
     • Load as a disturbance
     • Need for a process redesign
13



          Control structure design
     • Three possible options
        – Air blow-off
        – Extra fuel source
        – Air by-pass

     • Control structure
                                                   Load disturbance


           FU ref
                                    Fuel                     FU
                    Controller 1
                                    flow
           Tref                             Hybrid system    T
                    Controller 2
                                   Air blow-off
               -
14



     SOFC-GT control
15



                   SOFC-GT control
                                                                    P
                                                       m fuel
                               FU
                    FUr                       PI                                 FU
                                          Controller 2

                                                                Hybrid System   TSOFC
     TSOFCr                    ωr
                    PI                      PI           Ig                     ω
                Controller 3            Controller 1
        TSOFC                       ω
16



     SOFC-GT control – double shaft



                                                                                                           Controlled variables



                                                        8
                                 fuel flow rate (g/s)




                                                        6

                                                        4

                                                        2
                                                        0    5   10       15       20   25   30
                                                                      time (sec)
                                                                                                  Manipulated variables
      air blow-off rate (kg/s)




                                     0.1


                                 0.05


                                                        0
                                                         0   5   10       15       20   25   30
                                                                      time (sec)
17


            SOFC-GT control

     • Model Predictive Control (MPC) to
       include constraints
       – FU
       – Steam to carbon ratio
       – SOFC temperature change
     • Not all states are measurable
     • State estimation is necessary
18



              State estimation
     • Need for state estimation
     • Nonlinear state estimation
       – Extended Kalman Filter (EKF)
       – Unscented Kalman Filter (UKF)
       – Comparison
       – Constraint handling
       – Results
     • Conclusions
19



               State estimation
     • Important for process control and
       performance monitoring
     • Uncertainties; Model, measurement and
       noise sources
     • Represent the model state by an probability
       distribution function (pdf)
     • State estimation propagates the pdf over time
       in some optimal way
     • Gaussian pdf
20



        Nonlinear state estimation
     • Extended Kalman Filter (EKF)
        – Most common way to apply KF to a nonlinear system
     • High order EKFs
        – Computationally not feasible
     • Ensemble Kalman Filter (EnKF)
        – Mostly for large scale systems (reservoir models)
     • Unscented Kalman Filter (UKF)
        – Simple and effective
     • Moving Horizon Estimation (MHE)
        – Computationally demanding
21



                          EKF principle

                      y = g ( x); x ∈      n
                                               a random vector
                     g:      n
                                 →   m
                                         , nonlinear function


                                                                 (
     How to compute the pdf of y, given the Gaussian pdf x, Px of x ?)
                    EKF
                y         = g ( x)
               PyEKF = ( ∇g ) Px ( ∇g )
                                               T



               where ( ∇g ) is the Jacobian of g ( x) at x
22



                     UKF principle
     • UKF principle

                    y = g ( x); x ∈    n
                                           a random vector
                    g:   n
                             →   m
                                     , nonlinear function

                                                             (   )
      How to compute the pdf of y, given the Gaussian pdf x, Px of x ?


           UKF approximates the pdf.
           It uses true nonlinear process and observation models.
23



                UKF principle
     • UKF principle
24



                 Comparison
     • Example



                                 = 58.26


                        = 2686
25




                                      EKF
                                            Comparison                                            UKF
                 110                                                     110
                            Xmean
                 100          EKF
                            Ymean                                        100
                                                                                    Xmean
                              true
                 90         Ymean                                        90            ukf
                                                                                    Ymean
                          linearization
                                                                                       true
                 80    Px=16                                             80         Ymean
                                                                                  sigma points
                        true                                                      transformed sigma points
                 70    Py =2686                                          70
                                                                               Px=16
                        EKF
                 60    Py     =2304                                      60
     y=g(x)=x2




                                                             y=g(x)=x2
                                                                                true
                                                                               Py =2686
                 50                                                      50     UKF
                                                                               Py      =2816
                 40                                                      40

                 30                                                      30

                 20                                                      20

                 10                                                      10

                   0                                                      0
                        0                   5   10                                            0         5    10
                                       x                                                           x

                                                     58.26
26



     Algorithms: EKF and UKF
     Nonlinear system
27


                Algorithms: EKF and UKF
                             EKF    UKF
     Prediction step:
     Calculate Jacobians /
     sigma points
     transformation
     Prediction step:
     Calculate mean and
     covariance

     Correction step:
     Calculate Jacobians/
     sigma points
     transformation




     Correction step:
     Kalman update
     equations
28



        State constraint handling
     • No general way in KF theory
       – Projecting unconstrained state estimate
         onto boundary
     • Systematic approach in MHE
       – Solving a nonlinear problem at each time
         step
     • A simple method is introduced in UKF
29



            State constraint handling - EKF


     xk−1




                                      covariance

                                              xkEKF, C



                                                     xkEKF
30



     State constraint handling - UKF

                     UKF, t=k
     xk−1




                  Transformed sigma points

                                                      covariance
                                             x-kUKF
31



     Constraint handling
32



     Constraint handling
     UKF
                • Constraint handling
                  method
                   – Projections at different steps
                       • Sigma points
                       • Transformed sigma points
                       • Transformed sigma points
                         through measurement
                         function
                   – Inequality constraints
33



     Constraint handling- example
     • Gas phase reversible reaction
                3
                                                                  true
                                                                  UKF
                2                                                 EKF
        A




                1
        C




                0


            -1
              0      1   2   3   4       5        6   7   8   9      10
                                     time (sec)



                                                                  true
                4
                                                                  UKF
                                                                  EKF
                3
            B
        C




                2


                1
                 0   1   2   3   4       5        6   7   8   9      10
                                     time (sec)
34



      Comparison (EKF and UKF)
     • Nonlinear systems
       – Induction motor and Van der Pol Oscillator
       – Faster convergence with UKF
     • Robustness to model errors
       – Van der Pol oscillator
          • Better performance with UKF
     • Higher order nonlinear system
       – SOFC-GT hybrid system (18 states)
35



     Comparison (EKF and UKF)
      Comparison of estimated states of an induction motor:
      components of stator flux
               1
                                                                        true
                                                                        UKF
                                                                        EKF
              0.5
          1
      x




               0



                0   5   10   15   20       25       30   35   40   45      50
                                       time (sec)



               0                                                        true
                                                                        UKF
                                                                        EKF
          -0.5
      2
      x




               -1


          -1.5
              0     5   10   15   20       25       30   35   40   45      50
                                       time (sec)
36



      Comparison (EKF and UKF)
     • SOFC-GT system
       – Higher order
         nonlinear system
         (18 states)
       – Turbine shaft
         speed plot
37



     Conclusions – state estimation
     • The UKF is a promising option
       – Simple and easy to implement
       – No need for Jacobians
       – Computational load is comparable to EKF
       – Improved performance
         • Faster convergence
         • Robustness to model errors and initial choices
         • Simple constraint handling method works
38




     Thank you
         for
        your
      attention
          ☺

Mais conteúdo relacionado

Semelhante a Thesis Presentation

IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...Safwan Jaradat
 
HTTR - ANSWM 2009
HTTR - ANSWM 2009HTTR - ANSWM 2009
HTTR - ANSWM 2009jdbess
 
Mpc implementation for cdu (2002 nprc gcc)
Mpc implementation for cdu (2002 nprc gcc)Mpc implementation for cdu (2002 nprc gcc)
Mpc implementation for cdu (2002 nprc gcc)Yang Lee
 
Nuc E 431 W Design Project Presentation
Nuc E 431 W Design Project PresentationNuc E 431 W Design Project Presentation
Nuc E 431 W Design Project PresentationSteveC881
 
Doug Carter - October 20
Doug Carter - October 20Doug Carter - October 20
Doug Carter - October 20p21decision
 
Evapco Eco-Cooler Overview
Evapco Eco-Cooler OverviewEvapco Eco-Cooler Overview
Evapco Eco-Cooler OverviewCASAIRCO
 
New ton presentation_c
New ton  presentation_cNew ton  presentation_c
New ton presentation_cEUROPAGES
 
Ammonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal TapiawalaAmmonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal TapiawalaVishal Tapiawala
 
Simpkin hi eff presentation
Simpkin hi eff presentationSimpkin hi eff presentation
Simpkin hi eff presentationWayne Eastwood
 
Sweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastSweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastFrames
 
NeuCo/DOE Clean Coal Power Initiative (CCPI) Round II Final Results
NeuCo/DOE Clean Coal Power Initiative (CCPI) Round II Final Results NeuCo/DOE Clean Coal Power Initiative (CCPI) Round II Final Results
NeuCo/DOE Clean Coal Power Initiative (CCPI) Round II Final Results NeuCo, Inc
 
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS BILBAO
 
Gasoline_VOC_ppt_9thApril2015
Gasoline_VOC_ppt_9thApril2015Gasoline_VOC_ppt_9thApril2015
Gasoline_VOC_ppt_9thApril2015Anirban Roy, PhD
 
EHS Gen 5 New Features Sales guide
EHS Gen 5 New Features Sales guideEHS Gen 5 New Features Sales guide
EHS Gen 5 New Features Sales guideMindaugas Adomaitis
 
Ammonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingAmmonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingGerard B. Hawkins
 
Ponencia Jornada técnica “Proyectos europeos en eficiencia energética en edif...
Ponencia Jornada técnica “Proyectos europeos en eficiencia energética en edif...Ponencia Jornada técnica “Proyectos europeos en eficiencia energética en edif...
Ponencia Jornada técnica “Proyectos europeos en eficiencia energética en edif...FAEN
 

Semelhante a Thesis Presentation (20)

IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
 
HTTR - ANSWM 2009
HTTR - ANSWM 2009HTTR - ANSWM 2009
HTTR - ANSWM 2009
 
Fundamentals of Fuel Cells
Fundamentals of Fuel CellsFundamentals of Fuel Cells
Fundamentals of Fuel Cells
 
Mpc implementation for cdu (2002 nprc gcc)
Mpc implementation for cdu (2002 nprc gcc)Mpc implementation for cdu (2002 nprc gcc)
Mpc implementation for cdu (2002 nprc gcc)
 
unit_2.pptx
unit_2.pptxunit_2.pptx
unit_2.pptx
 
Nuc E 431 W Design Project Presentation
Nuc E 431 W Design Project PresentationNuc E 431 W Design Project Presentation
Nuc E 431 W Design Project Presentation
 
Combustion
CombustionCombustion
Combustion
 
Doug Carter - October 20
Doug Carter - October 20Doug Carter - October 20
Doug Carter - October 20
 
Evapco Eco-Cooler Overview
Evapco Eco-Cooler OverviewEvapco Eco-Cooler Overview
Evapco Eco-Cooler Overview
 
New ton presentation_c
New ton  presentation_cNew ton  presentation_c
New ton presentation_c
 
Ammonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal TapiawalaAmmonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal Tapiawala
 
Simpkin hi eff presentation
Simpkin hi eff presentationSimpkin hi eff presentation
Simpkin hi eff presentation
 
Sweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastSweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle east
 
NeuCo/DOE Clean Coal Power Initiative (CCPI) Round II Final Results
NeuCo/DOE Clean Coal Power Initiative (CCPI) Round II Final Results NeuCo/DOE Clean Coal Power Initiative (CCPI) Round II Final Results
NeuCo/DOE Clean Coal Power Initiative (CCPI) Round II Final Results
 
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
 
Gasoline_VOC_ppt_9thApril2015
Gasoline_VOC_ppt_9thApril2015Gasoline_VOC_ppt_9thApril2015
Gasoline_VOC_ppt_9thApril2015
 
EHS Gen 5 New Features Sales guide
EHS Gen 5 New Features Sales guideEHS Gen 5 New Features Sales guide
EHS Gen 5 New Features Sales guide
 
14583787.ppt
14583787.ppt14583787.ppt
14583787.ppt
 
Ammonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingAmmonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator training
 
Ponencia Jornada técnica “Proyectos europeos en eficiencia energética en edif...
Ponencia Jornada técnica “Proyectos europeos en eficiencia energética en edif...Ponencia Jornada técnica “Proyectos europeos en eficiencia energética en edif...
Ponencia Jornada técnica “Proyectos europeos en eficiencia energética en edif...
 

Thesis Presentation

  • 1. 1 Control relevant modeling and nonlinear state estimation applied to SOFC-GT power systems Rambabu Kandepu 04-12-2007
  • 2. 2 Contents • Motivation • Modeling and control of SOFC-GT power system • Nonlinear state estimation • Conclusions
  • 3. 3 Motivation • Increase in energy demand – Population growth – Industrialization • Dependency on oil and gas • Global warming
  • 4. 4 Motivation • Solution to energy demand increase – Efficient of energy conversion – Technology with low emissions – Using renewable energy sources • Distributed generation – Avoid transmission and distribution losses – Wind turbines, biomass, small scale hydro, fuel cells etc
  • 5. 5 Fuel cells • Electrochemical device • Advantages – High efficiency – Low emissions – No moving parts • Different types – Electrolyte – Temperature • SOFC – Solid components – High operating temperature – More fuel flexibility – Internal reforming
  • 6. 6 SOFC-GT system Fuel Fuel cell stack Load Gas Air turbine • Tight integration between SOFC and GT • Low complexity models – Relevant dynamics
  • 7. 7 SOFC-GT system
  • 8. 8 Modeling - SOFC • Assumptions – All variables are uniform – Thermal inertia of gases is neglected – Pressure losses are neglected for energy balance – Ideal gas behavior • Reactions CH 4 + H 2O ⇔ CO + 3H 2 1 O + 2e − → O 2 − 2 2 CO + H 2O ⇔ CO2 + H 2 2− − H2 + O → H 2 O + 2e CH 4 + 2 H 2O ⇔ CO2 + 4 H 2
  • 9. 9 Modeling - SOFC • Mass balance (anode and cathode) dN i • • M = N i ,in − N i ,out + ∑ aij rj Anode Electrolyte dt j =1 Cathode • Energy balance (one volume) N N M dTs ms C s P = − P + ∑ Fan ,i (han ,i − hi ) + ∑ Fca ,i (hca ,i − hi ) − ∑ ΔH j rj dt i =1 i =1 j =1
  • 10. 10 Modeling - SOFC • Voltage RT ⎛ pH 2 pO22 ⎞ 1 E = E0 + ln ⎜ ⎟ V = E − Vloss 2 F ⎜ pH 2O ⎝ ⎟ ⎠ • Fuel Utilization (FU) = fuel utilized / fuel supplied • Distributed nature of SOFC • All models are developed in gPROMS Fuel Anode inlet Anode outlet Anode inlet Anode outlet Volume − I Volume − II Air Cathode inlet Cathode outlet Cathode inlet Cathode outlet
  • 11. 11 SOFC model evaluation • Evaluated against a detailed model 1200 Detailed model Simple model with one volume 1150 Simple model with two volumes Temperature (K) 1100 1050 1000 950 0 100 200 300 400 500 600 700 Time (min)
  • 12. 12 Control structure design • Dynamic load operation is necessary • Manipulated variable (1) – Fuel flow rate • Controlled variables (2) – Fuel utilization (FU) – SOFC temperature • Load as a disturbance • Need for a process redesign
  • 13. 13 Control structure design • Three possible options – Air blow-off – Extra fuel source – Air by-pass • Control structure Load disturbance FU ref Fuel FU Controller 1 flow Tref Hybrid system T Controller 2 Air blow-off -
  • 14. 14 SOFC-GT control
  • 15. 15 SOFC-GT control P m fuel FU FUr PI FU Controller 2 Hybrid System TSOFC TSOFCr ωr PI PI Ig ω Controller 3 Controller 1 TSOFC ω
  • 16. 16 SOFC-GT control – double shaft Controlled variables 8 fuel flow rate (g/s) 6 4 2 0 5 10 15 20 25 30 time (sec) Manipulated variables air blow-off rate (kg/s) 0.1 0.05 0 0 5 10 15 20 25 30 time (sec)
  • 17. 17 SOFC-GT control • Model Predictive Control (MPC) to include constraints – FU – Steam to carbon ratio – SOFC temperature change • Not all states are measurable • State estimation is necessary
  • 18. 18 State estimation • Need for state estimation • Nonlinear state estimation – Extended Kalman Filter (EKF) – Unscented Kalman Filter (UKF) – Comparison – Constraint handling – Results • Conclusions
  • 19. 19 State estimation • Important for process control and performance monitoring • Uncertainties; Model, measurement and noise sources • Represent the model state by an probability distribution function (pdf) • State estimation propagates the pdf over time in some optimal way • Gaussian pdf
  • 20. 20 Nonlinear state estimation • Extended Kalman Filter (EKF) – Most common way to apply KF to a nonlinear system • High order EKFs – Computationally not feasible • Ensemble Kalman Filter (EnKF) – Mostly for large scale systems (reservoir models) • Unscented Kalman Filter (UKF) – Simple and effective • Moving Horizon Estimation (MHE) – Computationally demanding
  • 21. 21 EKF principle y = g ( x); x ∈ n a random vector g: n → m , nonlinear function ( How to compute the pdf of y, given the Gaussian pdf x, Px of x ?) EKF y = g ( x) PyEKF = ( ∇g ) Px ( ∇g ) T where ( ∇g ) is the Jacobian of g ( x) at x
  • 22. 22 UKF principle • UKF principle y = g ( x); x ∈ n a random vector g: n → m , nonlinear function ( ) How to compute the pdf of y, given the Gaussian pdf x, Px of x ? UKF approximates the pdf. It uses true nonlinear process and observation models.
  • 23. 23 UKF principle • UKF principle
  • 24. 24 Comparison • Example = 58.26 = 2686
  • 25. 25 EKF Comparison UKF 110 110 Xmean 100 EKF Ymean 100 Xmean true 90 Ymean 90 ukf Ymean linearization true 80 Px=16 80 Ymean sigma points true transformed sigma points 70 Py =2686 70 Px=16 EKF 60 Py =2304 60 y=g(x)=x2 y=g(x)=x2 true Py =2686 50 50 UKF Py =2816 40 40 30 30 20 20 10 10 0 0 0 5 10 0 5 10 x x 58.26
  • 26. 26 Algorithms: EKF and UKF Nonlinear system
  • 27. 27 Algorithms: EKF and UKF EKF UKF Prediction step: Calculate Jacobians / sigma points transformation Prediction step: Calculate mean and covariance Correction step: Calculate Jacobians/ sigma points transformation Correction step: Kalman update equations
  • 28. 28 State constraint handling • No general way in KF theory – Projecting unconstrained state estimate onto boundary • Systematic approach in MHE – Solving a nonlinear problem at each time step • A simple method is introduced in UKF
  • 29. 29 State constraint handling - EKF xk−1 covariance xkEKF, C xkEKF
  • 30. 30 State constraint handling - UKF UKF, t=k xk−1 Transformed sigma points covariance x-kUKF
  • 31. 31 Constraint handling
  • 32. 32 Constraint handling UKF • Constraint handling method – Projections at different steps • Sigma points • Transformed sigma points • Transformed sigma points through measurement function – Inequality constraints
  • 33. 33 Constraint handling- example • Gas phase reversible reaction 3 true UKF 2 EKF A 1 C 0 -1 0 1 2 3 4 5 6 7 8 9 10 time (sec) true 4 UKF EKF 3 B C 2 1 0 1 2 3 4 5 6 7 8 9 10 time (sec)
  • 34. 34 Comparison (EKF and UKF) • Nonlinear systems – Induction motor and Van der Pol Oscillator – Faster convergence with UKF • Robustness to model errors – Van der Pol oscillator • Better performance with UKF • Higher order nonlinear system – SOFC-GT hybrid system (18 states)
  • 35. 35 Comparison (EKF and UKF) Comparison of estimated states of an induction motor: components of stator flux 1 true UKF EKF 0.5 1 x 0 0 5 10 15 20 25 30 35 40 45 50 time (sec) 0 true UKF EKF -0.5 2 x -1 -1.5 0 5 10 15 20 25 30 35 40 45 50 time (sec)
  • 36. 36 Comparison (EKF and UKF) • SOFC-GT system – Higher order nonlinear system (18 states) – Turbine shaft speed plot
  • 37. 37 Conclusions – state estimation • The UKF is a promising option – Simple and easy to implement – No need for Jacobians – Computational load is comparable to EKF – Improved performance • Faster convergence • Robustness to model errors and initial choices • Simple constraint handling method works
  • 38. 38 Thank you for your attention ☺