SlideShare uma empresa Scribd logo
1 de 52
General Chemistry
Principles and Modern Applications
   Petrucci • Harwood • Herring
             8th Edition




          Chapter 21: Electrochemistry

                             Philip Dutton
                    University of Windsor, Canada
                               N9B 3P4

                        Prentice-Hall © 2002
Contents
21-1   Electrode Potentials and Their Measurement
21-2   Standard Electrode Potentials
21-3   Ecell, ΔG, and Keq
21-4    Ecell as a Function of Concentration
21-5   Batteries: Producing Electricity Through
       Chemical Reactions.
21-6   Corrosion: Unwanted Voltaic Cells
21-7   Electrolysis: Causing Non-spontaneous Reactions to
       Occur
21-8   Industrial Electolysis Processes
       Focus On Membrane Potentials

Prentice-Hall      General Chemistry: ChapterSlide 2 of 52
                                              21
21-1 Electrode Potentials and
                Their Measurement


Cu(s) + 2Ag+(aq)                               Cu(s) + Zn2+(aq)



Cu2+(aq) + 2 Ag(s)                                No reaction




    Prentice-Hall    General Chemistry: ChapterSlide 3 of 52
                                                21
An Electrochemical Half Cell


                                       Anode




                                       Cathode




Prentice-Hall   General Chemistry: ChapterSlide 4 of 52
                                           21
An Electrochemical Cell




Prentice-Hall   General Chemistry: ChapterSlide 5 of 52
                                           21
Terminology

• Electromotive force, Ecell.
   – The cell voltage or cell potential.
• Cell diagram.
   – Shows the components of the cell in a symbolic way.
   – Anode (where oxidation occurs) on the left.
   – Cathode (where reduction occurs) on the right.
      • Boundary between phases shown by |.
      • Boundary between half cells
        (usually a salt bridge) shown by ||.


Prentice-Hall      General Chemistry: ChapterSlide 6 of 52
                                              21
Terminology




           Zn(s) | Zn2+(aq) || Cu2+(aq) | Cu(s)   Ecell = 1.103 V

Prentice-Hall     General Chemistry: ChapterSlide 7 of 52
                                             21
Terminology

• Galvanic cells.
   – Produce electricity as a result of spontaneous reactions.
• Electrolytic cells.
   – Non-spontaneous chemical change driven by electricity.
• Couple, M|Mn+
   – A pair of species related by a change in number of e-.




Prentice-Hall     General Chemistry: ChapterSlide 8 of 52
                                             21
21-2 Standard Electrode Potentials

• Cell voltages, the potential differences between
  electrodes, are among the most precise scientific
  measurements.
• The potential of an individual electrode is difficult
  to establish.
• Arbitrary zero is chosen.

        The Standard Hydrogen Electrode (SHE)


Prentice-Hall    General Chemistry: ChapterSlide 9 of 52
                                            21
Standard Hydrogen Electrode
    2 H+(a = 1) + 2 e-  H2(g, 1 bar)   E° = 0 V




 Pt|H2(g, 1 bar)|H+(a = 1)




Prentice-Hall      General Chemistry: ChapterSlide 10 of 52
                                              21
Standard Electrode Potential, E°

• E° defined by international agreement.
• The tendency for a reduction process to occur at
  an electrode.
   – All ionic species present at a=1 (approximately 1 M).
   – All gases are at 1 bar (approximately 1 atm).
   – Where no metallic substance is indicated, the potential
     is established on an inert metallic electrode (ex. Pt).




Prentice-Hall     General Chemistry: ChapterSlide 11 of 52
                                             21
Reduction Couples

          Cu2+(1M) + 2 e- → Cu(s)            E°Cu2+/Cu = ?


Pt|H2(g, 1 bar)|H+(a = 1) || Cu2+(1 M)|Cu(s) E°cell = 0.340 V
         anode                      cathode

 Standard cell potential: the potential difference of a
 cell formed from two standard electrodes.

                   E°cell = E°cathode - E°anode



Prentice-Hall      General Chemistry: ChapterSlide 12 of 52
                                              21
Standard Cell Potential
 Pt|H2(g, 1 bar)|H+(a = 1) || Cu2+(1 M)|Cu(s) E°cell = 0.340 V

                    E°cell = E°cathode - E°anode

                   E°cell = E°Cu2+/Cu - E°H+/H2

                   0.340 V = E°Cu2+/Cu - 0 V

                     E°Cu2+/Cu = +0.340 V

H2(g, 1 atm) + Cu2+(1 M) → H+(1 M) + Cu(s)         E°cell = 0.340 V


   Prentice-Hall      General Chemistry: ChapterSlide 13 of 52
                                                 21
Measuring Standard Reduction Potential




    anode       cathode         cathode         anode


Prentice-Hall   General Chemistry: ChapterSlide 14 of 52
                                           21
Standard Reduction Potentials




Prentice-Hall   General Chemistry: ChapterSlide 15 of 52
                                           21
21-3 Ecell, ΔG, and Keq

• Cells do electrical work.             ωelec = -nFE
   – Moving electric charge.
• Faraday constant, F = 96,485 C mol-1

                       ΔG = -nFE
                      ΔG° = -nFE°



Prentice-Hall       General Chemistry: ChapterSlide 16 of 52
                                               21
Combining Half Reactions

            Fe3+(aq) + 3e- → Fe(s)            E°Fe3+/Fe = ?


Fe2+(aq) + 2e- → Fe(s)        E°Fe2+/Fe = -0.440 V    ΔG° = +0.880 J

Fe3+(aq) + 3e- → Fe2+(aq)     E°Fe3+/Fe2+ = 0.771 V   ΔG° = -0.771 J

Fe3+(aq) + 3e- → Fe(s)        E°Fe3+/Fe = +0.331 V ΔG° = +0.109 V


                   ΔG° = +0.109 V = -nFE°

             E°Fe3+/Fe = +0.109 V /(-3F) = -0.0363 V

   Prentice-Hall         General Chemistry: ChapterSlide 17 of 52
                                                    21
Spontaneous Change

• ΔG < 0 for spontaneous change.
• Therefore E°cell > 0 because ΔGcell = -nFE°cell
• E°cell > 0
   – Reaction proceeds spontaneously as written.
• E°cell = 0
   – Reaction is at equilibrium.
• E°cell < 0
   – Reaction proceeds in the reverse direction spontaneously.


  Prentice-Hall      General Chemistry: ChapterSlide 18 of 52
                                                21
The Behavior or Metals Toward Acids

                M(s) → M2+(aq) + 2 e-        E° = -E°M2+/M

    2 H+(aq) + 2 e- → H2(g)                 E°H+/H2 = 0 V

   2 H+(aq) + M(s) → H2(g) + M2+(aq)

            E°cell = E°H+/H2 - E°M2+/M = -E°M2+/M

      When E°M2+/M < 0, E°cell > 0. Therefore ΔG° < 0.
 Metals with negative reduction potentials react with acids


Prentice-Hall      General Chemistry: ChapterSlide 19 of 52
                                              21
Relationship Between E°cell and Keq


                ΔG° = -RT ln Keq = -nFE°cell


                               RT
                    E°cell =      ln Keq
                               nF




Prentice-Hall      General Chemistry: ChapterSlide 20 of 52
                                              21
Summary of Thermodynamic, Equilibrium
   and Electrochemical Relationships.




 Prentice-Hall   General Chemistry: ChapterSlide 21 of 52
                                            21
21-4 Ecell as a Function of Concentration

                                    ΔG = ΔG° -RT ln Q

                                 -nFEcell = -nFEcell° -RT ln Q

                                                      RT
                                     Ecell = Ecell° -    ln Q
                                                      nF

                             Convert to log10 and calculate constants


                                                  0.0592 V
          The Nernst Equation:   Ecell = Ecell° -         log Q
                                                      n

Prentice-Hall     General Chemistry: ChapterSlide 22 of 52
                                             21
Example 21-8
Applying the Nernst Equation for Determining Ecell.
What is the value of Ecell for the voltaic cell pictured below and
diagrammed as follows?
       Pt|Fe2+(0.10 M),Fe3+(0.20 M)||Ag+(1.0 M)|Ag(s)




 Prentice-Hall        General Chemistry: ChapterSlide 23 of 52
                                                 21
Example 21-8

                                             0.0592 V
                            Ecell = Ecell° -         log Q
                                                 n
                                        0.0592 V       [Fe3+]
                       Ecell = Ecell° -          log
                                            n        [Fe2+] [Ag+]

                        Ecell = 0.029 V – 0.018 V = 0.011 V


       Pt|Fe2+(0.10 M),Fe3+(0.20 M)||Ag+(1.0 M)|Ag(s)

           Fe2+(aq) + Ag+(aq) → Fe3+(aq) + Ag (s)

 Prentice-Hall     General Chemistry: ChapterSlide 24 of 52
                                              21
Concentration Cells
          Two half cells with identical electrodes
             but different ion concentrations.

     Pt|H2 (1 atm)|H+(x M)||H+(1.0 M)|H2(1 atm)|Pt(s)

                             2 H+(1 M) + 2 e- → H2(g, 1 atm)

                             H2(g, 1 atm) → 2 H+(x M) + 2 e-


                                 2 H+(1 M) → 2 H+(x M)



Prentice-Hall     General Chemistry: ChapterSlide 25 of 52
                                             21
Concentration Cells
                 0.0592 V
Ecell = Ecell° -         log Q      2 H+(1 M) → 2 H+(x M)
                     n
                 0.0592 V     x2
Ecell = Ecell° -          log
                     n        12

            0.0592 V    x2
Ecell = 0 -         log
                2       1
Ecell = - 0.0592 V log x

Ecell = (0.0592 V) pH



Prentice-Hall       General Chemistry: ChapterSlide 26 of 52
                                               21
Measurement of Ksp

          Ag|Ag+(sat’d AgI)||Ag+(0.10 M)|Ag(s)

                               Ag+(0.100 M) + e- → Ag(s)

                                Ag(s) → Ag+(sat’d) + e-

                             Ag+(0.100 M) → Ag+(sat’d M)




Prentice-Hall     General Chemistry: ChapterSlide 27 of 52
                                             21
Example 21-10
Using a Voltaic Cell to Determine Ksp of a Slightly Soluble
Solute.
With the date given for the reaction on the previous slide,
calculate Ksp for AgI.

                   AgI(s) → Ag+(aq) + I-(aq)

Let [Ag+] in a saturated Ag+ solution be x:
                       Ag+(0.100 M) → Ag+(sat’d M)

                  0.0592 V                 0.0592 V    [Ag+]sat’d AgI
 Ecell = Ecell° -         log Q = Ecell° -         log
                      n                        n       [Ag+]0.10 M soln

 Prentice-Hall        General Chemistry: ChapterSlide 28 of 52
                                                 21
Example 21-10
                             0.0592 V    [Ag+]sat’d AgI
            Ecell = Ecell° -         log
                                 n       [Ag+]0.10 M soln

                                  0.0592 V       x
                 Ecell = Ecell° -         log
                                      n       0.100
                        0.0592 V
            0.417 = 0 -          (log x – log 0.100)
                            1
                             0.417
        log x = log 0.100 -        = -1 – 7.04 = -8.04
                            0.0592

        x = 10-8.04 = 9.110-9          Ksp = x2 = 8.310-17

 Prentice-Hall       General Chemistry: ChapterSlide 29 of 52
                                                21
21-5 Batteries: Producing Electricity
     Through Chemical Reactions
• Primary Cells (or batteries).
   – Cell reaction is not reversible.
• Secondary Cells.
   – Cell reaction can be reversed by passing electricity
     through the cell (charging).
• Flow Batteries and Fuel Cells.
   – Materials pass through the battery which converts
     chemical energy to electric energy.



Prentice-Hall      General Chemistry: ChapterSlide 30 of 52
                                              21
The Leclanché (Dry) Cell




Prentice-Hall   General Chemistry: ChapterSlide 31 of 52
                                           21
Dry Cell


Oxidation:                     Zn(s) → Zn2+(aq) + 2 e-

Reduction:        2 MnO2(s) + H2O(l) + 2 e- → Mn2O3(s) + 2 OH-

Acid-base reaction:        NH4+ + OH- → NH3(g) + H2O(l)

Precipitation reaction: NH3 + Zn2+(aq) + Cl- → [Zn(NH3)2]Cl2(s)




  Prentice-Hall       General Chemistry: ChapterSlide 32 of 52
                                                 21
Alkaline Dry Cell

Reduction:          2 MnO2(s) + H2O(l) + 2 e- → Mn2O3(s) + 2 OH-

Oxidation reaction can be thought of in two steps:

                            Zn(s) → Zn2+(aq) + 2 e-

                  Zn2+(aq) + 2 OH- → Zn (OH)2(s)

               Zn (s) + 2 OH- → Zn (OH)2(s) + 2 e-




  Prentice-Hall        General Chemistry: ChapterSlide 33 of 52
                                                  21
Lead-Acid (Storage) Battery
• The most common secondary battery




 Prentice-Hall   General Chemistry: ChapterSlide 34 of 52
                                            21
Lead-Acid Battery
Reduction:
PbO2(s) + 3 H+(aq) + HSO4-(aq) + 2 e- → PbSO4(s) + 2 H2O(l)

Oxidation:
       Pb (s) + HSO4-(aq) → PbSO4(s) + H+(aq) + 2 e-


PbO2(s) + Pb(s) + 2 H+(aq) + HSO4-(aq) → 2 PbSO4(s) + 2 H2O(l)


     E°cell = E°PbO2/PbSO4 - E°PbSO4/Pb = 1.74 V – (-0.28 V) = 2.02 V



  Prentice-Hall        General Chemistry: ChapterSlide 35 of 52
                                                  21
The Silver-Zinc Cell: A Button Battery




           Zn(s),ZnO(s)|KOH(sat’d)|Ag2O(s),Ag(s)

     Zn(s) + Ag2O(s) → ZnO(s) + 2 Ag(s)    Ecell = 1.8 V

Prentice-Hall    General Chemistry: ChapterSlide 36 of 52
                                            21
The Nickel-Cadmium Cell




Cd(s) + 2 NiO(OH)(s) + 2 H2O(L) → 2 Ni(OH)2(s) + Cd(OH)2(s)



  Prentice-Hall    General Chemistry: ChapterSlide 37 of 52
                                              21
Fuel Cells

                    O2(g) + 2 H2O(l) + 4 e- → 4 OH-(aq)


                  2{H2(g) + 2 OH-(aq) → 2 H2O(l) + 2 e-}


                          2H2(g) + O2(g) → 2 H2O(l)

                 E°cell = E°O2/OH- - E°H2O/H2

                        = 0.401 V – (-0.828 V) = 1.229 V

                         ε = ΔG°/ ΔH° = 0.83

Prentice-Hall   General Chemistry: ChapterSlide 38 of 52
                                           21
Air Batteries




4 Al(s) + 3 O2(g) + 6 H2O(l) + 4 OH- → 4 [Al(OH)4](aq)



Prentice-Hall    General Chemistry: ChapterSlide 39 of 52
                                            21
21-6 Corrosion: Unwanted Voltaic Cells
In neutral solution:

      O2(g) + 2 H2O(l) + 4 e- → 4 OH-(aq)     EO2/OH- = 0.401 V

             2 Fe(s) → 2 Fe2+(aq) + 4 e-      EFe/Fe2+ = -0.440 V


 2 Fe(s) + O2(g) + 2 H2O(l) → 2 Fe2+(aq) + 4 OH-(aq)
                                               Ecell = 0.841 V
  In acidic solution:

       O2(g) + 4 H+(aq) + 4 e- → 4 H2O (aq)    EO2/OH- = 1.229 V


   Prentice-Hall        General Chemistry: ChapterSlide 40 of 52
                                                   21
Corrosion




Prentice-Hall   General Chemistry: ChapterSlide 41 of 52
                                           21
Corrosion Protection




Prentice-Hall      General Chemistry: ChapterSlide 42 of 52
                                              21
Corrosion Protection




Prentice-Hall      General Chemistry: ChapterSlide 43 of 52
                                              21
21-7 Electrolysis: Causing
   Non-spontaneous Reactions to Occur

Galvanic Cell:

    Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)   EO2/OH- = 1.103 V

Electolytic Cell:

    Zn2+(aq) + Cu(s) → Zn(s) + Cu2+(aq)   EO2/OH- = -1.103 V




  Prentice-Hall     General Chemistry: ChapterSlide 44 of 52
                                               21
Complications in Electrolytic Cells



                           •   Overpotential.
                           •   Competing reactions.
                           •   Non-standard states.
                           •   Nature of electrodes.




Prentice-Hall   General Chemistry: ChapterSlide 45 of 52
                                           21
Quantitative Aspects of Electrolysis

                    1 mol e- = 96485 C

           Charge (C) = current (C/s)  time (s)


                      ne- = I  t
                             F




Prentice-Hall      General Chemistry: ChapterSlide 46 of 52
                                              21
21-8 Industrial Electrolysis Processes




Prentice-Hall   General Chemistry: ChapterSlide 47 of 52
                                           21
Electroplating




Prentice-Hall   General Chemistry: ChapterSlide 48 of 52
                                           21
Chlor-Alkali Process




Prentice-Hall      General Chemistry: ChapterSlide 49 of 52
                                              21
Focus On Membrane Potentials




Prentice-Hall   General Chemistry: ChapterSlide 50 of 52
                                           21
Nernst Potential, ΔΦ




Prentice-Hall      General Chemistry: ChapterSlide 51 of 52
                                              21
Chapter 21 Questions

Develop problem solving skills and base your strategy not
on solutions to specific problems but on understanding.


Choose a variety of problems from the text as examples.


Practice good techniques and get coaching from people who
have been here before.




Prentice-Hall      General Chemistry: ChapterSlide 52 of 52
                                              21

Mais conteúdo relacionado

Mais procurados (20)

Ch14
Ch14Ch14
Ch14
 
05c reversible reactions
05c reversible reactions05c reversible reactions
05c reversible reactions
 
Ch05 121227103346-phpapp02
Ch05 121227103346-phpapp02Ch05 121227103346-phpapp02
Ch05 121227103346-phpapp02
 
Chapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear ChemistryChapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear Chemistry
 
Chemical kinetics- Physical Chemistry
Chemical kinetics- Physical ChemistryChemical kinetics- Physical Chemistry
Chemical kinetics- Physical Chemistry
 
Electro chemistry
Electro chemistryElectro chemistry
Electro chemistry
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistry
 
Unit 7-phaserule
Unit 7-phaseruleUnit 7-phaserule
Unit 7-phaserule
 
Bonding in coordination complexes (Part 1)
Bonding in coordination complexes (Part 1)Bonding in coordination complexes (Part 1)
Bonding in coordination complexes (Part 1)
 
Classification of Chemical Reactions
Classification of Chemical ReactionsClassification of Chemical Reactions
Classification of Chemical Reactions
 
Symmetry and group theory
Symmetry and group theorySymmetry and group theory
Symmetry and group theory
 
thermochemistry.pptx
thermochemistry.pptxthermochemistry.pptx
thermochemistry.pptx
 
Thermodynamics III
Thermodynamics IIIThermodynamics III
Thermodynamics III
 
Chapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical EquilibriumChapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical Equilibrium
 
Ch13
Ch13Ch13
Ch13
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Ch.06 Chemical Equilibrium
Ch.06 Chemical EquilibriumCh.06 Chemical Equilibrium
Ch.06 Chemical Equilibrium
 
The determination of point groups
The determination of point groupsThe determination of point groups
The determination of point groups
 
Real gas
Real gasReal gas
Real gas
 
Crystal field stabilization energy
Crystal field stabilization energyCrystal field stabilization energy
Crystal field stabilization energy
 

Destaque

Krok 1 - 2007 Question Paper (Pharmacy)
Krok 1 - 2007 Question Paper (Pharmacy)Krok 1 - 2007 Question Paper (Pharmacy)
Krok 1 - 2007 Question Paper (Pharmacy)Eneutron
 
Atomic Structure
Atomic StructureAtomic Structure
Atomic Structurebernard_ng
 
Organic Chemistry
Organic ChemistryOrganic Chemistry
Organic Chemistrybernard_ng
 
Chapter 1 asac1212
Chapter 1 asac1212Chapter 1 asac1212
Chapter 1 asac1212Yumna3
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bondingbernard_ng
 
general chemistry ch1
general chemistry ch1general chemistry ch1
general chemistry ch1Hülya Saraç
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...Lawrence kok
 
Texas Venture Labs – Recruiting Spring 2011
Texas Venture Labs – Recruiting Spring 2011Texas Venture Labs – Recruiting Spring 2011
Texas Venture Labs – Recruiting Spring 2011Charles Fuller
 
Theres nothing like a good book
Theres nothing like a good bookTheres nothing like a good book
Theres nothing like a good bookMolly Smart
 
How do you like your steak? Get the logo. Get the look.
How do you like your steak? Get the logo. Get the look.How do you like your steak? Get the logo. Get the look.
How do you like your steak? Get the logo. Get the look.iNKLiNGS
 
Location Based Salad - Future of Web Applications - Las Vegas 2011
Location Based Salad - Future of Web Applications - Las Vegas 2011Location Based Salad - Future of Web Applications - Las Vegas 2011
Location Based Salad - Future of Web Applications - Las Vegas 2011lukepilon
 
Govt of Nepal Rules for Allocation of Business of Ministries Paush 14th 2072
Govt of Nepal Rules for Allocation of Business of Ministries Paush 14th 2072Govt of Nepal Rules for Allocation of Business of Ministries Paush 14th 2072
Govt of Nepal Rules for Allocation of Business of Ministries Paush 14th 2072Bhim Upadhyaya
 
Learning experinces in purposeful media creation in pbl
Learning experinces in purposeful media creation in pblLearning experinces in purposeful media creation in pbl
Learning experinces in purposeful media creation in pblChole Richard
 

Destaque (20)

Ch12
Ch12Ch12
Ch12
 
Ch07
Ch07Ch07
Ch07
 
Ch11
Ch11Ch11
Ch11
 
Krok 1 - 2007 Question Paper (Pharmacy)
Krok 1 - 2007 Question Paper (Pharmacy)Krok 1 - 2007 Question Paper (Pharmacy)
Krok 1 - 2007 Question Paper (Pharmacy)
 
Atomic Structure
Atomic StructureAtomic Structure
Atomic Structure
 
Organic Chemistry
Organic ChemistryOrganic Chemistry
Organic Chemistry
 
Chapter 1 asac1212
Chapter 1 asac1212Chapter 1 asac1212
Chapter 1 asac1212
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
 
general chemistry ch1
general chemistry ch1general chemistry ch1
general chemistry ch1
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
Texas Venture Labs – Recruiting Spring 2011
Texas Venture Labs – Recruiting Spring 2011Texas Venture Labs – Recruiting Spring 2011
Texas Venture Labs – Recruiting Spring 2011
 
Theres nothing like a good book
Theres nothing like a good bookTheres nothing like a good book
Theres nothing like a good book
 
How do you like your steak? Get the logo. Get the look.
How do you like your steak? Get the logo. Get the look.How do you like your steak? Get the logo. Get the look.
How do you like your steak? Get the logo. Get the look.
 
Location Based Salad - Future of Web Applications - Las Vegas 2011
Location Based Salad - Future of Web Applications - Las Vegas 2011Location Based Salad - Future of Web Applications - Las Vegas 2011
Location Based Salad - Future of Web Applications - Las Vegas 2011
 
Govt of Nepal Rules for Allocation of Business of Ministries Paush 14th 2072
Govt of Nepal Rules for Allocation of Business of Ministries Paush 14th 2072Govt of Nepal Rules for Allocation of Business of Ministries Paush 14th 2072
Govt of Nepal Rules for Allocation of Business of Ministries Paush 14th 2072
 
Vhr
VhrVhr
Vhr
 
Unit4, Lesson5
Unit4, Lesson5Unit4, Lesson5
Unit4, Lesson5
 
Learning experinces in purposeful media creation in pbl
Learning experinces in purposeful media creation in pblLearning experinces in purposeful media creation in pbl
Learning experinces in purposeful media creation in pbl
 
Explorer jeapordy
Explorer jeapordyExplorer jeapordy
Explorer jeapordy
 
4738
47384738
4738
 

Semelhante a Ch21

Ch21 130105202245-phpapp01
Ch21 130105202245-phpapp01Ch21 130105202245-phpapp01
Ch21 130105202245-phpapp01Cleophas Rwemera
 
Electrochemistry Lec 2021_.ppt
Electrochemistry Lec 2021_.pptElectrochemistry Lec 2021_.ppt
Electrochemistry Lec 2021_.pptMajdolenAhrki
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptganesh949298
 
Chapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptChapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptshewanehayele2
 
Module 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxModule 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxAdittyaSenGupta
 
090643 Electrochemistry presentation.pdf
090643 Electrochemistry presentation.pdf090643 Electrochemistry presentation.pdf
090643 Electrochemistry presentation.pdfbhavyayadav115
 
Electrochemistry Notes
Electrochemistry NotesElectrochemistry Notes
Electrochemistry NotesSueyin Lee
 
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptxG12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptxdinasaad30
 
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01Cleophas Rwemera
 
electrochemistry-141128223112-conversion-gate02.pptx
electrochemistry-141128223112-conversion-gate02.pptxelectrochemistry-141128223112-conversion-gate02.pptx
electrochemistry-141128223112-conversion-gate02.pptxpallavitripathy
 

Semelhante a Ch21 (20)

Ch21 130105202245-phpapp01
Ch21 130105202245-phpapp01Ch21 130105202245-phpapp01
Ch21 130105202245-phpapp01
 
Electrochemistry.pdf
Electrochemistry.pdfElectrochemistry.pdf
Electrochemistry.pdf
 
Electrochemistry Lec 2021_.ppt
Electrochemistry Lec 2021_.pptElectrochemistry Lec 2021_.ppt
Electrochemistry Lec 2021_.ppt
 
Electrochem - Copy.pptx
Electrochem - Copy.pptxElectrochem - Copy.pptx
Electrochem - Copy.pptx
 
electrochemistry.pptx
electrochemistry.pptxelectrochemistry.pptx
electrochemistry.pptx
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.ppt
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.ppt
 
Vii.electrochemistry
Vii.electrochemistryVii.electrochemistry
Vii.electrochemistry
 
Chapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptChapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).ppt
 
Module 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxModule 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptx
 
090643 Electrochemistry presentation.pdf
090643 Electrochemistry presentation.pdf090643 Electrochemistry presentation.pdf
090643 Electrochemistry presentation.pdf
 
Chapter-19-moor.ppt
Chapter-19-moor.pptChapter-19-moor.ppt
Chapter-19-moor.ppt
 
Chapter 2.pdf
Chapter 2.pdfChapter 2.pdf
Chapter 2.pdf
 
Electrochemistry Notes
Electrochemistry NotesElectrochemistry Notes
Electrochemistry Notes
 
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptxG12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
 
chapter 18.pptx
chapter 18.pptxchapter 18.pptx
chapter 18.pptx
 
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
 
electrochemistry-141128223112-conversion-gate02.pptx
electrochemistry-141128223112-conversion-gate02.pptxelectrochemistry-141128223112-conversion-gate02.pptx
electrochemistry-141128223112-conversion-gate02.pptx
 
Ch 12 electrochemistry
Ch 12  electrochemistryCh 12  electrochemistry
Ch 12 electrochemistry
 
2-Electrochemistry.pptx
2-Electrochemistry.pptx2-Electrochemistry.pptx
2-Electrochemistry.pptx
 

Mais de Universidade Federal de Alfenas (17)

Ch27
Ch27Ch27
Ch27
 
Ch25
Ch25Ch25
Ch25
 
Ch24
Ch24Ch24
Ch24
 
Ch23
Ch23Ch23
Ch23
 
Ch22
Ch22Ch22
Ch22
 
Ch26
Ch26Ch26
Ch26
 
Ch19
Ch19Ch19
Ch19
 
Ch17
Ch17Ch17
Ch17
 
Ch16
Ch16Ch16
Ch16
 
Ch15
Ch15Ch15
Ch15
 
Ch18
Ch18Ch18
Ch18
 
Ch01
Ch01Ch01
Ch01
 
Ch08
Ch08Ch08
Ch08
 
Ch28
Ch28Ch28
Ch28
 
Ch06
Ch06Ch06
Ch06
 
Ch04
Ch04Ch04
Ch04
 
Ch05
Ch05Ch05
Ch05
 

Ch21

  • 1. General Chemistry Principles and Modern Applications Petrucci • Harwood • Herring 8th Edition Chapter 21: Electrochemistry Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall © 2002
  • 2. Contents 21-1 Electrode Potentials and Their Measurement 21-2 Standard Electrode Potentials 21-3 Ecell, ΔG, and Keq 21-4 Ecell as a Function of Concentration 21-5 Batteries: Producing Electricity Through Chemical Reactions. 21-6 Corrosion: Unwanted Voltaic Cells 21-7 Electrolysis: Causing Non-spontaneous Reactions to Occur 21-8 Industrial Electolysis Processes Focus On Membrane Potentials Prentice-Hall General Chemistry: ChapterSlide 2 of 52 21
  • 3. 21-1 Electrode Potentials and Their Measurement Cu(s) + 2Ag+(aq) Cu(s) + Zn2+(aq) Cu2+(aq) + 2 Ag(s) No reaction Prentice-Hall General Chemistry: ChapterSlide 3 of 52 21
  • 4. An Electrochemical Half Cell Anode Cathode Prentice-Hall General Chemistry: ChapterSlide 4 of 52 21
  • 5. An Electrochemical Cell Prentice-Hall General Chemistry: ChapterSlide 5 of 52 21
  • 6. Terminology • Electromotive force, Ecell. – The cell voltage or cell potential. • Cell diagram. – Shows the components of the cell in a symbolic way. – Anode (where oxidation occurs) on the left. – Cathode (where reduction occurs) on the right. • Boundary between phases shown by |. • Boundary between half cells (usually a salt bridge) shown by ||. Prentice-Hall General Chemistry: ChapterSlide 6 of 52 21
  • 7. Terminology Zn(s) | Zn2+(aq) || Cu2+(aq) | Cu(s) Ecell = 1.103 V Prentice-Hall General Chemistry: ChapterSlide 7 of 52 21
  • 8. Terminology • Galvanic cells. – Produce electricity as a result of spontaneous reactions. • Electrolytic cells. – Non-spontaneous chemical change driven by electricity. • Couple, M|Mn+ – A pair of species related by a change in number of e-. Prentice-Hall General Chemistry: ChapterSlide 8 of 52 21
  • 9. 21-2 Standard Electrode Potentials • Cell voltages, the potential differences between electrodes, are among the most precise scientific measurements. • The potential of an individual electrode is difficult to establish. • Arbitrary zero is chosen. The Standard Hydrogen Electrode (SHE) Prentice-Hall General Chemistry: ChapterSlide 9 of 52 21
  • 10. Standard Hydrogen Electrode 2 H+(a = 1) + 2 e-  H2(g, 1 bar) E° = 0 V Pt|H2(g, 1 bar)|H+(a = 1) Prentice-Hall General Chemistry: ChapterSlide 10 of 52 21
  • 11. Standard Electrode Potential, E° • E° defined by international agreement. • The tendency for a reduction process to occur at an electrode. – All ionic species present at a=1 (approximately 1 M). – All gases are at 1 bar (approximately 1 atm). – Where no metallic substance is indicated, the potential is established on an inert metallic electrode (ex. Pt). Prentice-Hall General Chemistry: ChapterSlide 11 of 52 21
  • 12. Reduction Couples Cu2+(1M) + 2 e- → Cu(s) E°Cu2+/Cu = ? Pt|H2(g, 1 bar)|H+(a = 1) || Cu2+(1 M)|Cu(s) E°cell = 0.340 V anode cathode Standard cell potential: the potential difference of a cell formed from two standard electrodes. E°cell = E°cathode - E°anode Prentice-Hall General Chemistry: ChapterSlide 12 of 52 21
  • 13. Standard Cell Potential Pt|H2(g, 1 bar)|H+(a = 1) || Cu2+(1 M)|Cu(s) E°cell = 0.340 V E°cell = E°cathode - E°anode E°cell = E°Cu2+/Cu - E°H+/H2 0.340 V = E°Cu2+/Cu - 0 V E°Cu2+/Cu = +0.340 V H2(g, 1 atm) + Cu2+(1 M) → H+(1 M) + Cu(s) E°cell = 0.340 V Prentice-Hall General Chemistry: ChapterSlide 13 of 52 21
  • 14. Measuring Standard Reduction Potential anode cathode cathode anode Prentice-Hall General Chemistry: ChapterSlide 14 of 52 21
  • 15. Standard Reduction Potentials Prentice-Hall General Chemistry: ChapterSlide 15 of 52 21
  • 16. 21-3 Ecell, ΔG, and Keq • Cells do electrical work. ωelec = -nFE – Moving electric charge. • Faraday constant, F = 96,485 C mol-1 ΔG = -nFE ΔG° = -nFE° Prentice-Hall General Chemistry: ChapterSlide 16 of 52 21
  • 17. Combining Half Reactions Fe3+(aq) + 3e- → Fe(s) E°Fe3+/Fe = ? Fe2+(aq) + 2e- → Fe(s) E°Fe2+/Fe = -0.440 V ΔG° = +0.880 J Fe3+(aq) + 3e- → Fe2+(aq) E°Fe3+/Fe2+ = 0.771 V ΔG° = -0.771 J Fe3+(aq) + 3e- → Fe(s) E°Fe3+/Fe = +0.331 V ΔG° = +0.109 V ΔG° = +0.109 V = -nFE° E°Fe3+/Fe = +0.109 V /(-3F) = -0.0363 V Prentice-Hall General Chemistry: ChapterSlide 17 of 52 21
  • 18. Spontaneous Change • ΔG < 0 for spontaneous change. • Therefore E°cell > 0 because ΔGcell = -nFE°cell • E°cell > 0 – Reaction proceeds spontaneously as written. • E°cell = 0 – Reaction is at equilibrium. • E°cell < 0 – Reaction proceeds in the reverse direction spontaneously. Prentice-Hall General Chemistry: ChapterSlide 18 of 52 21
  • 19. The Behavior or Metals Toward Acids M(s) → M2+(aq) + 2 e- E° = -E°M2+/M 2 H+(aq) + 2 e- → H2(g) E°H+/H2 = 0 V 2 H+(aq) + M(s) → H2(g) + M2+(aq) E°cell = E°H+/H2 - E°M2+/M = -E°M2+/M When E°M2+/M < 0, E°cell > 0. Therefore ΔG° < 0. Metals with negative reduction potentials react with acids Prentice-Hall General Chemistry: ChapterSlide 19 of 52 21
  • 20. Relationship Between E°cell and Keq ΔG° = -RT ln Keq = -nFE°cell RT E°cell = ln Keq nF Prentice-Hall General Chemistry: ChapterSlide 20 of 52 21
  • 21. Summary of Thermodynamic, Equilibrium and Electrochemical Relationships. Prentice-Hall General Chemistry: ChapterSlide 21 of 52 21
  • 22. 21-4 Ecell as a Function of Concentration ΔG = ΔG° -RT ln Q -nFEcell = -nFEcell° -RT ln Q RT Ecell = Ecell° - ln Q nF Convert to log10 and calculate constants 0.0592 V The Nernst Equation: Ecell = Ecell° - log Q n Prentice-Hall General Chemistry: ChapterSlide 22 of 52 21
  • 23. Example 21-8 Applying the Nernst Equation for Determining Ecell. What is the value of Ecell for the voltaic cell pictured below and diagrammed as follows? Pt|Fe2+(0.10 M),Fe3+(0.20 M)||Ag+(1.0 M)|Ag(s) Prentice-Hall General Chemistry: ChapterSlide 23 of 52 21
  • 24. Example 21-8 0.0592 V Ecell = Ecell° - log Q n 0.0592 V [Fe3+] Ecell = Ecell° - log n [Fe2+] [Ag+] Ecell = 0.029 V – 0.018 V = 0.011 V Pt|Fe2+(0.10 M),Fe3+(0.20 M)||Ag+(1.0 M)|Ag(s) Fe2+(aq) + Ag+(aq) → Fe3+(aq) + Ag (s) Prentice-Hall General Chemistry: ChapterSlide 24 of 52 21
  • 25. Concentration Cells Two half cells with identical electrodes but different ion concentrations. Pt|H2 (1 atm)|H+(x M)||H+(1.0 M)|H2(1 atm)|Pt(s) 2 H+(1 M) + 2 e- → H2(g, 1 atm) H2(g, 1 atm) → 2 H+(x M) + 2 e- 2 H+(1 M) → 2 H+(x M) Prentice-Hall General Chemistry: ChapterSlide 25 of 52 21
  • 26. Concentration Cells 0.0592 V Ecell = Ecell° - log Q 2 H+(1 M) → 2 H+(x M) n 0.0592 V x2 Ecell = Ecell° - log n 12 0.0592 V x2 Ecell = 0 - log 2 1 Ecell = - 0.0592 V log x Ecell = (0.0592 V) pH Prentice-Hall General Chemistry: ChapterSlide 26 of 52 21
  • 27. Measurement of Ksp Ag|Ag+(sat’d AgI)||Ag+(0.10 M)|Ag(s) Ag+(0.100 M) + e- → Ag(s) Ag(s) → Ag+(sat’d) + e- Ag+(0.100 M) → Ag+(sat’d M) Prentice-Hall General Chemistry: ChapterSlide 27 of 52 21
  • 28. Example 21-10 Using a Voltaic Cell to Determine Ksp of a Slightly Soluble Solute. With the date given for the reaction on the previous slide, calculate Ksp for AgI. AgI(s) → Ag+(aq) + I-(aq) Let [Ag+] in a saturated Ag+ solution be x: Ag+(0.100 M) → Ag+(sat’d M) 0.0592 V 0.0592 V [Ag+]sat’d AgI Ecell = Ecell° - log Q = Ecell° - log n n [Ag+]0.10 M soln Prentice-Hall General Chemistry: ChapterSlide 28 of 52 21
  • 29. Example 21-10 0.0592 V [Ag+]sat’d AgI Ecell = Ecell° - log n [Ag+]0.10 M soln 0.0592 V x Ecell = Ecell° - log n 0.100 0.0592 V 0.417 = 0 - (log x – log 0.100) 1 0.417 log x = log 0.100 - = -1 – 7.04 = -8.04 0.0592 x = 10-8.04 = 9.110-9 Ksp = x2 = 8.310-17 Prentice-Hall General Chemistry: ChapterSlide 29 of 52 21
  • 30. 21-5 Batteries: Producing Electricity Through Chemical Reactions • Primary Cells (or batteries). – Cell reaction is not reversible. • Secondary Cells. – Cell reaction can be reversed by passing electricity through the cell (charging). • Flow Batteries and Fuel Cells. – Materials pass through the battery which converts chemical energy to electric energy. Prentice-Hall General Chemistry: ChapterSlide 30 of 52 21
  • 31. The Leclanché (Dry) Cell Prentice-Hall General Chemistry: ChapterSlide 31 of 52 21
  • 32. Dry Cell Oxidation: Zn(s) → Zn2+(aq) + 2 e- Reduction: 2 MnO2(s) + H2O(l) + 2 e- → Mn2O3(s) + 2 OH- Acid-base reaction: NH4+ + OH- → NH3(g) + H2O(l) Precipitation reaction: NH3 + Zn2+(aq) + Cl- → [Zn(NH3)2]Cl2(s) Prentice-Hall General Chemistry: ChapterSlide 32 of 52 21
  • 33. Alkaline Dry Cell Reduction: 2 MnO2(s) + H2O(l) + 2 e- → Mn2O3(s) + 2 OH- Oxidation reaction can be thought of in two steps: Zn(s) → Zn2+(aq) + 2 e- Zn2+(aq) + 2 OH- → Zn (OH)2(s) Zn (s) + 2 OH- → Zn (OH)2(s) + 2 e- Prentice-Hall General Chemistry: ChapterSlide 33 of 52 21
  • 34. Lead-Acid (Storage) Battery • The most common secondary battery Prentice-Hall General Chemistry: ChapterSlide 34 of 52 21
  • 35. Lead-Acid Battery Reduction: PbO2(s) + 3 H+(aq) + HSO4-(aq) + 2 e- → PbSO4(s) + 2 H2O(l) Oxidation: Pb (s) + HSO4-(aq) → PbSO4(s) + H+(aq) + 2 e- PbO2(s) + Pb(s) + 2 H+(aq) + HSO4-(aq) → 2 PbSO4(s) + 2 H2O(l) E°cell = E°PbO2/PbSO4 - E°PbSO4/Pb = 1.74 V – (-0.28 V) = 2.02 V Prentice-Hall General Chemistry: ChapterSlide 35 of 52 21
  • 36. The Silver-Zinc Cell: A Button Battery Zn(s),ZnO(s)|KOH(sat’d)|Ag2O(s),Ag(s) Zn(s) + Ag2O(s) → ZnO(s) + 2 Ag(s) Ecell = 1.8 V Prentice-Hall General Chemistry: ChapterSlide 36 of 52 21
  • 37. The Nickel-Cadmium Cell Cd(s) + 2 NiO(OH)(s) + 2 H2O(L) → 2 Ni(OH)2(s) + Cd(OH)2(s) Prentice-Hall General Chemistry: ChapterSlide 37 of 52 21
  • 38. Fuel Cells O2(g) + 2 H2O(l) + 4 e- → 4 OH-(aq) 2{H2(g) + 2 OH-(aq) → 2 H2O(l) + 2 e-} 2H2(g) + O2(g) → 2 H2O(l) E°cell = E°O2/OH- - E°H2O/H2 = 0.401 V – (-0.828 V) = 1.229 V ε = ΔG°/ ΔH° = 0.83 Prentice-Hall General Chemistry: ChapterSlide 38 of 52 21
  • 39. Air Batteries 4 Al(s) + 3 O2(g) + 6 H2O(l) + 4 OH- → 4 [Al(OH)4](aq) Prentice-Hall General Chemistry: ChapterSlide 39 of 52 21
  • 40. 21-6 Corrosion: Unwanted Voltaic Cells In neutral solution: O2(g) + 2 H2O(l) + 4 e- → 4 OH-(aq) EO2/OH- = 0.401 V 2 Fe(s) → 2 Fe2+(aq) + 4 e- EFe/Fe2+ = -0.440 V 2 Fe(s) + O2(g) + 2 H2O(l) → 2 Fe2+(aq) + 4 OH-(aq) Ecell = 0.841 V In acidic solution: O2(g) + 4 H+(aq) + 4 e- → 4 H2O (aq) EO2/OH- = 1.229 V Prentice-Hall General Chemistry: ChapterSlide 40 of 52 21
  • 41. Corrosion Prentice-Hall General Chemistry: ChapterSlide 41 of 52 21
  • 42. Corrosion Protection Prentice-Hall General Chemistry: ChapterSlide 42 of 52 21
  • 43. Corrosion Protection Prentice-Hall General Chemistry: ChapterSlide 43 of 52 21
  • 44. 21-7 Electrolysis: Causing Non-spontaneous Reactions to Occur Galvanic Cell: Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s) EO2/OH- = 1.103 V Electolytic Cell: Zn2+(aq) + Cu(s) → Zn(s) + Cu2+(aq) EO2/OH- = -1.103 V Prentice-Hall General Chemistry: ChapterSlide 44 of 52 21
  • 45. Complications in Electrolytic Cells • Overpotential. • Competing reactions. • Non-standard states. • Nature of electrodes. Prentice-Hall General Chemistry: ChapterSlide 45 of 52 21
  • 46. Quantitative Aspects of Electrolysis 1 mol e- = 96485 C Charge (C) = current (C/s)  time (s) ne- = I  t F Prentice-Hall General Chemistry: ChapterSlide 46 of 52 21
  • 47. 21-8 Industrial Electrolysis Processes Prentice-Hall General Chemistry: ChapterSlide 47 of 52 21
  • 48. Electroplating Prentice-Hall General Chemistry: ChapterSlide 48 of 52 21
  • 49. Chlor-Alkali Process Prentice-Hall General Chemistry: ChapterSlide 49 of 52 21
  • 50. Focus On Membrane Potentials Prentice-Hall General Chemistry: ChapterSlide 50 of 52 21
  • 51. Nernst Potential, ΔΦ Prentice-Hall General Chemistry: ChapterSlide 51 of 52 21
  • 52. Chapter 21 Questions Develop problem solving skills and base your strategy not on solutions to specific problems but on understanding. Choose a variety of problems from the text as examples. Practice good techniques and get coaching from people who have been here before. Prentice-Hall General Chemistry: ChapterSlide 52 of 52 21

Notas do Editor

  1. The two vertical lines indicate three phases are present. For simplicity we usually assume that a = 1 at [H+] = 1 M and replace 1 bar by 1 atm.
  2. Ion concentration difference provides a basis for determining K sp
  3. Overcome interactions a the electrode surface Hg and H 2 overpotential is 1.5 V