SlideShare uma empresa Scribd logo
1 de 14
Long-term palaeoclimate: the origin of the ice ages Professor Simon K. Haslett Centre for Excellence in Learning and Teaching Simon.haslett@newport.ac.uk 16rd September 2010
Introduction What stimulated the global cooling that led to the development of the continental ice sheets that characterised the Quaternary and other ice ages through geological time? The search for the answer to these major climate questions has generated some fascinating research that has become the focus of much media attention. However, a number of different theories have been proposed to account for the origin of the ice ages, and there is intense argument between the supporters of the different theories – a very controversial topic. This presentation hopes to discuss what caused the ice ages, and describes the radical theories relating to climatic changes.
Differing theories The main proponents of the argument are: ,[object Object]
Robert Berner and his colleagues who believe that long-term trends in the carbon cycle coupled with the Greenhouse Effect are responsible.These theories invoke a relationship between atmospheric CO2, tectonic activity, and the carbonate-silicate cycle.
Geochemical or steady-state model 1 The ‘geochemical’ or ‘steady-state’ model was proposed by Berner in 1990, and suggests that tectonic activity releases CO2 through a process called decarbonation, which increases atmospheric CO2. This in turn enhances the Greenhouse Effect which results in global warming, and enhances continental weathering. Rocks weather more rapidly in warm/moist conditions. Weathered products are transported to the sea where they promote carbonate (CaCO3) formation (i.e. shells) which sink to the sea-floor. C B A (a) Foraminifera secrete calcareous ‘tests’ and  inhabit both the sea-bed and the water column. (b) Cut blocks of fenwood peat. Peat consists of partially decomposed organic material which acts as a sink for carbon because of the anaerobic conditions in which it is found. Note the coin for scale. (c) Volcanic activity releases millions of tonnes of CO2 into the atmosphere every year (Terceira island, Azores).
Geochemical or steady-state model 2 In conjunction with the weathering processes themselves (which consume atmospheric CO2), detrital rain in the water column takes carbon out of circulation until the sediments are decarbonated. This process maintains a steady-state relationship between weathering, decarbonation, and atmospheric CO2 levels, and so essentially weathering is controlled by decarbonation. The variation in CO2 throughout the Phanerozoic is apparently related to the relationship of tectonic activity, rise of vascular plants, and the burial of organic matter. The Quaternary ice ages are attributed by Berner (1990) to a general decrease in decarbonation over the last 100 Ma and an increase in the burial of organic matter.
Uplift or non-steady-state model 1 Raymoet al.’s (1988) model (called the uplift or non-steady-state model) suggests that CO2 levels are not controlled by decarbonation, and promotes the idea that the process of uplift alone can stimulate weathering, stripping CO2 out of the atmosphere, increasing CaCO3 sedimentation in the oceans, so causing global cooling and the Quaternary ice ages. Thus, this model operates in a non-steady-state because the carbon cycle is being influenced by factors from outside the system (i.e. uplift).  Formation of scree slopes indicates physical and chemical weathering and erosional processes acting on a rock face (Andalusia, Spain).
Uplift or non-steady-state model 2 During the Late Cenozoic a number of uplift events have occurred (e.g. Tibetan Plateau, Himalayas, Andes, Alps etc) which may have provided the stimuli for global cooling. Indeed there is evidence for increased weathering at this time (e.g. strontium content of deep-sea sediments). Tectonically driven uplift of mountain ranges , e.g. the Alps, has been suggested to have initiated glaciation.
Consolidation of the theories Sundquist (1991) constructs a complex ocean-atmosphere-sediment model to evaluate these conflicting theories. He concludes that both of these theories operate in nature, but on different time scales, with the steady-state model operating over longer periods of geological time, whilst the non-steady-state may interfere over shorter periods and specific to uplift events. A useful figure derived from his model is that a lagged response time of 300-400 ka exists between either uplift or decarbonation and increased weathering capable of depleting atmospheric CO2.
Practical – Milankovitch cycles 1 Examine the SPECMAP graph below of an oxygen isotope record taken from a deep-sea sediment core (the top of the core is the modern sea-floor surface).  Oxygen isotopes vary depending on changes in global ice volume.  Using your knowledge of oxygen isotopes and Milankovitch cycles, answer the questions that follow:
Practical – Milankovitch cycles 2 Make a copy of the preceding graph. Identify perturbations in the oxygen isotope record due to eccentricity, obliquity and precession cycles (annotate examples on your graph where appropriate). Construct a general chronology (in 1000’s of years) for the core and draw a timescale up the side of your graph. Reconstruct palaeoclimate change represented by the oxygen isotope record (annotate the graph to show palaeoclimate extremes).  E = Eccentricity of orbit T = Obliquity of the Ecliptic (tilt) P = Precession of the Equinoxes Source: FAQ 6.1. Fig 1. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avervt, K.B., Tignor, M. and Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
Practical – sample interpretation
Summary The origin of the ice ages remains a very controversial topic. There are two opposing theories that have implications for the origin of Quaternary ice ages. Both theories are in agreement that the Quaternary ice ages are a function of CO2 in the atmosphere and the Greenhouse Effect. Robert Berner believes that the ice ages are essentially a consequence of carbon storage mechanisms corresponding with a decrease in decarbonation. Maureen Raymoet al., however, argues that as the Himalayas grew, heavy monsoon rains combined with CO2 in the air eroded the newly exposed rock, removing so much CO2 out of the atmosphere that global temperatures dropped. In 1991, Eric Sundquist concluded that both theories have their place in nature, but operate over different timescales.
References Berner, R.A. 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science, 249: 1382-1386. Broecker, W.S. and Denton, G.H. 1990. What drives glacial cycles? Scientific American, 262(1): 48-56. Harris, S.A. 2002. Global heat budget, plate tectonics and climate change. GeografiskaAnnaler, A84: 1-9. Hays, J.D., Imbrie, J. and Shackleton, N.J. 1976. Variations in the earth’s orbit: pacemaker of the ice ages. Science, 194: 1121-1132. Molnar, P. and England, P. 1990. Late Cenozoic uplift of mountain-ranges and global climate change – chicken or egg? Nature, 346: 29-34. Paterson, D. 1993. Did Tibet cool the world? New Scientist, 2nd July issue, 29-33. Raymo, M.E. and Ruddiman, W.F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117-122. Raymo, M.E., Ruddiman, W.F. and Froelich, P.N. 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649-653. Ruddiman, W.F. and Kutzbach, J.E. 1991. Plateau uplift and climatic change. Scientific American, 264(3): 66-. Sundquist, E.T. 1991. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2. Quaternary Science Reviews, 10: 283-296.

Mais conteúdo relacionado

Mais procurados

Geo pro
Geo proGeo pro
Geo pro
joremy
 
Long term & short term effects of climate 2
Long term & short term effects of climate 2Long term & short term effects of climate 2
Long term & short term effects of climate 2
Sarah Ramanathan
 
Monahan - GSA Poster 36x48
Monahan - GSA Poster 36x48Monahan - GSA Poster 36x48
Monahan - GSA Poster 36x48
Kyle Monahan
 
final dissertation report
final dissertation reportfinal dissertation report
final dissertation report
Luis Duprat
 
Earth_Science_&_Climate_Change_Somenath_Ganguly
Earth_Science_&_Climate_Change_Somenath_GangulyEarth_Science_&_Climate_Change_Somenath_Ganguly
Earth_Science_&_Climate_Change_Somenath_Ganguly
Somenath Ganguly
 
Emma Hutchinson SESUR poster
Emma Hutchinson SESUR posterEmma Hutchinson SESUR poster
Emma Hutchinson SESUR poster
Emma Hutchinson
 

Mais procurados (20)

Still the Biggest Control Knob : Carbon Dioxide in Earth’s Climate History
Still the Biggest Control Knob: Carbon Dioxide in Earth’s Climate HistoryStill the Biggest Control Knob: Carbon Dioxide in Earth’s Climate History
Still the Biggest Control Knob : Carbon Dioxide in Earth’s Climate History
 
Sea level CO2
Sea level CO2Sea level CO2
Sea level CO2
 
Geo pro
Geo proGeo pro
Geo pro
 
Long term & short term effects of climate 2
Long term & short term effects of climate 2Long term & short term effects of climate 2
Long term & short term effects of climate 2
 
Site of asteroid impact changed the history of life on Earth: the low probabi...
Site of asteroid impact changed the history of life on Earth: the low probabi...Site of asteroid impact changed the history of life on Earth: the low probabi...
Site of asteroid impact changed the history of life on Earth: the low probabi...
 
climate change in the past: Palaeoclimate
climate change in the past: Palaeoclimateclimate change in the past: Palaeoclimate
climate change in the past: Palaeoclimate
 
A safe operating space for humanity (Rockstrom 2009) Lecturas recomendadas S...
 A safe operating space for humanity (Rockstrom 2009) Lecturas recomendadas S... A safe operating space for humanity (Rockstrom 2009) Lecturas recomendadas S...
A safe operating space for humanity (Rockstrom 2009) Lecturas recomendadas S...
 
Climppf1
Climppf1Climppf1
Climppf1
 
Monahan - GSA Poster 36x48
Monahan - GSA Poster 36x48Monahan - GSA Poster 36x48
Monahan - GSA Poster 36x48
 
IAI_-_P_Stastney
IAI_-_P_StastneyIAI_-_P_Stastney
IAI_-_P_Stastney
 
final dissertation report
final dissertation reportfinal dissertation report
final dissertation report
 
Earth_Science_&_Climate_Change_Somenath_Ganguly
Earth_Science_&_Climate_Change_Somenath_GangulyEarth_Science_&_Climate_Change_Somenath_Ganguly
Earth_Science_&_Climate_Change_Somenath_Ganguly
 
ICES-ASC2010-v9
ICES-ASC2010-v9ICES-ASC2010-v9
ICES-ASC2010-v9
 
Physical causes of climate change
Physical causes of climate changePhysical causes of climate change
Physical causes of climate change
 
Kyoto Email 4.9.01
Kyoto Email 4.9.01Kyoto Email 4.9.01
Kyoto Email 4.9.01
 
Sea level rise
Sea level riseSea level rise
Sea level rise
 
Emma Hutchinson SESUR poster
Emma Hutchinson SESUR posterEmma Hutchinson SESUR poster
Emma Hutchinson SESUR poster
 
ENV 101 Ch16 lecture ppt_a
ENV 101 Ch16 lecture ppt_aENV 101 Ch16 lecture ppt_a
ENV 101 Ch16 lecture ppt_a
 
Ice age
Ice ageIce age
Ice age
 
Climate Change Science Since 2007
Climate Change Science Since 2007Climate Change Science Since 2007
Climate Change Science Since 2007
 

Destaque

Nicolas Rivera Lenis
Nicolas Rivera LenisNicolas Rivera Lenis
Nicolas Rivera Lenis
Jonathan
 
Climate and history
Climate and historyClimate and history
Climate and history
arubio5199
 
Climate & history little ice age
Climate & history little ice ageClimate & history little ice age
Climate & history little ice age
JessiKiesel
 
Ice age powerpoint
Ice age powerpointIce age powerpoint
Ice age powerpoint
amyyperezz
 
Code of canon law 1983
Code of canon law 1983Code of canon law 1983
Code of canon law 1983
Daniel H
 

Destaque (20)

Nicolas Rivera Lenis
Nicolas Rivera LenisNicolas Rivera Lenis
Nicolas Rivera Lenis
 
Iceages
IceagesIceages
Iceages
 
Ice age
Ice ageIce age
Ice age
 
History of Wandsworth
History of WandsworthHistory of Wandsworth
History of Wandsworth
 
Climate and history
Climate and historyClimate and history
Climate and history
 
Range shifts and adaptive responses during ice ages and recent global warming...
Range shifts and adaptive responses during ice ages and recent global warming...Range shifts and adaptive responses during ice ages and recent global warming...
Range shifts and adaptive responses during ice ages and recent global warming...
 
Climate & history little ice age
Climate & history little ice ageClimate & history little ice age
Climate & history little ice age
 
Ice age
Ice ageIce age
Ice age
 
Ice age powerpoint
Ice age powerpointIce age powerpoint
Ice age powerpoint
 
Vikings, lecture 2
Vikings, lecture 2Vikings, lecture 2
Vikings, lecture 2
 
Weather and seasons in australia
Weather and seasons in australiaWeather and seasons in australia
Weather and seasons in australia
 
World Religions - Mormonism - JR. Forasteros
World Religions - Mormonism - JR. ForasterosWorld Religions - Mormonism - JR. Forasteros
World Religions - Mormonism - JR. Forasteros
 
Ice Age
Ice AgeIce Age
Ice Age
 
Amish A-Z
Amish A-ZAmish A-Z
Amish A-Z
 
2 the formation of the christian canon
2   the formation of the christian canon2   the formation of the christian canon
2 the formation of the christian canon
 
Code of canon law 1983
Code of canon law 1983Code of canon law 1983
Code of canon law 1983
 
Human Beginnings
Human BeginningsHuman Beginnings
Human Beginnings
 
Amish Powerpoint
Amish PowerpointAmish Powerpoint
Amish Powerpoint
 
The amish
The amishThe amish
The amish
 
Cultura Amish
Cultura AmishCultura Amish
Cultura Amish
 

Semelhante a Long-term palaeoclimate: the origin of the ice ages

Anthropomorphic, climate change
Anthropomorphic, climate changeAnthropomorphic, climate change
Anthropomorphic, climate change
nybergjohn
 
Climate ChangeInvestigation ManualENVIRONMENTAL SCIENC
Climate ChangeInvestigation ManualENVIRONMENTAL SCIENCClimate ChangeInvestigation ManualENVIRONMENTAL SCIENC
Climate ChangeInvestigation ManualENVIRONMENTAL SCIENC
VannaJoy20
 
ResearchPaper_PastClimates_DrRoark_AaronMunsart_050915
ResearchPaper_PastClimates_DrRoark_AaronMunsart_050915ResearchPaper_PastClimates_DrRoark_AaronMunsart_050915
ResearchPaper_PastClimates_DrRoark_AaronMunsart_050915
Aaron Munsart
 
Presentation 5 2
Presentation 5 2Presentation 5 2
Presentation 5 2
guest0bb954
 
Ch18 lecture 3e
Ch18 lecture 3eCh18 lecture 3e
Ch18 lecture 3e
AHS
 
Lesson1 climate and change GCSE Edexcel B Geography
Lesson1 climate and change GCSE Edexcel B GeographyLesson1 climate and change GCSE Edexcel B Geography
Lesson1 climate and change GCSE Edexcel B Geography
sarah marks
 

Semelhante a Long-term palaeoclimate: the origin of the ice ages (20)

The causes of climate change
The causes of climate changeThe causes of climate change
The causes of climate change
 
Anthropomorphic, climate change
Anthropomorphic, climate changeAnthropomorphic, climate change
Anthropomorphic, climate change
 
Climate ChangeInvestigation ManualENVIRONMENTAL SCIENC
Climate ChangeInvestigation ManualENVIRONMENTAL SCIENCClimate ChangeInvestigation ManualENVIRONMENTAL SCIENC
Climate ChangeInvestigation ManualENVIRONMENTAL SCIENC
 
Complete the evidence for climate change
Complete the evidence for climate changeComplete the evidence for climate change
Complete the evidence for climate change
 
Natural environmental change
Natural environmental changeNatural environmental change
Natural environmental change
 
ResearchPaper_PastClimates_DrRoark_AaronMunsart_050915
ResearchPaper_PastClimates_DrRoark_AaronMunsart_050915ResearchPaper_PastClimates_DrRoark_AaronMunsart_050915
ResearchPaper_PastClimates_DrRoark_AaronMunsart_050915
 
Ocean atmosphere interactions
Ocean atmosphere interactionsOcean atmosphere interactions
Ocean atmosphere interactions
 
Climate change scenario_new
Climate change scenario_newClimate change scenario_new
Climate change scenario_new
 
Climate change and its effects
Climate change and  its effects Climate change and  its effects
Climate change and its effects
 
Presentation 5 2
Presentation 5 2Presentation 5 2
Presentation 5 2
 
Climate change co2 or crop irrigation
Climate change  co2 or crop irrigationClimate change  co2 or crop irrigation
Climate change co2 or crop irrigation
 
DAV PUBLIC SCHOOL - Climate change2
DAV PUBLIC SCHOOL - Climate change2DAV PUBLIC SCHOOL - Climate change2
DAV PUBLIC SCHOOL - Climate change2
 
Climate change 101 - Introduction to Climate Change Science (UNDP presentation)
Climate change 101 - Introduction to Climate Change Science (UNDP presentation)Climate change 101 - Introduction to Climate Change Science (UNDP presentation)
Climate change 101 - Introduction to Climate Change Science (UNDP presentation)
 
Presentation on climate change
Presentation on climate changePresentation on climate change
Presentation on climate change
 
Hansen
HansenHansen
Hansen
 
Ch18 lecture 3e
Ch18 lecture 3eCh18 lecture 3e
Ch18 lecture 3e
 
Lesson1 climate and change GCSE Edexcel B Geography
Lesson1 climate and change GCSE Edexcel B GeographyLesson1 climate and change GCSE Edexcel B Geography
Lesson1 climate and change GCSE Edexcel B Geography
 
The Science of Climate Change r1.pdf
The Science of Climate Change r1.pdfThe Science of Climate Change r1.pdf
The Science of Climate Change r1.pdf
 
Causes Of The Greenhouse Effect (IB Standard)
Causes Of The Greenhouse Effect (IB Standard)Causes Of The Greenhouse Effect (IB Standard)
Causes Of The Greenhouse Effect (IB Standard)
 
Climate Change 2016
Climate Change 2016Climate Change 2016
Climate Change 2016
 

Mais de Prof Simon Haslett

Mais de Prof Simon Haslett (20)

A tsunami in South Wales? The 1607 flood in the Bristol Channel and Severn Es...
A tsunami in South Wales? The 1607 flood in the Bristol Channel and Severn Es...A tsunami in South Wales? The 1607 flood in the Bristol Channel and Severn Es...
A tsunami in South Wales? The 1607 flood in the Bristol Channel and Severn Es...
 
Getting Published! Exploring strategies, myths and barriers of academic publi...
Getting Published! Exploring strategies, myths and barriers of academic publi...Getting Published! Exploring strategies, myths and barriers of academic publi...
Getting Published! Exploring strategies, myths and barriers of academic publi...
 
A geological journey along the south Ceredigion coast.
A geological journey along the south Ceredigion coast.A geological journey along the south Ceredigion coast.
A geological journey along the south Ceredigion coast.
 
The Geology of the south Cardigan Bay coast.
The Geology of the south Cardigan Bay coast.The Geology of the south Cardigan Bay coast.
The Geology of the south Cardigan Bay coast.
 
Projection of Wales as an internationally engaged/forward-looking nation.
Projection of Wales as an internationally engaged/forward-looking nation.Projection of Wales as an internationally engaged/forward-looking nation.
Projection of Wales as an internationally engaged/forward-looking nation.
 
Academic Publication
Academic PublicationAcademic Publication
Academic Publication
 
Flexible Provision: Rising to Challenges in Learning and Teaching - An Inst...
Flexible Provision: Rising to Challenges in Learning and Teaching - An Inst...Flexible Provision: Rising to Challenges in Learning and Teaching - An Inst...
Flexible Provision: Rising to Challenges in Learning and Teaching - An Inst...
 
Sustaining research-informed teaching: institutional and individual approaches.
Sustaining research-informed teaching: institutional and individual approaches.Sustaining research-informed teaching: institutional and individual approaches.
Sustaining research-informed teaching: institutional and individual approaches.
 
Academic Publication Workshop
Academic Publication WorkshopAcademic Publication Workshop
Academic Publication Workshop
 
Getting Published Workshop
Getting Published WorkshopGetting Published Workshop
Getting Published Workshop
 
Getting Published: The Wales Context
Getting Published: The Wales ContextGetting Published: The Wales Context
Getting Published: The Wales Context
 
Exploring Links between Research and Teaching in Higher Education
Exploring Links between Research and Teaching in Higher EducationExploring Links between Research and Teaching in Higher Education
Exploring Links between Research and Teaching in Higher Education
 
Publishing in Academic Journals
Publishing in Academic JournalsPublishing in Academic Journals
Publishing in Academic Journals
 
The 1607 Flood: a tsunami in the Bristol Channel?
The 1607 Flood: a tsunami in the Bristol Channel?The 1607 Flood: a tsunami in the Bristol Channel?
The 1607 Flood: a tsunami in the Bristol Channel?
 
Mendip Hills: Geology and Landforms.
Mendip Hills: Geology and Landforms.Mendip Hills: Geology and Landforms.
Mendip Hills: Geology and Landforms.
 
Literature review and the PhD
Literature review and the PhDLiterature review and the PhD
Literature review and the PhD
 
The Hell of High Water: Tsunami and the Cornish Coast
The Hell of High Water: Tsunami and the Cornish CoastThe Hell of High Water: Tsunami and the Cornish Coast
The Hell of High Water: Tsunami and the Cornish Coast
 
Promoting Professional Standards in Higher Education
Promoting Professional Standards in Higher EducationPromoting Professional Standards in Higher Education
Promoting Professional Standards in Higher Education
 
Publishing in Academic Journals
Publishing in Academic JournalsPublishing in Academic Journals
Publishing in Academic Journals
 
Getting Published Workshop
Getting Published WorkshopGetting Published Workshop
Getting Published Workshop
 

Último

Último (20)

Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 

Long-term palaeoclimate: the origin of the ice ages

  • 1. Long-term palaeoclimate: the origin of the ice ages Professor Simon K. Haslett Centre for Excellence in Learning and Teaching Simon.haslett@newport.ac.uk 16rd September 2010
  • 2. Introduction What stimulated the global cooling that led to the development of the continental ice sheets that characterised the Quaternary and other ice ages through geological time? The search for the answer to these major climate questions has generated some fascinating research that has become the focus of much media attention. However, a number of different theories have been proposed to account for the origin of the ice ages, and there is intense argument between the supporters of the different theories – a very controversial topic. This presentation hopes to discuss what caused the ice ages, and describes the radical theories relating to climatic changes.
  • 3.
  • 4. Robert Berner and his colleagues who believe that long-term trends in the carbon cycle coupled with the Greenhouse Effect are responsible.These theories invoke a relationship between atmospheric CO2, tectonic activity, and the carbonate-silicate cycle.
  • 5. Geochemical or steady-state model 1 The ‘geochemical’ or ‘steady-state’ model was proposed by Berner in 1990, and suggests that tectonic activity releases CO2 through a process called decarbonation, which increases atmospheric CO2. This in turn enhances the Greenhouse Effect which results in global warming, and enhances continental weathering. Rocks weather more rapidly in warm/moist conditions. Weathered products are transported to the sea where they promote carbonate (CaCO3) formation (i.e. shells) which sink to the sea-floor. C B A (a) Foraminifera secrete calcareous ‘tests’ and inhabit both the sea-bed and the water column. (b) Cut blocks of fenwood peat. Peat consists of partially decomposed organic material which acts as a sink for carbon because of the anaerobic conditions in which it is found. Note the coin for scale. (c) Volcanic activity releases millions of tonnes of CO2 into the atmosphere every year (Terceira island, Azores).
  • 6. Geochemical or steady-state model 2 In conjunction with the weathering processes themselves (which consume atmospheric CO2), detrital rain in the water column takes carbon out of circulation until the sediments are decarbonated. This process maintains a steady-state relationship between weathering, decarbonation, and atmospheric CO2 levels, and so essentially weathering is controlled by decarbonation. The variation in CO2 throughout the Phanerozoic is apparently related to the relationship of tectonic activity, rise of vascular plants, and the burial of organic matter. The Quaternary ice ages are attributed by Berner (1990) to a general decrease in decarbonation over the last 100 Ma and an increase in the burial of organic matter.
  • 7. Uplift or non-steady-state model 1 Raymoet al.’s (1988) model (called the uplift or non-steady-state model) suggests that CO2 levels are not controlled by decarbonation, and promotes the idea that the process of uplift alone can stimulate weathering, stripping CO2 out of the atmosphere, increasing CaCO3 sedimentation in the oceans, so causing global cooling and the Quaternary ice ages. Thus, this model operates in a non-steady-state because the carbon cycle is being influenced by factors from outside the system (i.e. uplift). Formation of scree slopes indicates physical and chemical weathering and erosional processes acting on a rock face (Andalusia, Spain).
  • 8. Uplift or non-steady-state model 2 During the Late Cenozoic a number of uplift events have occurred (e.g. Tibetan Plateau, Himalayas, Andes, Alps etc) which may have provided the stimuli for global cooling. Indeed there is evidence for increased weathering at this time (e.g. strontium content of deep-sea sediments). Tectonically driven uplift of mountain ranges , e.g. the Alps, has been suggested to have initiated glaciation.
  • 9. Consolidation of the theories Sundquist (1991) constructs a complex ocean-atmosphere-sediment model to evaluate these conflicting theories. He concludes that both of these theories operate in nature, but on different time scales, with the steady-state model operating over longer periods of geological time, whilst the non-steady-state may interfere over shorter periods and specific to uplift events. A useful figure derived from his model is that a lagged response time of 300-400 ka exists between either uplift or decarbonation and increased weathering capable of depleting atmospheric CO2.
  • 10. Practical – Milankovitch cycles 1 Examine the SPECMAP graph below of an oxygen isotope record taken from a deep-sea sediment core (the top of the core is the modern sea-floor surface). Oxygen isotopes vary depending on changes in global ice volume. Using your knowledge of oxygen isotopes and Milankovitch cycles, answer the questions that follow:
  • 11. Practical – Milankovitch cycles 2 Make a copy of the preceding graph. Identify perturbations in the oxygen isotope record due to eccentricity, obliquity and precession cycles (annotate examples on your graph where appropriate). Construct a general chronology (in 1000’s of years) for the core and draw a timescale up the side of your graph. Reconstruct palaeoclimate change represented by the oxygen isotope record (annotate the graph to show palaeoclimate extremes). E = Eccentricity of orbit T = Obliquity of the Ecliptic (tilt) P = Precession of the Equinoxes Source: FAQ 6.1. Fig 1. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avervt, K.B., Tignor, M. and Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
  • 12. Practical – sample interpretation
  • 13. Summary The origin of the ice ages remains a very controversial topic. There are two opposing theories that have implications for the origin of Quaternary ice ages. Both theories are in agreement that the Quaternary ice ages are a function of CO2 in the atmosphere and the Greenhouse Effect. Robert Berner believes that the ice ages are essentially a consequence of carbon storage mechanisms corresponding with a decrease in decarbonation. Maureen Raymoet al., however, argues that as the Himalayas grew, heavy monsoon rains combined with CO2 in the air eroded the newly exposed rock, removing so much CO2 out of the atmosphere that global temperatures dropped. In 1991, Eric Sundquist concluded that both theories have their place in nature, but operate over different timescales.
  • 14. References Berner, R.A. 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science, 249: 1382-1386. Broecker, W.S. and Denton, G.H. 1990. What drives glacial cycles? Scientific American, 262(1): 48-56. Harris, S.A. 2002. Global heat budget, plate tectonics and climate change. GeografiskaAnnaler, A84: 1-9. Hays, J.D., Imbrie, J. and Shackleton, N.J. 1976. Variations in the earth’s orbit: pacemaker of the ice ages. Science, 194: 1121-1132. Molnar, P. and England, P. 1990. Late Cenozoic uplift of mountain-ranges and global climate change – chicken or egg? Nature, 346: 29-34. Paterson, D. 1993. Did Tibet cool the world? New Scientist, 2nd July issue, 29-33. Raymo, M.E. and Ruddiman, W.F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117-122. Raymo, M.E., Ruddiman, W.F. and Froelich, P.N. 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649-653. Ruddiman, W.F. and Kutzbach, J.E. 1991. Plateau uplift and climatic change. Scientific American, 264(3): 66-. Sundquist, E.T. 1991. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2. Quaternary Science Reviews, 10: 283-296.
  • 15. This resource was created by the University of Wales, Newport and released as an open educational resource through the 'C-change in GEES' project exploring the open licensing of climate change and sustainability resources in the Geography, Earth and Environmental Sciences. The C-change in GEES project was funded by HEFCE as part of the JISC/HE Academy UKOER programme and coordinated by the GEES Subject Centre. This resource is licensed under the terms of the Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales license (http://creativecommons.org/licenses/by-nc-sa/2.0/uk/). All images courtesy of Professor Simon Haslett. However the resource, where specified below, contains other 3rd party materials under their own licenses. The licenses and attributions are outlined below: The name of the University of Wales, Newport and its logos are unregistered trade marks of the University. The University reserves all rights to these items beyond their inclusion in these CC resources. The JISC logo, the C-change logo and the logo of the Higher Education Academy Subject Centre for the Geography, Earth and Environmental Sciences are licensed under the terms of the Creative Commons Attribution -non-commercial-No Derivative Works 2.0 UK England & Wales license. All reproductions must comply with the terms of that license.

Notas do Editor

  1. Steady-state – the notion that the input, output and properties of a system remain constant over time.Tectonic activity i.e. sea-floor spreading, subduction. Sea-floor spreading is the process where the ocean floor is extended when two plates move apart. These plates ultimately become bigger at the expense of other plates, which melt back into the earth in a process called subduction.
  2. 981, 995, 1001