SlideShare uma empresa Scribd logo
1 de 305
Materiais Não Metálicos
TM334
Aula 01: Revisão de Estrutura
Atômica e Ligação Interatômica e
Introdução aos Materiais Cerâmicos
Prof. Felipe Jedyn
DEMEC – UFPR
O que será vistoCerâmicos
Os materiais cerâmicos são combinações de elementos metálicos
e não metálicos, frequentemente óxidos, nitretos e carbetos.
Nesta classificação, existe um grande número de materiais, como:
argilas, cimentos e vidros.
O que será vistoCerâmicos
Apresentam ligações tipo iônicas ou covalentes, sendo isolantes
elétricos e térmicos.
Os cerâmicos são em geral resistentes e muito frágeis. São
resistentes à elevadas temperaturas e muito resistentes a
ambientes corrosivos.
O que será visto
Polímeros
Os materiais poliméricos são normalmente combinações de
elementos orgânicos, como o Carbono, Hidrogênio além de outros
materiais não metálicos.
O que será visto
Polímeros
Nesta classe, os átomos estão ligados por ligações covalentes, além
de outros tipos de ligações como forças de Van der Waals.
São isolantes elétricos e térmicos, sendo em geral de baixa
densidade e grande flexibilidade. Pela constituição e tipos de
ligações, apresentam limitada aplicação em temperatura.
O que será visto
Materiais Compósitos
Compósito é basicamente um
material em cuja composição
entram dois ou mais tipos de
materiais diferentes. Alguns
exemplos são metais e polímeros,
metais e cerâmicos ou polímeros
e cerâmicos.
Os materiais que podem compor
um material compósito podem ser
classificados em dois tipos:
O que será visto
Materiais Compósitos
Material matriz é o que confere estrutura ao material compósito,
preenchendo os espaços vazios que ficam entre os materiais reforços
e mantendo-os em suas posições relativas.
Materiais de reforço são os que realçam propriedades mecânicas,
eletromagnéticas ou químicas do material compósito como um todo.
O que será visto
Materiais Compósitos
O grande potencial de desempenho destes materiais está baseado
na possibilidade de sinergia entre material matriz e materiais
reforços que resulte no material compósito final com propriedades
não existentes nos materiais originais isoladamente.
Bibliografia Recomendada
Cerâmicos
1 – Ciência e Engenharia de Materiais – Uma Introdução, 5ª edição.
William D. Callister, Jr.
2 – Princípios de Ciência e Engenharia dos Materiais, 3ª edição.
William F. Smith
3 – Propriedades dos Materiais Cerâmicos.
Lawrence H. Van Vlack
4 – An Introduction to the Mechanical Properties of Ceramics.
David J. Green
5 – Modern Ceramic Engineering, 2ª edição.
David W. Richerson
REVISÃO
Estrutura Atômica e
Ligação Interatômica
 Algumas das propriedades importantes dos materiais sólidos
dependem dos arranjos geométricos dos átomos e também das
interações que existem entre os átomos ou moléculas
constituintes.
 Um exemplo é o Carbono Grafite e Diamante que apresentam
durezas diferentes, sendo o primeiro com dureza relativamente
baixa enquanto o segundo de elevada dureza.
 Esta diferença está justificada diretamente a partir do tipo de
ligação interatômica que ocorre no Grafite e que não é encontrada
no Diamante.
Revisão: Conceitos
Fundamentais
Revisão: Conceitos
Fundamentais
 Vamos revisar conceitos
fundamentais como
estrutura atômica,
configurações eletrônicas
dos átomos e tabela
periódica, e os vários
tipos de ligações
interatômicas primárias e
secundárias que mantêm
unidos os átomos que
compõe um sólido.
Revisão: Conceitos
Fundamentais
Ordem de grandeza da estrutura atômica  10-15 a 10-10 m A estrutura
eletrônica dos
átomos
determina a
natureza das
ligações atômicas
e define algumas
propriedades dos
materiais
Propriedades:
físicas, ópticas,
elétricas e
térmicas
Revisão: Conceitos
Fundamentais
Cada átomo consiste de um pequeno núcleo composto por prótons
e nêutrons, que é circundado por elétrons em movimento.
Elétrons e prótons são carregados
eletricamente com carga de 1,6 x
10-19 C, negativo em sinal para
elétrons e positivo para prótons,
enquanto os nêutrons são
eletricamente neutros.
Revisão: Conceitos
Fundamentais
A massa das partículas é muito pequena, sendo a dos prótons
aproximadamente igual a dos nêutrons de 1,67 x 10-27 kg e a dos
elétrons de 9,11 x 10-31 kg.
Revisão: Conceitos
Fundamentais
Cada átomo é caracterizado pelo número atômico Z ou número
de prótons.
O Z varia desde 1 (Hidrogênio) até 92 (Urânio), considerando os
elementos químicos estáveis da tabela periódica, que ocorrem
naturalmente.
Um átomo eletricamente neutro é aquele que apresenta o
mesmo número de prótons e elétrons.
Revisão: Conceitos
Fundamentais
O número de massa A, pode ser expresso pela soma das massas
dos prótons e nêutrons do seu núcleo. Embora um átomo de um
determinado elemento apresente o mesmo número de prótons,
podem existir diferentes números de nêutrons, o que origina os
Isótopos do elemento.
O peso atômico de um elemento corresponde à média
ponderada das massas atômicas dos isótopos. Uma unidade de
massa atômica (u.m.a) é definida como sendo 1/12 avos da
massa atômica do Isótopo do Carbono 12 (12C), sendo A =
12,00000.
Desta forma, dentro deste método podemos aproximar:
A ̴̴ Z + N
Revisão: Conceitos
Fundamentais
Revisão: Conceitos
Fundamentais
O peso atômico de um elemento ou molecular de um composto
pode ser especificado com base na unidade de massa atômica por
átomo ou massa por mol de material, sendo:
1 u.m.a/átomo = 1 g/mol
Em um mol de qualquer substância temos: 6,02 x 1023 átomos ou
moléculas (nº Avogadro).
Exemplo: Átomo de Ferro: Massa Atômica:55,85 u.m.a./átomo ou
55,85 g/mol.
Revisão:
Modelos Atômicos
Modelo Atômico de Bohr
Modelo atômico no qual os elétrons circulam ao redor do núcleo
atômico em orbitais e a posição de qualquer elétron é mais ou
menos bem definido em termos do seu orbital.
Um importante princípio da mecânica
quântica determina que os elétrons
apresentam energias quantizadas; isto é, aos
elétrons permite-se apenas que possuam
valores de energia específicos.
Um elétron pode mudar de energia, mas
para isto deve mudar de nível (salto
quântico) absorvendo ou emitindo energia.
Revisão: Modelos Atômicos
Modelo Atômico de
Bohr
Figura mostrando os três
primeiros estados de energia
eletrônicos do átomo de
Hidrogênio de Bohr
(-13,6 / -3,4 / -1,5 eV) (a).
(0 eV de ref. = e- livre)
Obviamente o único elétron
do H irá preencher somente
um desses estados.
Estados de energia do elétron
para as três primeiras
camadas segundo o modelo
ondulatório (b).
Revisão: Modelos Atômicos
O Modelo Atômico de Bohr
apresenta várias limitações (a)
quando é usado para explicar
alguns fenômenos envolvendo os
elétrons, problema que foi
resolvido pela adoção do modelo
mecânico-ondulatório, onde se
considera que os elétrons exibem
características tanto de onda
como de partícula.
Assim, passa-se a considerar a
probabilidade de um elétron
ocupar certas posições ao redor
do núcleo atômico (b).
Revisão:
Modelos Atômicos
Ou seja, com este modelo o elétron não é mais tratado como
uma partícula que se move em um orbital distinto;
em vez disto, a posição do elétron é considerada como sendo a
probabilidade de um elétron estar em vários locais ao redor do
núcleo.
Em outras palavras, a posição é descrita por uma distribuição de
probabilidades ou uma nuvem eletrônica.
Revisão:
Números Quânticos
Usando a mecânica ondulatória, cada elétron em um átomo é
caracterizado por quatro parâmetros chamados números
quânticos.
Os níveis energéticos de Bohr são separados em subcamadas
eletrônicas , e os números quânticos definem o número de estados
(ou orbitais) em cada subcamada.
As camadas eletrônicas são especificadas por um número quântico
principal “n” que assume valores inteiros a partir da unidade.
As camadas são designadas com letras K, L, M, N, O e assim por
diante, que correspondem, respectivamente, por valores de “n” de
1, 2, 3, 4, 5, ...
Deve ser observado também que este número quântico, e
somente este, está associado com o modelo de Bohr. Ele está
relacionado à distância de um elétron a partir do núcleo, ou a sua
posição.
O segundo número quântico, l, significa a subcamada que é
identificada por uma letra minúscula – s, p, d, ou f; ele está
relacionado a forma da subcamada eletrônica.
O número de estados energéticos para cada subcamada é
determinado pelo terceiro número quântico ml.
Revisão:
Números Quânticos
Revisão: Números Quânticos
Associado com cada elétron está um momento de spin (momento
de rotação), que deve estar orientado para cima e para baixo. O
quarto número quântico, ms, está associado a este momento de
spin, para o qual existem dois valores possíveis (+1/2 e -1/2), um
para cada uma das orientações de spin.
Número
Quântico
Principal “n”
Designação da
Camada Subcamadas
Número de
estados
Número de Elétrons
Por Subcamada Por Camada
Revisão:
Números Quânticos
O modelo de Bohr foi
refinado pela mecânica
ondulatória, dando origem
a subcamadas dentro das
camadas originais.
Revisão:
Configurações Eletrônicas
Vimos principalmente até agora os estados eletrônicos – valores de
energia que são permitidos para os elétrons.
Para determinar a maneira pela qual estes estados são
preenchidos com elétrons, nós usamos o princípio da exclusão de
Pauli, um outro conceito quântico mecânico – Cada estado orbital
eletrônico pode comportar um máximo de dois elétrons, que
devem possuir valores de spin opostos.
Para a maioria dos átomos, os elétrons preenchem os estados
eletrônicos de energias mais baixas nas camadas e subcamadas.
Revisão: Configurações
EletrônicasElétrons de Valência
 Os elétrons de valência são aqueles que ocupam a camada mais
externa.
 Os elétrons de valência participam na ligação atômica, de maneira a
formar agrupamentos de átomos ou moléculas e muitas
propriedades físicas e químicas estão baseadas nestes elétrons.
 Elétrons de Valência – Gases Nobres
 Átomos como Neônio, Criptônio, Argônio são conhecidos pela
configuração eletrônica estável.
 Ou seja, os estados energéticos dentro da camada mais externa
estão preenchidos com elétrons, totalizando oito elétrons. A exceção
é o Hélio, que apresenta apenas dois elétrons 1s.
Revisão:
Configurações Eletrônicas
 Elétrons de Valência - Íons
 Alguns átomos dos elementos que possuem camadas de valência
não totalmente preenchidas assumem configurações estáveis pelo
ganho ou perda de elétrons para formar íons carregados ou através
do compartilhamento de elétrons com outros átomos.
 Esta é a base para algumas reações químicas e também para as
ligações atômicas em sólidos.
Revisão:
Configurações Eletrônicas
Revisão:
A Tabela Periódica
 Todos os elementos tem sido classificados de acordo com a
configuração eletrônica na tabela periódica.
 Nela, os elementos estão posicionados em ordem crescente de
número atômico e em sete linhas horizontais chamadas de
períodos.
 O arranjo dos elementos é tal que todos os elementos que estão
na mesma coluna ou grupo apresentam similar estrutura dos
elétrons de valência, assim como propriedades químicas e físicas.
 Estas propriedades alteram gradual e sistematicamente à medida
que movem horizontalmente através de cada período.
Revisão: A Tabela Periódica
 Os elementos posicionados no grupo 0, grupo mais à direita, são os
gases inertes, que apresentam configurações eletrônicas estáveis
e com as camadas eletrônicas preenchidas.
 Os elementos dos grupos VIIA e VIA apresentam falta de um e dois
elétrons nas camadas respectivamente, em relação às estruturas
estáveis.
 Os elementos do grupo VIIA (F, Cl, Br, I e At) são chamados de
Halogêneos.
 Os metais alcalino e alcalino-terrosos (Li, Na, K, Be, Mg, Ca, etc.) são
posicionados nos grupos IA e IIA tendo, respectivamente, um e dois
elétrons em excesso em relação às configurações estáveis.
 Os elementos dos três longos períodos IIIB até IIB são chamados de
metais de transição, os quais possuem orbitais eletrônicos d
parcialmente preenchidos e, em alguns casos, um ou dois elétrons
na camada energética imediatamente mais alta.
 Os grupos IIIA, IVA e VA (B, Si, Ge, As , etc.) mostram características
que são intermediárias entre os metais e não-metais (ametais) como
resultado da estrutura dos elétrons de valência.
Revisão: A Tabela Periódica
Revisão: A Tabela Periódica
 A maior parte dos elementos está classificada como metais. Estes
são chamados elementos eletropositivos, indicando que são capazes
de ceder os seus poucos elétrons de valência, se tornando íons
carregados positivamente.
Revisão: A Tabela Periódica
 Por outro lado, os elementos localizados à direita da tabela periódica
são eletronegativos, ou seja, prontamente recebem elétrons
formando íons carregados negativamente. Outras vezes estes
elementos compartilham elétrons com outros tipos de átomos.
Revisão:
Ligação Atômica nos Sólidos
Forças de Ligação
 O entendimento de muitas propriedades físicas está baseada no
conhecimento das forças de ligação interatômicas que unem os
átomos, prendendo-os.
Revisão:
Ligação Atômica nos Sólidos
Forças de Ligação
 Analisando as ligações entre dois átomos desde uma proximidade
grande até uma distância infinita.
 Em grandes distâncias as forças podem ser desconsideradas.
 À medida que os átomos se aproximam eles exercem forças uns
sobre os outros.
 Estas forças podem ser de atração ou de repulsão. E a magnitude
depende da distância entre os átomos.
Revisão:
Ligação Atômica nos Sólidos
Forças de Ligação
 A força de atração depende do tipo de ligação e varia com a
distância interatômica.
 Quando a última camada de dois átomos começa a se
sobrepor, surgem forças de repulsão.
A força líquida (FL) é então a resultante entre a força de Atração
e a de Repulsão:
FL = FA + FR
Ligação Atômica nos Sólidos
Forças de Ligação
Dependência entre a força de Atração, Repulsão e Força de Ligação.
Quando existe equilíbrio entre
as forças de atração e repulsão,
a força resultante de ligação é
zero.
FA+FR=0
Nesta condição, estabelece-se
a distância interatômica de
equilíbrio, ou r0.
Neste caso, os centros do átomos estarão separados por uma distância r0.
Para diversos átomos esta distância é de 3nm.  não se aproximam nem
se separam (repulsão e atração).
Ligação Atômica nos Sólidos
Forças de Ligação
Dependência entre a força de Atração, Repulsão e Força de Ligação.
 Resumindo
 A distância entre dois átomos é determinada pelo balanço das forças
atrativas e repulsivas.
 Quanto mais próximos os átomos maior a força atrativa entre eles,
mas maior ainda são as forças repulsivas devido a sobreposição das
camadas mais internas.
 Quando a soma das forças atrativas e repulsivas é zero, os átomos
estão na chamada distância de equilíbrio.
Ligação Atômica nos Sólidos
Força de ligações e Rigidez
 O que é deformação no regime
elástico???
Ligação Atômica nos Sólidos
Força de ligações e Rigidez
 O que é deformação no regime
elástico???
 Como traduzir isso num nível
atômico???
Ligação Atômica nos Sólidos
Força de ligações e Rigidez
 A inclinação da curva no ponto de
equilíbrio dá a força necessária para
separar os átomos sem promover a
quebra da ligação.
 Os materiais que apresentam uma
inclinação grande são considerados
materiais rígidos.
 Ao contrário, materiais que apresentam
uma inclinação mais tênue são
bastante flexíveis.
Ligação Atômica nos Sólidos
Força de ligações e Rigidez
 A rigidez e a flexibilidade também
estão associadas com módulo de
elasticidade (E) que
 é determinado da inclinação da
curva tensão x deformação obtida
no ensaio mecânico de resistência
à tração.
Ligação Atômica nos Sólidos
Energias de Ligação
Dependência entre a Energia Potencial E conforme a variação da energia de
Atração e Energia de Repulsão.
Quando analisamos a Energia
potencial ao invés da força,
vemos que a distância de
equilíbrio r0 é aquela que
desenvolve a menor energia.
Nesta condição, estabelece-se a
Energia mínima E0 e representa
a energia necessária para
separar estes dois átomos até
uma distância infinitamente
grande.
E = ʃ F dr EL = EA + ER
Ligação Atômica nos Sólidos
Energias de Ligação
Dependência entre a Energia Potencial E conforme a variação da energia de
Atração e Energia de Repulsão.
Diferentes átomos  diferentes
tipos de ligação química  curvas
diferentes de energia resultante.
Quando consideramos, por
exemplo, uma deformação que
envolve o distanciamento de
átomos no regime elástico,
podemos entender que o módulo
de elasticidade de cada material
será diferente, pela razão antes
exposta.
Revisão:
Ligação Atômica nos Sólidos
Algumas Propriedades x Exemplos:
Temperatura de Fusão:
 Quanto maior o valor de |E0|, maior a temperatura de fusão de um
material, já que há necessidade de rompimento de ligações para a
mudança de estado físico (sólido  líquido).
 Por outro lado, pequenos valores de |E0|, são típicos de materiais
gasosos e
 líquidos apresentam energias de ligação intermediária.
Revisão:
Ligação Atômica nos Sólidos
Algumas Propriedades x Exemplos:
 Coeficiente de Expansão:
 O coeficiente de expansão linear de um material é dependente da
forma da curva E0 versus r0.
 Elevadas E de ligação  baixo coeficiente de expansão térmica
(alterações dimensionais pequenas).
Revisão:
Ligação Atômica nos Sólidos
Algumas Propriedades x Exemplos:
 Resistência mecânica:
 Aumenta com a força máxima e com a profundidade do poço da
curva de energia de ligação.
 Ou seja, quanto maior a energia de ligação, maior a resistência.
Revisão:
Ligação Atômica nos Sólidos
 Os tipos primários de ligação em sólidos são: Iônicas, Covalentes e
Metálicas.
 Para cada um destes tipos, a ligação envolve os elétrons de valência e o
tipo de ligação depende da estrutura eletrônica dos átomos.
 De forma geral, cada um destes tipos de ligação visam assumir
estruturas eletrônicas estáveis como a dos gases nobres.
Revisão:
Ligação Atômica nos Sólidos
 Forças de origem secundária ou física são ainda encontradas em muitos
materiais sólidos.
 Estas forças são mais fracas que os tipos de ligações principais mas
ainda assim influenciam as propriedades físicas dos
materiais  Ligações Secundária.
 Ligações Primárias: Iônicas, Covalentes, Metálicas.
 Ligações Secundárias: Van der Waals: Dipolo Induzido por
Flutuação, Dipolo Induzido-Moléculas Polares, Dipolo Permanente.
Revisão:
Ligação Atômica nos Sólidos
Revisão:
Ligação Atômica nos Sólidos
Ligações Iônicas
 Uma das mais fáceis de descrever e
visualizar.
 São sempre encontradas em
compostos formados por metais e
não-metais, situados
horizontalmente nas extremidades
da tabela periódica.
Força de Ligação Coulombiana
Revisão:
Ligação Atômica nos Sólidos
Ligações Iônicas
 Os átomos metálicos facilmente
cedem os elétrons de valência
aos elementos não-metálicos.
 Neste caso, os átomos das duas
espécies adquirem a
configuração estável ou tal
como a dos gases inertes e
adicionalmente os átomos
passam a ser íons (ganham
carga elétrica).
Força de Ligação Coulombiana
Revisão:
Ligação Atômica nos Sólidos
Ligações Covalentes
 Nas ligações covalentes, a
configuração estável é obtida
pelo compartilhamento dos
elétrons entre átomos
adjacentes.
 Estes elétrons pertencerão a
ambos.
Revisão:
Ligação Atômica nos Sólidos
Ligações Covalentes
 Este tipo de ligação aparece em
não-metais como H2, Cl2, F2,
H2O, HNO3, assim como em
sólidos tais como o Diamante
(Carbono), Silício, Germânio...
 E compostos formados por
elementos do lado direito da
tabela periódico, como o Gálio-
Arsênio, Índio-Antimônio e
Carbeto de Silício.
Revisão:
Ligação Atômica nos Sólidos
Ligações Metálicas
 As ligações metálicas são
encontradas nos metais e ligas
metálicas.
 Os metais tem entre um e três
elétrons de valência e dentro
deste modelo, os elétrons de
valência não estão ligados a um
átomo específico e estão + ou -
livres para o movimento entre os
átomos que compõe o material,
tal como uma nuvem eletrônica.
Revisão:
Ligação Atômica nos Sólidos
Ligações Metálicas
 Os elétrons que não são os de
valência e os núcleos atômicos
formam o que usualmente se
chama de
 núcleos iônicos, com carga
positiva igual em magnitude à
carga total dos elétrons de
valência por átomo.
Revisão:
Ligação Atômica nos Sólidos
Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido
Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes.
Van der Waals
 As ligações secundárias de van der Waals ou ligações físicas,
 são fracas em comparação às ligações primárias, ficando na ordem de 10
kJ/mol ou 0,1 eV/átomo.
 Estas forças aparecem virtualmente entre todos os átomos ou
moléculas,
 entretanto, a sua presença fica obscurecida quando existem ligações
primárias de maior intensidade.
Revisão:
Ligação Atômica nos Sólidos
Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido
Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes.
Van der Waals
 As ligações secundárias são visualizadas entre átomos de gases inertes
que apresentam estruturas eletrônicas estáveis e entre suas moléculas
ligadas covalentemente.
Revisão:
Ligação Atômica nos Sólidos
Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido
Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes.
Dipolo
 Forças de ligação secundária aparecem a partir de dipolos atômicos ou
moleculares. Na prática, dipolos existem quando existe alguma separação
de regiões positivas ou negativas em um átomo ou molécula. As ligações
são o resultado de forças Coulombianas entre uma extremidade positiva
e a extremidade negativa de uma molécula adjacente.
Dipolos atômicos ou moleculares
Separação entre frações + e -  Atração Coulombiana
 Surgem de dipolos atômicos ou moleculares
Estas ligações podem ocorrer
entre:
 Dipolos Induzidos
 Dipolos Induzidos e
Moléculas Polares
 Moléculas Polares
Revisão:
Ligação Atômica nos Sólidos
Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido
Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes.
Ligações de Dipolo Induzido Flutuantes
 Um dipolo pode ser criado em um átomo ou molécula que é eletricamente
simétrica (a). A própria vibração atômica ou molecular pode induzir a
criação de um dipolo instantâneo num átomo (b). Quando este desbalanço
causa o mesmo efeito em um átomo vizinho, cria-se um dipolo, tipo de
ligação de van der Waals.
As Forças atrativas são
temporárias e flutuam ao
longo do tempo.
Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido
Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes.
Ligações de Dipolo Induzido Flutuantes
 A liquefação ou até mesmo a solidificação de gases inertes, além de outras
moléculas eletricamente neutras e simétricas, tais como H2 ou Cl2, são
realizadas devido a este tipo de interação.
 As temperaturas de fusão e ebulição são extremamente baixas em
materiais em que houver predomínio de ligações tipo dipolo. Dentre todos
os tipos de ligações intermoleculares, estas são as mais fracas.
Revisão:
Ligação Atômica nos Sólidos
Materiais com Ligação por Dipolo Induzido Predominante
 TEbulição e Tfusão extremamente baixas
Revisão:
Ligação Atômica nos Sólidos
Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido
Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes.
Ligações entre Moléculas Polares e Dipolos Induzidos
 Momentos de Dipolo permanentes existem em algumas
moléculas devido ao arranjo assimétrico dos íons
positivos ou negativos.
 Tais moléculas são ditas Moléculas Polares (exemplo:
HCl). Estas moléculas podem induzir dipolos em
moléculas adjacentes não polares e uma ligação se
formará como resultado das forças de atração entre as
moléculas. Estas ligações desenvolverão magnitude de
força maior que as de Dipolo Induzido Flutuantes.
Revisão:
Ligação Atômica nos Sólidos
Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido
Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes.
Ligações Dipolo Permanentes
 As ligações de van der Waals existirão entre moléculas polares adjacentes.
O mais forte tipo de ligação secundária – a ligação do Hidrogênio – é um
caso especial de ligação de molécula polar.
 Ocorre entre moléculas em que o Hidrogênio está Covalentemente ligado
ao Flúor, formando a molécula HF, ao Oxigênio na água (H2O) e ao
Nitrogênio na Amônia (NH3).
Ligação Atômica nos Sólidos
Ligações Dipolo Permanentes
 Em cada ligação H-F, H-O ou H-N, o único elétron do H é compartilhado com
o outro átomo.
 Assim, a extremidade da ligação contendo o H consiste essencialmente em
um próton isolado, carregado positivamente, e que não está neutralizado
por qualquer elétron.
 Esta extremidade carregada da molécula, altamente positiva, é capaz de
exercer uma grande força de atração sobre a extremidade negativa de uma
molécula adjacente.
 Essencialmente, este próton isolado
forma uma ponte entre dois átomos
carregados negativamente.
Revisão:
Ligação Atômica nos Sólidos
Revisão:
Ligação Atômica x Propriedades
Materiais com ligações iônicas apresentam:
 Elevadas temperaturas de fusão;
 Elevada Dureza e Fragilidade;
 Isolantes Elétricos e Térmicos.
Materiais com ligações Covalentes apresentam:
 Ligações fortes como a do Diamante, que resultam em:
• Elevadas temperaturas de fusão (3550ºC) e elevada Dureza
 Ligações fracas como a do Bismuto, que resultam em:
• Baixas temperaturas de fusão (270ºC).
*Ambos são isolantes elétricos e térmicos.
Revisão:
Ligação Atômica x Propriedades
Materiais com ligações Metálicas apresentam:
 Temperaturas de fusão desde baixas até elevadas.
 Baixa dureza e alta ductilidade,
 Bons condutores elétricos e térmicos, como consequência dos
elétrons livres.
Materiais Moleculares com ligações de van der Waals / Hidrogênio
apresentam:
 Baixas temperaturas de fusão,
 Baixa Dureza.
Materiais Cerâmicos
Introdução
Cubo de sílica
de isolamento
térmico. O
interior do cubo
está a 1250ºC e
pode ser
manuseado sem
protecção.
Usada no
isolamento
térmico do
Space Shuttle
Introdução
História
 2 milhões de anos atrás o Homo Erectus tem contato com
os primeiros materiais cerâmicos;
 Lascas de quartzo e obsidiana (vidro vulcânico) utilizadas como
armas.
Ponta de lança feita de quartzo
Introdução
História
Cerâmicas ao longo da história: Egito e China (5000
anos); Japão (8000 anos).
Introdução
Atualidade
Supercondutores
Vidros
Cerâmicas
Introdução
Definição
Cerâmica (Keramikos) = matéria-prima queimada.
As propriedades só são atingidas após um tratamento
térmico de alta temperatura – conhecido como ignição.
Introdução
Definição
 São materiais inorgânicos. A característica comum a estes materiais é
serem constituídos de elementos metálicos e elementos não
metálicos, ligados por ligações iônicas e/ou covalentes;
 Apresentam composições químicas muito variadas, desde compostos
simples a misturas de várias fases complexas ligadas entre si;
 As propriedades variam muito devido a diferenças de ligação
química;
 Os materiais cerâmicos são geralmente duros e frágeis, com
pouca tenacidade e pouca ductilidade;
Introdução
Definição
 São geralmente isolantes térmicos e elétricos (devido à ausência de
elétrons de condução)
 embora existam materiais cerâmicos semicondutores,
condutores e até mesmo supercondutores (estes dois
últimos, em faixas específicas de temperatura);
 Apresentam alto ponto de fusão e são comumente
 quimicamente estáveis sob condições ambientais severas
 (devido à estabilidade das suas fortes ligações químicas).
Introdução
Exceções
 Fragilidade: cerâmicas
superplásticas. Ex: ZrO2
(zircônia) estabilizado com
Y2O3 (óxido de ítrio);
 “The zirconia oxide stabilized by
yttrium oxide offers except for its
extremely high strength also the
advantage that it is white, light-
permeable material.
Furthermore, its excellent
biocompatibility and low thermal
conductivity make it to be an
ideal material for accurate
prostheses.” Kralodent
Introdução
Exceções
 Isolantes Térmicos: diamante
(alta condutividade térmica –
VERIFICAR);
 Isolantes Elétricos:
semicondutores e
supercondutores.
Bismuth strontium calcium copper oxide
Introdução
Atenção
 O grafite e o diamante são tratados muitas vezes como
cerâmicas!
 Apesar de compostos unicamente de carbono, ambos os
materiais são formas de carbono inorgânicas, não sendo
produzidas por nenhum tipo de organismo vivo.
Introdução
Classificação quanto a aplicação
 Materiais Cerâmicos Tradicionais: cerâmicas estruturais, louças,
refratários (provenientes principalmente de matérias-primas
argilosas e de outros tipos de silicatos);
 Vidros e Vitro-Cerâmicas;
 Abrasivos;
 Cimentos;
 Cerâmicas “Avançadas”: aplicações eletro-eletrônicas, térmicas,
mecânicas, ópticas, químicas, bio-médicas.
Introdução
Classificação quanto a aplicação
Classificação dos Materiais Cerâmicos de acordo com a aplicação
Introdução
Cerâmicas Tradicionais e Avançadas
 Telhas e tijolos
(cerâmica vermelha)
ainda são produzidos
com matéria-prima
não beneficiada.
 Ex.: tijolos, blocos,
telhas, ladrilhos de
barro, vasos, filtros,
tubos, manilhas.
Introdução
Cerâmicas Tradicionais
Introdução
Cerâmicas Tradicionais
 Cerâmica branca, produtos refratários e
vidrados.
 São produzidos com matérias-primas
beneficiadas por diversas etapas de
moagem até um tamanho que permita a
separação por meio de
 sedimentação,
 separação magnética
 e eliminação de fases indesejáveis.
 Ex.: louças, porcelanas, azulejos, louça sanitária, porcelana refratária,
doméstica, elétrica ou artística.
Introdução
Cerâmicas Avançadas
 Utilizam matérias-primas que sofrem uma série de processos químicos
e mecânicos
 que permitem obter produtos de pureza elevada ( > 99,5%) e
pequeno tamanho de partícula (< 1µm).
 Óxidos, nitretos e carbetos podem
ser obtidos.
 A matéria-prima para as cerâmicas
avançadas pode também ser
sintética,
 ou seja, obtida por processos de
síntese química (alumina com
pureza> 99,99%).
 Cerâmica eletrônica: circuitos integrados, instrumentos e sensores de
laboratório, geradores de faísca.
 Cerâmica estrutural: rotores para motor turbo, ferramentas de corte,
mancais, pistões, bocais de extrusoras, bicos de queimadores.
 Alta dureza à quente (1600oC);
 Não reage quimicamente com o aço;
 Longa vida da ferramenta;
 Usado com alta velocidade de corte;
 Não forma gume postiço.
Introdução
Cerâmicas Avançadas
 Pó finíssimo de Al2O3 (partículas compreendidas
entre 1 e 10 mícrons) mais ZrO2 (confere tenacidade
a ferramenta de corte) é prensado, porém apresenta-
se muito poroso. Para eliminar os poros, o material é
sinterizado a uma tempertura de 1700oC ou mais.
Durante a sinterização as peças experimentam uma
contração progressiva, fechando os canais e
diminuindo a porosidade.
 Outras Aplicações
 Material de polimento, isolante elétrico (BN, B4C).
 Eixos, bicos pulverizadores, selos mecânicos, ferramentas de corte,
implantes ósseos, meios de moagem ( Al2O3).
 Matrizes de extrusão e fundição, tesouras, facas (ZrO2).
 Moderador nuclear, revestimento de câmeras de combustão de
foguetes, cadinhos para fusão de Ni e Pt, elemento protetor de
resistências de aquecimento (BeO)
Introdução
Cerâmicas Avançadas
Introdução
Cerâmicas Tradicionais e Avançadas
Diferenças
 Custo muito maior das avançadas; a matéria-prima das cerâmicas
avançadas é muito mais pura (> 99,5%) e os grãos são muito
menores (< 1µm).
 Processos de fabricação são mais sofisticados: torneamento,
prensagem de pós, injeção, prensagem isostática à quente, colagem
sob pressão, tape casting, CVD, sol-gel.
Introdução
Tipos Matérias Primas
 Naturais (brutas) – não sofrem nenhum tipo de beneficiamento
(telhas e tijolos).
 Refinadas (industrializadas) – são beneficiadas por diversas etapas de
moagem até um tamanho que permita a separação por meio de
sedimentação, separação magnética e eliminação de fases
indesejáveis (cerâmica branca, produtos refratários e vidrados).
 Industrializadas por processos químicos e mecânicos – Obtenção de
pureza elevada (> 99,5%) e pequeno tamanho de partícula (< 1µm)
(cerâmica avançada: óxidos, nitretos, carbetos etc).
 Sintéticas – Pós resultantes com características controladas (uso em
cerâmicas avançadas).
Introdução
Tipos Matérias Primas
Introdução
Tópicos a serem desenvolvidos
 Estruturas Cerâmicas:
 Estruturas Cristalinas;
 Cerâmicas à Base de Silicato;
 Imperfeições nas Cerâmicas.
 Propriedades Mecânicas
 Fratura Frágil das Cerâmicas;
 Comportamento Tensão-Deformação;
 Mecanismos da Deformação Plástica.
Introdução
Objetivos
ligações covalente/iônica (lembrar do caso do Fe3C)
↓
imobilidade de discordâncias
↓
ausência de zona plástica → materiais frágeis
↓
Defeitos presentes (poros, inclusões, grãos grandes, trincas
superficiais) atuam como concentradores de tensão
↓
Grande variação nos valores de resistência mecânica
encontrados nos catálogos dos fabricantes para produtos
nominalmente iguais.
Materiais Não Metálicos
TM334
Aula 02: Estrutura e Propriedades
das Cerâmicas
Prof. Felipe Jedyn
DEMEC – UFPR
Estruturas Cerâmicas
 Cerâmicas Cristalinas:
 O deslocamento de discordâncias é muito difícil – íons com mesma
carga elétrica são colocados próximos uns dos outros – REPULSÃO;
 No caso de cerâmicas onde a ligação covalente predomina o
escorregamento também é difícil – LIGAÇÃO FORTE.
 Cerâmicas Amorfas:
 Não há uma estrutura cristalina regular – NÃO HÁ DISCORDÂNCIAS;
 Materiais se deformam por ESCOAMENTO VISCOSO.
 A resistência à deformação em um material não-cristalino é medida
por intermédio de sua viscosidade.
Estruturas Cerâmicas
Estruturas Cristalinas
 Em geral, a estrutura
cristalina dos materiais
cerâmicos é mais
complexa que a dos
metais.
 São compostos pelo
menos por dois
elementos, em que cada
tipo de átomo ocupa
posições determinadas no
reticulado cristalino.
Estruturas Cristalinas
 Onde a ligação é predominantemente iônica – lembrando que ela pode
variar de puramente iônica até totalmente covalente –
As estruturas cristalinas são compostas por íons eletricamente
carregados ao invés de átomos.
 O nível de caráter iônico depende das eletronegatividades dos átomos.
 Percentual de Caráter Iônico das
Ligações Interatômicas para Vários
Materiais Cerâmicos.
 Ele é calculado da seguinte maneira:
Onde XA e XB são as eletronegatividades
para os respectivos elementos
 Ligação atômica predominantemente iônica  Estruturas
cristalinas compostas por íons, ao invés de átomos.
 Íons Metálicos: Cátions
 Íons Não-metálicos: Ânions
 Duas características dos íons influenciam a estrutura do
cristal:
 A magnitude da carga elétrica (o cristal deve ser eletricamente
neutro  cargas + = cargas -);
 Os tamanhos relativos dos Cátions (rC) e dos Ânions (rA).
Estruturas Cristalinas
A magnitude da carga elétrica
Cristal Eletricamente Neutro
 Fluoreto de Cálcio, por exemplo
 Cada íon Cálcio possui uma carga elétrica +2 (Ca2+)
 Cada íon Flúor possui uma única carga negativa (F-)
 Dessa forma deve existir duas vezes mais íons F- do que íons
Ca2+.
 Pode-se ver isso pela fórmula química do Fluoreto de Cálcio, CaF2.
Os Tamanhos Relativos dos Cátions e
dos Ânions.
 Os Cátions são menores que os Ânions, por que?
rC/rA < 1
 Cada Cátion quer ter o máximo de Ânions como vizinhos mais
próximos e vice-versa.
 Estruturas Cristalinas Cerâmicas Estáveis: Todos os ânions estão em
contato com o Cátion.
Os Tamanhos Relativos dos Cátions e
dos Ânions.
 O que vai determinar o número de vizinhos que um cátion
pode ter?
 Ou seja, qual será o número de coordenação?
 Ele sempre será o mesmo para cátions e para ânions?
 Preciso saber os valores dos raios do Cátion e do Ânion.
Os Tamanhos Relativos dos
Cátions e dos Ânions.
 Para um número de coordenação específico  há uma razão rc/ra
crítica ou mínima para a qual o contato entre os íons é mantido 
razões puramente geométricas. Assim podemos determinar o NC!!!
Os Tamanhos Relativos dos
Cátions e dos Ânions.
 Quanto mais elétrons de valência perder um íon, menor o íon.
Exemplo:
Ferro Fe: 0,124
nm
Fe2+: 0,077 nm
Fe3+: 0,069 nm
Exemplo
 Mostre que a razão mínima entre os raios do cátion e do ânion
para um número de coordenação 3 é de 0,155
Exemplo
 Mostre que a razão mínima entre os raios do cátion e do ânion
para um número de coordenação 3 é de 0,155
Exemplo
 Mostre que a razão mínima entre os raios do cátion e do ânion
para um número de coordenação 3 é de 0,155
Para essa coordenação, o pequeno
cátion é envolvido por três ânions para
formar um triângulo equilátero,
triângulo ABC, os centros de todos os
quatro íons se encontram no mesmo
plano.
Exemplo
Exemplo
Exemplo
Exemplo
Estruturas Cristalinas do Tipo AX
Estrutura do Sal-gema
 Estruturas do tipo AX: Números iguais de Cátions (A) e Ânions (X)
 Estrutura do Sal-gema
 Cloreto de Sódio (NaCl), ou sal-gema.
 Número de coordenação tanto para cátions quanto para ânions é 6,
então, rC / rA está entre aproximadamente 0,414 e 0,732.
 Configuração tipo CFC dos ânions com um cátion no centro do cubo
e outro em cada uma das 12 arestas do cubo  cátions centrados
nas faces.
Estruturas Cristalinas do Tipo AX
Estrutura do Sal-gema
 Uma estrutura cristalina equivalente resulta de um arranjo onde os
cátions estão centrados nas faces.
 Assim, a estrutura pode ser considerada como sendo composta por
duas redes CFC que se interpenetram (uma composta por cátions e
outra por ânions).
 NaCl, MgO, MnS, LiF, FeO.
Estruturas Cristalinas do Tipo AX
Estrutura do Cloreto de Césio
1. Calcule a razão
rC/rA para o
Cloreto de Césio.
2. Determine o
Número de
Coordenação.
3. Indique uma
possível estrutura.
Como ela deve se
parecer?
Estruturas Cristalinas do Tipo AX
Estrutura do Cloreto de Césio
1. Calcule a razão rC/rA para o Cloreto de Césio.
2. Determine o Número de Coordenação.
3. Indique uma possível estrutura. Como ela deve se parecer?
Estruturas Cristalinas do Tipo AX
Estrutura do Cloreto de Césio
 CsCl. rC/rA = 0,9392
 Número de coordenação para os dois tipos de íons é 8.
 Ânions localizados em cada um dos vértices dos cubos, enquanto o
centro do cubo contém um único cátion.
 O intercâmbio de ânions com cátions e vice-versa produz a mesma
estrutura cristalina.
Estruturas Cristalinas do Tipo AX
Estrutura do Cloreto de Césio
 Em uma célula CCC qual é o
número de coordenação?
 IMPORTANTE:
 ESSA NÃO É UMA ESTRUTURA
CRISTALINA CCC, POIS ESTÃO
ENVOLVIDOS ÍONS DE DUAS
ESPÉCIES DIFERENTES.
Estruturas Cristalinas do Tipo AX
Estrutura da Blenda de Zinco
 Número de coordenação para todos os átomos é 4 (todos os átomos
estão coordenados tetraedricamente).
 Estrutura da Blenda de Zinco ou Esfalerita (termo mineralógico para
o sulfeto de zinco – ZnS)
 Todos os vértices e posições faciais da célula cúbica estão ocupados
por átomo de S, enquanto os átomos de Zn preenchem posições
tetraédricas interiores. Ocorre uma posição equivalente se as
posições dos átomos de Zn e S forem invertidas.
 Dessa forma, cada átomo de Zn está ligado a quatro átomos de S, e
vice-versa.
Estruturas Cristalinas do Tipo AX
Estrutura da Blenda de Zinco
 Na maioria das vezes, a ligação atômica nos compostos que exibem
essa estrutura cristalina é altamente covalente (ver tabela), estando
incluídos entre esses compostos o ZnS, o ZnTe (semicondutor) e o SiC
(Abrasivos --- Freio de veículos, colete a prova de bala – quando
sinterizado).
Estruturas Cristalinas do Tipo AX
Estrutura da Blenda de Zinco
 ZnTe
Estruturas Cristalinas do Tipo
AmXp
 Cargas dos Cátions e Ânions não são iguais, onde m e/ou p ≠ 1.
 Exemplo: Composto AX2 (Fluorita – CaF2).
 rC / rA = 0,8  Número de coordenação = 8.
 Íons de cálcio estão posicionados nos centros do cubos, com os
íons de flúor nos vértices.
 Para cada íon F- existe metade deste número de íons Ca2+, e por
tanto, a estrutura seria semelhante a do CsCl, exceto que apenas
metade das posições centrais no cubo estariam ocupadas por
íons Ca2+.
Estruturas Cristalinas do Tipo
AmXp
Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares.
Dióxido de Urânio.
Uma célula unitária consiste em oito cubos.
Estruturas Cristalinas do Tipo
AmXp
Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares.
Dióxido de Urânio.
Estruturas Cristalinas do Tipo
AmXp
Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares.
Óxido de Plutônio.
Estruturas Cristalinas do Tipo
AmXp
Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares.
Dióxido de Tório
Estruturas Cristalinas do Tipo
AmBnXp
 Possuem dois tipos de Cátions (A e B)
 Titanato de Bário (BaTiO3), com os cátions Ba2+ e Ti4+.
 Possui a estrutura cristalina da Perovskita (CaTiO3).
 Acima de 120oC a estrutura cristalina é cúbica.
Perovskita é um mineral de óxido
de cálcio titânio, composto de
titanato de cálcio.
Estruturas Cristalinas do Tipo
AmBnXp
 Os íons Ba2+ estão
localizados em todos os 8
vértices do cubo, enquanto
um único íon Ti4+ encontra-
se posicionado no centro do
cubo, com os íons de O2
-
localizados no centro de
cada uma das 6 faces.
 Captador Piezoelétrico
Estruturas Cristalinas
Resumo
ANOTEM OS DETALHES PRA BLENDA DE ZINCO!!!
Estruturas Cristalinas da
Compactação Densa de Ânions
 No caso dos metais, o empilhamento de planos de átomos densamente
compactados uns sobre os outros gera estruturas cristalinas tanto do tipo
CFC como do tipo HC.
 De maneira semelhante, várias estruturas cristalinas cerâmicas podem ser
consideradas em termos de planos de íons densamente compactados,
bem como de células unitárias.
 Normalmente, os planos densamente compactados são
compostos pelos ânions, de maiores dimensões.
 À medida que esses planos são empilhados uns sobre os outros,
pequenos sítios intersticiais são criados entre eles, onde os
cátions podem ser alojados.
Estruturas Cristalinas da
Compactação Densa de Ânions
Essas posições intersticiais existem em dois tipos diferentes:
 Posição Tetraédrica (número de coordenação 4).
Quatro átomos (3 em um plano e 1 no plano adjacente) circundam um dos
tipos de posições. Essa posição é chamada tetraédrica pois as linhas retas
traçadas a partir dos centros das esferas circundantes formam um tetraedro
com quatro lados.
 Posição Octaédrica (número de coordenação 6).
Envolve seis esferas de íons, três em cada um dos dois planos. Uma vez que
um octaedro é produzido pela união desses seis centros de esferas, esse
tipo de sítio é chamado uma posição octaédrica.
IMPORTANTE  Para cada uma dessas esferas de ânions, irão existir uma
posição octaédrica e duas posições tetraédricas.
Estruturas Cristalinas da
Compactação Densa de Ânions
Estruturas Cristalinas da
Compactação Densa de Ânions
Estruturas cerâmicas cristalinas desse tipo dependem de dois fatores:
1. O empilhamento das camadas densamente compactadas de ânions
(são possíveis tanto arranjos CFC quanto HC, os quais correspondem às
sequencias ABCABC... E ABABAB..., respectivamente – sessão 3.11
Callister – CFC x HC local onde a terceira camada está localizada) e
2. A maneira a qual os sítios intersticiais são preenchidos com os cátions.
 P.e., a estrutura cristalina do sal-gema
 A célula unitária possui uma simetria cúbica, e cada cátion (íon Na+)
possui seis íons Cl- como vizinhos mais próximos (NC=6).
 Ou seja, o íon Na+, no centro, possui como vizinhos mais próximos os
seis íons Cl- que residem nos centros de cada uma das seis faces do
cubo.
Estruturas Cristalinas da
Compactação Densa de Ânions
 A estrutura cristalina, que possui simetria cúbica, pode ser
considerada em termos de uma matriz CFC de planos de ânions
densamente compactados, onde todos os planos são do tipo {111} –
Seção 3.9.
 Os cátions se alojam em posições octaédricas, pois eles possuem
seis ânions como vizinhos mais próximos.
 Além do mais, todas as posições octaédricas estão preenchidas,
uma vez que
 existe um único sítio octaédrico por ânion,
 e a relação de ânions para cátions é de 1:1.
 Para esta estrutura cristalina, a relação entre célula unitária e os
esquemas de empilhamento de planos de ânions densamente
compactados é mostrada a seguir.
Estruturas Cristalinas da
Compactação Densa de Ânions
Uma seção da estrutura
cristalina do sal-gema onde
um dos vértices foi
removido.
O plano de ânions que está
exposto (esferas verdes do
triângulo) consiste em um
plano do tipo {111}; os
cátions (esferas vermelhas)
ocupam as posições
octaédricas intersticiais.
 Outras estruturas cristalinas cerâmicas (porém não todas), podem ser
tratadas de uma maneira semelhante; dentre elas a da blenda de zinco
e a da perovskita.
 A estrutura do espinélio, é uma daquelas do tipo AmBnXp, que é
encontrada para o aluminato de magnésio ou espinélio (MgAl2O4).
 Com essas estruturas, os íons O2- formam uma rede cristalina
CFC, enquanto os íons Mg2+ preenchem sítios tetraédricos, e os
íons Al3+ se alojam em posições octaédricas.
 As cerâmicas magnéticas, ou ferritas, possuem uma estrutura cristalina
que é uma ligeira variação dessa estrutura do espinélio; e as
características magnéticas são afetadas pela ocupação das posições
tetraédricas e octaédricas.
Estruturas Cristalinas da
Compactação Densa de Ânions
Com base nos raios iônicos, qual a estrutura cristalina você
esperaria para o FeO?
Qual o tipo do composto?
Exemplo
Com base nos raios iônicos, qual a estrutura cristalina você
esperaria para o FeO?
Solução
FeO é um composto do tipo AX. Por que?
Exemplo
Exemplo
Com base nos raios iônicos, qual a estrutura cristalina você
esperaria para o FeO?
Solução
FeO é um composto do tipo AX. Por que?
Razão entre os raios do Cátion e do Ânion.
rFe2+ 0,077 nm
-------- = ------------------------------ = 0,550
rO2+ 0,140 nm
Está entre 0,414 e 0,732. NC = 6.
Será como a estrutura do Sal-gema.
Cálculos da densidade da
cerâmica
n´ = Número de unidades da fórmula /Cel.Unitária;
∑AC = Soma dos pesos atômicos de todos os cátions na unidade de
fórmula;
∑AA = Soma dos pesos atômicos de todos os ânions na unidade de
fórmula;
Vc = Volume da célula unitária;
NA = Número de Avogadro: 6,023x1023 unidades de fórmula/mol
Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de
sódio. Como o valor encontrado para a densidade teórica se compara à
densidade obtida através de medições experimentais?
Exemplo
Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de
sódio. Como o valor encontrado para a densidade teórica se compara à
densidade obtida através de medições experimentais?
Exemplo
Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de
sódio. Como o valor encontrado para a densidade teórica se compara à
densidade obtida através de medições experimentais?
Exemplo
Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de
sódio. Como o valor encontrado para a densidade teórica se compara à
densidade obtida através de medições experimentais?
Exemplo
Cerâmicas à Base de Silicato
 Os silicatos são materiais compostos principalmente por silício e
oxigênio, os dois elementos mais abundantes na crosta terrestre;
consequentemente, a maior parte dos solos, rochas, argilas e areia se
enquadram na classificação de silicatos.
 Em vez de se caracterizar as estruturas cristalinas desses materiais em
termos de células unitárias, é mais conveniente usar vários arranjos
de um tetraedro composto por SiO4
4-.
Cerâmicas à Base de Silicato
 Cada átomo de silício está ligado a quatro átomos de oxigênio, os quais
estão localizados nos vértices do tetraedro;
 o átomo de silício está posicionado no centro do tetraedro.
 Uma vez que essa é a unidade básica dos silicatos, ela é tratada
normalmente como uma entidade carregada negativamente.
Cerâmicas à Base de Silicato
 Frequentemente, os silicatos não são considerados como iônicos, pois
as ligações interatômicas Si-O exibem um caráter covalente significativo,
o que torna essas ligações direcionais e relativamente fortes.
 Independente da natureza da ligação Si-O, existe uma carga de -4
associada a cada tetraedro de SiO4
4-, uma vez que cada um dos quatro
átomos de oxigênio exige um elétron extra para atingir uma estrutura
eletrônica estável  Quais as valências de ambos?.
 Várias estruturas de silicatos surgem das diferentes maneiras de
segundo as quais as unidades de SiO4
4- podem ser combinadas em
arranjos unidimensionais, bidimensionais e tridimensionais.
Cerâmicas à Base de Silicato
Cerâmicas à Base de Silicato
Sílica
 O Dióxido de Silício ou Sílica (SiO2) é o mais simples silicato.
 Forma arranjo tridimensional, onde os átomos de Oxigênio dos
vértices são divididos com os tetraedros adjacentes.
 O material é eletricamente neutro e apresenta estrutura
eletrônica estável.
 Sob essas circunstâncias, a razão entre o número de átomos
de silício e o número de átomos de O é 1:2, como indicado
pela fórmula química.
Cerâmicas à Base de Silicato
Sílica
 Se esses tetraedros forem
arranjados de maneira regular e
ordenada, forma-se uma estrutura
cristalina.
 Existem três formas cristalinas
polimórficas principais para a
Sílica: Cristobalita, Quartzo e
Tridimita.
 São estruturas complicadas e
abertas (átomos não densamente
compactados)  densidade baixa.
 Força de ligação alta (Tfusão =
1710oC)
Cerâmicas à Base de Silicato
Vidros à Base de Sílica
 A sílica também pode ser constituída na forma de um sólido não-cristalino
ou vidro, com um elevado grau de aleatoriedade atômica, o que é uma
característica dos líquidos; tal maneira é conhecida por sílica fundida ou
sílica vítrea.
 A estrutura tetraédrica é SiO4
4- é a unidade básica (como na sílica cristalina);
além dessa estrutura existe uma desordem considerável.
(a) (b)
Esquemas bidimensionais da estrutura do dióxido de silício cristalino (a) e do
dióxido de silício não-cristalino (b).
Cerâmicas à Base de Silicato
Vidros à Base de Sílica
 Outros óxidos (p.e. B2O3 e GeO2) podem também formar estruturas
vítreas;
 Esses materiais, como o SiO2, são conhecidos como formadores de
rede.
 Os vidros inorgânicos comuns que são usados para recipientes, janelas, e
assim por diante, são vidros à base de sílica, aos quais foram adicionados
outros óxidos, tais como CaO e Na2O.
 Esses óxidos não formam redes poliédricas (seus cátions são
incorporados no interior e modificam a rede do SiO4
4-) e são
conhecidos como modificadores de rede.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica
 Ainda outros óxidos, como o TiO2 e o
Al2O3 que não são formadores de rede,
substituem o silício e se tornam parte
da rede, a estabilizando  óxidos
intermediários.
Qual o efeito deles???
 A adição desses modificadores e
óxidos intermediários diminui o ponto
de fusão e a viscosidade de um vidro,
tornando mais fácil a sua conformação
a temperaturas mais baixas.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica RESUMO
1. As estruturas atômicas de materiais podem não estar regularmente
dispostas como em redes cristalinas  Estruturas amorfas ou
vítreas.
2. Este tipo de estrutura, entretanto, não é completamente
desordenada.
 Ela é formada por blocos constitutivos dispostos de maneira
desordenada.
 Porém a estrutura destes blocos é regular.
 Assim, pode-se dizer que as estruturas vítreas possuem
desordem de longo alcance e ordem de curto alcance.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica RESUMO
3. Nem todos os materiais podem apresentar uma estrutura vítrea,
 porém todos os materiais que apresentam estrutura vítrea
também apresentam estrutura cristalina.
 Pode-se dizer que a estrutura vítrea é uma fase metaestável e a
estrutura cristalina é a fase estável.
4. Óxidos que podem apresentar estrutura vítrea são ditos
formadores de rede. Exemplos de formadores de rede são: SiO2,
GeO2, P2O5 e As2O5.
 Outros cátions podem substituir os cátions dos formadores de
rede, porém eles mesmos não conseguem formar redes vítreas.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica RESUMO
5. Em redes cristalinas, os blocos constitutivos formam arranjos
regulares.
 Isto ocorre porque cada bloco está conectado a um número
grande de blocos vizinhos, formando um arranjo tridimensional.
 Quando a conectividade de cada bloco constitutivo cai, torna-se
possível que o arranjo de blocos não seja ordenado.
Cerâmicas à Base de Silicato
Vidros à Base de Sílica RESUMO
 A estrutura vítrea é então um arranjo tridimensional
desordenado de baixa conectividade.
 Apenas alguns óxidos podem formar este tipo de arranjo.
6. Existem óxidos que, quando introduzidos na estrutura vítrea,
diminuem a conectividade da estrutura, quebrando ligações entre
os blocos constitutivos.
 Estes óxidos são chamados de modificadores de rede e abaixam a
viscosidade do vidro. Exemplos destes óxidos são: Na2O, K2O,
CaO, BaO.
Cerâmicas à Base de Silicato
Os Silicatos
 Para os vários minerais à base de silicato, um, dois ou três dos átomos de
oxigênio nos vértices dos tetraedros de SiO4
4- são compartilhados por
outros tetraedros para formar algumas estruturas consideravelmente mais
complexas, tais como SiO4
4-, Si2O7
6-, Si3O9
6-, e assim por diante.
 Também são possíveis estruturas de cadeia única (e).
Nessas estruturas, cátions carregados positivamente, como Ca2+, Mg2+ e Al3+
servem a dois propósitos:
 Compensam as cargas negativas da unidade de SiO4
4- neutralidade de
cargas.
 Esses cátions ligam ionicamente entre si os tetraedros de SiO4
4-.
Cerâmicas à Base de Silicato
Os Silicatos
Cinco estruturas de
íon silicato formadas a
partir de tetraedros
de SiO4
4- .
Cerâmicas à Base de Silicato
Os Silicatos – Silicatos Simples
 Os mais simples silicatos  envolvem tetraedros
isolados (a),
 como a Forsterita (Mg2SiO4), que apresenta
dois íons Mg2+ associados a cada tetraedro,
de forma que cada íon Mg2+ possui seis
oxigênios como átomos vizinhos mais
próximos.
 O silicato Si2O7
6- forma-se quando dois tetraedros
compartilham um Oxigênio comum (b).
 A aquermanita (Ca2MgSi2O7), é um mineral
que apresenta o equivalente a dois íons Ca2+ e
um Mg2+ ligados a cada unidade Si2O7
6-.
(a)
(b)
Cerâmicas à Base de Silicato
Os Silicatos – Silicatos em Camadas
 Uma estrutura bidimensional em lâminas ou camadas, pode também ser
produzida quando os três íons Oxigênio são compartilhados em cada
tetraedro, sendo a fórmula que se repete o (Si2O5)2-.
 A carga negativa líquida está associada aos átomos de Oxigênio que
não estão ligados, e que se projetam para fora do plano da página (figura).
 A eletro neutralidade é estabelecida ordinariamente por uma segunda
estrutura laminar planar que possui um excesso de cátions, que se
ligam a esses oxigênios.
 Tais materiais são conhecidos como silicatos em lâminas ou camadas.
 Esta estrutura é característica das argilas, e de outros minerais.
Cerâmicas à Base de Silicato
Os Silicatos – Silicatos em Camadas
 Representação esquemática da
lâmina de silicato
bidimensional, que possui uma
unidade de fórmula repetida e
equivalente a (Si2O5)2-.
Cerâmicas à Base de Silicato
Os Silicatos – Silicatos em Camadas
 Um dos minerais argilosos mais comuns (com estrutura laminar de
silicato com duas camadas), a caolinita, apresenta fórmula
Al2Si2O5(OH)4 e a neutralidade elétrica da camada tetraédrica de
sílica (Si2O5)2- é obtida por uma camada adjacente de Al2(OH)4
2+.
 Um plano médio é formado por íons de O2- da camada de (Si2O5)2- e
íons OH- que compõe parte da camada de Al2(OH)4.
Cerâmicas à Base de Silicato
Os Silicatos – Silicatos em Camadas
Uma única lâmina é mostrada abaixo
 Enquanto a ligação dentro
dessa lâmina com duas
camadas é forte e
intermediária entre
covalente e iônica,
 as lâminas adjacentes estão
apenas fracamente ligadas
umas às outras através de
forças de van der Waals
fracas.
Carbono
 O Carbono é um elemento que existem em diversas formas
polimórficas e também no estado amorfo.
 Esse grupo de materiais não se enquadra, na realidade, dentro de
qualquer um dos esquemas de classificação tradicionais para
metais, cerâmicas e polímeros.
 Porém são discutidos nessa seção, já que a grafita (forma polimórfica
do C) é algumas vezes classificada como cerâmica.
 Além disso, o diamante apresenta estrutura cristalina semelhante
àquela da blenda de zinco.
 Veremos a Grafita, o Diamante e os novos Fullerenos.
Carbono
Diamante
 O diamante é uma forma alotrópica
metaestável do Carbono em
temperatura e pressão ambiente.
 A estrutura do Diamante é similar à
blenda de zinco, em que o Carbono
ocupa as posições do Zn e do S.
 Cada átomo de Carbono está
(totalmente) covalentemente ligado à
outros quatro átomos de Carbono. A
estrutura é referida como a estrutura
cristalina cúbica do Diamante.
 É o material de maior dureza que se
conhece (7000HK).
Cond. Elétrica baixa.
Cond. Térmica anormalmente alta
para um material não-metálico.
Carbono
O que diferencia o Diamante da
Grafita???
Carbono – Grafita
 Um outro polimorfo do carbono é
a Grafita.
 É mais estável em temperatura e
pressão atmosférica ambiente
em relação ao Diamante.  Mais
comum.
 A estrutura da grafita é composta
por camadas de átomos de
carbono em um arranjo
hexagonal.
Carbono – Grafita
 Neste arranjo, dentro das camadas,
cada átomo de carbono estabelece
ligações covalentes (fortes) a
outros três átomos vizinhos de
carbono coplanares.
 O quarto elétron de valência
participa de uma ligação fraca do
tipo van der Waals entre as
camadas.  A clivagem
interplanar é fácil  excelentes
propriedades lubrificantes da
grafita.
 Cond. Elétrica relativamente alta em direções cristalográficas
paralelas às lâminas hexagonais.
Carbono – Grafita
 Elevada resistência e boa estabilidade química a temperaturas
elevadas e em atmosferas não-oxidantes.
 Elevada condutividade térmica.
 Baixo coeficiente de expansão térmica.
 Alta resistência à choques térmicos.
 Elevada adsorção de gases.
 Boa usinabilidade.
Carbono
Fullerenos
 É outra forma polimórfica descoberta
em 1985.
 Consiste em um aglomerado
esférico oco com 60 átomos de
Carbono.
 Uma molécula é referida com o C60.
 Cada molécula é composta por
grupos de átomos de Carbono, que
são ligados um ao outro, formando
configurações geométricas tipo
hexágono (6 átomos de C) e
pentágono (5 átomos de C).
Carbono
Fullerenos
 São 20 estruturas hexagonais e 12
estruturas Pentagonais.
 A estrutura é tal que dois
pentágonos não podem estar
lado a lado.
 O material composto por
moléculas de C60 é conhecido por
buckminsterfullereno.
 É eletricamente isolante, mas
com uma adição adequada de
impurezas, ele pode ser tornado
altamente condutor e
semicondutor.
“The first fullerene molecule to be
discovered, and the family's
namesake, buckminsterfullerene(C60),
was prepared in 1985 by Richard
Smalley, Robert Curl, James
Heath, Sean O'Brien, and Harold
Kroto at Rice University.”
Imperfeições nas Cerâmicas
Defeitos Pontuais Atômicos
 São possíveis lacunas e intersticiais (como nos metais);
 como eles contém íons de ao menos dois tipos diferentes, podem ocorrer
defeitos para cada espécie de íon.
 P.e. NaCl  lacunas e intersticiais para Na e Cl.
Muito improvável
concentrações apreciáveis de
intersticiais do ânion. 
relativamente grande 
deformações substanciais
sobre os íons vizinhos para
se ajustar numa posição
intersticial (pequena).
Imperfeições nas Cerâmicas
Defeitos Pontuais Atômicos
 Estrutura de Defeitos  usada para designar os tipos e concentrações dos
defeitos atômicos das cerâmicas.  condições de eletroneutralidade (já que
temos íons) devem ser mantidas (cargas + iguais -).  assim os defeitos nas
cerâmicas não ocorrem sozinhos!
 Defeito de Frenkel  par composto por uma lacuna de cátion e um cátion
intersticial.
 Cátion deixa sua posição normal e se move para um interstício.  Não
existe alteração de carga (cátion mantém a mesma carga dentro do
interstício).
 Defeito de Schottki  AX  par consistindo de lacuna de cátion e lacuna
de ânion.
 Remoção do cátion e do ânion do interior do cristal, seguido pela
colocação de ambos os íons numa superfície externa. cátions e
ânions possuem mesma carga e temos lacunas para ambos 
Neutralidade.
Imperfeições nas Cerâmicas
Defeitos Pontuais Atômicos
 Em ambos os defeitos apresentados acima, a razão entre o número de cátions
e o de ânions não é alterada.  material estequiométrico (quando não tiver
outro defeito presente)  existe razão exata entre cátions e ânions prevista na
fórmula química (estequiometria).
Imperfeições nas Cerâmicas
Impurezas nas Cerâmicas
 Como em metais, átomos de impureza podem formar soluções sólidas
(substitucional e intersticial) em cerâmicas.
 Em solução sólida intersticial, o raio iônico da impureza deve ser
relativamente pequeno em comparação ao ânion.
 Uma vez que existem ânions e cátions, uma impureza substitucional irá
substituir um íon hospedeiro que seja mais semelhante a ela no
aspecto elétrico: se o átomo da impureza forma normalmente um
cátion em um material cerâmico, ele irá, mais provavelmente, substituir
um cátion hospedeiro.
 Exemplo: NaCl (Na+Cl-)  seriam substituídos por  Ca2+ e O2-
respectivamente.
Imperfeições nas Cerâmicas
Impurezas nas Cerâmicas
 Solubilidade sólida apreciável de impureza substitucional  tamanho e carga
iônica da impureza devem ser muito próximos daqueles dos íons hospedeiros!
 Íon de impureza com
carga diferente do
hospedeiro  cristal deve
compensar para que a
eletroneutralidade seja
mantida.  pode ser
realizado através da
produção de novos
defeitos da rede cristalina
(lacunas e intersticiais).
Imperfeições nas Cerâmicas
Exemplo
Se a eletroneutralidade deve ser preservada, quais defeitos pontuais são
possíveis no NaCl quando um íon Ca2+ substitui um íon Na+? Quantos desses
defeitos é necessário existir para cada íon Ca2+?
Imperfeições nas Cerâmicas
Exemplo
Se a eletroneutralidade deve ser preservada, quais defeitos pontuais são
possíveis no NaCl quando um íon Ca2+ substitui um íon Na+? Quantos desses
defeitos é necessário existir para cada íon Ca2+?
Solução
A substituição de um íon Na+ por um íon Ca2+ introduz uma carga positiva
adicional. A eletroneutralidade é mantida quando uma única carga positiva é
eliminada ou quando uma única carga negativa é adicionada.
A remoção de uma carga positiva é conseguida pela formação de uma lacuna de
Na+.
Alternativamente, um átomo intersticial de Cl- irá fornecer uma carga negativa
adicional, anulando o efeito de cada íon Ca2+. Entretanto, como mencionado
anteriormente, a formação desse defeito é muito improvável.
Propriedades Mecânicas
das Cerâmicas
 Os materiais cerâmicos tem sua aplicabilidade limitada em certos aspectos
devido às suas propriedades mecânicas, que em muitos aspectos são
inferiores àquelas apresentadas pelos metais.
 A principal desvantagem é uma disposição à fratura catastrófica de uma
maneira frágil, com muito pouca absorção de energia.
DEVEMOS ESPERAR DIFERENÇAS NO COMPORTAMENTO DA
FRATURA PARA TENSÕES TRATIVAS E COMPRESSIVAS?
PORQUE?
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 À temperatura ambiente, tanto cerâmicas cristalinas como as não-
cristalinas quase sempre fraturam antes que qualquer deformação
plástica possa ocorrer em resposta à aplicação de uma carga de
tração.
 Fratura Frágil  formação e propagação de trincas através da seção
reta do material em uma direção perpendicular à carga aplicada.
 crescimento da trinca em cerâmicas cristalinas se dá através
dos grãos (transgranular) e ao longo de planos cristalográficos (ou
de clivagem) específicos, planos de elevada densidade atômica.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 As resistências à fratura medidas para os materiais cerâmicos são
substancialmente inferiores àquelas estimadas pela teoria a partir
das forças de ligação interatômicas.
Porque?
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 Isso pode ser explicado pela presença de defeitos muito pequenos e
onipresentes no material, os quais servem como fatores de concentração
de tensões, ou seja, pontos onde a magnitude de uma tensão de tração
aplicada é amplificada.
 Como
estimamos
essa tensão
máxima???
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 O grau de amplificação da tensão depende do comprimento da trinca e do
raio de curvatura da extremidade da trinca, de acordo com a equação,
 sendo maior no caso de defeitos longos e pontiagudos.
 Esses concentradores de tensões podem ser diminutas trincas de superfície
ou internas (microtrincas), poros internos e arestas de grãos, os quais são
virtualmente impossíveis de serem eliminados ou controlados.
 Fibras de vidro  umidade e contaminantes presentes na atmosfera podem
introduzir trincas de superfícies em fibras recentemente estiradas.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 O grau de amplificação da tensão depende do comprimento da trinca e do
raio de curvatura da extremidade da trinca, de acordo com a equação,
 sendo maior no caso de defeitos longos e pontiagudos.
 Esses concentradores de tensões podem ser diminutas trincas de superfície
ou internas (microtrincas), poros internos e arestas de grãos, os quais são
virtualmente impossíveis de serem eliminados ou controlados.
 Fibras de vidro  umidade e contaminantes presentes na atmosfera podem
introduzir trincas de superfícies em fibras recentemente estiradas.
Tensão máxima na extremidade da trinca σm
Magnitude da tensão de tração nominal aplicada σ0
Raio de curvatura da extremidade da trinca ρe
Comprimento de uma trinca superficial, ou C/2 de uma trinca interna a
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 A medida de habilidade de um material cerâmico em resistir à fratura quando
uma trinca está presente é especificada em termos da tenacidade à fratura.
 A tenacidade à fratura em deformação plana, KIc, é definida pela expressão:
 A propagação da trinca não irá ocorrer enquanto o lado direito da eq. for
inferior à tenacidade à fratura em deformação plana do material.
 Os valores da tenacidade à fratura em deformação plana para os materiais
cerâmicos são menores do aqueles apresentados pelos metais; tipicamente
eles são menores do que 10 MPa/m².
Parâmetro ou função adimensional que depende tanto da amostra
como das geometrias da trinca Y
Tensão aplicada σ
Comprimento de uma trinca superficial, ou C/2 de uma trinca interna a
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 Fadiga estática ou fratura retardada (ocorrem sob algumas
circunstâncias)  fratura ocorrendo pela propagação lenta das
trincas, quando as tensões são de natureza estática e quando o
lado direito da equação anterior é menor do que KIc.
 Então ocorre fadiga (?)  fratura pode ocorrer na ausência
de tensões cíclicas!
 Fratura especialmente sensível às condições do ambiente
(especificamente umidade).
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 Fadiga estática ou fratura retardada (ocorrem sob algumas
circunstâncias)
 Mecanismo  ocorre provavelmente um processo de corrosão
sob tensão nas extremidades da trinca
 (tensão de tração + dissolução do material  afilamento e
aumento do comprimento das trincas  cresce até a
apresentar rápida propagação).
 Especialmente suscetíveis  vidros à base de silicato,
porcelana, cimento portland, etc.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 Tensões de compressão  não existe qualquer amplificação de
tensões associada com qualquer defeito existente.
 Assim, as cerâmicas frágeis exibem resistências muito maiores
em compressão do que em tração (da ordem de um fator de
10),
 e elas são geralmente utilizadas quando as condições de
carregamento são compressivas.
Propriedades Mecânicas
Fratura Frágil das Cerâmicas
 Tensões de compressão  não existe qualquer amplificação de
tensões associada com qualquer defeito existente.
 Como posso melhorar a resistência à fratura de uma cerâmica
frágil?
 Ainda, a resistência à fratura de uma cerâmica frágil pode ser
melhorada substancialmente pela imposição de tensões
residuais de compressão na superfície (revenimento térmico).
 Por isso veremos mais adiante a questão de tratamentos térmicos
nos cerâmicos.
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
Em cerâmicas frágeis  comportamento tensão-deformação NÃO é
em geral é avaliado por ensaio de tração.
 Difícil preparo de amostras que tenham a geometria exigida.
 Difícil prender e segurar materiais frágeis sem fraturá-los.
 As cerâmicas falham após uma deformação de apenas aprox.
0,1%
 isso exige que os corpos de prova estejam perfeitamente
alinhados para evitar tensões de dobramento ou flexão, que
não são facilmente calculadas.
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
 Portanto aplicamos, na maioria das vezes, ensaio de flexão
transversal :
Mais adequado para tais casos
corpo de prova na forma de uma barra (com seção reta circular
ou retangular) é flexionado até sua fratura, utilizando uma
técnica de carregamento em três ou quatro pontos (ASTM
C1161).
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
 No ponto de carregamento, a
superfície superior do corpo
de prova é colocada em um
estado de compressão,
enquanto a superfície inferior
encontra-se em tração.
 A tensão é calculada a partir
da espessura do corpo de
prova, do momento fletor e do
momento de inércia (ver
figura).
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
 A tensão de tração máxima
(pelas expressões de tensão)
existe na superfície inferior do
corpo de prova, diretamente
abaixo do ponto de aplicação
da carga.
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
 Uma vez que os limites de
resistência à tração dos
materiais cerâmicos
equivalem a prox. 1/10 das
suas resistências à
compressão,
 e uma vez que a fratura ocorre
na face do CP que está sendo
submetida a tração, o ensaio
de flexão é um substituto
razoável para o ensaio de
tração.
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
 A tensão no momento da fratura no ensaio de flexão é conhecida por
resistência à flexão, módulo de ruptura, resistência à fratura ou resistência à
dobra  importante parâmetro mecânico para materiais frágeis.
 Para seção reta retangular e circular, à resistência à flexão, σrf é igual a,
respectivamente:
Ff representa a carga no momento da Fratura
L é a distância entre os pontos de suporte
Outros Parâmetros Dados na Figura
Propriedades Mecânicas
Comportamento Tensão-Deformação
RESITÊNCIA À FLEXÃO
 Valores característicos para resistência à flexão de vários cerâmicos são dados
a seguir, no próximo slide.
 Considerações Importantes
 Uma vez que durante a flexão, um CP está sujeito tanto a tensões
compressivas como trativas, a magnitude de sua resistência à flexão é
maior do que a por tração.
 Além disso, σrf dependerá do tamanho do corpo de prova.
Com o aumento do volume do corpo de prova (sob tensão)
existe um aumento na severidade do defeito e,
consequentemente, uma diminuição na resistência á flexão.
Propriedades Mecânicas
Comportamento Tensão-Deformação
Propriedades Mecânicas
Comportamento Tensão-Deformação
COMPORTAMENTO ELÁSTICO
Se formos comparar com os metais o
comportamento elástico tensão-deformação para os cerâmicos
quando se utilizam testes de flexão
é semelhante aos resultados apresentados pelos ensaios de
tração realizados com metais:
existe uma relação linear entre a tensão e a deformação.
Propriedades Mecânicas
Comportamento Tensão-Deformação
COMPORTAMENTO ELÁSTICO
 A figura compara o comportamento tensão-deformação até a
fratura para o óxido de alumínio (alumina) e para o vidro.
 O coef. angular (inclinação) da curva na região elástica é o módulo
de elasticidade;
 a faixa para ele nos materiais cerâmicos encontra-se entre
aproximadamente 70 e 500 GPa, sendo ligeiramente maior do
que para os metais.
 A tabela anterior lista valores para vários materiais cerâmicos.
Propriedades Mecânicas
Comportamento Tensão-Deformação
COMPORTAMENTO
ELÁSTICO
 Comportamento típico
tensão-deformação até a
fratura para o óxido de
alumínio e o vidro.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
 Embora à Tambiente a maioria dos cerâmicos sofra fratura antes do
surgimento de qualquer deformação plástica, é necessário ver
rapidamente os seus mecanismos.
 A deformação plástica difere para cerâmicas cristalinas e não-
cristalinas.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS CRISTALINAS
 Ocorre como nos metais, pela movimentação de discordâncias.
Uma razão para a dureza e a fragilidade desses materiais é a
dificuldade de escorregamento (ou movimento da discordância).
Quando a ligação é predominantemente iônica, existem muito
poucos sistemas de escorregamento (planos e direções
cristalográficas dentro daqueles planos) ao longo dos quais as
discordâncias podem se mover.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS CRISTALINAS
 Por que isso acontece???
 Isso é uma consequência da natureza eletricamente carregada dos
íons .
 Para o escorregamento em algumas direções, os íons de mesma
carga são colocados próximos uns aos outros;
 devido à repulsão eletrostática, essa modalidade de
escorregamento é muito restrita.
Metais  isso não ocorre pois todos os átomos são eletricamente
neutros.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS CRISTALINAS
 Cerâmicas com ligação altamente covalente  o escorregamento
também é difícil, eles são frágeis pelas seguintes razões:
1. As ligações covalentes são relativamente fortes;
2. Existe também um número limitado de sistemas de
escorregamento;
3. As estruturas das discordâncias são complexas.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
 A deformação plástica NÃO ocorre pelo movimento das
discordâncias,
POIS NÃO EXISTE UMA ESTRUTURA ATÔMICA REGULAR!
 Eles se deformam através de um escoamento viscoso, que é a
maneira segundo a qual os líquidos se deformam;
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
 A taxa de deformação é proporcional à tensão aplicada.
 Em resposta à aplicação de uma tensão de cisalhamento, os
átomos ou íons deslizam uns sobre os outros através da quebra
e da reconstrução de ligações interatômicas.
 Contudo, não existe uma maneira ou direção predeterminada
segundo a qual fenômeno ocorre, como é o caso para as
discordâncias.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
 Representação do
escorregamento viscoso
(demonstrado em escala
macroscópica) de um
líquido ou vidro fluido
em resposta à aplicação
de uma força de
cisalhamento.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
 As camadas adjacentes, deslocam-se paralelamente umas às outras
com diferentes velocidades.
 Pode ser definido por meio da situação ideal conhecida como
escoamento de Couette, onde uma camada de fluido é retido entre
duas placas horizontais, uma fixa e outra se movimentando
horizontalmente a uma velocidade constante.
 Assume-se que as placas são muito grandes, de modo que não é
preciso considerar que ocorre próximo dos seus bordos.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
 Se a velocidade da placa superior é suficientemente baixa, as
partículas do fluido se movem em paralelo a ela, e a sua velocidade
irá variar linearmente a partir de zero, na parte inferior para a parte
superior.
 Cada camada de fluido se move mais rapidamente do que a camada
imediatamente abaixo, e o atrito entre elas irá dar origem a uma
força resistindo a esse movimento relativo.
 Em particular, o fluido vai aplicar sobre a placa superior uma força na
direção oposta ao seu movimento, e uma força igual, mas em direção
oposta à placa de fundo.
 Uma força externa é então necessária para manter a placa superior
em movimento a uma velocidade constante.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
 A propriedade característica para um escoamento viscoso, a
viscosidade, representa uma medida de resistência à deformação de
um material não-cristalino.
 Para o escoamento viscoso de um líquido que tem sua origem nas
tensões de cisalhamento impostas por duas chapas planas e
paralelas:
Ver Figura Anterior
Viscosidade η representa a razão entre a:
τ tensão de cisalhamento aplicada, e
dv alteração na velocidade em função da
dy distância em uma direção perpendicular e se afastando das
chapas  Taxa de deformação.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
 Quanto maior a viscosidade, menor será a velocidade em que o fluido
se movimenta.
 Viscosidade é a propriedade associada a resistência que o fluido
oferece a deformação por cisalhamento.
Propriedades Mecânicas
Mecanismos da Deformação Plástica
CERÂMICAS NÃO-CRISTALINAS
 Líquidos  viscosidades relativamente baixas.
 Vidros  viscosidades extremamente elevadas à temperatura
ambiente.
temperatura  magnitude da ligação  movimento de
escorregamento ou escoamento dos átomos ou íons ficam facilitados.
 Viscosidade.
Exercícios Propostos
1 – Demonstre que a razão mínima entre os raios do cátion e do ânion para um
número de coordenação de 8 é de 0,732.
2 – A estrutura cristalina da blenda de zinco é uma que pode ser gerada a partir
de planos de ânions densamente compactados.
(a) A estrutura de empilhamento para essa estrutura será CFC ou HC? Por quê?
(b) Os cátions irão preencher posições tetraédricas ou octaédricas? Por quê?
(c) Qual fração das posições será ocupada?
3 – Explique sucintamente (a) por que pode haver uma dispersão significativa na
resistência à fratura para alguns dados materiais cerâmicos, e (b) por que a
resistência à fratura aumenta em função de uma diminuição do tamanho da
amostra.
4 – Cite uma razão pela qual os materiais cerâmicos são, em geral, mais duros,
porém mais frágeis, do que os metais?
Propriedades Mecânicas
Influência da Porosidade
 Em alguns casos, para a fabricação de materiais cerâmicos o material
de origem se encontra na forma de pó;
 Após a compactação ou conformação dessas partículas pulverizadas
na forma desejada, existirão poros ou espaços vazios entre as
partículas do pó.
 Durante T. T. a maior parte da porosidade será eliminada, entretanto
ele será incompleto em alguns casos resultando numa porosidade
residual.
 Porosidade terá influência negativa sobre as propriedades
elásticas e a resistência.
Propriedades Mecânicas
Influência da Porosidade
 Foi observado para alguns cerâmicos que o módulo de elasticidade E
diminui em função da fração volumétrica da porosidade, P, de acordo com
a expressão:
 Onde E0 representa o
módulo de elasticidade para
o material sem porosidade.
 A influência da fração
volumétrica da porosidade
sobre o módulo de
elasticidade para o óxido de
alumínio é mostrada na
figura, onde a curva está de
acordo com a eq. anterior.
Fração volumétrica da porosidade
Propriedades Mecânicas
Influência da Porosidade
 A porosidade exerce um efeito negativo por dois motivos:
1. Os poros reduzem a área de seção reta através da qual uma
carga é aplicada, e
2. Eles também atuam como concentrados de tensões (no caso de
um poro esférico isolado, uma tensão de tração que seja
aplicada é amplificada por um fator de 2).
A influência da porosidade sobre a resistência é relativamente
drástica;
p.e., não é incomum que uma porosidade de 10% vol seja
responsável por uma diminuição em 50% na resistência à flexão
em relação ao material sem porosidade.
Propriedades Mecânicas
Influência da Porosidade
 O grau de influência do
volume de poros está
mostrado na figura,
novamente para o óxido de
alumínio.
 Experimentalmente tem
sido mostrado que a
resistência à flexão
diminui exponencialmente
em função da fração
volumétrica de porosidade
(P), de acordo com a
relação:
Fração volumétrica da porosidade
 σ0 e n representam constantes
experimentais.
Materiais Não Metálicos
TM334
Aula 03: Aplicações e Processamento
das Cerâmicas
Prof. Felipe Jedyn
DEMEC – UFPR
Aplicações e Processamento
das Cerâmicas
 Características Metais x Cerâmicos  muito diferentes  aplicações
totalmente diferentes  materiais cerâmicos, metálicos e poliméricos se
completam nas suas utilizações.
 Processamento (em comparação aos metais)
 Fundição de cerâmicos  normalmente impraticável (Tfusão muito alta).
 Deformação  impraticável (fragilidade).
Aplicações e Processamento
das Cerâmicas
Processamento dos Cerâmicos
 Algumas peças cerâmicas são conformadas a partir de pós (ou
aglomerados particulados) que devem ao final ser secados e
levados a ignição (cozidos)
 Vidros  formas conformadas a altas temperaturas a partir de
uma massa fluida que se torna viscosa com o resfriamento.
 Cimentos  são conformados pela colocação de uma pasta fluida
no interior dos moldes, que endurece e assume uma pega
permanente em virtude de reações químicas.
Aplicações e Processamento
das Cerâmicas
Aplicações e Processamento das Cerâmicas
Vidros
 Grupo Familiar de Materiais Cerâmicos  recipientes, janelas,
lentes e fibra de vidro.
 Consistem em silicatos não cristalinos que também contém outros
óxidos (CaO, Na2O, K2O, Al2O3) que influenciam suas
propriedades.
 Características principais  transparência ótica e a relativa
facilidade com as quais eles podem ser fabricados.
Aplicações e Processamento das Cerâmicas
Vidros
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE
TEMPERATURA
 Materiais vítreos (ou não-cristalinos) não se solidificam do mesmo
modo que os materiais cristalinos:
com o resfriamento, um vidro se torna continuamente mais e
mais viscoso;
não existe uma temperatura definida na qual o líquido se
transforma em um sólido, como ocorre com os materiais
cristalinos.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE
TEMPARURA
 Diferença entre Cristalinos x Não-
cristalinos: Dependência do volume
específico em relação a
temperatura.
 Cristalinos: diminuição
descontínua no volume quando
se atinge Tf.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE
TEMPARURA
 Materiais vítreos: volume diminui continuamente em função de
uma redução na temperatura.
 Ocorre uma pequena diminuição na inclinação da curva no que
é conhecido por temperatura de transição vítrea, Tv, ou
temperatura fictícia.
 Abaixo dessa temperatura o material é considerado como sendo
um vidro; acima dessa temperatura, o material é primeiro um
líquido super-resfriado, e finalmente um líquido.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
 Contraste do comportamento volume
específico-temperatura apresentado
por materiais cristalinos e não-
cristalinos.
 Os materiais cristalinos se solidificam
na temperatura de fusão Tf .
 Uma característica do estado não-
cristalino é a temperatura de
transição vítrea, Tv.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
CARACTERÍSTICAS VISCOSIDADE x
TEMPERATURA
1. O ponto de fusão corresponde
à temperatura na qual a
viscosidade é de 10 Pa-s (100
P); o vidro é fluido o suficiente
para ser considerado um
líquido.
2. O ponto de operação
representa a temperatura na
qual a viscosidade é de 10³
Pa-s (104 P); o vidro é
facilmente deformado nessa
viscosidade.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
CARACTERÍSTICAS VISCOSIDADE-
TEMPERATURA
3. O ponto de amolecimento, a
temperatura na qual a viscosidade é
de 4 x 106 Pa-s (4 x 107 P), é a
temperatura máxima na qual uma
peça de vidro pode ser manuseada
sem causar alterações dimensionais
significativas.
4. O ponto de recozimento é a
temperatura na qual a viscosidade é
de 1012 Pa-s (1013 P). Nessa
temperatura, a difusão atômica é
suficientemente rápida, tal que
quaisquer tensões residuais podem
ser removidas dentro de um intervalo
de aproximadamente 15 min.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
CARACTERÍSTICAS VISCOSIDADE-
TEMPERATURA
5. O ponto de deformação
corresponde à temperatura na
qual a viscosidade se torna 3 x
1013 Pa-s (3 x 1014 P). Para
temperaturas abaixo do ponto de
deformação, a fratura irá ocorrer
antes do surgimento da
deformação plástica. A
temperatura de transição vítrea
será superior à temperatura do
ponto de deformação (1013 Pa.s).
Logaritmo da viscosidade em função da
temperatura para vidros de sílica fundida e
vários vidros à base de sílica.
Aplicações e Processamento das Cerâmicas
Propriedades dos Vidros
CARACTERÍSTICAS VISCOSIDADE-
TEMPERATURA
A maioria das operações de
conformação dos vidros é
conduzida dentro da faixa de
operação, entre as temperaturas
de operação e de amolecimento.
A capacidade de um vidro em ser
conformado pode ser em grande
parte modificada pela alteração de
sua composição (T amolecimento,
Cal de soda x 96% sílica) 
operações de conformação  T
para cal de soda.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
 O vidro é produzido pelo aquecimento das matérias-primas até
uma temperatura elevada, acima da qual ocorre a fusão.
 A maioria dos vidros comerciais é do tipo sílica-soda-cal.
 Para a maioria das aplicações, especialmente quando a
transparência ótica é um fator importante, torna-se essencial que
o vidro produzido seja homogêneo e esteja isento de poros.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
 A homogeneidade é atingida através da fusão e da mistura
completa dos ingredientes brutos.
 A porosidade resulta de pequenas bolhas de gás que são
produzidas;
 essas devem ser absorvidas pelo material fundido
 ou de outra maneira eliminadas, o que exige um ajuste
apropriado da viscosidade do material fundido.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Quatro diferentes métodos de conformação são usados para fabricar
produtos à base de vidro (prensagem, insuflação, estiramento e
conformação das fibras):
 Prensagem: é usada na fabricação de peças com paredes
relativamente espessas, tais como pratos e louças.
 A peça de vidro é conformada pela aplicação de pressão em
um molde de ferro fundido revestido com grafita, que possui a
forma desejada;
 o molde é normalmente aquecido para assegurar uma
superfície uniforme.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Quatro diferentes métodos de conformação são usados para fabricar
produtos à base de vidro (prensagem, insuflação, estiramento e
conformação das fibras):
 Insuflação: Embora em alguns casos seja feita manualmente
(especialmente no caso de objetos de arte), o processo foi
completamente automatizado.
 Usado para a produção de jarras, garrafas e lâmpadas de vidro.
As várias etapas envolvidas são mostradas na figura a seguir:
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
 A partir de um tarugo de
vidro, um parison, ou
forma temporária, é
moldado por prensagem
mecânica em um molde.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
 Essa peça é inserida dentro
de um molde de acabamento
ou de insuflação, e então é
forçada a se conformar com
os contornos do molde pela
pressão que é criada por uma
injeção de ar.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Quatro diferentes métodos de conformação são usados para fabricar produtos à
base de vidro (prensagem, insuflação, estiramento e conformação das fibras):
 Estiramento: é usado para conformar longas peças de vidro, como
lâminas, barras, tubos e fibras, as quais possuem uma seção reta
constante.
 Um processo segundo
o qual são formadas
lâminas de vidro está
ilustrado na figura;
elas podem ser
fabricadas por
laminação a quente.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
 Estiramento
 O grau de planificação e o acabamento da superfície podem ser
melhorados de maneira significativa:
 Uma maneira é pela
flutuação em um
banho de estanho
fundido a uma
temperatura elevada;
 A peça é resfriada
lentamente e depois
tratada termicamente
por recozimento.
Aplicações e Processamento das Cerâmicas
Conformação do Vidro
Quatro diferentes métodos de conformação são usados para fabricar
produtos à base de vidro (prensagem, insuflação, estiramento e
conformação das fibras):
 Conformação das fibras: Fibras de vidro contínuas são conformadas
segundo uma operação de estiramento que é um tanto sofisticada.
 O vidro fundido é colocado em uma câmara de aquecimento de
platina.
 As fibras são conformadas pelo estiramento do vidro derretido
através de muitos orifícios pequenos na base da câmara.
 A viscosidade do vidro, que é crítica, é controlada pelas
temperaturas da câmara e dos orifícios.
Aplicações e Processamento das Cerâmicas
Tratamento Térmico dos Vidros
RECOZIMENTO
 Quando o material cerâmico é resfriado desde T elevada
 ocorre diferença na taxa de resfriamento e na contração térmica
entre as regiões da superfície e do interior da peça
 o que resulta em tensões internas (tensões térmicas)
 as quais podem enfraquecer o material, e levá-lo a fratura (em
casos extremos)  choque térmico.
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos
Introdução aos Materiais Cerâmicos e Não Metálicos

Mais conteúdo relacionado

Mais procurados

Corrosão: Conceito e Introdução
Corrosão: Conceito e IntroduçãoCorrosão: Conceito e Introdução
Corrosão: Conceito e IntroduçãoYerdwa
 
Solucionario química a ciência central - brown 9ª ed - blog - aquelaquestao...
Solucionario química   a ciência central - brown 9ª ed - blog - aquelaquestao...Solucionario química   a ciência central - brown 9ª ed - blog - aquelaquestao...
Solucionario química a ciência central - brown 9ª ed - blog - aquelaquestao...Adriana Barbosa
 
Auladeteoriadebandas
AuladeteoriadebandasAuladeteoriadebandas
Auladeteoriadebandasiqscquimica
 
3o ano-ensino-medio-ligacoes-quimicas exemplo
3o ano-ensino-medio-ligacoes-quimicas exemplo3o ano-ensino-medio-ligacoes-quimicas exemplo
3o ano-ensino-medio-ligacoes-quimicas exemploSimone Belorte de Andrade
 
Aula 3 ensaios mecânicos e end - ensaio de compressão
Aula 3   ensaios mecânicos e end - ensaio de compressãoAula 3   ensaios mecânicos e end - ensaio de compressão
Aula 3 ensaios mecânicos e end - ensaio de compressãoAlex Leal
 
Curso de Operação em Subestação para LT_JAN-2023.pptx
Curso de Operação em Subestação para LT_JAN-2023.pptxCurso de Operação em Subestação para LT_JAN-2023.pptx
Curso de Operação em Subestação para LT_JAN-2023.pptxAlan539599
 
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)Luis Henrique Bembo Filho
 

Mais procurados (20)

Brasagem Processo de solda
Brasagem Processo de soldaBrasagem Processo de solda
Brasagem Processo de solda
 
Corrosão: Conceito e Introdução
Corrosão: Conceito e IntroduçãoCorrosão: Conceito e Introdução
Corrosão: Conceito e Introdução
 
Polimeros Principais Propriedades
Polimeros Principais PropriedadesPolimeros Principais Propriedades
Polimeros Principais Propriedades
 
Solucionario química a ciência central - brown 9ª ed - blog - aquelaquestao...
Solucionario química   a ciência central - brown 9ª ed - blog - aquelaquestao...Solucionario química   a ciência central - brown 9ª ed - blog - aquelaquestao...
Solucionario química a ciência central - brown 9ª ed - blog - aquelaquestao...
 
4 cinematica dos fluidos exercícios
4 cinematica dos fluidos exercícios4 cinematica dos fluidos exercícios
4 cinematica dos fluidos exercícios
 
Lei de lambert beer
Lei de lambert beerLei de lambert beer
Lei de lambert beer
 
Discordância
Discordância Discordância
Discordância
 
Auladeteoriadebandas
AuladeteoriadebandasAuladeteoriadebandas
Auladeteoriadebandas
 
3o ano-ensino-medio-ligacoes-quimicas exemplo
3o ano-ensino-medio-ligacoes-quimicas exemplo3o ano-ensino-medio-ligacoes-quimicas exemplo
3o ano-ensino-medio-ligacoes-quimicas exemplo
 
Cisalhamento
CisalhamentoCisalhamento
Cisalhamento
 
NBR-IEC-60479-1
NBR-IEC-60479-1NBR-IEC-60479-1
NBR-IEC-60479-1
 
Lista 1 2 e 3 gabarito
Lista 1 2 e 3 gabaritoLista 1 2 e 3 gabarito
Lista 1 2 e 3 gabarito
 
Ciclo de born_haber
Ciclo de born_haberCiclo de born_haber
Ciclo de born_haber
 
Aula 3 ensaios mecânicos e end - ensaio de compressão
Aula 3   ensaios mecânicos e end - ensaio de compressãoAula 3   ensaios mecânicos e end - ensaio de compressão
Aula 3 ensaios mecânicos e end - ensaio de compressão
 
Corrosão
CorrosãoCorrosão
Corrosão
 
Diagramas De Fase
Diagramas De FaseDiagramas De Fase
Diagramas De Fase
 
Soldagem
SoldagemSoldagem
Soldagem
 
Curso de Operação em Subestação para LT_JAN-2023.pptx
Curso de Operação em Subestação para LT_JAN-2023.pptxCurso de Operação em Subestação para LT_JAN-2023.pptx
Curso de Operação em Subestação para LT_JAN-2023.pptx
 
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
Métodos térmoanalíticos de análise (TG, DTG, DTA, DSC)
 
Solda aula 3- processos
Solda   aula 3- processosSolda   aula 3- processos
Solda aula 3- processos
 

Semelhante a Introdução aos Materiais Cerâmicos e Não Metálicos

Estrutura atômica v09.03.2015.ppt para o nono ano x
Estrutura atômica v09.03.2015.ppt para o nono ano xEstrutura atômica v09.03.2015.ppt para o nono ano x
Estrutura atômica v09.03.2015.ppt para o nono ano xThiagoAlmeida458596
 
Excel Básico Nova Apresentação Excel Básico.pptx
Excel Básico Nova Apresentação Excel Básico.pptxExcel Básico Nova Apresentação Excel Básico.pptx
Excel Básico Nova Apresentação Excel Básico.pptxWagnerSantiago2
 
Aula de Estrutura Atomica.pptx
Aula de Estrutura Atomica.pptxAula de Estrutura Atomica.pptx
Aula de Estrutura Atomica.pptxJooPaulo375007
 
Naftal Naftal-Tema I-Palestra I-Estrutura Atomica-Tabela Periodica-Quimica Ge...
Naftal Naftal-Tema I-Palestra I-Estrutura Atomica-Tabela Periodica-Quimica Ge...Naftal Naftal-Tema I-Palestra I-Estrutura Atomica-Tabela Periodica-Quimica Ge...
Naftal Naftal-Tema I-Palestra I-Estrutura Atomica-Tabela Periodica-Quimica Ge...samuelsoaresvasco202
 
Aula 2022 01 Fisica 1- Estrutura da Materia.pptx
Aula 2022 01 Fisica 1- Estrutura da Materia.pptxAula 2022 01 Fisica 1- Estrutura da Materia.pptx
Aula 2022 01 Fisica 1- Estrutura da Materia.pptxMatiasPugaSanches
 
Atomos e iões
Atomos e iõesAtomos e iões
Atomos e iõesprof_pc
 
ÁTOMO - propriedades ligações com isótopos
ÁTOMO - propriedades ligações com isótoposÁTOMO - propriedades ligações com isótopos
ÁTOMO - propriedades ligações com isótoposMateusCoelho36
 
Classificação dos Materiais
Classificação dos MateriaisClassificação dos Materiais
Classificação dos MateriaisMarta-9C
 
Apostila eletricidade vol 1
Apostila eletricidade vol 1Apostila eletricidade vol 1
Apostila eletricidade vol 1erickfurtado
 
Fundamentos eletroeletronica
Fundamentos eletroeletronicaFundamentos eletroeletronica
Fundamentos eletroeletronicaluizmavinier
 

Semelhante a Introdução aos Materiais Cerâmicos e Não Metálicos (20)

2 Estrutura atômica v09.03.2015.pptx
2 Estrutura atômica v09.03.2015.pptx2 Estrutura atômica v09.03.2015.pptx
2 Estrutura atômica v09.03.2015.pptx
 
Estrutura atômica v09.03.2015.ppt para o nono ano x
Estrutura atômica v09.03.2015.ppt para o nono ano xEstrutura atômica v09.03.2015.ppt para o nono ano x
Estrutura atômica v09.03.2015.ppt para o nono ano x
 
Excel Básico Nova Apresentação Excel Básico.pptx
Excel Básico Nova Apresentação Excel Básico.pptxExcel Básico Nova Apresentação Excel Básico.pptx
Excel Básico Nova Apresentação Excel Básico.pptx
 
Ciência dos Materiais
Ciência dos MateriaisCiência dos Materiais
Ciência dos Materiais
 
Aula de Estrutura Atomica.pptx
Aula de Estrutura Atomica.pptxAula de Estrutura Atomica.pptx
Aula de Estrutura Atomica.pptx
 
Natureza.atomica2
Natureza.atomica2Natureza.atomica2
Natureza.atomica2
 
Naftal Naftal-Tema I-Palestra I-Estrutura Atomica-Tabela Periodica-Quimica Ge...
Naftal Naftal-Tema I-Palestra I-Estrutura Atomica-Tabela Periodica-Quimica Ge...Naftal Naftal-Tema I-Palestra I-Estrutura Atomica-Tabela Periodica-Quimica Ge...
Naftal Naftal-Tema I-Palestra I-Estrutura Atomica-Tabela Periodica-Quimica Ge...
 
Natureza.atomica
Natureza.atomicaNatureza.atomica
Natureza.atomica
 
Natureza.atomica
Natureza.atomicaNatureza.atomica
Natureza.atomica
 
Aula 2022 01 Fisica 1- Estrutura da Materia.pptx
Aula 2022 01 Fisica 1- Estrutura da Materia.pptxAula 2022 01 Fisica 1- Estrutura da Materia.pptx
Aula 2022 01 Fisica 1- Estrutura da Materia.pptx
 
Trabalho
TrabalhoTrabalho
Trabalho
 
Natureza.atomica2
Natureza.atomica2Natureza.atomica2
Natureza.atomica2
 
2012 cap01 estrutura e ligação
2012 cap01  estrutura e ligação2012 cap01  estrutura e ligação
2012 cap01 estrutura e ligação
 
Atomos e iões
Atomos e iõesAtomos e iões
Atomos e iões
 
ÁTOMO - propriedades ligações com isótopos
ÁTOMO - propriedades ligações com isótoposÁTOMO - propriedades ligações com isótopos
ÁTOMO - propriedades ligações com isótopos
 
Classificação dos Materiais
Classificação dos MateriaisClassificação dos Materiais
Classificação dos Materiais
 
Eletricidade capítulo 01
Eletricidade capítulo 01Eletricidade capítulo 01
Eletricidade capítulo 01
 
Apostila eletricidade vol 1
Apostila eletricidade vol 1Apostila eletricidade vol 1
Apostila eletricidade vol 1
 
Fundamentos eletroeletronica
Fundamentos eletroeletronicaFundamentos eletroeletronica
Fundamentos eletroeletronica
 
Apostila eletricidade vol 1
Apostila eletricidade vol 1Apostila eletricidade vol 1
Apostila eletricidade vol 1
 

Último

A Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralA Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralFranciscaArrudadaSil
 
Treinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção IndividualTreinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção Individualpablocastilho3
 
Eletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréEletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréGuilhermeLucio9
 
DESTRAVANDO O NOVO EDITAL DA CAIXA ECONOMICA
DESTRAVANDO O NOVO EDITAL DA CAIXA ECONOMICADESTRAVANDO O NOVO EDITAL DA CAIXA ECONOMICA
DESTRAVANDO O NOVO EDITAL DA CAIXA ECONOMICAPabloVinicius40
 
Tecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraTecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraGuilhermeLucio9
 
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfLivro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfSamuel Ramos
 
LEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaLEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaGuilhermeLucio9
 

Último (7)

A Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralA Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboral
 
Treinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção IndividualTreinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção Individual
 
Eletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréEletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante Tamandaré
 
DESTRAVANDO O NOVO EDITAL DA CAIXA ECONOMICA
DESTRAVANDO O NOVO EDITAL DA CAIXA ECONOMICADESTRAVANDO O NOVO EDITAL DA CAIXA ECONOMICA
DESTRAVANDO O NOVO EDITAL DA CAIXA ECONOMICA
 
Tecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraTecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade Anhanguera
 
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfLivro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
 
LEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaLEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurança
 

Introdução aos Materiais Cerâmicos e Não Metálicos

  • 1. Materiais Não Metálicos TM334 Aula 01: Revisão de Estrutura Atômica e Ligação Interatômica e Introdução aos Materiais Cerâmicos Prof. Felipe Jedyn DEMEC – UFPR
  • 2. O que será vistoCerâmicos Os materiais cerâmicos são combinações de elementos metálicos e não metálicos, frequentemente óxidos, nitretos e carbetos. Nesta classificação, existe um grande número de materiais, como: argilas, cimentos e vidros.
  • 3. O que será vistoCerâmicos Apresentam ligações tipo iônicas ou covalentes, sendo isolantes elétricos e térmicos. Os cerâmicos são em geral resistentes e muito frágeis. São resistentes à elevadas temperaturas e muito resistentes a ambientes corrosivos.
  • 4. O que será visto Polímeros Os materiais poliméricos são normalmente combinações de elementos orgânicos, como o Carbono, Hidrogênio além de outros materiais não metálicos.
  • 5. O que será visto Polímeros Nesta classe, os átomos estão ligados por ligações covalentes, além de outros tipos de ligações como forças de Van der Waals. São isolantes elétricos e térmicos, sendo em geral de baixa densidade e grande flexibilidade. Pela constituição e tipos de ligações, apresentam limitada aplicação em temperatura.
  • 6. O que será visto Materiais Compósitos Compósito é basicamente um material em cuja composição entram dois ou mais tipos de materiais diferentes. Alguns exemplos são metais e polímeros, metais e cerâmicos ou polímeros e cerâmicos. Os materiais que podem compor um material compósito podem ser classificados em dois tipos:
  • 7. O que será visto Materiais Compósitos Material matriz é o que confere estrutura ao material compósito, preenchendo os espaços vazios que ficam entre os materiais reforços e mantendo-os em suas posições relativas. Materiais de reforço são os que realçam propriedades mecânicas, eletromagnéticas ou químicas do material compósito como um todo.
  • 8. O que será visto Materiais Compósitos O grande potencial de desempenho destes materiais está baseado na possibilidade de sinergia entre material matriz e materiais reforços que resulte no material compósito final com propriedades não existentes nos materiais originais isoladamente.
  • 9. Bibliografia Recomendada Cerâmicos 1 – Ciência e Engenharia de Materiais – Uma Introdução, 5ª edição. William D. Callister, Jr. 2 – Princípios de Ciência e Engenharia dos Materiais, 3ª edição. William F. Smith 3 – Propriedades dos Materiais Cerâmicos. Lawrence H. Van Vlack 4 – An Introduction to the Mechanical Properties of Ceramics. David J. Green 5 – Modern Ceramic Engineering, 2ª edição. David W. Richerson
  • 11.  Algumas das propriedades importantes dos materiais sólidos dependem dos arranjos geométricos dos átomos e também das interações que existem entre os átomos ou moléculas constituintes.  Um exemplo é o Carbono Grafite e Diamante que apresentam durezas diferentes, sendo o primeiro com dureza relativamente baixa enquanto o segundo de elevada dureza.  Esta diferença está justificada diretamente a partir do tipo de ligação interatômica que ocorre no Grafite e que não é encontrada no Diamante. Revisão: Conceitos Fundamentais
  • 13.  Vamos revisar conceitos fundamentais como estrutura atômica, configurações eletrônicas dos átomos e tabela periódica, e os vários tipos de ligações interatômicas primárias e secundárias que mantêm unidos os átomos que compõe um sólido. Revisão: Conceitos Fundamentais
  • 14. Ordem de grandeza da estrutura atômica  10-15 a 10-10 m A estrutura eletrônica dos átomos determina a natureza das ligações atômicas e define algumas propriedades dos materiais Propriedades: físicas, ópticas, elétricas e térmicas Revisão: Conceitos Fundamentais
  • 15. Cada átomo consiste de um pequeno núcleo composto por prótons e nêutrons, que é circundado por elétrons em movimento. Elétrons e prótons são carregados eletricamente com carga de 1,6 x 10-19 C, negativo em sinal para elétrons e positivo para prótons, enquanto os nêutrons são eletricamente neutros. Revisão: Conceitos Fundamentais
  • 16. A massa das partículas é muito pequena, sendo a dos prótons aproximadamente igual a dos nêutrons de 1,67 x 10-27 kg e a dos elétrons de 9,11 x 10-31 kg. Revisão: Conceitos Fundamentais
  • 17. Cada átomo é caracterizado pelo número atômico Z ou número de prótons. O Z varia desde 1 (Hidrogênio) até 92 (Urânio), considerando os elementos químicos estáveis da tabela periódica, que ocorrem naturalmente. Um átomo eletricamente neutro é aquele que apresenta o mesmo número de prótons e elétrons. Revisão: Conceitos Fundamentais
  • 18. O número de massa A, pode ser expresso pela soma das massas dos prótons e nêutrons do seu núcleo. Embora um átomo de um determinado elemento apresente o mesmo número de prótons, podem existir diferentes números de nêutrons, o que origina os Isótopos do elemento. O peso atômico de um elemento corresponde à média ponderada das massas atômicas dos isótopos. Uma unidade de massa atômica (u.m.a) é definida como sendo 1/12 avos da massa atômica do Isótopo do Carbono 12 (12C), sendo A = 12,00000. Desta forma, dentro deste método podemos aproximar: A ̴̴ Z + N Revisão: Conceitos Fundamentais
  • 19. Revisão: Conceitos Fundamentais O peso atômico de um elemento ou molecular de um composto pode ser especificado com base na unidade de massa atômica por átomo ou massa por mol de material, sendo: 1 u.m.a/átomo = 1 g/mol Em um mol de qualquer substância temos: 6,02 x 1023 átomos ou moléculas (nº Avogadro). Exemplo: Átomo de Ferro: Massa Atômica:55,85 u.m.a./átomo ou 55,85 g/mol.
  • 20. Revisão: Modelos Atômicos Modelo Atômico de Bohr Modelo atômico no qual os elétrons circulam ao redor do núcleo atômico em orbitais e a posição de qualquer elétron é mais ou menos bem definido em termos do seu orbital. Um importante princípio da mecânica quântica determina que os elétrons apresentam energias quantizadas; isto é, aos elétrons permite-se apenas que possuam valores de energia específicos. Um elétron pode mudar de energia, mas para isto deve mudar de nível (salto quântico) absorvendo ou emitindo energia.
  • 21. Revisão: Modelos Atômicos Modelo Atômico de Bohr Figura mostrando os três primeiros estados de energia eletrônicos do átomo de Hidrogênio de Bohr (-13,6 / -3,4 / -1,5 eV) (a). (0 eV de ref. = e- livre) Obviamente o único elétron do H irá preencher somente um desses estados. Estados de energia do elétron para as três primeiras camadas segundo o modelo ondulatório (b).
  • 22. Revisão: Modelos Atômicos O Modelo Atômico de Bohr apresenta várias limitações (a) quando é usado para explicar alguns fenômenos envolvendo os elétrons, problema que foi resolvido pela adoção do modelo mecânico-ondulatório, onde se considera que os elétrons exibem características tanto de onda como de partícula. Assim, passa-se a considerar a probabilidade de um elétron ocupar certas posições ao redor do núcleo atômico (b).
  • 23. Revisão: Modelos Atômicos Ou seja, com este modelo o elétron não é mais tratado como uma partícula que se move em um orbital distinto; em vez disto, a posição do elétron é considerada como sendo a probabilidade de um elétron estar em vários locais ao redor do núcleo. Em outras palavras, a posição é descrita por uma distribuição de probabilidades ou uma nuvem eletrônica.
  • 24. Revisão: Números Quânticos Usando a mecânica ondulatória, cada elétron em um átomo é caracterizado por quatro parâmetros chamados números quânticos. Os níveis energéticos de Bohr são separados em subcamadas eletrônicas , e os números quânticos definem o número de estados (ou orbitais) em cada subcamada. As camadas eletrônicas são especificadas por um número quântico principal “n” que assume valores inteiros a partir da unidade. As camadas são designadas com letras K, L, M, N, O e assim por diante, que correspondem, respectivamente, por valores de “n” de 1, 2, 3, 4, 5, ...
  • 25. Deve ser observado também que este número quântico, e somente este, está associado com o modelo de Bohr. Ele está relacionado à distância de um elétron a partir do núcleo, ou a sua posição. O segundo número quântico, l, significa a subcamada que é identificada por uma letra minúscula – s, p, d, ou f; ele está relacionado a forma da subcamada eletrônica. O número de estados energéticos para cada subcamada é determinado pelo terceiro número quântico ml. Revisão: Números Quânticos
  • 26. Revisão: Números Quânticos Associado com cada elétron está um momento de spin (momento de rotação), que deve estar orientado para cima e para baixo. O quarto número quântico, ms, está associado a este momento de spin, para o qual existem dois valores possíveis (+1/2 e -1/2), um para cada uma das orientações de spin. Número Quântico Principal “n” Designação da Camada Subcamadas Número de estados Número de Elétrons Por Subcamada Por Camada
  • 27. Revisão: Números Quânticos O modelo de Bohr foi refinado pela mecânica ondulatória, dando origem a subcamadas dentro das camadas originais.
  • 28. Revisão: Configurações Eletrônicas Vimos principalmente até agora os estados eletrônicos – valores de energia que são permitidos para os elétrons. Para determinar a maneira pela qual estes estados são preenchidos com elétrons, nós usamos o princípio da exclusão de Pauli, um outro conceito quântico mecânico – Cada estado orbital eletrônico pode comportar um máximo de dois elétrons, que devem possuir valores de spin opostos. Para a maioria dos átomos, os elétrons preenchem os estados eletrônicos de energias mais baixas nas camadas e subcamadas.
  • 29. Revisão: Configurações EletrônicasElétrons de Valência  Os elétrons de valência são aqueles que ocupam a camada mais externa.  Os elétrons de valência participam na ligação atômica, de maneira a formar agrupamentos de átomos ou moléculas e muitas propriedades físicas e químicas estão baseadas nestes elétrons.
  • 30.  Elétrons de Valência – Gases Nobres  Átomos como Neônio, Criptônio, Argônio são conhecidos pela configuração eletrônica estável.  Ou seja, os estados energéticos dentro da camada mais externa estão preenchidos com elétrons, totalizando oito elétrons. A exceção é o Hélio, que apresenta apenas dois elétrons 1s. Revisão: Configurações Eletrônicas
  • 31.  Elétrons de Valência - Íons  Alguns átomos dos elementos que possuem camadas de valência não totalmente preenchidas assumem configurações estáveis pelo ganho ou perda de elétrons para formar íons carregados ou através do compartilhamento de elétrons com outros átomos.  Esta é a base para algumas reações químicas e também para as ligações atômicas em sólidos. Revisão: Configurações Eletrônicas
  • 32. Revisão: A Tabela Periódica  Todos os elementos tem sido classificados de acordo com a configuração eletrônica na tabela periódica.  Nela, os elementos estão posicionados em ordem crescente de número atômico e em sete linhas horizontais chamadas de períodos.  O arranjo dos elementos é tal que todos os elementos que estão na mesma coluna ou grupo apresentam similar estrutura dos elétrons de valência, assim como propriedades químicas e físicas.  Estas propriedades alteram gradual e sistematicamente à medida que movem horizontalmente através de cada período.
  • 33. Revisão: A Tabela Periódica  Os elementos posicionados no grupo 0, grupo mais à direita, são os gases inertes, que apresentam configurações eletrônicas estáveis e com as camadas eletrônicas preenchidas.  Os elementos dos grupos VIIA e VIA apresentam falta de um e dois elétrons nas camadas respectivamente, em relação às estruturas estáveis.  Os elementos do grupo VIIA (F, Cl, Br, I e At) são chamados de Halogêneos.
  • 34.
  • 35.  Os metais alcalino e alcalino-terrosos (Li, Na, K, Be, Mg, Ca, etc.) são posicionados nos grupos IA e IIA tendo, respectivamente, um e dois elétrons em excesso em relação às configurações estáveis.  Os elementos dos três longos períodos IIIB até IIB são chamados de metais de transição, os quais possuem orbitais eletrônicos d parcialmente preenchidos e, em alguns casos, um ou dois elétrons na camada energética imediatamente mais alta.  Os grupos IIIA, IVA e VA (B, Si, Ge, As , etc.) mostram características que são intermediárias entre os metais e não-metais (ametais) como resultado da estrutura dos elétrons de valência. Revisão: A Tabela Periódica
  • 36. Revisão: A Tabela Periódica  A maior parte dos elementos está classificada como metais. Estes são chamados elementos eletropositivos, indicando que são capazes de ceder os seus poucos elétrons de valência, se tornando íons carregados positivamente.
  • 37. Revisão: A Tabela Periódica  Por outro lado, os elementos localizados à direita da tabela periódica são eletronegativos, ou seja, prontamente recebem elétrons formando íons carregados negativamente. Outras vezes estes elementos compartilham elétrons com outros tipos de átomos.
  • 38. Revisão: Ligação Atômica nos Sólidos Forças de Ligação  O entendimento de muitas propriedades físicas está baseada no conhecimento das forças de ligação interatômicas que unem os átomos, prendendo-os.
  • 39. Revisão: Ligação Atômica nos Sólidos Forças de Ligação  Analisando as ligações entre dois átomos desde uma proximidade grande até uma distância infinita.  Em grandes distâncias as forças podem ser desconsideradas.  À medida que os átomos se aproximam eles exercem forças uns sobre os outros.  Estas forças podem ser de atração ou de repulsão. E a magnitude depende da distância entre os átomos.
  • 40. Revisão: Ligação Atômica nos Sólidos Forças de Ligação  A força de atração depende do tipo de ligação e varia com a distância interatômica.  Quando a última camada de dois átomos começa a se sobrepor, surgem forças de repulsão. A força líquida (FL) é então a resultante entre a força de Atração e a de Repulsão: FL = FA + FR
  • 41. Ligação Atômica nos Sólidos Forças de Ligação Dependência entre a força de Atração, Repulsão e Força de Ligação. Quando existe equilíbrio entre as forças de atração e repulsão, a força resultante de ligação é zero. FA+FR=0 Nesta condição, estabelece-se a distância interatômica de equilíbrio, ou r0. Neste caso, os centros do átomos estarão separados por uma distância r0. Para diversos átomos esta distância é de 3nm.  não se aproximam nem se separam (repulsão e atração).
  • 42. Ligação Atômica nos Sólidos Forças de Ligação Dependência entre a força de Atração, Repulsão e Força de Ligação.  Resumindo  A distância entre dois átomos é determinada pelo balanço das forças atrativas e repulsivas.  Quanto mais próximos os átomos maior a força atrativa entre eles, mas maior ainda são as forças repulsivas devido a sobreposição das camadas mais internas.  Quando a soma das forças atrativas e repulsivas é zero, os átomos estão na chamada distância de equilíbrio.
  • 43. Ligação Atômica nos Sólidos Força de ligações e Rigidez  O que é deformação no regime elástico???
  • 44. Ligação Atômica nos Sólidos Força de ligações e Rigidez  O que é deformação no regime elástico???  Como traduzir isso num nível atômico???
  • 45. Ligação Atômica nos Sólidos Força de ligações e Rigidez  A inclinação da curva no ponto de equilíbrio dá a força necessária para separar os átomos sem promover a quebra da ligação.  Os materiais que apresentam uma inclinação grande são considerados materiais rígidos.  Ao contrário, materiais que apresentam uma inclinação mais tênue são bastante flexíveis.
  • 46. Ligação Atômica nos Sólidos Força de ligações e Rigidez  A rigidez e a flexibilidade também estão associadas com módulo de elasticidade (E) que  é determinado da inclinação da curva tensão x deformação obtida no ensaio mecânico de resistência à tração.
  • 47. Ligação Atômica nos Sólidos Energias de Ligação Dependência entre a Energia Potencial E conforme a variação da energia de Atração e Energia de Repulsão. Quando analisamos a Energia potencial ao invés da força, vemos que a distância de equilíbrio r0 é aquela que desenvolve a menor energia. Nesta condição, estabelece-se a Energia mínima E0 e representa a energia necessária para separar estes dois átomos até uma distância infinitamente grande. E = ʃ F dr EL = EA + ER
  • 48. Ligação Atômica nos Sólidos Energias de Ligação Dependência entre a Energia Potencial E conforme a variação da energia de Atração e Energia de Repulsão. Diferentes átomos  diferentes tipos de ligação química  curvas diferentes de energia resultante. Quando consideramos, por exemplo, uma deformação que envolve o distanciamento de átomos no regime elástico, podemos entender que o módulo de elasticidade de cada material será diferente, pela razão antes exposta.
  • 49. Revisão: Ligação Atômica nos Sólidos Algumas Propriedades x Exemplos: Temperatura de Fusão:  Quanto maior o valor de |E0|, maior a temperatura de fusão de um material, já que há necessidade de rompimento de ligações para a mudança de estado físico (sólido  líquido).  Por outro lado, pequenos valores de |E0|, são típicos de materiais gasosos e  líquidos apresentam energias de ligação intermediária.
  • 50. Revisão: Ligação Atômica nos Sólidos Algumas Propriedades x Exemplos:  Coeficiente de Expansão:  O coeficiente de expansão linear de um material é dependente da forma da curva E0 versus r0.  Elevadas E de ligação  baixo coeficiente de expansão térmica (alterações dimensionais pequenas).
  • 51. Revisão: Ligação Atômica nos Sólidos Algumas Propriedades x Exemplos:  Resistência mecânica:  Aumenta com a força máxima e com a profundidade do poço da curva de energia de ligação.  Ou seja, quanto maior a energia de ligação, maior a resistência.
  • 52. Revisão: Ligação Atômica nos Sólidos  Os tipos primários de ligação em sólidos são: Iônicas, Covalentes e Metálicas.  Para cada um destes tipos, a ligação envolve os elétrons de valência e o tipo de ligação depende da estrutura eletrônica dos átomos.  De forma geral, cada um destes tipos de ligação visam assumir estruturas eletrônicas estáveis como a dos gases nobres.
  • 53. Revisão: Ligação Atômica nos Sólidos  Forças de origem secundária ou física são ainda encontradas em muitos materiais sólidos.  Estas forças são mais fracas que os tipos de ligações principais mas ainda assim influenciam as propriedades físicas dos materiais  Ligações Secundária.
  • 54.  Ligações Primárias: Iônicas, Covalentes, Metálicas.  Ligações Secundárias: Van der Waals: Dipolo Induzido por Flutuação, Dipolo Induzido-Moléculas Polares, Dipolo Permanente. Revisão: Ligação Atômica nos Sólidos
  • 55. Revisão: Ligação Atômica nos Sólidos Ligações Iônicas  Uma das mais fáceis de descrever e visualizar.  São sempre encontradas em compostos formados por metais e não-metais, situados horizontalmente nas extremidades da tabela periódica. Força de Ligação Coulombiana
  • 56. Revisão: Ligação Atômica nos Sólidos Ligações Iônicas  Os átomos metálicos facilmente cedem os elétrons de valência aos elementos não-metálicos.  Neste caso, os átomos das duas espécies adquirem a configuração estável ou tal como a dos gases inertes e adicionalmente os átomos passam a ser íons (ganham carga elétrica). Força de Ligação Coulombiana
  • 57. Revisão: Ligação Atômica nos Sólidos Ligações Covalentes  Nas ligações covalentes, a configuração estável é obtida pelo compartilhamento dos elétrons entre átomos adjacentes.  Estes elétrons pertencerão a ambos.
  • 58. Revisão: Ligação Atômica nos Sólidos Ligações Covalentes  Este tipo de ligação aparece em não-metais como H2, Cl2, F2, H2O, HNO3, assim como em sólidos tais como o Diamante (Carbono), Silício, Germânio...  E compostos formados por elementos do lado direito da tabela periódico, como o Gálio- Arsênio, Índio-Antimônio e Carbeto de Silício.
  • 59. Revisão: Ligação Atômica nos Sólidos Ligações Metálicas  As ligações metálicas são encontradas nos metais e ligas metálicas.  Os metais tem entre um e três elétrons de valência e dentro deste modelo, os elétrons de valência não estão ligados a um átomo específico e estão + ou - livres para o movimento entre os átomos que compõe o material, tal como uma nuvem eletrônica.
  • 60. Revisão: Ligação Atômica nos Sólidos Ligações Metálicas  Os elétrons que não são os de valência e os núcleos atômicos formam o que usualmente se chama de  núcleos iônicos, com carga positiva igual em magnitude à carga total dos elétrons de valência por átomo.
  • 61. Revisão: Ligação Atômica nos Sólidos Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes. Van der Waals  As ligações secundárias de van der Waals ou ligações físicas,  são fracas em comparação às ligações primárias, ficando na ordem de 10 kJ/mol ou 0,1 eV/átomo.  Estas forças aparecem virtualmente entre todos os átomos ou moléculas,  entretanto, a sua presença fica obscurecida quando existem ligações primárias de maior intensidade.
  • 62. Revisão: Ligação Atômica nos Sólidos Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes. Van der Waals  As ligações secundárias são visualizadas entre átomos de gases inertes que apresentam estruturas eletrônicas estáveis e entre suas moléculas ligadas covalentemente.
  • 63. Revisão: Ligação Atômica nos Sólidos Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes. Dipolo  Forças de ligação secundária aparecem a partir de dipolos atômicos ou moleculares. Na prática, dipolos existem quando existe alguma separação de regiões positivas ou negativas em um átomo ou molécula. As ligações são o resultado de forças Coulombianas entre uma extremidade positiva e a extremidade negativa de uma molécula adjacente. Dipolos atômicos ou moleculares Separação entre frações + e -  Atração Coulombiana  Surgem de dipolos atômicos ou moleculares Estas ligações podem ocorrer entre:  Dipolos Induzidos  Dipolos Induzidos e Moléculas Polares  Moléculas Polares
  • 64. Revisão: Ligação Atômica nos Sólidos Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes. Ligações de Dipolo Induzido Flutuantes  Um dipolo pode ser criado em um átomo ou molécula que é eletricamente simétrica (a). A própria vibração atômica ou molecular pode induzir a criação de um dipolo instantâneo num átomo (b). Quando este desbalanço causa o mesmo efeito em um átomo vizinho, cria-se um dipolo, tipo de ligação de van der Waals. As Forças atrativas são temporárias e flutuam ao longo do tempo.
  • 65. Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes. Ligações de Dipolo Induzido Flutuantes  A liquefação ou até mesmo a solidificação de gases inertes, além de outras moléculas eletricamente neutras e simétricas, tais como H2 ou Cl2, são realizadas devido a este tipo de interação.  As temperaturas de fusão e ebulição são extremamente baixas em materiais em que houver predomínio de ligações tipo dipolo. Dentre todos os tipos de ligações intermoleculares, estas são as mais fracas. Revisão: Ligação Atômica nos Sólidos Materiais com Ligação por Dipolo Induzido Predominante  TEbulição e Tfusão extremamente baixas
  • 66. Revisão: Ligação Atômica nos Sólidos Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes. Ligações entre Moléculas Polares e Dipolos Induzidos  Momentos de Dipolo permanentes existem em algumas moléculas devido ao arranjo assimétrico dos íons positivos ou negativos.  Tais moléculas são ditas Moléculas Polares (exemplo: HCl). Estas moléculas podem induzir dipolos em moléculas adjacentes não polares e uma ligação se formará como resultado das forças de atração entre as moléculas. Estas ligações desenvolverão magnitude de força maior que as de Dipolo Induzido Flutuantes.
  • 67. Revisão: Ligação Atômica nos Sólidos Ligações Secundárias: (Van der Waals): Ligações de Dipolo Induzido Flutuantes, Moléculas Polares e Dipolo Induzido, Dipolos Permanentes. Ligações Dipolo Permanentes  As ligações de van der Waals existirão entre moléculas polares adjacentes. O mais forte tipo de ligação secundária – a ligação do Hidrogênio – é um caso especial de ligação de molécula polar.  Ocorre entre moléculas em que o Hidrogênio está Covalentemente ligado ao Flúor, formando a molécula HF, ao Oxigênio na água (H2O) e ao Nitrogênio na Amônia (NH3).
  • 68. Ligação Atômica nos Sólidos Ligações Dipolo Permanentes  Em cada ligação H-F, H-O ou H-N, o único elétron do H é compartilhado com o outro átomo.  Assim, a extremidade da ligação contendo o H consiste essencialmente em um próton isolado, carregado positivamente, e que não está neutralizado por qualquer elétron.  Esta extremidade carregada da molécula, altamente positiva, é capaz de exercer uma grande força de atração sobre a extremidade negativa de uma molécula adjacente.  Essencialmente, este próton isolado forma uma ponte entre dois átomos carregados negativamente.
  • 70. Revisão: Ligação Atômica x Propriedades Materiais com ligações iônicas apresentam:  Elevadas temperaturas de fusão;  Elevada Dureza e Fragilidade;  Isolantes Elétricos e Térmicos. Materiais com ligações Covalentes apresentam:  Ligações fortes como a do Diamante, que resultam em: • Elevadas temperaturas de fusão (3550ºC) e elevada Dureza  Ligações fracas como a do Bismuto, que resultam em: • Baixas temperaturas de fusão (270ºC). *Ambos são isolantes elétricos e térmicos.
  • 71. Revisão: Ligação Atômica x Propriedades Materiais com ligações Metálicas apresentam:  Temperaturas de fusão desde baixas até elevadas.  Baixa dureza e alta ductilidade,  Bons condutores elétricos e térmicos, como consequência dos elétrons livres. Materiais Moleculares com ligações de van der Waals / Hidrogênio apresentam:  Baixas temperaturas de fusão,  Baixa Dureza.
  • 72. Materiais Cerâmicos Introdução Cubo de sílica de isolamento térmico. O interior do cubo está a 1250ºC e pode ser manuseado sem protecção. Usada no isolamento térmico do Space Shuttle
  • 73. Introdução História  2 milhões de anos atrás o Homo Erectus tem contato com os primeiros materiais cerâmicos;  Lascas de quartzo e obsidiana (vidro vulcânico) utilizadas como armas. Ponta de lança feita de quartzo
  • 74. Introdução História Cerâmicas ao longo da história: Egito e China (5000 anos); Japão (8000 anos).
  • 76. Introdução Definição Cerâmica (Keramikos) = matéria-prima queimada. As propriedades só são atingidas após um tratamento térmico de alta temperatura – conhecido como ignição.
  • 77. Introdução Definição  São materiais inorgânicos. A característica comum a estes materiais é serem constituídos de elementos metálicos e elementos não metálicos, ligados por ligações iônicas e/ou covalentes;  Apresentam composições químicas muito variadas, desde compostos simples a misturas de várias fases complexas ligadas entre si;  As propriedades variam muito devido a diferenças de ligação química;  Os materiais cerâmicos são geralmente duros e frágeis, com pouca tenacidade e pouca ductilidade;
  • 78. Introdução Definição  São geralmente isolantes térmicos e elétricos (devido à ausência de elétrons de condução)  embora existam materiais cerâmicos semicondutores, condutores e até mesmo supercondutores (estes dois últimos, em faixas específicas de temperatura);  Apresentam alto ponto de fusão e são comumente  quimicamente estáveis sob condições ambientais severas  (devido à estabilidade das suas fortes ligações químicas).
  • 79. Introdução Exceções  Fragilidade: cerâmicas superplásticas. Ex: ZrO2 (zircônia) estabilizado com Y2O3 (óxido de ítrio);  “The zirconia oxide stabilized by yttrium oxide offers except for its extremely high strength also the advantage that it is white, light- permeable material. Furthermore, its excellent biocompatibility and low thermal conductivity make it to be an ideal material for accurate prostheses.” Kralodent
  • 80. Introdução Exceções  Isolantes Térmicos: diamante (alta condutividade térmica – VERIFICAR);  Isolantes Elétricos: semicondutores e supercondutores. Bismuth strontium calcium copper oxide
  • 81. Introdução Atenção  O grafite e o diamante são tratados muitas vezes como cerâmicas!  Apesar de compostos unicamente de carbono, ambos os materiais são formas de carbono inorgânicas, não sendo produzidas por nenhum tipo de organismo vivo.
  • 82. Introdução Classificação quanto a aplicação  Materiais Cerâmicos Tradicionais: cerâmicas estruturais, louças, refratários (provenientes principalmente de matérias-primas argilosas e de outros tipos de silicatos);  Vidros e Vitro-Cerâmicas;  Abrasivos;  Cimentos;  Cerâmicas “Avançadas”: aplicações eletro-eletrônicas, térmicas, mecânicas, ópticas, químicas, bio-médicas.
  • 83. Introdução Classificação quanto a aplicação Classificação dos Materiais Cerâmicos de acordo com a aplicação
  • 85.  Telhas e tijolos (cerâmica vermelha) ainda são produzidos com matéria-prima não beneficiada.  Ex.: tijolos, blocos, telhas, ladrilhos de barro, vasos, filtros, tubos, manilhas. Introdução Cerâmicas Tradicionais
  • 86. Introdução Cerâmicas Tradicionais  Cerâmica branca, produtos refratários e vidrados.  São produzidos com matérias-primas beneficiadas por diversas etapas de moagem até um tamanho que permita a separação por meio de  sedimentação,  separação magnética  e eliminação de fases indesejáveis.  Ex.: louças, porcelanas, azulejos, louça sanitária, porcelana refratária, doméstica, elétrica ou artística.
  • 87. Introdução Cerâmicas Avançadas  Utilizam matérias-primas que sofrem uma série de processos químicos e mecânicos  que permitem obter produtos de pureza elevada ( > 99,5%) e pequeno tamanho de partícula (< 1µm).  Óxidos, nitretos e carbetos podem ser obtidos.  A matéria-prima para as cerâmicas avançadas pode também ser sintética,  ou seja, obtida por processos de síntese química (alumina com pureza> 99,99%).
  • 88.  Cerâmica eletrônica: circuitos integrados, instrumentos e sensores de laboratório, geradores de faísca.  Cerâmica estrutural: rotores para motor turbo, ferramentas de corte, mancais, pistões, bocais de extrusoras, bicos de queimadores.  Alta dureza à quente (1600oC);  Não reage quimicamente com o aço;  Longa vida da ferramenta;  Usado com alta velocidade de corte;  Não forma gume postiço. Introdução Cerâmicas Avançadas  Pó finíssimo de Al2O3 (partículas compreendidas entre 1 e 10 mícrons) mais ZrO2 (confere tenacidade a ferramenta de corte) é prensado, porém apresenta- se muito poroso. Para eliminar os poros, o material é sinterizado a uma tempertura de 1700oC ou mais. Durante a sinterização as peças experimentam uma contração progressiva, fechando os canais e diminuindo a porosidade.
  • 89.  Outras Aplicações  Material de polimento, isolante elétrico (BN, B4C).  Eixos, bicos pulverizadores, selos mecânicos, ferramentas de corte, implantes ósseos, meios de moagem ( Al2O3).  Matrizes de extrusão e fundição, tesouras, facas (ZrO2).  Moderador nuclear, revestimento de câmeras de combustão de foguetes, cadinhos para fusão de Ni e Pt, elemento protetor de resistências de aquecimento (BeO) Introdução Cerâmicas Avançadas
  • 90. Introdução Cerâmicas Tradicionais e Avançadas Diferenças  Custo muito maior das avançadas; a matéria-prima das cerâmicas avançadas é muito mais pura (> 99,5%) e os grãos são muito menores (< 1µm).  Processos de fabricação são mais sofisticados: torneamento, prensagem de pós, injeção, prensagem isostática à quente, colagem sob pressão, tape casting, CVD, sol-gel.
  • 91. Introdução Tipos Matérias Primas  Naturais (brutas) – não sofrem nenhum tipo de beneficiamento (telhas e tijolos).  Refinadas (industrializadas) – são beneficiadas por diversas etapas de moagem até um tamanho que permita a separação por meio de sedimentação, separação magnética e eliminação de fases indesejáveis (cerâmica branca, produtos refratários e vidrados).  Industrializadas por processos químicos e mecânicos – Obtenção de pureza elevada (> 99,5%) e pequeno tamanho de partícula (< 1µm) (cerâmica avançada: óxidos, nitretos, carbetos etc).  Sintéticas – Pós resultantes com características controladas (uso em cerâmicas avançadas).
  • 93. Introdução Tópicos a serem desenvolvidos  Estruturas Cerâmicas:  Estruturas Cristalinas;  Cerâmicas à Base de Silicato;  Imperfeições nas Cerâmicas.  Propriedades Mecânicas  Fratura Frágil das Cerâmicas;  Comportamento Tensão-Deformação;  Mecanismos da Deformação Plástica.
  • 94. Introdução Objetivos ligações covalente/iônica (lembrar do caso do Fe3C) ↓ imobilidade de discordâncias ↓ ausência de zona plástica → materiais frágeis ↓ Defeitos presentes (poros, inclusões, grãos grandes, trincas superficiais) atuam como concentradores de tensão ↓ Grande variação nos valores de resistência mecânica encontrados nos catálogos dos fabricantes para produtos nominalmente iguais.
  • 95. Materiais Não Metálicos TM334 Aula 02: Estrutura e Propriedades das Cerâmicas Prof. Felipe Jedyn DEMEC – UFPR
  • 96. Estruturas Cerâmicas  Cerâmicas Cristalinas:  O deslocamento de discordâncias é muito difícil – íons com mesma carga elétrica são colocados próximos uns dos outros – REPULSÃO;  No caso de cerâmicas onde a ligação covalente predomina o escorregamento também é difícil – LIGAÇÃO FORTE.  Cerâmicas Amorfas:  Não há uma estrutura cristalina regular – NÃO HÁ DISCORDÂNCIAS;  Materiais se deformam por ESCOAMENTO VISCOSO.  A resistência à deformação em um material não-cristalino é medida por intermédio de sua viscosidade.
  • 97. Estruturas Cerâmicas Estruturas Cristalinas  Em geral, a estrutura cristalina dos materiais cerâmicos é mais complexa que a dos metais.  São compostos pelo menos por dois elementos, em que cada tipo de átomo ocupa posições determinadas no reticulado cristalino.
  • 98. Estruturas Cristalinas  Onde a ligação é predominantemente iônica – lembrando que ela pode variar de puramente iônica até totalmente covalente – As estruturas cristalinas são compostas por íons eletricamente carregados ao invés de átomos.  O nível de caráter iônico depende das eletronegatividades dos átomos.  Percentual de Caráter Iônico das Ligações Interatômicas para Vários Materiais Cerâmicos.  Ele é calculado da seguinte maneira: Onde XA e XB são as eletronegatividades para os respectivos elementos
  • 99.  Ligação atômica predominantemente iônica  Estruturas cristalinas compostas por íons, ao invés de átomos.  Íons Metálicos: Cátions  Íons Não-metálicos: Ânions  Duas características dos íons influenciam a estrutura do cristal:  A magnitude da carga elétrica (o cristal deve ser eletricamente neutro  cargas + = cargas -);  Os tamanhos relativos dos Cátions (rC) e dos Ânions (rA). Estruturas Cristalinas
  • 100. A magnitude da carga elétrica Cristal Eletricamente Neutro  Fluoreto de Cálcio, por exemplo  Cada íon Cálcio possui uma carga elétrica +2 (Ca2+)  Cada íon Flúor possui uma única carga negativa (F-)  Dessa forma deve existir duas vezes mais íons F- do que íons Ca2+.  Pode-se ver isso pela fórmula química do Fluoreto de Cálcio, CaF2.
  • 101. Os Tamanhos Relativos dos Cátions e dos Ânions.  Os Cátions são menores que os Ânions, por que? rC/rA < 1  Cada Cátion quer ter o máximo de Ânions como vizinhos mais próximos e vice-versa.  Estruturas Cristalinas Cerâmicas Estáveis: Todos os ânions estão em contato com o Cátion.
  • 102. Os Tamanhos Relativos dos Cátions e dos Ânions.  O que vai determinar o número de vizinhos que um cátion pode ter?  Ou seja, qual será o número de coordenação?  Ele sempre será o mesmo para cátions e para ânions?  Preciso saber os valores dos raios do Cátion e do Ânion.
  • 103. Os Tamanhos Relativos dos Cátions e dos Ânions.  Para um número de coordenação específico  há uma razão rc/ra crítica ou mínima para a qual o contato entre os íons é mantido  razões puramente geométricas. Assim podemos determinar o NC!!!
  • 104. Os Tamanhos Relativos dos Cátions e dos Ânions.  Quanto mais elétrons de valência perder um íon, menor o íon. Exemplo: Ferro Fe: 0,124 nm Fe2+: 0,077 nm Fe3+: 0,069 nm
  • 105. Exemplo  Mostre que a razão mínima entre os raios do cátion e do ânion para um número de coordenação 3 é de 0,155
  • 106. Exemplo  Mostre que a razão mínima entre os raios do cátion e do ânion para um número de coordenação 3 é de 0,155
  • 107. Exemplo  Mostre que a razão mínima entre os raios do cátion e do ânion para um número de coordenação 3 é de 0,155 Para essa coordenação, o pequeno cátion é envolvido por três ânions para formar um triângulo equilátero, triângulo ABC, os centros de todos os quatro íons se encontram no mesmo plano.
  • 112. Estruturas Cristalinas do Tipo AX Estrutura do Sal-gema  Estruturas do tipo AX: Números iguais de Cátions (A) e Ânions (X)  Estrutura do Sal-gema  Cloreto de Sódio (NaCl), ou sal-gema.  Número de coordenação tanto para cátions quanto para ânions é 6, então, rC / rA está entre aproximadamente 0,414 e 0,732.  Configuração tipo CFC dos ânions com um cátion no centro do cubo e outro em cada uma das 12 arestas do cubo  cátions centrados nas faces.
  • 113. Estruturas Cristalinas do Tipo AX Estrutura do Sal-gema  Uma estrutura cristalina equivalente resulta de um arranjo onde os cátions estão centrados nas faces.  Assim, a estrutura pode ser considerada como sendo composta por duas redes CFC que se interpenetram (uma composta por cátions e outra por ânions).  NaCl, MgO, MnS, LiF, FeO.
  • 114. Estruturas Cristalinas do Tipo AX Estrutura do Cloreto de Césio 1. Calcule a razão rC/rA para o Cloreto de Césio. 2. Determine o Número de Coordenação. 3. Indique uma possível estrutura. Como ela deve se parecer?
  • 115. Estruturas Cristalinas do Tipo AX Estrutura do Cloreto de Césio 1. Calcule a razão rC/rA para o Cloreto de Césio. 2. Determine o Número de Coordenação. 3. Indique uma possível estrutura. Como ela deve se parecer?
  • 116. Estruturas Cristalinas do Tipo AX Estrutura do Cloreto de Césio  CsCl. rC/rA = 0,9392  Número de coordenação para os dois tipos de íons é 8.  Ânions localizados em cada um dos vértices dos cubos, enquanto o centro do cubo contém um único cátion.  O intercâmbio de ânions com cátions e vice-versa produz a mesma estrutura cristalina.
  • 117. Estruturas Cristalinas do Tipo AX Estrutura do Cloreto de Césio  Em uma célula CCC qual é o número de coordenação?  IMPORTANTE:  ESSA NÃO É UMA ESTRUTURA CRISTALINA CCC, POIS ESTÃO ENVOLVIDOS ÍONS DE DUAS ESPÉCIES DIFERENTES.
  • 118. Estruturas Cristalinas do Tipo AX Estrutura da Blenda de Zinco  Número de coordenação para todos os átomos é 4 (todos os átomos estão coordenados tetraedricamente).  Estrutura da Blenda de Zinco ou Esfalerita (termo mineralógico para o sulfeto de zinco – ZnS)  Todos os vértices e posições faciais da célula cúbica estão ocupados por átomo de S, enquanto os átomos de Zn preenchem posições tetraédricas interiores. Ocorre uma posição equivalente se as posições dos átomos de Zn e S forem invertidas.  Dessa forma, cada átomo de Zn está ligado a quatro átomos de S, e vice-versa.
  • 119. Estruturas Cristalinas do Tipo AX Estrutura da Blenda de Zinco  Na maioria das vezes, a ligação atômica nos compostos que exibem essa estrutura cristalina é altamente covalente (ver tabela), estando incluídos entre esses compostos o ZnS, o ZnTe (semicondutor) e o SiC (Abrasivos --- Freio de veículos, colete a prova de bala – quando sinterizado).
  • 120. Estruturas Cristalinas do Tipo AX Estrutura da Blenda de Zinco  ZnTe
  • 121. Estruturas Cristalinas do Tipo AmXp  Cargas dos Cátions e Ânions não são iguais, onde m e/ou p ≠ 1.  Exemplo: Composto AX2 (Fluorita – CaF2).  rC / rA = 0,8  Número de coordenação = 8.  Íons de cálcio estão posicionados nos centros do cubos, com os íons de flúor nos vértices.  Para cada íon F- existe metade deste número de íons Ca2+, e por tanto, a estrutura seria semelhante a do CsCl, exceto que apenas metade das posições centrais no cubo estariam ocupadas por íons Ca2+.
  • 122. Estruturas Cristalinas do Tipo AmXp Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares. Dióxido de Urânio. Uma célula unitária consiste em oito cubos.
  • 123. Estruturas Cristalinas do Tipo AmXp Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares. Dióxido de Urânio.
  • 124. Estruturas Cristalinas do Tipo AmXp Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares. Óxido de Plutônio.
  • 125. Estruturas Cristalinas do Tipo AmXp Exemplos: UO2, PuO2, ThO2. Combustíveis Nucleares. Dióxido de Tório
  • 126. Estruturas Cristalinas do Tipo AmBnXp  Possuem dois tipos de Cátions (A e B)  Titanato de Bário (BaTiO3), com os cátions Ba2+ e Ti4+.  Possui a estrutura cristalina da Perovskita (CaTiO3).  Acima de 120oC a estrutura cristalina é cúbica. Perovskita é um mineral de óxido de cálcio titânio, composto de titanato de cálcio.
  • 127. Estruturas Cristalinas do Tipo AmBnXp  Os íons Ba2+ estão localizados em todos os 8 vértices do cubo, enquanto um único íon Ti4+ encontra- se posicionado no centro do cubo, com os íons de O2 - localizados no centro de cada uma das 6 faces.  Captador Piezoelétrico
  • 128. Estruturas Cristalinas Resumo ANOTEM OS DETALHES PRA BLENDA DE ZINCO!!!
  • 129. Estruturas Cristalinas da Compactação Densa de Ânions  No caso dos metais, o empilhamento de planos de átomos densamente compactados uns sobre os outros gera estruturas cristalinas tanto do tipo CFC como do tipo HC.  De maneira semelhante, várias estruturas cristalinas cerâmicas podem ser consideradas em termos de planos de íons densamente compactados, bem como de células unitárias.  Normalmente, os planos densamente compactados são compostos pelos ânions, de maiores dimensões.  À medida que esses planos são empilhados uns sobre os outros, pequenos sítios intersticiais são criados entre eles, onde os cátions podem ser alojados.
  • 130. Estruturas Cristalinas da Compactação Densa de Ânions Essas posições intersticiais existem em dois tipos diferentes:  Posição Tetraédrica (número de coordenação 4). Quatro átomos (3 em um plano e 1 no plano adjacente) circundam um dos tipos de posições. Essa posição é chamada tetraédrica pois as linhas retas traçadas a partir dos centros das esferas circundantes formam um tetraedro com quatro lados.  Posição Octaédrica (número de coordenação 6). Envolve seis esferas de íons, três em cada um dos dois planos. Uma vez que um octaedro é produzido pela união desses seis centros de esferas, esse tipo de sítio é chamado uma posição octaédrica. IMPORTANTE  Para cada uma dessas esferas de ânions, irão existir uma posição octaédrica e duas posições tetraédricas.
  • 132. Estruturas Cristalinas da Compactação Densa de Ânions Estruturas cerâmicas cristalinas desse tipo dependem de dois fatores: 1. O empilhamento das camadas densamente compactadas de ânions (são possíveis tanto arranjos CFC quanto HC, os quais correspondem às sequencias ABCABC... E ABABAB..., respectivamente – sessão 3.11 Callister – CFC x HC local onde a terceira camada está localizada) e 2. A maneira a qual os sítios intersticiais são preenchidos com os cátions.  P.e., a estrutura cristalina do sal-gema  A célula unitária possui uma simetria cúbica, e cada cátion (íon Na+) possui seis íons Cl- como vizinhos mais próximos (NC=6).  Ou seja, o íon Na+, no centro, possui como vizinhos mais próximos os seis íons Cl- que residem nos centros de cada uma das seis faces do cubo.
  • 133. Estruturas Cristalinas da Compactação Densa de Ânions  A estrutura cristalina, que possui simetria cúbica, pode ser considerada em termos de uma matriz CFC de planos de ânions densamente compactados, onde todos os planos são do tipo {111} – Seção 3.9.  Os cátions se alojam em posições octaédricas, pois eles possuem seis ânions como vizinhos mais próximos.  Além do mais, todas as posições octaédricas estão preenchidas, uma vez que  existe um único sítio octaédrico por ânion,  e a relação de ânions para cátions é de 1:1.
  • 134.  Para esta estrutura cristalina, a relação entre célula unitária e os esquemas de empilhamento de planos de ânions densamente compactados é mostrada a seguir. Estruturas Cristalinas da Compactação Densa de Ânions Uma seção da estrutura cristalina do sal-gema onde um dos vértices foi removido. O plano de ânions que está exposto (esferas verdes do triângulo) consiste em um plano do tipo {111}; os cátions (esferas vermelhas) ocupam as posições octaédricas intersticiais.
  • 135.  Outras estruturas cristalinas cerâmicas (porém não todas), podem ser tratadas de uma maneira semelhante; dentre elas a da blenda de zinco e a da perovskita.  A estrutura do espinélio, é uma daquelas do tipo AmBnXp, que é encontrada para o aluminato de magnésio ou espinélio (MgAl2O4).  Com essas estruturas, os íons O2- formam uma rede cristalina CFC, enquanto os íons Mg2+ preenchem sítios tetraédricos, e os íons Al3+ se alojam em posições octaédricas.  As cerâmicas magnéticas, ou ferritas, possuem uma estrutura cristalina que é uma ligeira variação dessa estrutura do espinélio; e as características magnéticas são afetadas pela ocupação das posições tetraédricas e octaédricas. Estruturas Cristalinas da Compactação Densa de Ânions
  • 136. Com base nos raios iônicos, qual a estrutura cristalina você esperaria para o FeO? Qual o tipo do composto? Exemplo
  • 137. Com base nos raios iônicos, qual a estrutura cristalina você esperaria para o FeO? Solução FeO é um composto do tipo AX. Por que? Exemplo
  • 138. Exemplo Com base nos raios iônicos, qual a estrutura cristalina você esperaria para o FeO? Solução FeO é um composto do tipo AX. Por que? Razão entre os raios do Cátion e do Ânion. rFe2+ 0,077 nm -------- = ------------------------------ = 0,550 rO2+ 0,140 nm Está entre 0,414 e 0,732. NC = 6. Será como a estrutura do Sal-gema.
  • 139. Cálculos da densidade da cerâmica n´ = Número de unidades da fórmula /Cel.Unitária; ∑AC = Soma dos pesos atômicos de todos os cátions na unidade de fórmula; ∑AA = Soma dos pesos atômicos de todos os ânions na unidade de fórmula; Vc = Volume da célula unitária; NA = Número de Avogadro: 6,023x1023 unidades de fórmula/mol
  • 140. Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de sódio. Como o valor encontrado para a densidade teórica se compara à densidade obtida através de medições experimentais? Exemplo
  • 141. Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de sódio. Como o valor encontrado para a densidade teórica se compara à densidade obtida através de medições experimentais? Exemplo
  • 142. Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de sódio. Como o valor encontrado para a densidade teórica se compara à densidade obtida através de medições experimentais? Exemplo
  • 143. Com base na estrutura cristalina, calcule a densidade teórica para o cloreto de sódio. Como o valor encontrado para a densidade teórica se compara à densidade obtida através de medições experimentais? Exemplo
  • 144. Cerâmicas à Base de Silicato  Os silicatos são materiais compostos principalmente por silício e oxigênio, os dois elementos mais abundantes na crosta terrestre; consequentemente, a maior parte dos solos, rochas, argilas e areia se enquadram na classificação de silicatos.  Em vez de se caracterizar as estruturas cristalinas desses materiais em termos de células unitárias, é mais conveniente usar vários arranjos de um tetraedro composto por SiO4 4-.
  • 145. Cerâmicas à Base de Silicato  Cada átomo de silício está ligado a quatro átomos de oxigênio, os quais estão localizados nos vértices do tetraedro;  o átomo de silício está posicionado no centro do tetraedro.  Uma vez que essa é a unidade básica dos silicatos, ela é tratada normalmente como uma entidade carregada negativamente.
  • 146. Cerâmicas à Base de Silicato  Frequentemente, os silicatos não são considerados como iônicos, pois as ligações interatômicas Si-O exibem um caráter covalente significativo, o que torna essas ligações direcionais e relativamente fortes.  Independente da natureza da ligação Si-O, existe uma carga de -4 associada a cada tetraedro de SiO4 4-, uma vez que cada um dos quatro átomos de oxigênio exige um elétron extra para atingir uma estrutura eletrônica estável  Quais as valências de ambos?.  Várias estruturas de silicatos surgem das diferentes maneiras de segundo as quais as unidades de SiO4 4- podem ser combinadas em arranjos unidimensionais, bidimensionais e tridimensionais.
  • 147. Cerâmicas à Base de Silicato
  • 148. Cerâmicas à Base de Silicato Sílica  O Dióxido de Silício ou Sílica (SiO2) é o mais simples silicato.  Forma arranjo tridimensional, onde os átomos de Oxigênio dos vértices são divididos com os tetraedros adjacentes.  O material é eletricamente neutro e apresenta estrutura eletrônica estável.  Sob essas circunstâncias, a razão entre o número de átomos de silício e o número de átomos de O é 1:2, como indicado pela fórmula química.
  • 149. Cerâmicas à Base de Silicato Sílica  Se esses tetraedros forem arranjados de maneira regular e ordenada, forma-se uma estrutura cristalina.  Existem três formas cristalinas polimórficas principais para a Sílica: Cristobalita, Quartzo e Tridimita.  São estruturas complicadas e abertas (átomos não densamente compactados)  densidade baixa.  Força de ligação alta (Tfusão = 1710oC)
  • 150. Cerâmicas à Base de Silicato Vidros à Base de Sílica  A sílica também pode ser constituída na forma de um sólido não-cristalino ou vidro, com um elevado grau de aleatoriedade atômica, o que é uma característica dos líquidos; tal maneira é conhecida por sílica fundida ou sílica vítrea.  A estrutura tetraédrica é SiO4 4- é a unidade básica (como na sílica cristalina); além dessa estrutura existe uma desordem considerável. (a) (b) Esquemas bidimensionais da estrutura do dióxido de silício cristalino (a) e do dióxido de silício não-cristalino (b).
  • 151. Cerâmicas à Base de Silicato Vidros à Base de Sílica  Outros óxidos (p.e. B2O3 e GeO2) podem também formar estruturas vítreas;  Esses materiais, como o SiO2, são conhecidos como formadores de rede.  Os vidros inorgânicos comuns que são usados para recipientes, janelas, e assim por diante, são vidros à base de sílica, aos quais foram adicionados outros óxidos, tais como CaO e Na2O.  Esses óxidos não formam redes poliédricas (seus cátions são incorporados no interior e modificam a rede do SiO4 4-) e são conhecidos como modificadores de rede.
  • 152. Cerâmicas à Base de Silicato Vidros à Base de Sílica  Ainda outros óxidos, como o TiO2 e o Al2O3 que não são formadores de rede, substituem o silício e se tornam parte da rede, a estabilizando  óxidos intermediários. Qual o efeito deles???  A adição desses modificadores e óxidos intermediários diminui o ponto de fusão e a viscosidade de um vidro, tornando mais fácil a sua conformação a temperaturas mais baixas.
  • 153. Cerâmicas à Base de Silicato Vidros à Base de Sílica RESUMO 1. As estruturas atômicas de materiais podem não estar regularmente dispostas como em redes cristalinas  Estruturas amorfas ou vítreas. 2. Este tipo de estrutura, entretanto, não é completamente desordenada.  Ela é formada por blocos constitutivos dispostos de maneira desordenada.  Porém a estrutura destes blocos é regular.  Assim, pode-se dizer que as estruturas vítreas possuem desordem de longo alcance e ordem de curto alcance.
  • 154. Cerâmicas à Base de Silicato Vidros à Base de Sílica RESUMO 3. Nem todos os materiais podem apresentar uma estrutura vítrea,  porém todos os materiais que apresentam estrutura vítrea também apresentam estrutura cristalina.  Pode-se dizer que a estrutura vítrea é uma fase metaestável e a estrutura cristalina é a fase estável. 4. Óxidos que podem apresentar estrutura vítrea são ditos formadores de rede. Exemplos de formadores de rede são: SiO2, GeO2, P2O5 e As2O5.  Outros cátions podem substituir os cátions dos formadores de rede, porém eles mesmos não conseguem formar redes vítreas.
  • 155. Cerâmicas à Base de Silicato Vidros à Base de Sílica RESUMO 5. Em redes cristalinas, os blocos constitutivos formam arranjos regulares.  Isto ocorre porque cada bloco está conectado a um número grande de blocos vizinhos, formando um arranjo tridimensional.  Quando a conectividade de cada bloco constitutivo cai, torna-se possível que o arranjo de blocos não seja ordenado.
  • 156. Cerâmicas à Base de Silicato Vidros à Base de Sílica RESUMO  A estrutura vítrea é então um arranjo tridimensional desordenado de baixa conectividade.  Apenas alguns óxidos podem formar este tipo de arranjo. 6. Existem óxidos que, quando introduzidos na estrutura vítrea, diminuem a conectividade da estrutura, quebrando ligações entre os blocos constitutivos.  Estes óxidos são chamados de modificadores de rede e abaixam a viscosidade do vidro. Exemplos destes óxidos são: Na2O, K2O, CaO, BaO.
  • 157. Cerâmicas à Base de Silicato Os Silicatos  Para os vários minerais à base de silicato, um, dois ou três dos átomos de oxigênio nos vértices dos tetraedros de SiO4 4- são compartilhados por outros tetraedros para formar algumas estruturas consideravelmente mais complexas, tais como SiO4 4-, Si2O7 6-, Si3O9 6-, e assim por diante.  Também são possíveis estruturas de cadeia única (e). Nessas estruturas, cátions carregados positivamente, como Ca2+, Mg2+ e Al3+ servem a dois propósitos:  Compensam as cargas negativas da unidade de SiO4 4- neutralidade de cargas.  Esses cátions ligam ionicamente entre si os tetraedros de SiO4 4-.
  • 158. Cerâmicas à Base de Silicato Os Silicatos Cinco estruturas de íon silicato formadas a partir de tetraedros de SiO4 4- .
  • 159. Cerâmicas à Base de Silicato Os Silicatos – Silicatos Simples  Os mais simples silicatos  envolvem tetraedros isolados (a),  como a Forsterita (Mg2SiO4), que apresenta dois íons Mg2+ associados a cada tetraedro, de forma que cada íon Mg2+ possui seis oxigênios como átomos vizinhos mais próximos.  O silicato Si2O7 6- forma-se quando dois tetraedros compartilham um Oxigênio comum (b).  A aquermanita (Ca2MgSi2O7), é um mineral que apresenta o equivalente a dois íons Ca2+ e um Mg2+ ligados a cada unidade Si2O7 6-. (a) (b)
  • 160. Cerâmicas à Base de Silicato Os Silicatos – Silicatos em Camadas  Uma estrutura bidimensional em lâminas ou camadas, pode também ser produzida quando os três íons Oxigênio são compartilhados em cada tetraedro, sendo a fórmula que se repete o (Si2O5)2-.  A carga negativa líquida está associada aos átomos de Oxigênio que não estão ligados, e que se projetam para fora do plano da página (figura).  A eletro neutralidade é estabelecida ordinariamente por uma segunda estrutura laminar planar que possui um excesso de cátions, que se ligam a esses oxigênios.  Tais materiais são conhecidos como silicatos em lâminas ou camadas.  Esta estrutura é característica das argilas, e de outros minerais.
  • 161. Cerâmicas à Base de Silicato Os Silicatos – Silicatos em Camadas  Representação esquemática da lâmina de silicato bidimensional, que possui uma unidade de fórmula repetida e equivalente a (Si2O5)2-.
  • 162. Cerâmicas à Base de Silicato Os Silicatos – Silicatos em Camadas  Um dos minerais argilosos mais comuns (com estrutura laminar de silicato com duas camadas), a caolinita, apresenta fórmula Al2Si2O5(OH)4 e a neutralidade elétrica da camada tetraédrica de sílica (Si2O5)2- é obtida por uma camada adjacente de Al2(OH)4 2+.  Um plano médio é formado por íons de O2- da camada de (Si2O5)2- e íons OH- que compõe parte da camada de Al2(OH)4.
  • 163. Cerâmicas à Base de Silicato Os Silicatos – Silicatos em Camadas Uma única lâmina é mostrada abaixo  Enquanto a ligação dentro dessa lâmina com duas camadas é forte e intermediária entre covalente e iônica,  as lâminas adjacentes estão apenas fracamente ligadas umas às outras através de forças de van der Waals fracas.
  • 164. Carbono  O Carbono é um elemento que existem em diversas formas polimórficas e também no estado amorfo.  Esse grupo de materiais não se enquadra, na realidade, dentro de qualquer um dos esquemas de classificação tradicionais para metais, cerâmicas e polímeros.  Porém são discutidos nessa seção, já que a grafita (forma polimórfica do C) é algumas vezes classificada como cerâmica.  Além disso, o diamante apresenta estrutura cristalina semelhante àquela da blenda de zinco.  Veremos a Grafita, o Diamante e os novos Fullerenos.
  • 165. Carbono Diamante  O diamante é uma forma alotrópica metaestável do Carbono em temperatura e pressão ambiente.  A estrutura do Diamante é similar à blenda de zinco, em que o Carbono ocupa as posições do Zn e do S.  Cada átomo de Carbono está (totalmente) covalentemente ligado à outros quatro átomos de Carbono. A estrutura é referida como a estrutura cristalina cúbica do Diamante.  É o material de maior dureza que se conhece (7000HK). Cond. Elétrica baixa. Cond. Térmica anormalmente alta para um material não-metálico.
  • 166. Carbono O que diferencia o Diamante da Grafita???
  • 167. Carbono – Grafita  Um outro polimorfo do carbono é a Grafita.  É mais estável em temperatura e pressão atmosférica ambiente em relação ao Diamante.  Mais comum.  A estrutura da grafita é composta por camadas de átomos de carbono em um arranjo hexagonal.
  • 168. Carbono – Grafita  Neste arranjo, dentro das camadas, cada átomo de carbono estabelece ligações covalentes (fortes) a outros três átomos vizinhos de carbono coplanares.  O quarto elétron de valência participa de uma ligação fraca do tipo van der Waals entre as camadas.  A clivagem interplanar é fácil  excelentes propriedades lubrificantes da grafita.  Cond. Elétrica relativamente alta em direções cristalográficas paralelas às lâminas hexagonais.
  • 169. Carbono – Grafita  Elevada resistência e boa estabilidade química a temperaturas elevadas e em atmosferas não-oxidantes.  Elevada condutividade térmica.  Baixo coeficiente de expansão térmica.  Alta resistência à choques térmicos.  Elevada adsorção de gases.  Boa usinabilidade.
  • 170. Carbono Fullerenos  É outra forma polimórfica descoberta em 1985.  Consiste em um aglomerado esférico oco com 60 átomos de Carbono.  Uma molécula é referida com o C60.  Cada molécula é composta por grupos de átomos de Carbono, que são ligados um ao outro, formando configurações geométricas tipo hexágono (6 átomos de C) e pentágono (5 átomos de C).
  • 171. Carbono Fullerenos  São 20 estruturas hexagonais e 12 estruturas Pentagonais.  A estrutura é tal que dois pentágonos não podem estar lado a lado.  O material composto por moléculas de C60 é conhecido por buckminsterfullereno.  É eletricamente isolante, mas com uma adição adequada de impurezas, ele pode ser tornado altamente condutor e semicondutor. “The first fullerene molecule to be discovered, and the family's namesake, buckminsterfullerene(C60), was prepared in 1985 by Richard Smalley, Robert Curl, James Heath, Sean O'Brien, and Harold Kroto at Rice University.”
  • 172. Imperfeições nas Cerâmicas Defeitos Pontuais Atômicos  São possíveis lacunas e intersticiais (como nos metais);  como eles contém íons de ao menos dois tipos diferentes, podem ocorrer defeitos para cada espécie de íon.  P.e. NaCl  lacunas e intersticiais para Na e Cl. Muito improvável concentrações apreciáveis de intersticiais do ânion.  relativamente grande  deformações substanciais sobre os íons vizinhos para se ajustar numa posição intersticial (pequena).
  • 173. Imperfeições nas Cerâmicas Defeitos Pontuais Atômicos  Estrutura de Defeitos  usada para designar os tipos e concentrações dos defeitos atômicos das cerâmicas.  condições de eletroneutralidade (já que temos íons) devem ser mantidas (cargas + iguais -).  assim os defeitos nas cerâmicas não ocorrem sozinhos!  Defeito de Frenkel  par composto por uma lacuna de cátion e um cátion intersticial.  Cátion deixa sua posição normal e se move para um interstício.  Não existe alteração de carga (cátion mantém a mesma carga dentro do interstício).  Defeito de Schottki  AX  par consistindo de lacuna de cátion e lacuna de ânion.  Remoção do cátion e do ânion do interior do cristal, seguido pela colocação de ambos os íons numa superfície externa. cátions e ânions possuem mesma carga e temos lacunas para ambos  Neutralidade.
  • 174. Imperfeições nas Cerâmicas Defeitos Pontuais Atômicos  Em ambos os defeitos apresentados acima, a razão entre o número de cátions e o de ânions não é alterada.  material estequiométrico (quando não tiver outro defeito presente)  existe razão exata entre cátions e ânions prevista na fórmula química (estequiometria).
  • 175. Imperfeições nas Cerâmicas Impurezas nas Cerâmicas  Como em metais, átomos de impureza podem formar soluções sólidas (substitucional e intersticial) em cerâmicas.  Em solução sólida intersticial, o raio iônico da impureza deve ser relativamente pequeno em comparação ao ânion.  Uma vez que existem ânions e cátions, uma impureza substitucional irá substituir um íon hospedeiro que seja mais semelhante a ela no aspecto elétrico: se o átomo da impureza forma normalmente um cátion em um material cerâmico, ele irá, mais provavelmente, substituir um cátion hospedeiro.  Exemplo: NaCl (Na+Cl-)  seriam substituídos por  Ca2+ e O2- respectivamente.
  • 176. Imperfeições nas Cerâmicas Impurezas nas Cerâmicas  Solubilidade sólida apreciável de impureza substitucional  tamanho e carga iônica da impureza devem ser muito próximos daqueles dos íons hospedeiros!  Íon de impureza com carga diferente do hospedeiro  cristal deve compensar para que a eletroneutralidade seja mantida.  pode ser realizado através da produção de novos defeitos da rede cristalina (lacunas e intersticiais).
  • 177. Imperfeições nas Cerâmicas Exemplo Se a eletroneutralidade deve ser preservada, quais defeitos pontuais são possíveis no NaCl quando um íon Ca2+ substitui um íon Na+? Quantos desses defeitos é necessário existir para cada íon Ca2+?
  • 178. Imperfeições nas Cerâmicas Exemplo Se a eletroneutralidade deve ser preservada, quais defeitos pontuais são possíveis no NaCl quando um íon Ca2+ substitui um íon Na+? Quantos desses defeitos é necessário existir para cada íon Ca2+? Solução A substituição de um íon Na+ por um íon Ca2+ introduz uma carga positiva adicional. A eletroneutralidade é mantida quando uma única carga positiva é eliminada ou quando uma única carga negativa é adicionada. A remoção de uma carga positiva é conseguida pela formação de uma lacuna de Na+. Alternativamente, um átomo intersticial de Cl- irá fornecer uma carga negativa adicional, anulando o efeito de cada íon Ca2+. Entretanto, como mencionado anteriormente, a formação desse defeito é muito improvável.
  • 179. Propriedades Mecânicas das Cerâmicas  Os materiais cerâmicos tem sua aplicabilidade limitada em certos aspectos devido às suas propriedades mecânicas, que em muitos aspectos são inferiores àquelas apresentadas pelos metais.  A principal desvantagem é uma disposição à fratura catastrófica de uma maneira frágil, com muito pouca absorção de energia. DEVEMOS ESPERAR DIFERENÇAS NO COMPORTAMENTO DA FRATURA PARA TENSÕES TRATIVAS E COMPRESSIVAS? PORQUE?
  • 180. Propriedades Mecânicas Fratura Frágil das Cerâmicas  À temperatura ambiente, tanto cerâmicas cristalinas como as não- cristalinas quase sempre fraturam antes que qualquer deformação plástica possa ocorrer em resposta à aplicação de uma carga de tração.  Fratura Frágil  formação e propagação de trincas através da seção reta do material em uma direção perpendicular à carga aplicada.  crescimento da trinca em cerâmicas cristalinas se dá através dos grãos (transgranular) e ao longo de planos cristalográficos (ou de clivagem) específicos, planos de elevada densidade atômica.
  • 181. Propriedades Mecânicas Fratura Frágil das Cerâmicas  As resistências à fratura medidas para os materiais cerâmicos são substancialmente inferiores àquelas estimadas pela teoria a partir das forças de ligação interatômicas. Porque?
  • 182. Propriedades Mecânicas Fratura Frágil das Cerâmicas  Isso pode ser explicado pela presença de defeitos muito pequenos e onipresentes no material, os quais servem como fatores de concentração de tensões, ou seja, pontos onde a magnitude de uma tensão de tração aplicada é amplificada.  Como estimamos essa tensão máxima???
  • 183. Propriedades Mecânicas Fratura Frágil das Cerâmicas  O grau de amplificação da tensão depende do comprimento da trinca e do raio de curvatura da extremidade da trinca, de acordo com a equação,  sendo maior no caso de defeitos longos e pontiagudos.  Esses concentradores de tensões podem ser diminutas trincas de superfície ou internas (microtrincas), poros internos e arestas de grãos, os quais são virtualmente impossíveis de serem eliminados ou controlados.  Fibras de vidro  umidade e contaminantes presentes na atmosfera podem introduzir trincas de superfícies em fibras recentemente estiradas.
  • 184. Propriedades Mecânicas Fratura Frágil das Cerâmicas  O grau de amplificação da tensão depende do comprimento da trinca e do raio de curvatura da extremidade da trinca, de acordo com a equação,  sendo maior no caso de defeitos longos e pontiagudos.  Esses concentradores de tensões podem ser diminutas trincas de superfície ou internas (microtrincas), poros internos e arestas de grãos, os quais são virtualmente impossíveis de serem eliminados ou controlados.  Fibras de vidro  umidade e contaminantes presentes na atmosfera podem introduzir trincas de superfícies em fibras recentemente estiradas. Tensão máxima na extremidade da trinca σm Magnitude da tensão de tração nominal aplicada σ0 Raio de curvatura da extremidade da trinca ρe Comprimento de uma trinca superficial, ou C/2 de uma trinca interna a
  • 185. Propriedades Mecânicas Fratura Frágil das Cerâmicas  A medida de habilidade de um material cerâmico em resistir à fratura quando uma trinca está presente é especificada em termos da tenacidade à fratura.  A tenacidade à fratura em deformação plana, KIc, é definida pela expressão:  A propagação da trinca não irá ocorrer enquanto o lado direito da eq. for inferior à tenacidade à fratura em deformação plana do material.  Os valores da tenacidade à fratura em deformação plana para os materiais cerâmicos são menores do aqueles apresentados pelos metais; tipicamente eles são menores do que 10 MPa/m². Parâmetro ou função adimensional que depende tanto da amostra como das geometrias da trinca Y Tensão aplicada σ Comprimento de uma trinca superficial, ou C/2 de uma trinca interna a
  • 186. Propriedades Mecânicas Fratura Frágil das Cerâmicas  Fadiga estática ou fratura retardada (ocorrem sob algumas circunstâncias)  fratura ocorrendo pela propagação lenta das trincas, quando as tensões são de natureza estática e quando o lado direito da equação anterior é menor do que KIc.  Então ocorre fadiga (?)  fratura pode ocorrer na ausência de tensões cíclicas!  Fratura especialmente sensível às condições do ambiente (especificamente umidade).
  • 187. Propriedades Mecânicas Fratura Frágil das Cerâmicas  Fadiga estática ou fratura retardada (ocorrem sob algumas circunstâncias)  Mecanismo  ocorre provavelmente um processo de corrosão sob tensão nas extremidades da trinca  (tensão de tração + dissolução do material  afilamento e aumento do comprimento das trincas  cresce até a apresentar rápida propagação).  Especialmente suscetíveis  vidros à base de silicato, porcelana, cimento portland, etc.
  • 188. Propriedades Mecânicas Fratura Frágil das Cerâmicas  Tensões de compressão  não existe qualquer amplificação de tensões associada com qualquer defeito existente.  Assim, as cerâmicas frágeis exibem resistências muito maiores em compressão do que em tração (da ordem de um fator de 10),  e elas são geralmente utilizadas quando as condições de carregamento são compressivas.
  • 189. Propriedades Mecânicas Fratura Frágil das Cerâmicas  Tensões de compressão  não existe qualquer amplificação de tensões associada com qualquer defeito existente.  Como posso melhorar a resistência à fratura de uma cerâmica frágil?  Ainda, a resistência à fratura de uma cerâmica frágil pode ser melhorada substancialmente pela imposição de tensões residuais de compressão na superfície (revenimento térmico).  Por isso veremos mais adiante a questão de tratamentos térmicos nos cerâmicos.
  • 190. Propriedades Mecânicas Comportamento Tensão-Deformação RESITÊNCIA À FLEXÃO Em cerâmicas frágeis  comportamento tensão-deformação NÃO é em geral é avaliado por ensaio de tração.  Difícil preparo de amostras que tenham a geometria exigida.  Difícil prender e segurar materiais frágeis sem fraturá-los.  As cerâmicas falham após uma deformação de apenas aprox. 0,1%  isso exige que os corpos de prova estejam perfeitamente alinhados para evitar tensões de dobramento ou flexão, que não são facilmente calculadas.
  • 191. Propriedades Mecânicas Comportamento Tensão-Deformação RESITÊNCIA À FLEXÃO  Portanto aplicamos, na maioria das vezes, ensaio de flexão transversal : Mais adequado para tais casos corpo de prova na forma de uma barra (com seção reta circular ou retangular) é flexionado até sua fratura, utilizando uma técnica de carregamento em três ou quatro pontos (ASTM C1161).
  • 192. Propriedades Mecânicas Comportamento Tensão-Deformação RESITÊNCIA À FLEXÃO  No ponto de carregamento, a superfície superior do corpo de prova é colocada em um estado de compressão, enquanto a superfície inferior encontra-se em tração.  A tensão é calculada a partir da espessura do corpo de prova, do momento fletor e do momento de inércia (ver figura).
  • 193. Propriedades Mecânicas Comportamento Tensão-Deformação RESITÊNCIA À FLEXÃO  A tensão de tração máxima (pelas expressões de tensão) existe na superfície inferior do corpo de prova, diretamente abaixo do ponto de aplicação da carga.
  • 194. Propriedades Mecânicas Comportamento Tensão-Deformação RESITÊNCIA À FLEXÃO  Uma vez que os limites de resistência à tração dos materiais cerâmicos equivalem a prox. 1/10 das suas resistências à compressão,  e uma vez que a fratura ocorre na face do CP que está sendo submetida a tração, o ensaio de flexão é um substituto razoável para o ensaio de tração.
  • 195. Propriedades Mecânicas Comportamento Tensão-Deformação RESITÊNCIA À FLEXÃO  A tensão no momento da fratura no ensaio de flexão é conhecida por resistência à flexão, módulo de ruptura, resistência à fratura ou resistência à dobra  importante parâmetro mecânico para materiais frágeis.  Para seção reta retangular e circular, à resistência à flexão, σrf é igual a, respectivamente: Ff representa a carga no momento da Fratura L é a distância entre os pontos de suporte Outros Parâmetros Dados na Figura
  • 196. Propriedades Mecânicas Comportamento Tensão-Deformação RESITÊNCIA À FLEXÃO  Valores característicos para resistência à flexão de vários cerâmicos são dados a seguir, no próximo slide.  Considerações Importantes  Uma vez que durante a flexão, um CP está sujeito tanto a tensões compressivas como trativas, a magnitude de sua resistência à flexão é maior do que a por tração.  Além disso, σrf dependerá do tamanho do corpo de prova. Com o aumento do volume do corpo de prova (sob tensão) existe um aumento na severidade do defeito e, consequentemente, uma diminuição na resistência á flexão.
  • 198. Propriedades Mecânicas Comportamento Tensão-Deformação COMPORTAMENTO ELÁSTICO Se formos comparar com os metais o comportamento elástico tensão-deformação para os cerâmicos quando se utilizam testes de flexão é semelhante aos resultados apresentados pelos ensaios de tração realizados com metais: existe uma relação linear entre a tensão e a deformação.
  • 199. Propriedades Mecânicas Comportamento Tensão-Deformação COMPORTAMENTO ELÁSTICO  A figura compara o comportamento tensão-deformação até a fratura para o óxido de alumínio (alumina) e para o vidro.  O coef. angular (inclinação) da curva na região elástica é o módulo de elasticidade;  a faixa para ele nos materiais cerâmicos encontra-se entre aproximadamente 70 e 500 GPa, sendo ligeiramente maior do que para os metais.  A tabela anterior lista valores para vários materiais cerâmicos.
  • 200. Propriedades Mecânicas Comportamento Tensão-Deformação COMPORTAMENTO ELÁSTICO  Comportamento típico tensão-deformação até a fratura para o óxido de alumínio e o vidro.
  • 201. Propriedades Mecânicas Mecanismos da Deformação Plástica  Embora à Tambiente a maioria dos cerâmicos sofra fratura antes do surgimento de qualquer deformação plástica, é necessário ver rapidamente os seus mecanismos.  A deformação plástica difere para cerâmicas cristalinas e não- cristalinas.
  • 202. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS CRISTALINAS  Ocorre como nos metais, pela movimentação de discordâncias. Uma razão para a dureza e a fragilidade desses materiais é a dificuldade de escorregamento (ou movimento da discordância). Quando a ligação é predominantemente iônica, existem muito poucos sistemas de escorregamento (planos e direções cristalográficas dentro daqueles planos) ao longo dos quais as discordâncias podem se mover.
  • 203. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS CRISTALINAS  Por que isso acontece???  Isso é uma consequência da natureza eletricamente carregada dos íons .  Para o escorregamento em algumas direções, os íons de mesma carga são colocados próximos uns aos outros;  devido à repulsão eletrostática, essa modalidade de escorregamento é muito restrita. Metais  isso não ocorre pois todos os átomos são eletricamente neutros.
  • 204. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS CRISTALINAS  Cerâmicas com ligação altamente covalente  o escorregamento também é difícil, eles são frágeis pelas seguintes razões: 1. As ligações covalentes são relativamente fortes; 2. Existe também um número limitado de sistemas de escorregamento; 3. As estruturas das discordâncias são complexas.
  • 205. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS NÃO-CRISTALINAS  A deformação plástica NÃO ocorre pelo movimento das discordâncias, POIS NÃO EXISTE UMA ESTRUTURA ATÔMICA REGULAR!  Eles se deformam através de um escoamento viscoso, que é a maneira segundo a qual os líquidos se deformam;
  • 206. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS NÃO-CRISTALINAS  A taxa de deformação é proporcional à tensão aplicada.  Em resposta à aplicação de uma tensão de cisalhamento, os átomos ou íons deslizam uns sobre os outros através da quebra e da reconstrução de ligações interatômicas.  Contudo, não existe uma maneira ou direção predeterminada segundo a qual fenômeno ocorre, como é o caso para as discordâncias.
  • 207. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS NÃO-CRISTALINAS  Representação do escorregamento viscoso (demonstrado em escala macroscópica) de um líquido ou vidro fluido em resposta à aplicação de uma força de cisalhamento.
  • 208. Propriedades Mecânicas Mecanismos da Deformação Plástica  As camadas adjacentes, deslocam-se paralelamente umas às outras com diferentes velocidades.  Pode ser definido por meio da situação ideal conhecida como escoamento de Couette, onde uma camada de fluido é retido entre duas placas horizontais, uma fixa e outra se movimentando horizontalmente a uma velocidade constante.  Assume-se que as placas são muito grandes, de modo que não é preciso considerar que ocorre próximo dos seus bordos.
  • 209. Propriedades Mecânicas Mecanismos da Deformação Plástica  Se a velocidade da placa superior é suficientemente baixa, as partículas do fluido se movem em paralelo a ela, e a sua velocidade irá variar linearmente a partir de zero, na parte inferior para a parte superior.  Cada camada de fluido se move mais rapidamente do que a camada imediatamente abaixo, e o atrito entre elas irá dar origem a uma força resistindo a esse movimento relativo.  Em particular, o fluido vai aplicar sobre a placa superior uma força na direção oposta ao seu movimento, e uma força igual, mas em direção oposta à placa de fundo.  Uma força externa é então necessária para manter a placa superior em movimento a uma velocidade constante.
  • 210. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS NÃO-CRISTALINAS  A propriedade característica para um escoamento viscoso, a viscosidade, representa uma medida de resistência à deformação de um material não-cristalino.  Para o escoamento viscoso de um líquido que tem sua origem nas tensões de cisalhamento impostas por duas chapas planas e paralelas: Ver Figura Anterior Viscosidade η representa a razão entre a: τ tensão de cisalhamento aplicada, e dv alteração na velocidade em função da dy distância em uma direção perpendicular e se afastando das chapas  Taxa de deformação.
  • 211. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS NÃO-CRISTALINAS  Quanto maior a viscosidade, menor será a velocidade em que o fluido se movimenta.  Viscosidade é a propriedade associada a resistência que o fluido oferece a deformação por cisalhamento.
  • 212. Propriedades Mecânicas Mecanismos da Deformação Plástica CERÂMICAS NÃO-CRISTALINAS  Líquidos  viscosidades relativamente baixas.  Vidros  viscosidades extremamente elevadas à temperatura ambiente. temperatura  magnitude da ligação  movimento de escorregamento ou escoamento dos átomos ou íons ficam facilitados.  Viscosidade.
  • 213. Exercícios Propostos 1 – Demonstre que a razão mínima entre os raios do cátion e do ânion para um número de coordenação de 8 é de 0,732. 2 – A estrutura cristalina da blenda de zinco é uma que pode ser gerada a partir de planos de ânions densamente compactados. (a) A estrutura de empilhamento para essa estrutura será CFC ou HC? Por quê? (b) Os cátions irão preencher posições tetraédricas ou octaédricas? Por quê? (c) Qual fração das posições será ocupada? 3 – Explique sucintamente (a) por que pode haver uma dispersão significativa na resistência à fratura para alguns dados materiais cerâmicos, e (b) por que a resistência à fratura aumenta em função de uma diminuição do tamanho da amostra. 4 – Cite uma razão pela qual os materiais cerâmicos são, em geral, mais duros, porém mais frágeis, do que os metais?
  • 214. Propriedades Mecânicas Influência da Porosidade  Em alguns casos, para a fabricação de materiais cerâmicos o material de origem se encontra na forma de pó;  Após a compactação ou conformação dessas partículas pulverizadas na forma desejada, existirão poros ou espaços vazios entre as partículas do pó.  Durante T. T. a maior parte da porosidade será eliminada, entretanto ele será incompleto em alguns casos resultando numa porosidade residual.  Porosidade terá influência negativa sobre as propriedades elásticas e a resistência.
  • 215. Propriedades Mecânicas Influência da Porosidade  Foi observado para alguns cerâmicos que o módulo de elasticidade E diminui em função da fração volumétrica da porosidade, P, de acordo com a expressão:  Onde E0 representa o módulo de elasticidade para o material sem porosidade.  A influência da fração volumétrica da porosidade sobre o módulo de elasticidade para o óxido de alumínio é mostrada na figura, onde a curva está de acordo com a eq. anterior. Fração volumétrica da porosidade
  • 216. Propriedades Mecânicas Influência da Porosidade  A porosidade exerce um efeito negativo por dois motivos: 1. Os poros reduzem a área de seção reta através da qual uma carga é aplicada, e 2. Eles também atuam como concentrados de tensões (no caso de um poro esférico isolado, uma tensão de tração que seja aplicada é amplificada por um fator de 2). A influência da porosidade sobre a resistência é relativamente drástica; p.e., não é incomum que uma porosidade de 10% vol seja responsável por uma diminuição em 50% na resistência à flexão em relação ao material sem porosidade.
  • 217. Propriedades Mecânicas Influência da Porosidade  O grau de influência do volume de poros está mostrado na figura, novamente para o óxido de alumínio.  Experimentalmente tem sido mostrado que a resistência à flexão diminui exponencialmente em função da fração volumétrica de porosidade (P), de acordo com a relação: Fração volumétrica da porosidade  σ0 e n representam constantes experimentais.
  • 218. Materiais Não Metálicos TM334 Aula 03: Aplicações e Processamento das Cerâmicas Prof. Felipe Jedyn DEMEC – UFPR
  • 219. Aplicações e Processamento das Cerâmicas  Características Metais x Cerâmicos  muito diferentes  aplicações totalmente diferentes  materiais cerâmicos, metálicos e poliméricos se completam nas suas utilizações.  Processamento (em comparação aos metais)  Fundição de cerâmicos  normalmente impraticável (Tfusão muito alta).  Deformação  impraticável (fragilidade).
  • 220. Aplicações e Processamento das Cerâmicas Processamento dos Cerâmicos  Algumas peças cerâmicas são conformadas a partir de pós (ou aglomerados particulados) que devem ao final ser secados e levados a ignição (cozidos)  Vidros  formas conformadas a altas temperaturas a partir de uma massa fluida que se torna viscosa com o resfriamento.  Cimentos  são conformados pela colocação de uma pasta fluida no interior dos moldes, que endurece e assume uma pega permanente em virtude de reações químicas.
  • 222. Aplicações e Processamento das Cerâmicas Vidros  Grupo Familiar de Materiais Cerâmicos  recipientes, janelas, lentes e fibra de vidro.  Consistem em silicatos não cristalinos que também contém outros óxidos (CaO, Na2O, K2O, Al2O3) que influenciam suas propriedades.  Características principais  transparência ótica e a relativa facilidade com as quais eles podem ser fabricados.
  • 223. Aplicações e Processamento das Cerâmicas Vidros
  • 224. Aplicações e Processamento das Cerâmicas Propriedades dos Vidros PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE TEMPERATURA  Materiais vítreos (ou não-cristalinos) não se solidificam do mesmo modo que os materiais cristalinos: com o resfriamento, um vidro se torna continuamente mais e mais viscoso; não existe uma temperatura definida na qual o líquido se transforma em um sólido, como ocorre com os materiais cristalinos.
  • 225. Aplicações e Processamento das Cerâmicas Propriedades dos Vidros PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE TEMPARURA  Diferença entre Cristalinos x Não- cristalinos: Dependência do volume específico em relação a temperatura.  Cristalinos: diminuição descontínua no volume quando se atinge Tf.
  • 226. Aplicações e Processamento das Cerâmicas Propriedades dos Vidros PROPRIEDADES DOS MATERIAIS VÍTREOS SENSÍVEIS A ALTERAÇÕES DE TEMPARURA  Materiais vítreos: volume diminui continuamente em função de uma redução na temperatura.  Ocorre uma pequena diminuição na inclinação da curva no que é conhecido por temperatura de transição vítrea, Tv, ou temperatura fictícia.  Abaixo dessa temperatura o material é considerado como sendo um vidro; acima dessa temperatura, o material é primeiro um líquido super-resfriado, e finalmente um líquido.
  • 227. Aplicações e Processamento das Cerâmicas Propriedades dos Vidros  Contraste do comportamento volume específico-temperatura apresentado por materiais cristalinos e não- cristalinos.  Os materiais cristalinos se solidificam na temperatura de fusão Tf .  Uma característica do estado não- cristalino é a temperatura de transição vítrea, Tv.
  • 228. Aplicações e Processamento das Cerâmicas Propriedades dos Vidros CARACTERÍSTICAS VISCOSIDADE x TEMPERATURA 1. O ponto de fusão corresponde à temperatura na qual a viscosidade é de 10 Pa-s (100 P); o vidro é fluido o suficiente para ser considerado um líquido. 2. O ponto de operação representa a temperatura na qual a viscosidade é de 10³ Pa-s (104 P); o vidro é facilmente deformado nessa viscosidade.
  • 229. Aplicações e Processamento das Cerâmicas Propriedades dos Vidros CARACTERÍSTICAS VISCOSIDADE- TEMPERATURA 3. O ponto de amolecimento, a temperatura na qual a viscosidade é de 4 x 106 Pa-s (4 x 107 P), é a temperatura máxima na qual uma peça de vidro pode ser manuseada sem causar alterações dimensionais significativas. 4. O ponto de recozimento é a temperatura na qual a viscosidade é de 1012 Pa-s (1013 P). Nessa temperatura, a difusão atômica é suficientemente rápida, tal que quaisquer tensões residuais podem ser removidas dentro de um intervalo de aproximadamente 15 min.
  • 230. Aplicações e Processamento das Cerâmicas Propriedades dos Vidros CARACTERÍSTICAS VISCOSIDADE- TEMPERATURA 5. O ponto de deformação corresponde à temperatura na qual a viscosidade se torna 3 x 1013 Pa-s (3 x 1014 P). Para temperaturas abaixo do ponto de deformação, a fratura irá ocorrer antes do surgimento da deformação plástica. A temperatura de transição vítrea será superior à temperatura do ponto de deformação (1013 Pa.s). Logaritmo da viscosidade em função da temperatura para vidros de sílica fundida e vários vidros à base de sílica.
  • 231. Aplicações e Processamento das Cerâmicas Propriedades dos Vidros CARACTERÍSTICAS VISCOSIDADE- TEMPERATURA A maioria das operações de conformação dos vidros é conduzida dentro da faixa de operação, entre as temperaturas de operação e de amolecimento. A capacidade de um vidro em ser conformado pode ser em grande parte modificada pela alteração de sua composição (T amolecimento, Cal de soda x 96% sílica)  operações de conformação  T para cal de soda.
  • 232. Aplicações e Processamento das Cerâmicas Conformação do Vidro  O vidro é produzido pelo aquecimento das matérias-primas até uma temperatura elevada, acima da qual ocorre a fusão.  A maioria dos vidros comerciais é do tipo sílica-soda-cal.  Para a maioria das aplicações, especialmente quando a transparência ótica é um fator importante, torna-se essencial que o vidro produzido seja homogêneo e esteja isento de poros.
  • 233. Aplicações e Processamento das Cerâmicas Conformação do Vidro  A homogeneidade é atingida através da fusão e da mistura completa dos ingredientes brutos.  A porosidade resulta de pequenas bolhas de gás que são produzidas;  essas devem ser absorvidas pelo material fundido  ou de outra maneira eliminadas, o que exige um ajuste apropriado da viscosidade do material fundido.
  • 234. Aplicações e Processamento das Cerâmicas Conformação do Vidro Quatro diferentes métodos de conformação são usados para fabricar produtos à base de vidro (prensagem, insuflação, estiramento e conformação das fibras):  Prensagem: é usada na fabricação de peças com paredes relativamente espessas, tais como pratos e louças.  A peça de vidro é conformada pela aplicação de pressão em um molde de ferro fundido revestido com grafita, que possui a forma desejada;  o molde é normalmente aquecido para assegurar uma superfície uniforme.
  • 235. Aplicações e Processamento das Cerâmicas Conformação do Vidro Quatro diferentes métodos de conformação são usados para fabricar produtos à base de vidro (prensagem, insuflação, estiramento e conformação das fibras):  Insuflação: Embora em alguns casos seja feita manualmente (especialmente no caso de objetos de arte), o processo foi completamente automatizado.  Usado para a produção de jarras, garrafas e lâmpadas de vidro. As várias etapas envolvidas são mostradas na figura a seguir:
  • 236. Aplicações e Processamento das Cerâmicas Conformação do Vidro  A partir de um tarugo de vidro, um parison, ou forma temporária, é moldado por prensagem mecânica em um molde.
  • 237. Aplicações e Processamento das Cerâmicas Conformação do Vidro  Essa peça é inserida dentro de um molde de acabamento ou de insuflação, e então é forçada a se conformar com os contornos do molde pela pressão que é criada por uma injeção de ar.
  • 238. Aplicações e Processamento das Cerâmicas Conformação do Vidro Quatro diferentes métodos de conformação são usados para fabricar produtos à base de vidro (prensagem, insuflação, estiramento e conformação das fibras):  Estiramento: é usado para conformar longas peças de vidro, como lâminas, barras, tubos e fibras, as quais possuem uma seção reta constante.  Um processo segundo o qual são formadas lâminas de vidro está ilustrado na figura; elas podem ser fabricadas por laminação a quente.
  • 239. Aplicações e Processamento das Cerâmicas Conformação do Vidro  Estiramento  O grau de planificação e o acabamento da superfície podem ser melhorados de maneira significativa:  Uma maneira é pela flutuação em um banho de estanho fundido a uma temperatura elevada;  A peça é resfriada lentamente e depois tratada termicamente por recozimento.
  • 240. Aplicações e Processamento das Cerâmicas Conformação do Vidro Quatro diferentes métodos de conformação são usados para fabricar produtos à base de vidro (prensagem, insuflação, estiramento e conformação das fibras):  Conformação das fibras: Fibras de vidro contínuas são conformadas segundo uma operação de estiramento que é um tanto sofisticada.  O vidro fundido é colocado em uma câmara de aquecimento de platina.  As fibras são conformadas pelo estiramento do vidro derretido através de muitos orifícios pequenos na base da câmara.  A viscosidade do vidro, que é crítica, é controlada pelas temperaturas da câmara e dos orifícios.
  • 241. Aplicações e Processamento das Cerâmicas Tratamento Térmico dos Vidros RECOZIMENTO  Quando o material cerâmico é resfriado desde T elevada  ocorre diferença na taxa de resfriamento e na contração térmica entre as regiões da superfície e do interior da peça  o que resulta em tensões internas (tensões térmicas)  as quais podem enfraquecer o material, e levá-lo a fratura (em casos extremos)  choque térmico.

Notas do Editor

  1. Isótopos: Número de Nêutrons é variável. O peso atômico de um elemento ou o peso molecular de um composto pode ser especificado