SlideShare a Scribd company logo
1 of 10
Download to read offline
െᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ
ࣥᆁડ
೏૒ઝ‫ݾ‬Օᖂሽᖲߓ
ၪ ǜ
პྎᔚ࿇ሽᖲิࠠ‫ڶ‬ৰ‫ڍ‬ରᕏႚอ‫ޡٵ‬࿇ሽᖲิհᚌរΔࠏ‫ڤٺشࠌױڕ‬
‫ٺ‬ᑌऱᗏறΰ‫ڕ‬ቧ௜ँ௛αΔ‫ڼڂ‬๯ᎁ੡ਢ່‫ױ‬౨‫פګ‬ऱጸ‫ۥ‬౨ᄭհԫΖ،‫ڶ‬
Կጟሎ᠏ᑓ‫ڤ‬Κࡰ୾Εሽጻࠀᜤ֗‫ڍ‬ᖲᑓ‫ڤ‬Δ੡Ա౨ଫࠠ‫ڼ‬Կጟᑓ‫ڤ‬հሎ᠏౨
ԺΔᖲิ‫א‬ P-f Հিᑓ‫ڤ‬൳ࠫਢለࠋऱᙇᖗΔ‫ܛ֮ء‬ኙຍጟᣊীऱᖲิ‫܂‬ሎ᠏
ᑓ‫ڤ‬᠏ངհ೯ኪᑓᚵ։࣫Δ࿨࣠᧩‫ق‬Δ໢ԫᖲิ‫୾ࡰط‬ᑓ‫ڤ‬᠏ང੡ሽጻࠀᜤᑓ
‫ڤ‬ழΔᄎኙᖲิข‫ॺس‬ൄՕऱᑉኪ‫פ‬෷ឫ೯Δۖࠟຝᖲิ‫ٵ‬ழࠓᜤሽጻழΔኙ
ᖲิທ‫ګ‬հᓢᚰ‫ޓ‬ՕΔᓢᚰ࿓৫լ᎝࣍ႚอ‫ޡٵ‬࿇ሽᖲิᔡ࠹Կઌ൷‫چ‬ਚᎽհ
णउΖ
खࠛɡŘპྎᔚ࿇ሽᖲΕ೯ኪᑓᚵΕሎ᠏ᑓ‫ڤ‬᠏ངΖ
DYNAMIC SIMULATIONS FOR OPERATION MODE TRANSFER OF A
MICRO-TURBINE GENERATOR
Chi-Hshiung Lin
Department of Electrical Engineering
Kao Yuan University
Kaohsiung County, Taiwan 82151,R.O.C.
Key Words: micro-turbine generator; dynamics simulation, operation
mode transfer.
ABSTRACT
The micro-turbine generator unit is superior to the traditional
synchronous generator unit in many aspects; for example, a variety of fuels
(e.g. anaerobic methane) may be used. So it is deemed one of the most
promising green power sources. Three modes of operation are available for
the unit: island, grid-connected and multi-machine modes. To be able to
operate in all three modes, it’s a better choice for the unit to adopt the P-f
droop mode of control. For a unit with such a control mode, dynamic
simulation analyses for operation mode transfer are made in this paper. It is
shown that significant transient power disturbance will be induced when
the unit is transferred from the island mode to the grid-connected mode.
When two units simultaneously connect to a grid, the impact on both units
will be even more serious. The degree of impact is not less than the impact
on a traditional synchronous generator unit that is subjected to a
three-phase-to-ground fault.
༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺ 11
Journal of Technology, Vol. 23, No. 1, pp. 11-20 (2008)
12 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺
ɺȮ  ˛
ᙟထᛩঅრᢝऱ೏ይΔઝ‫٣ݾ‬ၞഏ୮݁‫ڶ‬࿇ሽཙ‫ֱז‬
ூऱઔߒΔࠏ‫֜ڕ‬ၺ౨࿇ሽΕଅԺ࿇ሽΕᗏறሽ‫ࢨۃ‬ਢპ
ྎᔚ࿇ሽ࿛Ζ‫ڇ‬ฒ‫ڍ‬հ࿇ሽཙ‫ֱז‬ூխΔპྎᔚ࿇ሽ๯ᎁ
੡ਢ່‫ױ‬౨‫פګ‬հጸ‫ۥ‬ሽᄭհԫΔኙ࣍๺‫ྤڍ‬ऄᄷᒔቃ۷
່೏‫ش‬ሽၦΔԾፋᆵ։ཋऱ࿇୶խഏ୮Δᇘ๻യႃ‫ڤ‬࿇ሽ
ᖲ‫ڶ‬ԫࡳऱܺᣄΔპྎᔚ࿇ሽਢ່‫ړ‬ऱᇞެᙄऄΔۖ‫׊‬პ
ྎᔚ࿇ሽᖲิ‫ٵױ‬ழࠎᚨᑷΕሽࠟጟ౨ᄭΔኙ೏৫೸ᄐ֏
ഏ୮ۖߢΔ‫ޓ‬ਢॺൄᔞ‫࣍ٽ‬᠔ೃΕளੂΕਪᨚΕᄵ৛࿛໱
ࢬΖ‫ڼڂ‬Δპྎᔚ࿇ሽ‫ࠐآ‬Ⴈ‫ؘ‬ᓒড࿇୶Δ‫ګ‬੡։ཋ‫ڤ‬ሽ
ᄭ‫ੌ׌‬հԫΖ
ഏփ‫ؾ‬ছՈ‫ڶ‬ዧ࿴౰़ՠᄐֆ‫ދ׹‬Եპྎᔚ࿇ሽᖲ
ิհၲ࿇Δ‫شܓ‬౰़‫ش‬௛ྎᔚᖲ‫ݾ‬๬Δ‫ؾ‬ছբ‫ګݙ‬ 30 kW
֗ 60 kW ࠟጟᖲীΔࠡᗏற‫شࠌױ‬೏ሒ 7 % H 2 S ऱᎨࢤᗏ
௛ࢨ‫܅‬ᑷଖΰ‫܅ױ‬ሒ 350 btu/scfαࡑ݃ൽୖ໱ँ௛/ቧ௜ँ
௛ΖᙟထईᏝՂཆ֗٤෺ᄊ֏հყ᝟ᣤૹΔპྎᔚ࿇ሽ‫ڇ‬
‫؀‬᨜‫چ‬೴ቃ۷ՈᄎດዬഹದΖ
1. െᛱՀᱹ঵₇⃥ʠከᐉ
ࠢীპྎᔚ࿇ሽߓอ‫ڕ‬ቹ 1 ࢬ‫ق‬Δ‫׌‬૞‫ܶץ‬௛ྎᔚ֧
ᚯΕᐒ௛ᑷٌངᕴΕ‫ة‬጖‫ڤ‬೏ຒ࿇ሽᖲ֗᙮෷᠏ངᕴΔԫ
౳‫פ‬෷પ੡ 25~500 kWΖ
௛ྎᔚ֧ᚯຏൄ੡໢ၗຑ࿨ᚘᜍᖲΕྎᔚᖲ֗࿇ሽᖲ
հਮዌΔ़௛‫ط‬ᚘᜍᖲ‫ף‬ᚘၞԵᗏᗈ৛ፖᗏற෗‫ٽ‬ᗏᗈΔ
ᗏᗈ৛ᙁ‫נ‬௛᧯ᄵ৫પ 900ƫΔං೯ྎᔚᖲข‫س‬᠏ఢᦀ೯
࿇ሽᖲΔྎᔚᖲඈ‫נ‬ᐒ௛ᄵ৫પ 600ƫΔᆖᑷ‫گڃ‬ᕴቃᄵ
‫़ܐ‬௛Δ٦ඈ۟ᐒ௛ᑷٌངᕴΖᐒ௛ᑷٌངᕴຏൄ੡௛Ё
ֽੌၦ‫ڤ‬Δല‫࣍ژ‬ᐒ௛հᑷ౨᠏ང੡ᑷֽΔԫ౳ᐒ௛ၞԵ
հᄵ৫પ੡ 300ƫΖ‫ة‬጖‫ڤ‬೏ຒ࿇ሽᖲຏൄ੡ NdBFe ‫ޗ‬
ᔆΔ᠏ຒ‫ڇ‬ 50,000 rpm ۟ 120,000 rpm ၴΔ‫ڼڂ‬ᙁ‫נ‬ሽᚘ
᙮෷‫ױ‬ሒᑇ kHz ؐ‫׳‬Ζ᙮෷᠏ངᕴԫ౳ආ AC-DC-AC ਮ
ዌΔ‫ܛ‬೏᙮ሽᚘ٣ᖞੌ੡ऴੌሽΔ٦ᆖངੌᕴ᠏ང੡೸‫ش‬
ߓอ᙮෷ٌੌሽΔۖ‫׊‬ຏൄᝫᄎ಻ໂᒵៀंᕴ (Line Filter)
֗ሽ጖եឫៀंᕴ (EMC Filter) ല֊ངᘫंៀೈΖ
2. െᛱՀᱹ঵ᑨ₇⃥ʠѭ෴
პྎᔚ࿇ሽᖲิࠠ‫ॺڶ‬ൄ‫ڍ‬ऱᚌរΔࠏ‫᧯ڕ‬ᗨ՛ૹၦ
᎘Κፖࠡ‫ה‬։ཋ‫ڤ‬ሽᄭઌֺ‫ڶ‬ઌᅝ՛հ᧯ᗨΔ೏ຒ‫ة‬጖‫ڤ‬
࿇ሽᖲΰ‫ܶץ‬ᖞੌᕴ֗ངੌᕴαհૹၦႛપ‫ޡٵ‬࿇ሽᖲհ
1/5~1/2Δ‫ڜױڼڂ‬ᇘ࣍ৢືۖլ‫़ش۾‬ၴΔ‫׊‬լᏁᕡᔚ
ᒣΔᕡᔚᒣ੡೏ਚᎽ෷ցٙΔᏁ૞ᑮᄶ֗‫ܐ‬থΔۖ‫ॺ׊‬ൄ
ૹΖய෷ॺൄ೏Κᗏற۟ሽԺհ᠏ངய෷‫ױ‬ሒ 25 %~30 %Δ
‫׊‬ૉආᐒᑷ‫گڃ‬ΔঞᑷΕሽ᜔ࡉհ౨ᄭய෷‫ױ‬၌መ 80 %Ζ
ኙᛩቼ‫ۆ‬਩՛Κ֚ྥ௛ᖲิ‫ڇ‬ኔᎾሎ᠏ᒤ໮փΔེ௜֏ढ
ΰNOxαհඈ࣋ၦ‫࣍܅‬ 10 ppmΖᆖᛎΚߓอ‫ءګ‬ፖࠡ‫ה‬։
ཋ‫ڤ‬ሽᄭઌֺΔࠠ‫ڶ‬ઌᅝᤁञᚌႨΖᗏற‫ڶ‬ᐘࢤΚ‫شࠌױ‬
ߧ 1 െᛱՀᱹ঵₇⃥ከᐉ
‫ڍ‬ጟᙇᖗࢤᗏறΔࠏ‫ྥ֚ڕ‬௛Ε‫≇ׇ‬ΕᅁईΕ޳ईΕ௎ईΕ
಺તΕ‫س‬ᔆ౨࿛Ζೈ‫ڼ‬հ؆Δპྎᔚ࿇ሽᖲߓอ‫ࢤڇ‬౨Ղ
‫ڶࠠޓ‬ରᕏႚอ‫ޡٵ‬࿇ሽᖲߓอհᚌរΚ
(ԫ) ‫א‬ངੌᕴ൳ࠫऱᙁ‫נ‬Δ᙮෷᡹ࡳࢤॺൄ೏Δ‫࣍܅‬ 0.05
Hz ᧢೯Δԫ౳՛ী‫ޡٵ‬ᖲ࣍՛ߓอຑ൷ழ᧢೯ၦ೏ሒ
0.2 HzΔՕী‫ޡٵ‬ᖲ࣍Օߓอຑ൷ழ᧢೯ၦՈ‫ڶ‬ 0.03
HzΖ
(Բ) ‫ޡٵ‬࿇ሽᖲԫ౳ႛ౨୲‫ݴ‬լ၌መ 10 %հլؓᘝΔპྎ
ᔚ࿇ሽᖲߓอ‫א‬ᖞੌᕴ֗ངੌᕴሶᠦ೏ຒ‫ة‬጖‫ڤ‬࿇ሽ
ᖲፖ૤ሉΔ‫ࠌܛڼڂ‬೏ሒ 50 %հ૤ሉլؓᘝΔՈ౨ፂ
਍‫࣍܅‬ 3 %հሽᚘᘫंեឫΖ
(Կ) ॺᒵࢤ૤ሉข‫س‬հᘫंሽੌ࣐ທ‫ګ‬ႚอ‫ޡٵ‬࿇ሽᖲิ
հ޳ᖲᆺׂ೏᙮஡೯Δ‫܀‬პྎᔚ࿇ሽᖲߓอ‫ڶ‬ᖞੌᕴ
֗ངੌᕴ‫܂‬ሶᠦΔ‫٤ݙ‬լᄎ‫޳ڶ‬ᖲᆺׂ஡೯հംᠲข
‫س‬Ζ
(؄) ႚอ‫ޡٵ‬࿇ሽᖲิ࣐‫ڂ‬ਚᎽሽੌመՕۖᗈᄤᒵഎࢨࠌ
᠏ၗ‫ށڶ‬ឰհ‫ٲ‬ᙠΔპྎᔚ࿇ሽᖲߓอ‫࣍ط‬ᆖ‫ط‬ངੌ
ᕴ൳ࠫΔ‫ࠌױ‬೏ຒ‫ة‬጖‫ڤ‬࿇ሽᖲհਚᎽሽੌૻࠫ࣍ԫ
ࡳᒤ໮փΰԫ౳੡ 1.4~2.0 puαΔ‫ۖڂ‬౨ᝩ‫܍‬ຍࠄ‫ٲ‬
ᙠΖ
(ն) ೏ຒ‫ة‬጖‫ڤ‬࿇ሽᖲࠠ‫ֺڶ‬ႚอ‫ޡٵ‬࿇ሽᖲ‫ޓ‬೏հඔ೯
౨Ժΰપ 1.8~2.5 ଍αΔࠏ‫ڕ‬ 100 hp ್ሒ‫ط‬ 400 kW ೏
ຒ‫ة‬጖‫ڤ‬࿇ሽᖲ‫ױܛ‬ඔ೯Δۖլທ‫ګ‬መՕհሽᚘೂᡩΖ
3. െᛱՀᱹ঵ᑨ₇⃥ʠᶇἄ᫠ᗼ
(ԫ) ೯ኪᑓী
პྎᔚ࿇ሽᖲߓอհ೯ኪᑓী२Լ‫ڇࠐڣ‬ IEL ႛ‫נ‬෼
֟ᑇ༓ᒧΔ֮᣸[1]ଈ٣༼‫נ‬១໢հᒵࢤ֏პྎᔚ࿇ሽ
ᖲᑓীΔᓳຒᕴ֗ྎᔚᖲຟ‫א׽‬ԫၸ᠏ངࠤᑇ२‫ۿ‬Δ
࿇ሽᖲ‫ֺ࣍إא‬᠏ຒհტᚨሽᚘ।‫ق‬Δᖞੌᕴ೗๻੡
ࡳሽੌ૤ሉհԿઌ٤ंᖞੌΔ٦‫ྤא‬ჾ؈ߓอ੡ছ༼
‫ط‬ᖲሽ‫פ‬෷ຑ࿨ᖲඳߓอፖሽԺߓอΖ
֮᣸[2]‫א‬ MatLab-Simulink-PSB ৬‫ݙم‬ᖞհპྎᔚ࿇
ሽᖲߓอΔპྎᖲᑓীঞ೶‫ە‬௛ྎᔚᖲᑓী৬‫م‬
[3~7]Δຒ৫൳ࠫ֗ᗏற൳ࠫ݁‫ץ‬ਔ‫ڇ‬փΔ‫܀‬ᄵ৫൳ࠫ
ঞ ๯ ࢙ ฃ Δ ࿇ ሽ ᖲ Ε ᖞ ੌ ᕴ ֗ ང ੌ ᕴ ঞ ຟ ආ ‫ش‬
MatLab-Simulink-PSB ୚ᇘᑓীΔࠡխངੌᕴհ൳ࠫආ
౧ᐈᓳ᧢ (PWM) ֱ‫ڤ‬Δࠀ‫ࠏֺא‬ᗨ։൳ࠫᕴ (PI
Controller) ൳ࠫΔᖞ᧯ᑓীբᔞ‫ٽ‬ᇡา೯ኪ۩੡հᑓ
ᚵ։࣫౨ԺΖ‫ء܀‬ᑓীႛ৬‫୾ࡰم‬ሎ᠏ᑓ‫ڤ‬Δٍ‫ڇܛ‬
ኚṪṞŘെᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ 13
ࡐࡳ᙮෷ՀΔ൳ࠫ૤ሉሽᚘΔኙࠡ‫ה‬ᑓ‫ڤ‬հሎ᠏ࠀྤ
ᑓᚵ౨ԺΖ
֮᣸[8]ഗ‫ء‬Ղऎ᦭[2]հᑓীΔ‫ނ܀‬ᄵ৫൳ࠫ౏Եᑓী
փΔࠡᑓীսႛ৬‫୾ࡰم‬ሎ᠏ᑓ‫ڤ‬Δ൫ངੌᕴհሽᚘ
൳ࠫආ‫ش‬௽ࡳᘫं௣ೈ౧ᐈᓳ᧢(Specific Harmonic
Elimination PWM)൳ֱࠫ‫ڤ‬Ζ
ऴ່ࠩ२༓‫ڣ‬Δ‫ݙ‬ᖞऱპྎᔚ࿇ሽᖲߓอ೯ኪᑓীթ
ດዬ๯࿇୶‫ࠐנ‬Δ֮᣸[9]ᇡาಘᓵԱ᠏ངሽሁᑓীΔ
ࠀ‫܂‬Աԫߓ٨೯ኪᑓᚵΔ֮᣸[10]ലპྎᔚᖲΕ࿇ሽ
ᖲ֗᠏ངሽሁຟᐊ‫ګ‬ MatLab-Simulink-PSB ᑓิΔ௅
ᖕᏁ‫ޣ‬౨৬‫ࠀم‬ᑓᚵլ‫ٵ‬णउհ೯ኪ᥼ᚨΔ֮᣸[11]
ঞ࿇୶‫ݙ່נ‬ᖞऱპྎᔚ࿇ሽᖲߓอ೯ኪᑓীΔ౨ట
‫إ‬ᑓᚵᖲิհࡰ୾֗ࠀᜤ೯ኪ᥼ᚨΖ
(Բ) ᘫंեឫ
პྎᔚ࿇ሽᖲߓอ‫࣍ط‬ආ‫ش‬ངੌᕴലऴੌᢸሽᚘ᠏ང
੡ߓอ᙮෷ሽᚘΔ‫ࠌܛ‬բ಻ᆜᒵៀंᕴΔս‫ڇژ‬ઌᅝ
ᣤૹհᘫंംᠲΖ֮᣸[12]ኔྒྷԫຝ 480 VΕ30 kW პ
ྎᔚ࿇ሽᖲิངੌᕴᙁ‫נ‬հᘫंΔ࿨࣠࿇෼ऴ൷ຑ൷
ழ᜔ሽᚘᘫंեឫ່೏ሒ 2.6 %Δ᜔ሽੌᘫंեឫ່
೏ሒ 67 %Δࠡխ 7 ‫ڻ‬ᘫंեឫ່ᣤૹሒ 40 %Ζૉᆖ
᧢ᚘᕴຑ൷ঞሽੌᘫंեឫ່೏ሒ 47 %Δឈྥ૾‫܀܅‬
սઌᅝՕΖᘫंեឫᙟ૤ሉ྇᎘ۖყ‫ݮ‬ᣤૹΔ‫ࠌܛ܀‬
ᠰࡳሎ᠏Հս‫ڶ‬ 12 %հሽੌᘫंեឫΖ֮᣸[8]༼‫אנ‬
ᙊႚዝጩऄ (Genetic Algorithm) ๻ૠᑓᒫ൳ࠫᕴ
(Fuzzy Controller) ൳ࠫ PWM ངੌᕴΔ᎘ሉழࠌ 7 ‫ڻ‬
ᘫं‫ط‬ 20 %૾۟ 5 %ΖլመՂ૪֮᣸ࢬઔߒऱຟਢֺ
ለ‫៱۔‬ऱᖲิΔለᄅऱᖲิհᘫंեឫբ޲ຍᏖᣤૹ
[13]Ζ
პྎᔚ࿇ሽᖲೈԱኙߓอࣹԵᘫंΔࠡ࿇ሽᖲࡳ՗៥
ิ‫ߪء‬Ո‫ٵ‬ᑌᔡ࠹ሽੌᘫंհ୭Δ‫ڼ‬ᘫं‫ط‬ք౧ंᖞ
ੌᕴ֧ದΔᘫंեឫ‫ڇ‬ຝ։૤ሉՀყ‫ݮ‬ᣤૹΔ‫ڼڂ‬Δ
‫୾ࡰڇ‬ሎ᠏Հႊ௽ܑࣹრΔშ߻ࡳ՗៥ิᗈᄤΖ‫׼‬ԫ
ֱ૿ࠐ઎Δૉ౨૾‫܅‬࿇ሽᖲࡳ՗៥ิհሽੌᘫंե
ឫΔঞ࿇ሽᖲല‫ױ‬՛ী֏Δ‫࣍ܗڶ‬࿇ሽᖲհ೏ຒሎ᠏Ζ
֮᣸[14]‫شܓܛ‬ඔ೯ངੌᕴΔലࠡ๻ૠ੡‫׌‬೯ៀंᕴ
‫ࡳࠫލא‬՗៥ิհሽੌᘫंΔ‫ڂ‬੡ඔ೯ངੌᕴ੡ࡐ‫ڶ‬
಻ໂΔ‫ڼڂ‬լᏺ‫ءګ۶ٚף‬੡່ࠡՕᚌរΔ‫܀‬ඔ೯ང
ੌᕴ୲ၦႛપᖲิհ 10 %Δ‫ޏ‬࿳౨Ժ࠹ૻΖ֮᣸[15]
ঞ‫࣋٤ݙ‬ඵք౧ंᖞੌᕴۖ‫شޏ‬ PWM ᖞੌᕴ‫྇א‬᎘
࿇ሽᖲࡳ՗៥ิሽੌᘫंեឫΔய࣠ᚌฆΔլመᄎࠌ
‫༼ۖڂءګ‬೏Ζ
(Կ) ‫פ‬෷൳ࠫᕴ๻ૠ
։ཋ‫ڤ‬ሽᄭհ‫פ‬෷൳ࠫᕴՕຟ‫ࡳࡐא‬ऴੌሽᚘᄭհང
ੌᕴ੡๻ૠਮዌΔ֮᣸[16]ֺለԱԿጟࠢীֱ‫ڤ‬Δࠡ
ԫ ੡ ኲ ं ᕴ ಻ ‫ٽ‬ ሽ ੌ ൳ ࠫ ሽ ᚘ ᄭ ང ੌ ᕴ հ ਮ ዌ
(DC-DC ChopperϟCC-VSI)ΔࠡԲ੡ሴੌ᧯ངੌᕴ಻
‫ٽ‬ᇖᚍᕴհਮዌ (SCR INVϟCompensator)ΔࠡԿ੡‫إ‬
࢐౧ᐈᓳ᧢ሽᚘᄭངੌᕴհਮዌ (SPWM-VSI)Δ൳ࠫ
ऄঞഗ‫ء‬Ղຟਢᆖ‫ط‬൳ࠫངੌᕴሽੌઌߡ֗Օ՛ࠐ൳
ࠫ‫ڶ‬ய֗ྤய‫פ‬෷Δᔞ‫ߓٽ‬อࠀᜤᑓ‫ڤ‬ሎ᠏Ζ
֮᣸[17]‫ڇ‬ઊฃᘫंΕլؓᘝΕ࿇ሽᖲ೯ኪΕߓอ೯
ኪ֗ආ‫ش‬෻უ֊ངၲᣂᑓ‫ڤ‬ՀΔ༼‫נ‬ຏ‫ش‬հ൳ࠫᕴᑓ
‫ڤ‬Δࠌངੌᕴհছ‫ٻ‬൳ࠫᕴ֗‫ڃ‬඄൳ࠫᕴࠫ‫֏ڤ‬Δࠀ
‫່ڇ‬৵‫א‬լᒔࡳၦലছ૪೗๻ᠾᆙΖ
ഄԫലპྎᔚ࿇ሽᖲᑓী౏Ե‫פ‬෷൳ࠫᕴ๻ૠृ‫ڶ׽‬
֮᣸[1]Δլመ‫ڕ‬ছࢬ૪ࠡპྎᔚ࿇ሽᖲᑓীႛַ࣍ᄕ
១֏ᑓীΔ‫܀‬ଖ൓ࣹრऱਢࠡ൳ࠫᕴհ๻ૠආ‫ٻش‬ၦ
൳ࠫΔլ‫הࠡ࣍ٵ‬ආొၦ൳ࠫृΖ
‫פ‬෷൳ࠫᕴೈՂ૪ආ AC-DC-AC ृ؆ΔՈ‫ڶ‬ආ‫ش‬
AC-AC ृΖ֮᣸[18]༼‫נ‬ආ‫ش‬ٌੌٌ۟ੌ᠏ངᕴ
(Cycloconverter) հਮዌΔࠀ‫ٻא‬ၦ൳ֱࠫ‫ڤ‬൳ࠫ‫ڶ‬ய
֗ྤய‫פ‬෷Ζ
֮᣸[19]༼‫נ‬ఢೄ᠏ངᕴ (Matrix Converter) ਮዌΔኙ
ԫଡԿઌᙁԵ/Կઌᙁ‫ߓנ‬อΔ‫شࠌױ‬ 9 ଡٌੌၲᣂሒ
‫ګ‬Δࠡࠀආ‫ش‬ 3 ‫ڻ‬ᘫंࣹԵࠌ່Օሽᚘ᠏ང෷ሒ
0.866Δ੡ᆏઊၲᣂ֊ངհૠጩழၴΔආ़ၴ‫ٻ‬ၦᓳ᧢
(SVM) ֱ‫ڤ‬Δࢤ౨֗ய෷݁ᚌ࣍ൄ‫ش‬հ AC-DC-AC
ਮዌΔ‫ױ‬൦֜መᓤᠧΖ
(؄) ሎ᠏ᑓ‫֊ڤ‬ང
პྎᔚ࿇ሽᖲߓอլ‫܂ױ׽‬੡ֆ‫్ش‬ሽᄭΔٍ‫܂ױ‬੡
ጹ৺ሽᄭࢨໂ‫ش‬ሽᄭΔ๺‫ڍ‬໱‫ݦٽ‬ඨᖲิ‫ٵ‬ழࠠ‫ࠟڶ‬
ጟ‫פ‬౨Δ‫ڼ܀‬Բृհ൳ࠫഗ‫ء‬Ղਢլ‫ٵ‬ऱΔᅝ‫܂‬੡ֆ
‫్ش‬ሽᄭழΔ‫ؘ‬ႊፖߓอ‫ޡٵ‬Δ‫ڼ‬ழᖲิႊ੡‫ڶ‬ய/
ྤய‫פ‬෷൳ࠫᑓ‫ڤ‬ (P-Q Controlled Mode)Δᅝ‫܂‬੡ໂ
‫ش‬ሽᄭழΔᖲิ‫ؘ‬ႊ૤ᖜ૤ሉᏁၦ֗֘ᚨ૤ሉ᧢೯Δ
‫ڼ‬ ழ ᖲ ิ ႊ ੡ ࡐ ࡳ ᙮ ෷ ֗ ሽ ᚘ ൳ ࠫ ᑓ ‫ڤ‬ (f-V
Controlled Mode)Δ‫ࠟڂ‬ጟᑓ‫ࢬڤ‬Ꮑၦྒྷ֗൳ࠫհ೶ᑇ
լ‫ٵ‬Δᖲิԫ౳ྤऄ‫ٵ‬ழ‫ࠟ࣍ش‬ጟ‫ش‬ຜΖ
֮᣸[20]ԯ༼‫נ‬ԫጟᜤ‫ٽ‬൳ࠫᕴΔࠡփಱሁ੡૤ሉሽ
ᚘ൳ࠫΔ؆ಱሁ੡‫פ‬෷ᑪੌ൳ࠫΔ؆ಱሁ‫ߓڇ‬อࠀᜤ
ሎ᠏ழ೯‫܂‬Δ൳ࠫངੌᕴ༼ࠎ‫ڶ‬ய֗ྤய‫פ‬෷Δᅝߓ
อࠎሽሂๅࠌᖲิ‫୾ࡰګݮ‬ሎ᠏ழΔ؆ಱሁ൳ࠫᕴᙁ
‫נ‬ਗࡉۖ؈‫شפװ‬Δ‫ڼ‬ழ‫ໍ׽‬փಱሁ೯‫܂‬Δ‫ܛ‬ངੌᕴ
۞೯‫ط‬ P-Q ൳ࠫᑓ‫ڤ‬᠏ང੡ f-V ൳ࠫᑓ‫ڤ‬Ζ‫ڼ‬ীᜤ‫ٽ‬
൳ࠫᕴ౨༼ࠎᖙ‫܂‬ᑓ‫ڤ‬ၴհྤᜓ᠏ང੡ࠡᚌរΔ‫܀‬ᖲ
ิፖߓอႊյઌٌངᇷಛΔ‫ؘڼڂ‬ႊ੡խ؇൳ࠫΔᔞ
‫ٽ‬ᖲิႃխ໱‫ٽ‬Ζ
ኙ࣍ᖲิ։ཋ໱‫ٽ‬Δ‫࣍ط‬ᖲิၴٌངᇷಛլ࣐Δխ؇
൳ࠫࠀլᔞ‫ٽ‬Ζ֮᣸[21]ԯ༼‫נ‬ᣊ‫ۿ‬Օী‫ޡٵ‬ᖲิհ
Հি൳ࠫᑓ‫ڤ‬ (Droop Mode)Δࠌངੌᕴհ൳ࠫ‫׽‬Ꮑၦ
ྒྷ‫פߪء‬෷֗ሽᚘΕሽੌ‫ױܛ‬Δլႊፖࠡ‫ה‬ᖲิٌང
ᇷ ಛ Δ ۖ ‫׊‬ ᖲ ิ ‫ױ‬ ᙟ რ ሎ ᠏ ࣍ ࡰ ୾ ᑓ ‫ڤ‬ (Island
Mode)Εሽጻࠀᜤᑓ‫ڤ‬ (Grid-connected Mode) ֗‫ڍ‬ᖲ
ᑓ‫ڤ‬ (Multi-machine Mode)Δլႊᠰ؆൳ࠫ೯‫܂‬Ζ‫ڼ‬
ীՀি൳ࠫᑓ‫ڶࠠڤ‬ፖՕী‫ޡٵ‬ᖲิઌ‫ٵ‬հ௽ࢤ੡ࠡ
ᚌរΔ‫܀‬᙮෷ྤऄፂ਍ࡐࡳΔ‫᥼׊‬ᚨለኬྤऄ‫܂‬੡ඕ
14 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺
Speed/Load Reference
W(xs+1)
ys+z
N V
V
V
w(xs+1)
ėɺ ҤࠣെᛱՀᑨ՗ּ/ΝԦ࿳Ӽ₇⃥ᑁࠣ‫א‬ᄲ
ᖲิ 1 2 3 4 5
w 25 30 31.09 45 26.02
x 0 0 1.059 1.25 3.213
y 0.05 0.05 3.05 2.5 5
z 1 1 1 1 1
V FD-MAX 1.5 1.75 1.77 1.6 1.34
V FD-MIN -0.1 -0.26 -0.17 -0.1 -0.2
ėʷ ҤࠣെᛱՀᑨᥣᅆ࿳Ӽ₇⃥ᑁࠣ‫א‬ᄲ
ᖲิ 1 2 3 4 5
K3 0.77 0.68 0.725 0.76 0.716
T 0 0 0 0 0
a 1 1 1 1 1
b 0.05 0.05 0.05 0.05 0.2
c 1 1 1 1 1
Tf 0.4 0.2 0.2 0.2 0.1
Kf 0 0 0 0 0
ECR 0.01 0.01 0.01 0.01 0.01
TCD 0.1 0.2 0.2 0.2 0.2
af -0.299 -0.47 -0.359 -0.316 -0.396
bf 1.3 1.47 1.38 1.316 1.396
cf 1.5 0.5 0.5 0.5 0.5
ტ૤ሉհໂ‫ش‬ሽᄭΔ‫ڼ‬੡ࠡ‫׌‬૞౒រΖ
Ղ૪Բ֮᣸੡ႛ‫ڶ‬հሎ᠏ᑓ‫֊ڤ‬ངઔߒΔ‫܀‬ຟ࢙ฃპ
ྎᔚ࿇ሽᖲᑓীΔۖ೗๻ངੌᕴ‫ࡳࡐط‬ऴੌሽᚘᄭࠎ
ሽΔຍጟ೗๻ࠃኔՂ‫؈౒ࠡڶ‬Δࠏ‫ڕ‬პྎᔚ࿇ሽᖲհ
೯ኪ᥼ᚨՈઌᅝ‫ݶ‬Δլߠ൓౨࢙ฃࠡ‫ش܂‬Δۖ‫ૹ່׊‬
૞ऱਢ‫ڇ‬ຍጟ೗๻ՀΔྤऄ൓वሎ᠏ᑓ‫֊ڤ‬ངኙპྎ
ᔚ࿇ሽᖲิհᐙ᥼Ζ
(ն) ෗‫ٽ‬ሎ᠏
່२ᖂ੺ດዬᣂࣹპྎᔚ࿇ሽᖲิፖࠡ‫ה‬։ཋ‫ڤ‬࿇ሽ
ᖲิհ෗‫ٽ‬ሎ᠏ംᠲΔࠏ‫֮ڕ‬᣸[22]‫܂‬ԱԫଡଅԺᖲ
ิፖპྎᔚᖲิ෗‫ٽ‬ሎ᠏ऱଡூઔߒΔ֮᣸[23]֗[24]
ঞ൶ಘᗏறሽ‫ۃ‬ᖲิፖპྎᔚᖲิ෗‫ٽ‬ሎ᠏ऱ᡹ࡳ৫
ംᠲΔլመຍࠄઔߒຟᝫ‫׽‬ਢದ‫ޡ‬ၸ੄Δᙟထპྎᔚ
࿇ሽᖲิऱ‫ګ‬ᑵΔ෗‫ٽ‬ሎ᠏ലਢຍԫᏆ഑‫ࠐآ‬ऱઔߒ
ૹរΖ
ʷȮ₇⃥ᑁࠣ
‫א֮ء‬ MatLab-Simulink-PSB ኔ෼პྎᔚ࿇ሽߓอհ
ᖞ᧯ᑓীΔ‫ץ‬ਔპྎᔚᖲᑓীΕ‫ة‬጖࿇ሽᖲᑓীΕ᙮෷᧢
ངሽሁᑓীΕ૤ሉᑓীΕៀंᕴᑓীΕऴੌᢸሽᚘ൳ࠫᑓ
ীΕངੌᕴ‫פ‬෷൳ࠫᑓী࿛Δࠡխ᙮෷᧢ངሽሁΕ૤ሉΕ
ៀंᕴ࿛‫ױڂ‬ආ‫ش‬୚ᇘᑓীΔլ٦ᇡ૪Δࠡ‫ה‬ຝ։ঞ։૪
‫ڕ‬ՀΖ
ėɿ ᖝᷬೣᱹ঵ᑨ‫א‬ᄲ
R ( Ω ) 0.17
dL (mH) 1.9
qL (mH) 1.9
p 4
λ (wb) 1.629
ߧ 2 ՗ּ/ΝԦ࿳Ӽ₇⃥ᑁࠣ
ߧ 3 ᥣᅆ࿳Ӽ₇⃥ᑁࠣ
1. െᛱՀᑨᑁࠣ
პྎᔚᖲᑓী‫؄طױ‬ଡ‫׌‬૞൳ࠫߓอࠐ༴૪Δ։ܑ੡
᠏ຒ/૤ሉ൳ࠫߓอΕᄵ৫൳ࠫߓอΕඔ೯൳ࠫߓอ֗ᗏற
൳ࠫߓอΖࠡխᄵ৫൳ࠫߓอ֗ඔ೯൳ࠫߓอ‫࣍ط‬լ‫ءڇ‬
֮൶ಘᒤ໮փΔ‫ڼڂ‬լ‫᠇ף‬૪Ζ
(ԫ) ᠏ຒ/૤ሉ൳ࠫߓอᑓী
ࠢীპྎᔚᖲհ᠏ຒ/૤ሉ൳ࠫᕴ (Governor) ‫ࠟڶ‬ጟ
ী‫ڤ‬Δ։ܑ੡ GE Speedtronic ী‫֗ڤ‬ Woodward ী‫ڤ‬Ζ
‫֮ء‬ආছृΔ‫ڕ‬ቹ 2 ࢬ‫ق‬Δᓳᖞ z ‫ګױ‬੡ Droop ࢨ
Isochronous ᑓ‫ڤ‬ሎ᠏ (1ΚDroop ModeΕ0ΚIsochronous
Mode)ΔwΕxΕy ։ܑ੡ᏺટ֗Ꮖ٣Εᆵ৵ழၴൄᑇΔ
ᙁԵ੡᠏ຒ/૤ሉᏁၦ֗᠏ຒ ( N )Δᙁ‫נ‬੡ᗏறᏁၦ
ಛᇆ ( FDV )Ζ।ԫࢬ٨੡ 5 ຝࠢীპྎᔚᖲᑓীհ೶
ᑇΔࠡխ 1 ᇆᖲ੡‫֮ء‬ઔߒᖲิΖ
(Բ) ᗏற൳ࠫߓอᑓী
ࠢীᗏற൳ࠫߓอਮዌ‫ڕ‬ቹ 3 ࢬ‫ق‬Δᑓী೶ᑇ٨࣍।
ԲΖ‫ط‬᠏ຒ/૤ሉ൳ࠫᕴΕᄵ৫൳ࠫᕴ֗ඔ೯൳ࠫᕴᙁ
‫נ‬հᗏறᏁၦಛᇆ‫ֺ܂‬ለΔ‫܅ط‬ଖᙇᖗၲᣂ࠷ࠡ՛ृ
ኚṪṞŘെᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ 15
ߧ 4 ᳅ᙟࡓ঵ࣱ࿳Ӽ₇⃥ᑁࠣ
ߧ 5 ဘᙟ‫ݽ‬ SPWM ʁࠡ࿳Ӽᑁࠣ
੡ᗏறᏁၦಛᇆΔֱჇ 1 ੡ Governor ࢏ᙈΔֱჇ 2 ੡
൳ࠫᎺ೯ኪΔֱჇ 3 ੡ᗏறߓอ೯ኪΔֱჇ 4 ੡ᗏற
ߓอհ‫ڃ‬඄ൄᑇΔᖞ᧯ᗏறߓอᙁ‫נ‬੡ᗏறੌၦ೯ኪ
ಛᇆΰwfαΔֱჇ 5 ੡ᗏᗈᕴ࢏ᙈΔֱჇ 6 ੡௛ྎᔚ
ᖲ೯ኪΔֱჇ 7 ੡௛ྎᔚᖲ᠏ఢข‫ࠤس‬ᑇΖ
2. ᖝᷬೣᱹ঵ᑨᑁࠣ
‫֮ء‬ආ‫ش‬ MatLab-Simulink-PSB ୚ᇘ‫ة‬጖‫ڤ‬࿇ሽᖲᑓ
ীΔຍਢԫଡ᠏՗೶‫ە‬ၗհԲၸणኪᑓীΔ೯ኪֱ࿓‫ڕڤ‬
Հࢬ‫ق‬Δ೶ᑇঞ٨࣍।ԿΖ
ሽᖲֱ࿓‫ڤ‬Κ
q
d
q
d
d
d
d
d pNi
L
L
i
L
R
v
L
i
dt
d
+−=
1
ΰ1α
q
d
q
d
q
q
q
q
q
L
pN
pNi
L
L
i
L
R
v
L
i
dt
d λ
−−−=
1
ΰ2α
᠏ఢֱ࿓‫ڤ‬Κ
( )1.5e q d q d qT p i L L i iλ
 
= + − 
 
ΰ3α
ᖲඳֱ࿓‫ڤ‬Κ
( )me TDNT
J
N
dt
d
−−=
1
ΰ4α
N
dt
d
=θ ΰ5α
ߧ 6 െᛱՀᑨՒ๗੘ະ
3. ᳅ᙟࡓ঵ࣱ࿳Ӽ₇⃥ᑁࠣ
პྎᔚ࿇ሽߓอհऴੌᢸሽᚘ൳ࠫፖଅԺ࿇ሽᖲิ
ࢨᗏறሽ‫ิۃ‬ฃ‫ڶ‬լ‫ٵ‬Δ৵ԲृՕીຟආ‫ش‬ԫ్ࣙᚘ‫ڤ‬ኲ
ंᕴᓳᖞऴੌᢸሽᚘΔ‫܀‬პྎᔚ࿇ሽߓอঞലऴੌᢸሽᚘ
‫ڃ‬඄۟პྎᔚᖲհ᠏ຒ/૤ሉ൳ࠫᕴΔ‫ڕ‬ቹ 4 ࢬ‫ق‬Δ‫ط‬პྎ
ᔚᖲհຒ৫൳ࠫፂ਍ऴੌᢸሽᚘհ᡹ࡳΖ
4. ဘᙟ‫ݽ‬࿳Ӽᑁࠣ
੡Ա౨൶ಘ‫ٺ‬ጟլ‫ٵ‬ᑓ‫ڤ‬հሎ᠏Δ‫֮ء‬ආ‫ش‬Հিᑓ‫ڤ‬
հ SPWM ൳ֱࠫ‫ڤ‬Δਮዌ‫ڕ‬ቹ 5 ࢬ‫ق‬Δ൳ࠫᕴᙁ‫נ‬੡ᓳ᧢
ਐᑇ m ֗ઌߡ µ Δಬ۟ SPWM ข‫س‬ᕴข‫س‬ᤛ࿇౧ंΖઌ
ߡ µ ‫إڇ‬ൄणउՀਢ‫ط‬ P-f հՀি௽ࢤެࡳΔ‫܀‬ਢᅝᖲิ
‫פ‬෷ᙁ‫נ‬ሒ່ࠩՕૻࠫଖழΔ֊ང່۟Օ‫פ‬෷൳ࠫᑓ‫ڤ‬Ζ
ۖᓳ᧢ਐᑇ m ‫إڇ‬ൄणउՀਢ‫ط‬ሽᚘ൳ࠫެࡳΔ‫܀‬ਢᅝᙁ
‫נ‬ሽੌሒ່ࠩՕૻࠫଖழΔ֊ང່۟Օሽੌ൳ࠫᑓ‫ڤ‬Ζ
ຍጟངੌᕴ൳ࠫᑓ‫ྤڤ‬ᓵਢ‫ڇ‬ᖲิࠓᜤሽጻࢨਢ‫ڍ‬
ᖲյᜤຟࠠ‫۞ڶ‬೯‫ޡٵ‬ऱ‫פ‬౨Δ‫ڂ‬੡ SPWM ข‫س‬ᕴข‫س‬հ
‫࢐إ‬ᓳ᧢ಛᇆ‫ڕ‬Հࢬ‫ق‬Δ
( )[ ]tmvm µsin×= ΰ6α
ᅝࠟᖲࠀᜤሎ᠏ழΔ‫ޢ‬ԫᖲิࠉࠡՀি௽ࢤ։಻૤
ሉΔૉԫᖲิհ᙮෷೏࣍‫׼‬ԫᖲิΔࠡጤሽᚘઌߡ஁ᏺՕΔ
ᄎࠌᖲิ‫פ‬෷ᙁ‫נ‬ᏺՕΔ‫ڕ‬Հࢬ‫ق‬Δΰ೗๻ EΕV ੡ࠟጤሽ
ᚘΔ Eµ Ε Vµ ੡ࠟጤሽᚘઌߡΔX ੡ࠟጤၴհሽ‫ݼ‬α
[ ]VE
X
EV
P µµ −= sin ΰ7α
ࠉᖕՀি௽ࢤΔ‫ڼ‬ലࠌ᙮෷૾‫܅‬Δ‫ࠟڼڂ‬ᖲല۞೯‫ٵ‬
‫ޡ‬Ζ‫ٵ‬ᑌऱΔ‫ڇ‬ᖲิࠓᜤሽጻழΔᖲิᄎ۞೯ፖሽጻ‫ޡٵ‬Δ
‫ڍڇ‬ᖲյᜤழΔᖲิၴՈᄎ۞೯‫ޡٵ‬Ζ
ɿȮ‫ו‬՗ᑁೣ՗ဘՒ๗ᑁბӠኔ
1.5
1
0.5
0
1.5
1
0.5
0
1.5
1
0.5
0
0.5
1
0.98
0.96
0.94
time-sec time-sec
time-sec time-sec
0 10 20 30 0 10 20 30
0 10 20 30 0 10 20 30
FuelDemandTurbineTorque
FuelFlowSpeed
16 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺
1500
1000
500
0
-500
2000
1000
0
-1000
-2000
1000
500
0
-500
-1000
1.4
1.2
1
0.8
0.6
0.4
time-sec time-sec
time-sec time-sec
0 0.5 1 1.5 0 0.5 1 1.5
0 0.5 1 1.5 0 0.5 1 1.5
time-sec time-sec
time-sec time-sec
0 0.5 1 1.5 0 0.5 1 1.5
0 0.5 1 1.5 0 0.5 1 1.5
VdcVab(load)
Vab(inverter)Modulaton-Index
3
2
1
0
-1
-2
-3
3
2
1
0
-1
2
1
0
-1
-2
1.02
1.015
1.01
1.005
1
0.995
Ia-pu
Speed-pu
Va-puElectricPower-pu
1
0.5
0
-0.5
-1
lnput :
Signal numbert :
Start time [s] :
Number of cycles :
Fundamental frequency [Hz] :
Max Frequency [Hz] :
Frequency axis :
Display style :
0.2 0.2002 0.2004 0.2006 0.2008 0.201 0.2012 0.2014 0.2016
Time (s)
Fundamental (1200Hz) = 0.6556 , THD = 16.67%
FFT window: 2 of 1800 cycles of selected signal
0 1 2 3 4 5 6 7
15
10
5
0
Mag(%ofFundamental)
Frequency (Hz) X 10
4
0.4
0.2
0
-0.2
-0.4
lnput :
Signal numbert :
Start time [s] :
Number of cycles :
Fundamental frequency [Hz] :
Max Frequency [Hz] :
Frequency axis :
Display style :
1.2 1.2002 1.2004 1.2006 1.2008 1.201 1.2012 1.2014 1.2016
Time (s)
Fundamental (1200Hz) = 0.3047 , THD = 22.23%
FFT window: 2 of 1800 cycles of selected signal
0 1 2 3 4 5 6 7
20
15
10
5
0
Mag(%ofFundamental)
Frequency (Hz) X 10
4
iso_fixfreq_scope2
la
1
0.2
2
Display FFT window
1200
70000
Hertz
Bar(relativetoFund.orDC)
Display Close
iso_fixfreq_scope2
la
1
1.2
2
Display FFT window
1200
70000
Hertz
Bar(relativetoFund.orDC)
Display Close
Structure :
Structure :
ߧ 7 ગ஌‫ו‬՗ᑁೣʠ₇⃥ከᐉ
ߧ 8 ગ஌ᑁೣΝԦӡဘᆹʠՒ๗੘ະŘ(a) ဘᙟ‫ݽ‬
ϳȮ(b) ᱹ঵ᑨϳ
1. െᛱՀᑨՒ๗੘ະ
პྎᔚᖲ೯ኪᑓী‫ط‬᠏ຒ/૤ሉ൳ࠫߓอፖᗏற൳ࠫ
ߓอᑓীᖞ‫ګۖٽ‬Δ‫ף‬Ղ૤ሉ‫ױܛ‬൶ಘࠡ೯ኪ᥼Δ೯ኪֱ
࿓‫ڕڤ‬ՀΚ
( ) DNPP
dt
dN
H elecmech +−=2 ΰ8α
ࠡխ H ੡᠏՗ክၦൄᑇΰ௛ྎᔚᖲΕ࿇ሽᖲ֗ᚘᜍᖲ
հ᜔‫ٽ‬αΕD ੡ॴ‫؍‬এᑇΔN ੡᠏ຒΔ mechP ֗ elecP ։ܑ੡
პྎᔚᖲᙁ‫נ‬ᖲඳ‫פ‬෷֗࿇ሽᖲᙁ‫נ‬ሽ‫פ‬෷Ζ
‫ء‬ઔߒᖲิ H ੡ 8.22 sΕD ੡ 0.1 N-m-s/radΔᑓᚵழ
೗๻ 0 ઞழ‫ף‬Ե໢‫ޡۯ‬ၸ૤ሉሽ‫פ‬෷Δ15 ઞழ૤ሉ૾੡ 0.5
puΖቹ 6 ੡೯ኪᑓᚵ࿨࣠ΔփܶᗏறᏁၦΕᗏறੌၦΕྎ
ᔚᖲ᠏ఢ֗᠏ຒΔ‫ط‬ቹ‫ױ‬वΔ᡹ࡳழၴપᏁ 5 ઞؐ‫׳‬Ζ
2. ગ஌‫ו‬՗ᑁೣՒ๗੘ະ
ቹ 7 ੡൶ಘპྎᔚ࿇ሽᖲࡰ୾ሎ᠏հਮዌቹΔ250
kVA/1200 Hz პྎᔚ࿇ሽᖲิᙁ‫נ‬ᆖᖞੌΕៀं৵ಬԵ
ߧ 9 ᱹ঵ᑨ঵ᙟᘘഐ‫̢ંד‬Ř(a) ֲԦԊȮ(b) ֲԦര
ߧ 10 ࿳Ӽ‫ݽ‬ʠ MatLab-Simulink-PSB Ễೣ
IGBT ิ‫ګ‬հངੌᕴΔངੌᕴࡐࡳ‫א‬ 50 Hz ሎ᠏Δ‫ط‬ሽᚘᓳ
ᖞᕴ൳ࠫ‫ڇ‬ 380 V ‫ۯ‬ᄷΔᙁ‫נ‬ᆖ LC ሽሁៀൾ೏᙮եឫΔ
ࠎᚨࠟಱሁ‫ٺ‬ 100 kW հ૤ሉΔࠡխԫಱሁ‫ط‬ឰሁᕴ൳ࠫΔ
‫ڇ‬ 0.3 ઞழല 100 kW ૤ሉ࠵ೈΔ‫א‬ᑓᚵ૤ሉ᧢೯հ೯ኪ᥼
ᚨΖ
ࡰ୾ᑓ‫ڤ‬૤ሉ֊ངழհ೯ኪ᥼ᚨ‫ڕ‬ቹ 8 ࢬ‫ق‬Δ(a)੡ང
ੌᕴೡհ᥼ᚨ (‫ܶץ‬ऴੌᢸሽᚘΕངੌᕴᙁ‫נ‬ᒵሽᚘΕ૤
ሉሽᚘ֗ PWM հᓳ᧢ਐᑇ)Δ(b)ঞ੡࿇ሽᖲհ᥼ᚨ (‫ܶץ‬
A ઌሽੌፖሽᚘΕ᠏ຒ֗ሽ‫פ‬෷)Δ‫ط‬ቹ‫ױ‬वΔሽߓอհ᥼
ᚨॺൄ‫ݶ‬ຒΔ᡹ࡳழၴ᎛᎛՛࣍ᖲඳߓอΔ‫ڼڂ‬Δ‫ڇ‬൶ಘ
პྎᔚ࿇ሽᖲࡰ୾ሎ᠏೯ኪ᥼ᚨழΔ࢙ฃპྎᔚᖲհ೯ኪ
ਢ‫ٽ‬෻ऱΖ
‫ྎ࣍ط‬ᔚᖲ᥼ᚨለኬΔ‫ط‬ቹ‫ױ‬઎‫נ‬Δ‫࠵ڇ‬ሉழΔऴੌ
ሽᚘ‫ۯ‬ᄷ‫༼ؘ‬೏‫א‬ᇖᚍᖲሽ౨ၦհؓᘝΔՈ‫ڼڂ‬ངੌᕴᙁ
1
3
3
Pe
f(u)
p2f
Vabc (pu)
Freq
Freq
wt
sin_cos
2
0
abc
sin_cos
abc_to_dq0
Transformation
Vd_ref (pu)
Vq_ref (pu)
Selector
Vd Vq
P1
Discrete
P1 Controller
Vd Vq inverter
0
VO
1
2
m
Vabc_inv
hypot modulation index
dqo
sin_cos
abc
Dq0_to_abc
Transformation
ኚṪṞŘെᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ 17
1500
1000
500
0
1500
1000
500
0
2000
1000
0
-1000
-2000
1.5
1
0.5
0
0 0.5 1 1.5 2 2.5
VdcVab(load)
Vab(inverter)
ModulationIndex
0 0.5 1 1.5 2 2.5
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
4
2
0
-2
-4
1.02
1
0.98
Ia-puSpeed-pu
4
2
0
-2
-4
Va-pu
4
3
2
1
0
-1
ElectricPower-pu
time-sec
time-sec time-sec
time-sec time-sec
time-sec time-sec
time-sec
52
51.5
51
50.5
50
49.5
49
48.5
48
Frequency-Hz
0 0.5 1 1.5 2 2.5
time-sec
4
3
2
1
0
-1
ElectricPower-pu
0 0.5 1 1.5 2 2.5
52
51
50
49
48
Frequency-Hz
0 0.5 1 1.5 2 2.5
time-sec
time-sec
ߧ 11 ગ஌/ʏ⊓‫ו‬՗ᑁೣ՗ဘʠ₇⃥ከᐉ
ߧ 12 ગ஌/ʏ⊓‫ו‬՗ᑁೣ՗ဘʠ MatLab-Simulink-
PSB Ễೣ
ߧ 13 ગ஌/঵ℐʏ⊓ᑁೣ՗ဘᆹʠՒ๗੘ະŘ(a) ဘ
ᙟ‫ݽ‬ϳȮ(b) ᱹ঵ᑨϳ
‫נ‬ሽᚘ‫ۯ‬ᄷՈᇿထ༼೏Δ‫ڼ܀‬ழሽᚘᓳᖞᕴലᓳ᧢‫ڂ‬ᑇ‫ط‬
0.82 ᓳ૾੡ 0.62Δࠌ૤ሉሽᚘԫऴፂ਍᡹ࡳΔ࿇ሽᖲֱ૿
ঞ‫ط‬ሽ‫פ‬෷᥼ᚨ‫ױ‬઎‫נ‬Δ‫ڇ‬༓‫׏‬՛࣍ 0.1 ઞփ‫ط‬ 0.8 pu ૾
۟ 0.6 pu ֘ᚨ૤ሉհ‫᧢ޏ‬Δ‫᧩ྤࠀ׊‬ထऱᑉኪឫ೯ข‫س‬Ζ
ߧ 14 ગ஌/঵ℐʏ⊓ᑁೣ՗ဘᆹᱹ঵ᑨ⃅ં᪓Ւ๗੘ະ
ߧ 15 ᅠ 32 ಙ᳈ȁదᨊᗼʁʠ੘ະ
ቹ 9(a)Ε(b)ၞԫ‫࠵ق᧩ޡ‬ೈ૤ሉছ৵հ࿇ሽᖲሽੌं
‫֗ݮ‬᙮ᢜ։ؒΔଖ൓ࣹრऱਢΔ࠵ሉ৵հ᜔ሽੌᘫंեឫ
੡ 22.23 %Δۖ࠵ሉছ੡ 16.67 %Δ᧩ྥ࿇ሽᖲ᎘ሉֺૹሉ
ࢭ࠹‫ޓ‬ᣤૹऱᘫंեឫΔຍፖᑵवऱࡰ୾ሎ᠏լᔞ‫܂ٽ‬ຝ
։૤ሉሎ᠏෼ွ‫ٽܭ‬Ζ
3. ગ஌/঵ℐʏ⊓‫ו‬՗ᑁೣ՗ဘ
‫ڇ‬൶ಘპྎᔚ࿇ሽᖲࡰ୾/ሽጻࠀᜤሎ᠏ᑓ‫ڤ‬᠏ང
ழΔངੌᕴආ‫ش‬Հি൳ࠫᑓ‫ڤ‬Δྤሉ᙮෷ (f0) ๻੡ 1.04
puΔՀি෷ (D) ๻੡ 0.04Δሽᚘ൳ࠫᕴհֺࠏൄᑇ ( pk )
๻ ੡ 0.4 Ε ᗨ ։ ൄ ᑇ ( ik ) ๻ ੡ 500 Δ ‫א‬
MatLab-Simulink-PSB ኔ෼հ൳ࠫᕴ‫ڕ‬ቹ 10 ࢬ‫ق‬Ζߓอਮ
ዌঞ‫ڇ‬૤ሉጤฃ‫܂‬ଥ‫ޏ‬Δ଺‫ء‬ᆖឰሁᕴࢬ൷հ૤ሉ‫ޏ‬੡ຑ
൷ԫຝ 250 kVAΕ380 V/25 kV ᧢ᚘᕴΔᆖឰሁᕴຑ۟ 10
MVA/25 kV/50 Hz ሽጻΔ‫ڕ‬ቹ 11 ࢬ‫ق‬Δࠡ MatLab-
Simulink-PSB ࿓‫ڕڤ‬ቹ 12 ࢬ‫ق‬Ζᑓᚵழឰሁᕴ٣অ਍ၲሁ
ࠌᖲิᗑ‫م‬᡹ࡳࠎᚨ 100 kW ૤ሉΔ0.3 ઞழឰሁᕴ‫ދ‬ԵΔ
ࠌᖲิፖሽጻࠀᜤሎ᠏Δ2 ઞழឰሁᕴ٦ሂๅΔᖲิ਀༚
ࡰ୾ሎ᠏Ζ
ቹ 13 ᧩‫ࠀ/୾ࡰق‬ᜤሎ᠏ᑓ‫ڤ‬᠏ངհ೯ኪΔ(a) ੡ང
ੌᕴೡհ᥼ᚨΔሎ᠏ᑓ‫֊ڤ‬ངழऴੌሽᚘᑉኪડ૾۟પ
300 VΔ᠏ངཚၴ PWM հᓳ᧢‫ڂ‬ᑇՂ່֒۟ՕૻࠫଖΔ‫ڂ‬
‫᥼ࠌڼ‬ᚨழၴࢮऱֺለ९Δ(b) ੡࿇ሽᖲհ᥼ᚨΔ‫֊ڇ‬ང
18 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺
MTG1 REC INV
Filter 100kW
MTG2
380V
TR
25kV
CBK CBK
Grid
REC INV
Filter 100kW
380V
TR
25kV
CBK
52
51
50
49
48
2
1.5
1
0.5
0
Frequency-Hz
time-sec
ElectricPower-pu
0 0.5 1 1.5 2 2.5
time-sec
0 0.5 1 1.5 2 2.5
52
51
50
49
48
2
1.5
1
0.5
0
Frequency-Hz
time-sec
ElectricPower-pu
0 0.5 1 1.5 2 2.5
time-sec
0 0.5 1 1.5 2 2.5
ė߈ ʃ‫׺‬᳈ȁదʠᕗԡ
ઌߡ஁(৫) 72 32
peakP (pu) 2.05 1.5
maxf∆ (Hz) 1.2 0.9
ழ࿇ሽᖲᑉኪሽੌપሒ 3 pu ୽ଖΔᑉኪឫ೯ሽ‫פ‬෷પሒ 2
pu ୽ኙ୽ଖΔឫ೯Օ՛પፖႚอ‫ޡٵ‬࿇ሽᖲิᔡ࠹໢ઌ൷
‫چ‬ਚᎽ‫ٵ‬࿛్Δ᧩ߠ‫୾ࡰط‬ᑓ‫ڤ‬᠏ང੡ሽጻࠀᜤᑓ‫ڤ‬ኙპ
ྎᔚ࿇ሽᖲิข‫ॺس‬ൄՕऱᓢᚰΔ‫ڼڂ‬ᚨ‫/୾ࡰ࣍ش‬ሽጻࠀ
ᜤᑓ‫ڤ‬հᖲิ‫ؘ‬ႊֺ໢ొ‫୾ࡰ܂‬ᑓ‫ڤ‬ሎ᠏հᖲิࠠ‫ޓڶ‬Օ
ऱឫ೯୲‫ݴ‬౨Ժ๻ૠΖቹ 14 ঞ੡᙮෷᥼ᚨΔ‫ط‬ቹ‫ױ‬वΔང
ੌᕴၲࡨழ‫א‬ 50.6 Hz ሎ᠏Δ֊ངழ᙮෷ડ૾۟ 49.4 HzΔ
հ৵પक़၄ 1.2 ઞթ᡹ࡳ࣍ 50 Hz ፖሽጻ‫ޡٵ‬Δ‫܀‬ᅝ٦‫ڻ‬
ᗑ‫م‬ሎ᠏ழΔ᙮෷༓‫਀ࠥم׏‬༚᡹ࡳΖ
ࠃኔՂΔࠀᜤข‫س‬ऱᓢᚰፖࠀᜤᛳၴհሽᚘઌߡ஁‫ڶ‬
ᣂΔՂ૪ᑓᚵ੡ 72 ৫ሽᚘઌߡ஁հणउΔૉઌߡ஁ଥ‫ޏ‬੡
32 ৫Δঞ࿇ሽᖲሽ‫פ‬෷֗ངੌᕴᙁ‫נ‬᙮෷‫ڕ‬ቹ 15 ࢬ‫ق‬Δ
‫ط‬ቹ‫ױ‬वΔࠀᜤข‫س‬ऱᓢᚰ᧢൓ֺለᒷࡉΖ।؄ঞലࠟጟ
णउհ࿇ሽᖲᑉኪឫ೯ሽ‫פ‬෷୽ଖ ( peakP ) ֗ངੌᕴᙁ
‫נ‬᙮෷່Օ‫᧢ޏ‬ၦ ( maxf∆ ) ٨।ֺለΔ‫ط‬।‫ױ‬वΔᑉኪឫ
೯ሽ‫פ‬෷୽ଖ‫ڶ‬ 25 %հ஁ฆΖ
4. ગ஌/঵ℐʏ⊓/घᑨ‫ו‬՗ᑁೣ՗ဘ
੡൶ಘࡰ୾/ሽጻࠀᜤ/‫ڍ‬ᖲሎ᠏ᑓ‫ڤ‬հ᠏ང೯ኪΔߓ
อਮዌԾฃ‫ޏޓ܂‬Δ‫ڕ‬ቹ 16 ࢬ‫ق‬Δೈ଺ࠐհ࿇ሽᖲิ؆Δ
ߓอ٦‫ף‬Ե‫׼‬ԫຝઌ‫ٵ‬ਮዌհᖲิΔࠟຝᖲิᆖឰሁᕴຑ
൷۟ሽጻΖᄅᖲิՈ‫܂‬Հি൳ࠫΔࠡྤሉ᙮෷๻੡ 1.02
puΔՀি෷๻੡ 0.04Ζᑓᚵழࠟຝᖲิ‫٣۞ٺ‬᡹ࡳᗑ‫م‬ሎ
᠏Δ0.2 ઞழࠟᖲຟᆖ‫ط‬ឰሁᕴ‫ދ‬Եፖሽጻࠀᜤሎ᠏Δ1.1
ઞழሽጻᆖឰሁᕴሂๅΔࠌߓอ᧢‫ࠟګ‬ᖲࠀᜤሎ᠏ਮዌΖ
ቹ 17(a)Ε(b) ։ܑ᧩‫ࠟق‬ຝᖲิհ᙮෷֗ሽ‫פ‬෷᥼
ᚨΔ࿇ሽᖲิ MTG1 ၲࡨழࠎᚨ 0.6 pu ‫פ‬෷Δࠀ‫א‬ 50.4 Hz
ሎ᠏Δࠀᜤ۟ሽᄭ৵Δࠎᚨ‫פ‬෷༼೏۟ 1 puΔ‫׊‬᙮෷۞೯
ፖሽᄭ‫ޡٵ‬੡ 50 HzΔᅝ᧢‫ࠟګ‬ᖲࠀᜤΔᆖࠟᖲิ‫פ‬෷։
಻৵᙮෷᡹ࡳ࣍ 50.3 HzΔ࿇ሽᖲิ MTG2 ঞၲࡨ‫א‬ 50.2
Hz ሎ᠏Δࠀᜤ۟ሽᄭ৵᙮෷‫ٵ‬ᑌፖሽᄭ‫ޡٵ‬੡ 50 HzΔ֊
ང‫ࠟګ‬ᖲࠀᜤ৵ঞ‫ٵ‬ᑌ᡹ࡳ࣍ 50.3 HzΖլᓵࡰ୾ᑓ‫ڤ‬᠏ང
੡ሽጻࠀᜤᑓ‫ࢨڤ‬ሽጻࠀᜤᑓ‫ڤ‬᠏ང੡‫ڍ‬ᖲᑓ‫ڤ‬Δ᠏ང᡹
ࡳழၴຟՕપ‫ڇ‬ 2 ઞ‫א‬փΖ
௽ܑଖ൓ࣹრऱਢࠟຝ࿇ሽᖲิհሽ‫פ‬෷Δৰ୲࣐‫ױ‬
࿇෼ࠡᑉኪ୽ኙ୽ଖ᎛Օ࣍ 2 puΔ᧩‫ق‬ᅝࠟຝ࿇ሽᖲิ‫ٵ‬
ழࠓᜤሽጻழΔኙᖲิທ‫ګ‬հᓢᚰ᎛ֺ໢ᖲࠓᜤሽጻழՕ
ৰ‫ڍ‬Δᓢᚰ࿓৫լ՛࣍ႚอ‫ޡٵ‬࿇ሽᖲิᔡ࠹Կઌ൷‫چ‬ਚ
Ꮍհणउΰီൣउۖࡳપ 3 pu~6 pu ୽ኙ୽ଖαΔ᧩‫ق‬ᚨ‫ش‬
࣍‫ڍ‬ᖲ/ሽጻࠀᜤᑓ‫ڤ‬հᖲิ‫ؘ‬ႊ‫່ڶ‬Օऱᓢᚰ୲‫ݴ‬౨Ժ
հ๻ૠΖ
ߧ 16 ગ஌/঵ℐʏ⊓/घᑨ‫ו‬՗ᑁೣ՗ဘʠ₇⃥ከᐉ
ߧ 17 ᱹ঵ᑨ⃅ʠં᪓‫ד‬঵Լ᪓੘ະŘ(a) MTG1Ȯ(b)
MTG2
߈Ȯȭʴ⎞⃌ʴ
੡Ա౨ଫࠠࡰ୾Εሽጻࠀᜤ֗‫ڍ‬ᖲ࿛ᑓ‫ڤ‬հሎ᠏౨
ԺΔპྎᔚ࿇ሽᖲิ‫א‬ P-f Հিᑓ‫ڤ‬൳ࠫਢለࠋऱᙇᖗΔ
‫ܛ֮ء‬ኙຍጟᣊীऱპྎᔚ࿇ሽᖲิհሎ᠏ᑓ‫ڤ‬᠏ང‫܂‬೯
ኪᑓᚵ։࣫Δ࿨࣠‫ڶ‬Հ٨༓រଖ൓ࣹრΚ
1. პྎᔚᖲ֘ᚨ૤ሉ‫᧢ޏ‬પᏁ 5 ઞհ᡹ࡳழၴΔۖངੌᕴ
ঞ༓‫׏‬ᛳၴ‫ګݙ‬Δ‫ڇڼڂ‬൶ಘངੌᕴೡհሽԺߓอᑉኪ
᥼ᚨழΔ࢙ฃპྎᔚᖲ֘ᚨਢ‫ױ‬൷࠹ऱΖ
2. ‫ط‬ሽጻࠀᜤᑓ‫ڍࢨڤ‬ᖲᑓ‫ڤ‬᠏ང‫୾ࡰڃ‬ᑓ‫ڤ‬༓‫׏‬ᛳၴ‫ݙ‬
‫ګ‬Δ‫୾ࡰط܀‬ᑓ‫ڤ‬᠏ང੡ሽጻࠀᜤᑓ‫طࢨڤ‬ሽጻࠀᜤᑓ
‫ڤ‬᠏ང੡‫ڍ‬ᖲᑓ‫ڤ‬Δ᠏ང᡹ࡳழၴঞຟપ‫ڇ‬ 1~2 ઞΔ‫ڼ‬
ፖპྎᔚᖲ֘ᚨழၴઌֺࠀ‫᧩ࣔآ‬ऱ՛Δ‫ڇڼڂ‬൶ಘሎ
᠏ᑓ‫ڤ‬᠏ངழΔ౨‫࢙ܡ‬ฃპྎᔚᖲ֘ᚨଶ‫ڇړ‬ᢰ੺រՂΖ
ኚṪṞŘെᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ 19
3. ԫ౳ভᎁპྎᔚ࿇ሽᖲิհངੌᕴࠠ‫ॺڶ‬ൄ‫ݶ‬ຒऱଯ࿨
(Blocking) ᤛ࿇౨ԺΔ‫ڇ‬ᖲิᔡ࠹ᒵሁ൷‫چ‬ਚᎽழ౨Օ
༏‫ࠫލ‬ᑉኪ‫פ‬෷ឫ೯Δ‫ڼڂ‬ᖲิ౨‫א‬ለ‫܅‬ऱൎ৫ࠐ๻
ૠΖ௅ᖕ‫ء‬ᑓᚵ࿨࣠Δຍԫរ‫ࠀ׏ۿ‬լ‫إ٤ݙ‬ᒔΔ‫ࡰڇ‬
୾ሎ᠏ᑓ‫ڤ‬Հ૤ሉ֊ངᒔኔլᄎኙპྎᔚ࿇ሽᖲิທ‫ګ‬
᧩ထऱᑉኪ‫פ‬෷ឫ೯Δ‫܀‬໢ԫᖲิ‫୾ࡰط‬ᑓ‫ڤ‬᠏ང੡ሽ
ጻࠀᜤᑓ‫ڤ‬ழথᄎኙᖲิข‫ॺس‬ൄՕऱឫ೯Δۖࠟຝᖲ
ิ‫ٵ‬ழࠓᜤሽጻழΔኙᖲิທ‫ګ‬հᓢᚰ‫ޓ‬ՕΔᓢᚰ࿓৫
լ՛࣍ႚอ‫ޡٵ‬࿇ሽᖲิᔡ࠹Կઌ൷‫چ‬ਚᎽհणउΰࠃ
ኔՂᓢᚰ࿓৫ႊီࠓᜤᛳၴհઌߡ஁ۖࡳαΔ‫ڶࠠڼڂ‬
ᑓ‫ڤ‬᠏ང‫פ‬౨հᖲิ‫ؘ‬ႊֺྤ‫פڼ‬౨հᖲิࠠ‫ޓڶ‬Օऱ
ᓢᚰ୲‫ݴ‬౨Ժ๻ૠΰࠏ‫ޓڕ‬ൎႇऱᖲඳൎ৫αΔࠀॺࢬ
‫ڶ‬ᖲীհპྎᔚ࿇ሽᖲิຟ౨‫א‬ለ‫܅‬ऱൎ৫ࠐ๻ૠΖ
Ὢ⚦€೧
D ॴ‫؍‬এᑇ
E ಬሽጤሽᚘ
H ክၦൄᑇ
di ऴၗሽੌ
qi ٌၗሽੌ
J ክၦ
dL ऴၗሽტ
qL ٌၗሽტ
m ᓳ᧢ਐᑇ
N ᠏՗᠏ຒ
p ᄕኙ
elecP ሽ‫פ‬෷
mechP ᖲඳ‫פ‬෷
R ࡳ՗ሽॴ
eT ሽ጖᠏ఢ
mT ᖲඳ᠏ఢ
dv ऴၗሽᚘ
qv ٌၗሽᚘ
V ࠹ሽጤሽᚘ
X ሽ‫ݼ‬
θ ᠏՗ߡ৫
λ ጖ຏ
µ ઌߡ
Eµ ಬሽጤઌߡ
Vµ ࠹ሽጤઌߡ
‫≙א‬ᄽ᪇
1. Lasseter, R., “Dynamic Models for Micro-turbine and
Fuel Cells,” Power Engineering Society Summer Meeting,
IEEE, Vol. 2, pp. 761-766 (2001).
2. Nagpal, M., Moshref, A., Morison, G. K., and Kundur, P.,
“Experience with Testing and Modeling of Gas Turbines,”
Power Engineering Society Winter Meeting, IEEE, Vol. 2,
pp. 652-656 (2001).
3. Cano, A., Jurado, F., and Carpio, J., “Modelling of Power
Plants Based on Gasifier/Gas Turbine Technologies,”
Africon Conference in Africa, IEEE, Vol. 2, pp. 797-802
(2002).
4. Working Group on Prime Mover and Energy Supply
Models for System Dynamic Performance Studies,
“Dynamic Models for Combined Cycle Plants in Power
System Studies,” IEEE Trans. Power Systems, Vol. 9, No.
3, pp. 1698-1708 (1994).
5. Hannett, L. N., Jee, G., and Fardanesh, B., “A
Governor/Turbine Model for a Twin-shaft Combustion
Turbine,” IEEE Trans. Power Systems, Vol. 10, No. 1, pp.
133-140 (1995).
6. Zhang, Q., and So, P. L., “Dynamic Modeling of a
Combined Cycle Plant for Power System Stability
Studies,” Power Engineering Society Winter Meeting,
IEEE, Vol. 2, pp. 1538-1543 (2000).
7. Banetta, S., Ippolito, M., Poli, D., and Possenti, A., “A
Model of Cogeneration Plants Based on Small-size Gas
Turbines,” International Conference and Exhibition on
Electricity Distribution, CIRED, Vol. 4, pp. 4-21 (2001).
8. Jurado, F., Ortega, M., and Acero, N., “Enhancing the
Electrical Performance of a Micro-turbine Using a
Genetic Fuzzy Controller,” Electric Machines and Drives
Conference, IEEE, Vol. 3, pp. 1748-1754 (2003).
9. Fethi, O., Dessaint, L. A., and Al-Haddad, K., “Modeling
and Simulation of the Electric Part of a Grid Connected
Microturbine,” Power Engineering Society General
Meeting, IEEE, Vol. 2, pp. 2212-2219 (2004).
10. Guda, S. R., Wang, C., and Nehrir, M. H., “A
Simulink-based Microturbine Model for Distributed
Generation Studies,” Proceedings of the 37th
Annual
North American Power Symposium, pp. 269-274 (2005).
11. Gaonkar, D. N., Patel, R. N., and Pillai, G. N., “Dynamic
Model of Microturbine Generation System for Grid
Connected/Islanding Operation,” International Conference
20 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺
on Industrial Technology (ICIT 2006), IEEE, pp. 305-310
(2006).
12. Etezadi, M., and Choma, K., “Harmonic Characteristics of
a new 30 kW Microturbine Generator,” Harmonics and
Quality of Power, IEEE, Vol. 3, pp. 816-820 (2000).
13. Amorim, A., Cardoso, A. L., Oyarzabal, J., and Melo, N.,
“Analysis of the Connection of a Microturbine to a Low
Voltage Grid,” International Conference on Future Power
Systems, pp. 1-5 (2005).
14. Suter, M., “Active Filter for a Microturbine,”
Telecommunication Energy Conference, IEE, Vol. 484, pp.
162-165 (2001).
15. Zhang, K., and Chang, L., “Harmonic Current Reduction
for a PWM Rectifier with Very Low Carrier Ratio in a
Microturbine System,” Canadian Conference on Electrical
and Computer Engineering, pp. 587-590 (2005).
16. Chen, Z., and Spooner, E., “Wind Turbine Power
Converters: A Comparative Study,” Power Electronics
and Variable Speed Drives Conference, IEE, Vol. 456, pp.
471-476 (1998).
17. Mollerstedt, E., and Stothert, A., “A Model of a
Microturbine Line-side Converter,” International
Conference on Power System Technology, IEEE, Vol. 2,
pp. 909-914 (2000).
18. Hofmeester, N. H. M., and Polinder, H., “Modelling and
Control of a Cycloconverter with Permanent Magnet
Generator,” European Conference on Power Electronics
and Applications, European Power Electronics
Association, Vol. 4, pp. 382-387 (1993).
19. Vickers, S. L., Al Zahawi, B. A. T., and Shuttleworth, R.,
“Matrix Converter Application for Direct-drive Gas
Turbine Generator Sets,” Power Electronics and Variable
Speed Drives Conference, IEE, Vol. 429, pp. 103-107
(1996).
20. Illindala, M., and Venkataramanan, G., “Control of
Distribution Generation System to Mitigate Load and
Line Imbalance,” Power Electronics Specialists
Conference, IEEE, Vol. 4, pp. 2013-2018 (2002).
21. Barsali, S., Ceraolo, M., Pelacchi, P., and Poli, D.,
“Control Techniques of Dispersed Generators to Improve
the Continuity of Electricity Supply,” Power Engineering
Society Winter Meeting, IEEE, Vol. 2, pp. 789-794
(2002).
22. Colson, C. M., Wang, C., Nehrir, M. H., Guda, S. R., and
Li, J., “Stand-alone Hybrid Wind-Microturbine
Distributed Generation System: A Case Study,”
Proceedings of the 39th
North American Power
Symposium (NAPS '07), pp. 337-341 (2007).
23. Al-Hinai, A., Sedhisigarchi, K., and Feliachi, A.,
“Stability Enhancement of a Distribution Network
Comprising a Fuel Cell and a Microturbine,” Power
Engineering Society General Meeting, IEEE, Vol. 2, pp.
2156-2161 (2004).
24. Jurado, F., and Jose, R. S., “Adaptive Control of a Fuel
Cell-Microturbine Hybrid Power Plant,” IEEE Trans.
Energy Conversion, Vol. 18, No. 2, pp. 342-347 (2003).
2007 ‫ڣ‬ 03 ִ 01 ֲ ‫گ‬ᒚ
2007 ‫ڣ‬ 04 ִ 02 ֲ ॣᐉ
2008 ‫ڣ‬ 03 ִ 04 ֲ ᓤᐉ
2008 ‫ڣ‬ 03 ִ 06 ֲ ൷࠹

More Related Content

What's hot

U Pataent # 6756838
U Pataent # 6756838U Pataent # 6756838
U Pataent # 6756838ADVLSI
 
05 ptcc automation overview
05 ptcc automation overview05 ptcc automation overview
05 ptcc automation overviewduytn1
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Alan Courtay
 
Matlab Based Analysis of 3-Ø Self-Excited Induction Generator with Nonlinear ...
Matlab Based Analysis of 3-Ø Self-Excited Induction Generator with Nonlinear ...Matlab Based Analysis of 3-Ø Self-Excited Induction Generator with Nonlinear ...
Matlab Based Analysis of 3-Ø Self-Excited Induction Generator with Nonlinear ...IOSR Journals
 
04 ptcc protection feautres
04 ptcc protection feautres04 ptcc protection feautres
04 ptcc protection feautresduytn1
 
Study on Excitation system in Power sector
Study on Excitation system in Power sectorStudy on Excitation system in Power sector
Study on Excitation system in Power sectorBoben Anto Chemmannoor
 
Selective Coordination "The Rest of the Story"
Selective Coordination "The Rest of the Story"Selective Coordination "The Rest of the Story"
Selective Coordination "The Rest of the Story"michaeljmack
 
Selectivity and Coodination
Selectivity and CoodinationSelectivity and Coodination
Selectivity and Coodinationmichaeljmack
 
Fire Pump Short Circuit and WIC Considerations
Fire Pump Short Circuit and WIC ConsiderationsFire Pump Short Circuit and WIC Considerations
Fire Pump Short Circuit and WIC ConsiderationsJames S Nasby
 
Excitation Synchronous Wind Power Generators With Maximum Power Tracking Scheme
Excitation Synchronous Wind Power Generators With Maximum Power Tracking SchemeExcitation Synchronous Wind Power Generators With Maximum Power Tracking Scheme
Excitation Synchronous Wind Power Generators With Maximum Power Tracking SchemeProjectsatbangalore
 
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...IOSR Journals
 
ATS, Grounding Issues & Installation Considerations
ATS, Grounding Issues & Installation ConsiderationsATS, Grounding Issues & Installation Considerations
ATS, Grounding Issues & Installation Considerationsmichaeljmack
 
Automatic synch of gen
Automatic synch of genAutomatic synch of gen
Automatic synch of genmichaeljmack
 
Ijmsr 2016-12
Ijmsr 2016-12Ijmsr 2016-12
Ijmsr 2016-12ijmsr
 

What's hot (20)

U Pataent # 6756838
U Pataent # 6756838U Pataent # 6756838
U Pataent # 6756838
 
05 ptcc automation overview
05 ptcc automation overview05 ptcc automation overview
05 ptcc automation overview
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
 
Matlab Based Analysis of 3-Ø Self-Excited Induction Generator with Nonlinear ...
Matlab Based Analysis of 3-Ø Self-Excited Induction Generator with Nonlinear ...Matlab Based Analysis of 3-Ø Self-Excited Induction Generator with Nonlinear ...
Matlab Based Analysis of 3-Ø Self-Excited Induction Generator with Nonlinear ...
 
04 ptcc protection feautres
04 ptcc protection feautres04 ptcc protection feautres
04 ptcc protection feautres
 
Excitation3
Excitation3Excitation3
Excitation3
 
Study on Excitation system in Power sector
Study on Excitation system in Power sectorStudy on Excitation system in Power sector
Study on Excitation system in Power sector
 
Selective Coordination "The Rest of the Story"
Selective Coordination "The Rest of the Story"Selective Coordination "The Rest of the Story"
Selective Coordination "The Rest of the Story"
 
Terbella power plant
Terbella power plantTerbella power plant
Terbella power plant
 
Selectivity and Coodination
Selectivity and CoodinationSelectivity and Coodination
Selectivity and Coodination
 
Fire Pump Short Circuit and WIC Considerations
Fire Pump Short Circuit and WIC ConsiderationsFire Pump Short Circuit and WIC Considerations
Fire Pump Short Circuit and WIC Considerations
 
Trouble guide cttg109 oi.ac trip
Trouble guide cttg109   oi.ac tripTrouble guide cttg109   oi.ac trip
Trouble guide cttg109 oi.ac trip
 
Excitation Synchronous Wind Power Generators With Maximum Power Tracking Scheme
Excitation Synchronous Wind Power Generators With Maximum Power Tracking SchemeExcitation Synchronous Wind Power Generators With Maximum Power Tracking Scheme
Excitation Synchronous Wind Power Generators With Maximum Power Tracking Scheme
 
Hamza Kazmi (GTE)
Hamza Kazmi (GTE)Hamza Kazmi (GTE)
Hamza Kazmi (GTE)
 
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...
Refurbishment of a Three-Phase Induction Motor Reflecting Local Voltage Condi...
 
000747
000747000747
000747
 
ATS, Grounding Issues & Installation Considerations
ATS, Grounding Issues & Installation ConsiderationsATS, Grounding Issues & Installation Considerations
ATS, Grounding Issues & Installation Considerations
 
Automatic synch of gen
Automatic synch of genAutomatic synch of gen
Automatic synch of gen
 
Ijmsr 2016-12
Ijmsr 2016-12Ijmsr 2016-12
Ijmsr 2016-12
 
40220140502003
4022014050200340220140502003
40220140502003
 

Viewers also liked

Nal 2012 investor day and guidance presentation
Nal 2012 investor day and guidance presentationNal 2012 investor day and guidance presentation
Nal 2012 investor day and guidance presentationNALenergy
 
Isro technological advancements
Isro technological advancementsIsro technological advancements
Isro technological advancementsGautham Reddy
 
Nal energy corporate presentation - january 2012
Nal energy   corporate presentation - january 2012Nal energy   corporate presentation - january 2012
Nal energy corporate presentation - january 2012NALenergy
 
Indian Space Research Organisation
Indian Space Research OrganisationIndian Space Research Organisation
Indian Space Research OrganisationTeja Narahari
 
Presentation hal
Presentation halPresentation hal
Presentation halshonali89
 
Hindustan areonautics ltd.
Hindustan areonautics ltd.Hindustan areonautics ltd.
Hindustan areonautics ltd.Vikas Sharma
 

Viewers also liked (8)

Nal 2012 investor day and guidance presentation
Nal 2012 investor day and guidance presentationNal 2012 investor day and guidance presentation
Nal 2012 investor day and guidance presentation
 
Isro technological advancements
Isro technological advancementsIsro technological advancements
Isro technological advancements
 
Nal energy corporate presentation - january 2012
Nal energy   corporate presentation - january 2012Nal energy   corporate presentation - january 2012
Nal energy corporate presentation - january 2012
 
Indian Space Research Organisation
Indian Space Research OrganisationIndian Space Research Organisation
Indian Space Research Organisation
 
Presentation hal
Presentation halPresentation hal
Presentation hal
 
My insight on ISRO
My insight on ISROMy insight on ISRO
My insight on ISRO
 
Hindustan areonautics ltd.
Hindustan areonautics ltd.Hindustan areonautics ltd.
Hindustan areonautics ltd.
 
ISRO MARS MISSION
ISRO MARS MISSIONISRO MARS MISSION
ISRO MARS MISSION
 

Similar to Dynamic Simulations for Micro-Turbine Generator Operation Mode Transfers

Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...IJERA Editor
 
IRJET- Adaptive Observer-Based Fault Estimation for DFIG based Wind Turbine S...
IRJET- Adaptive Observer-Based Fault Estimation for DFIG based Wind Turbine S...IRJET- Adaptive Observer-Based Fault Estimation for DFIG based Wind Turbine S...
IRJET- Adaptive Observer-Based Fault Estimation for DFIG based Wind Turbine S...IRJET Journal
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir Morgulis
 
Development of a low cost sensored control for high speed axial flux permanen...
Development of a low cost sensored control for high speed axial flux permanen...Development of a low cost sensored control for high speed axial flux permanen...
Development of a low cost sensored control for high speed axial flux permanen...Alexander Decker
 
Transient Dynamic Analyzing for Induction Motor Design Based on combine Simul...
Transient Dynamic Analyzing for Induction Motor Design Based on combine Simul...Transient Dynamic Analyzing for Induction Motor Design Based on combine Simul...
Transient Dynamic Analyzing for Induction Motor Design Based on combine Simul...IJERA Editor
 
Reduction of Total Harmonic Distortion using Multipulse Cycloconverter
Reduction of Total Harmonic Distortion using Multipulse CycloconverterReduction of Total Harmonic Distortion using Multipulse Cycloconverter
Reduction of Total Harmonic Distortion using Multipulse CycloconverterIRJET Journal
 
analysis of induction motor drive using slip power recovery scheme
analysis of induction motor drive using slip power recovery schemeanalysis of induction motor drive using slip power recovery scheme
analysis of induction motor drive using slip power recovery schemePrakash_13209
 
AC to AC Step Down Cycloconverter
AC to AC Step Down CycloconverterAC to AC Step Down Cycloconverter
AC to AC Step Down CycloconverterIRJET Journal
 
Performance Evaluation of Synchronous Generator under Sudden Loss of Excitation
Performance Evaluation of Synchronous Generator under Sudden Loss of ExcitationPerformance Evaluation of Synchronous Generator under Sudden Loss of Excitation
Performance Evaluation of Synchronous Generator under Sudden Loss of Excitationpaperpublications3
 
Three-Level DTC Based on Fuzzy Logic and Neural Network of Sensorless DSSM Us...
Three-Level DTC Based on Fuzzy Logic and Neural Network of Sensorless DSSM Us...Three-Level DTC Based on Fuzzy Logic and Neural Network of Sensorless DSSM Us...
Three-Level DTC Based on Fuzzy Logic and Neural Network of Sensorless DSSM Us...IJPEDS-IAES
 
Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation ...
Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation ...Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation ...
Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation ...IRJET Journal
 
DESIGN OF MPSS AND TCSC DAMPING CONTROLLERS IN MULTI- MACHINE POWER SYSTEM U...
DESIGN OF MPSS AND TCSC DAMPING CONTROLLERS  IN MULTI- MACHINE POWER SYSTEM U...DESIGN OF MPSS AND TCSC DAMPING CONTROLLERS  IN MULTI- MACHINE POWER SYSTEM U...
DESIGN OF MPSS AND TCSC DAMPING CONTROLLERS IN MULTI- MACHINE POWER SYSTEM U...Editor IJMTER
 
17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekfMouli Reddy
 

Similar to Dynamic Simulations for Micro-Turbine Generator Operation Mode Transfers (20)

Bldc
BldcBldc
Bldc
 
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
 
Mini Projet Repport.pdf
Mini Projet Repport.pdfMini Projet Repport.pdf
Mini Projet Repport.pdf
 
IRJET- Adaptive Observer-Based Fault Estimation for DFIG based Wind Turbine S...
IRJET- Adaptive Observer-Based Fault Estimation for DFIG based Wind Turbine S...IRJET- Adaptive Observer-Based Fault Estimation for DFIG based Wind Turbine S...
IRJET- Adaptive Observer-Based Fault Estimation for DFIG based Wind Turbine S...
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Development of a low cost sensored control for high speed axial flux permanen...
Development of a low cost sensored control for high speed axial flux permanen...Development of a low cost sensored control for high speed axial flux permanen...
Development of a low cost sensored control for high speed axial flux permanen...
 
Trp sinusoidal
Trp sinusoidalTrp sinusoidal
Trp sinusoidal
 
Transient Dynamic Analyzing for Induction Motor Design Based on combine Simul...
Transient Dynamic Analyzing for Induction Motor Design Based on combine Simul...Transient Dynamic Analyzing for Induction Motor Design Based on combine Simul...
Transient Dynamic Analyzing for Induction Motor Design Based on combine Simul...
 
Modeling & Analysis of a Novel Adaptive Hysteresis Band Controller for Boost ...
Modeling & Analysis of a Novel Adaptive Hysteresis Band Controller for Boost ...Modeling & Analysis of a Novel Adaptive Hysteresis Band Controller for Boost ...
Modeling & Analysis of a Novel Adaptive Hysteresis Band Controller for Boost ...
 
Eh35754760
Eh35754760Eh35754760
Eh35754760
 
Reduction of Total Harmonic Distortion using Multipulse Cycloconverter
Reduction of Total Harmonic Distortion using Multipulse CycloconverterReduction of Total Harmonic Distortion using Multipulse Cycloconverter
Reduction of Total Harmonic Distortion using Multipulse Cycloconverter
 
analysis of induction motor drive using slip power recovery scheme
analysis of induction motor drive using slip power recovery schemeanalysis of induction motor drive using slip power recovery scheme
analysis of induction motor drive using slip power recovery scheme
 
AC to AC Step Down Cycloconverter
AC to AC Step Down CycloconverterAC to AC Step Down Cycloconverter
AC to AC Step Down Cycloconverter
 
Performance Evaluation of Synchronous Generator under Sudden Loss of Excitation
Performance Evaluation of Synchronous Generator under Sudden Loss of ExcitationPerformance Evaluation of Synchronous Generator under Sudden Loss of Excitation
Performance Evaluation of Synchronous Generator under Sudden Loss of Excitation
 
Ijetr012032
Ijetr012032Ijetr012032
Ijetr012032
 
Three-Level DTC Based on Fuzzy Logic and Neural Network of Sensorless DSSM Us...
Three-Level DTC Based on Fuzzy Logic and Neural Network of Sensorless DSSM Us...Three-Level DTC Based on Fuzzy Logic and Neural Network of Sensorless DSSM Us...
Three-Level DTC Based on Fuzzy Logic and Neural Network of Sensorless DSSM Us...
 
Bt044436441
Bt044436441Bt044436441
Bt044436441
 
Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation ...
Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation ...Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation ...
Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation ...
 
DESIGN OF MPSS AND TCSC DAMPING CONTROLLERS IN MULTI- MACHINE POWER SYSTEM U...
DESIGN OF MPSS AND TCSC DAMPING CONTROLLERS  IN MULTI- MACHINE POWER SYSTEM U...DESIGN OF MPSS AND TCSC DAMPING CONTROLLERS  IN MULTI- MACHINE POWER SYSTEM U...
DESIGN OF MPSS AND TCSC DAMPING CONTROLLERS IN MULTI- MACHINE POWER SYSTEM U...
 
17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf
 

Recently uploaded

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 

Recently uploaded (20)

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 

Dynamic Simulations for Micro-Turbine Generator Operation Mode Transfers

  • 1. െᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ ࣥᆁડ ೏૒ઝ‫ݾ‬Օᖂሽᖲߓ ၪ ǜ პྎᔚ࿇ሽᖲิࠠ‫ڶ‬ৰ‫ڍ‬ରᕏႚอ‫ޡٵ‬࿇ሽᖲิհᚌរΔࠏ‫ڤٺشࠌױڕ‬ ‫ٺ‬ᑌऱᗏறΰ‫ڕ‬ቧ௜ँ௛αΔ‫ڼڂ‬๯ᎁ੡ਢ່‫ױ‬౨‫פګ‬ऱጸ‫ۥ‬౨ᄭհԫΖ،‫ڶ‬ Կጟሎ᠏ᑓ‫ڤ‬Κࡰ୾Εሽጻࠀᜤ֗‫ڍ‬ᖲᑓ‫ڤ‬Δ੡Ա౨ଫࠠ‫ڼ‬Կጟᑓ‫ڤ‬հሎ᠏౨ ԺΔᖲิ‫א‬ P-f Հিᑓ‫ڤ‬൳ࠫਢለࠋऱᙇᖗΔ‫ܛ֮ء‬ኙຍጟᣊীऱᖲิ‫܂‬ሎ᠏ ᑓ‫ڤ‬᠏ངհ೯ኪᑓᚵ։࣫Δ࿨࣠᧩‫ق‬Δ໢ԫᖲิ‫୾ࡰط‬ᑓ‫ڤ‬᠏ང੡ሽጻࠀᜤᑓ ‫ڤ‬ழΔᄎኙᖲิข‫ॺس‬ൄՕऱᑉኪ‫פ‬෷ឫ೯Δۖࠟຝᖲิ‫ٵ‬ழࠓᜤሽጻழΔኙ ᖲิທ‫ګ‬հᓢᚰ‫ޓ‬ՕΔᓢᚰ࿓৫լ᎝࣍ႚอ‫ޡٵ‬࿇ሽᖲิᔡ࠹Կઌ൷‫چ‬ਚᎽհ णउΖ खࠛɡŘპྎᔚ࿇ሽᖲΕ೯ኪᑓᚵΕሎ᠏ᑓ‫ڤ‬᠏ངΖ DYNAMIC SIMULATIONS FOR OPERATION MODE TRANSFER OF A MICRO-TURBINE GENERATOR Chi-Hshiung Lin Department of Electrical Engineering Kao Yuan University Kaohsiung County, Taiwan 82151,R.O.C. Key Words: micro-turbine generator; dynamics simulation, operation mode transfer. ABSTRACT The micro-turbine generator unit is superior to the traditional synchronous generator unit in many aspects; for example, a variety of fuels (e.g. anaerobic methane) may be used. So it is deemed one of the most promising green power sources. Three modes of operation are available for the unit: island, grid-connected and multi-machine modes. To be able to operate in all three modes, it’s a better choice for the unit to adopt the P-f droop mode of control. For a unit with such a control mode, dynamic simulation analyses for operation mode transfer are made in this paper. It is shown that significant transient power disturbance will be induced when the unit is transferred from the island mode to the grid-connected mode. When two units simultaneously connect to a grid, the impact on both units will be even more serious. The degree of impact is not less than the impact on a traditional synchronous generator unit that is subjected to a three-phase-to-ground fault. ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺ 11 Journal of Technology, Vol. 23, No. 1, pp. 11-20 (2008)
  • 2. 12 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺ ɺȮ  ˛ ᙟထᛩঅრᢝऱ೏ይΔઝ‫٣ݾ‬ၞഏ୮݁‫ڶ‬࿇ሽཙ‫ֱז‬ ூऱઔߒΔࠏ‫֜ڕ‬ၺ౨࿇ሽΕଅԺ࿇ሽΕᗏறሽ‫ࢨۃ‬ਢპ ྎᔚ࿇ሽ࿛Ζ‫ڇ‬ฒ‫ڍ‬հ࿇ሽཙ‫ֱז‬ூխΔპྎᔚ࿇ሽ๯ᎁ ੡ਢ່‫ױ‬౨‫פګ‬հጸ‫ۥ‬ሽᄭհԫΔኙ࣍๺‫ྤڍ‬ऄᄷᒔቃ۷ ່೏‫ش‬ሽၦΔԾፋᆵ։ཋऱ࿇୶խഏ୮Δᇘ๻യႃ‫ڤ‬࿇ሽ ᖲ‫ڶ‬ԫࡳऱܺᣄΔპྎᔚ࿇ሽਢ່‫ړ‬ऱᇞެᙄऄΔۖ‫׊‬პ ྎᔚ࿇ሽᖲิ‫ٵױ‬ழࠎᚨᑷΕሽࠟጟ౨ᄭΔኙ೏৫೸ᄐ֏ ഏ୮ۖߢΔ‫ޓ‬ਢॺൄᔞ‫࣍ٽ‬᠔ೃΕளੂΕਪᨚΕᄵ৛࿛໱ ࢬΖ‫ڼڂ‬Δპྎᔚ࿇ሽ‫ࠐآ‬Ⴈ‫ؘ‬ᓒড࿇୶Δ‫ګ‬੡։ཋ‫ڤ‬ሽ ᄭ‫ੌ׌‬հԫΖ ഏփ‫ؾ‬ছՈ‫ڶ‬ዧ࿴౰़ՠᄐֆ‫ދ׹‬Եპྎᔚ࿇ሽᖲ ิհၲ࿇Δ‫شܓ‬౰़‫ش‬௛ྎᔚᖲ‫ݾ‬๬Δ‫ؾ‬ছբ‫ګݙ‬ 30 kW ֗ 60 kW ࠟጟᖲীΔࠡᗏற‫شࠌױ‬೏ሒ 7 % H 2 S ऱᎨࢤᗏ ௛ࢨ‫܅‬ᑷଖΰ‫܅ױ‬ሒ 350 btu/scfαࡑ݃ൽୖ໱ँ௛/ቧ௜ँ ௛ΖᙟထईᏝՂཆ֗٤෺ᄊ֏հყ᝟ᣤૹΔპྎᔚ࿇ሽ‫ڇ‬ ‫؀‬᨜‫چ‬೴ቃ۷ՈᄎດዬഹದΖ 1. െᛱՀᱹ঵₇⃥ʠከᐉ ࠢীპྎᔚ࿇ሽߓอ‫ڕ‬ቹ 1 ࢬ‫ق‬Δ‫׌‬૞‫ܶץ‬௛ྎᔚ֧ ᚯΕᐒ௛ᑷٌངᕴΕ‫ة‬጖‫ڤ‬೏ຒ࿇ሽᖲ֗᙮෷᠏ངᕴΔԫ ౳‫פ‬෷પ੡ 25~500 kWΖ ௛ྎᔚ֧ᚯຏൄ੡໢ၗຑ࿨ᚘᜍᖲΕྎᔚᖲ֗࿇ሽᖲ հਮዌΔ़௛‫ط‬ᚘᜍᖲ‫ף‬ᚘၞԵᗏᗈ৛ፖᗏற෗‫ٽ‬ᗏᗈΔ ᗏᗈ৛ᙁ‫נ‬௛᧯ᄵ৫પ 900ƫΔං೯ྎᔚᖲข‫س‬᠏ఢᦀ೯ ࿇ሽᖲΔྎᔚᖲඈ‫נ‬ᐒ௛ᄵ৫પ 600ƫΔᆖᑷ‫گڃ‬ᕴቃᄵ ‫़ܐ‬௛Δ٦ඈ۟ᐒ௛ᑷٌངᕴΖᐒ௛ᑷٌངᕴຏൄ੡௛Ё ֽੌၦ‫ڤ‬Δല‫࣍ژ‬ᐒ௛հᑷ౨᠏ང੡ᑷֽΔԫ౳ᐒ௛ၞԵ հᄵ৫પ੡ 300ƫΖ‫ة‬጖‫ڤ‬೏ຒ࿇ሽᖲຏൄ੡ NdBFe ‫ޗ‬ ᔆΔ᠏ຒ‫ڇ‬ 50,000 rpm ۟ 120,000 rpm ၴΔ‫ڼڂ‬ᙁ‫נ‬ሽᚘ ᙮෷‫ױ‬ሒᑇ kHz ؐ‫׳‬Ζ᙮෷᠏ངᕴԫ౳ආ AC-DC-AC ਮ ዌΔ‫ܛ‬೏᙮ሽᚘ٣ᖞੌ੡ऴੌሽΔ٦ᆖངੌᕴ᠏ང੡೸‫ش‬ ߓอ᙮෷ٌੌሽΔۖ‫׊‬ຏൄᝫᄎ಻ໂᒵៀंᕴ (Line Filter) ֗ሽ጖եឫៀंᕴ (EMC Filter) ല֊ངᘫंៀೈΖ 2. െᛱՀᱹ঵ᑨ₇⃥ʠѭ෴ პྎᔚ࿇ሽᖲิࠠ‫ॺڶ‬ൄ‫ڍ‬ऱᚌរΔࠏ‫᧯ڕ‬ᗨ՛ૹၦ ᎘Κፖࠡ‫ה‬։ཋ‫ڤ‬ሽᄭઌֺ‫ڶ‬ઌᅝ՛հ᧯ᗨΔ೏ຒ‫ة‬጖‫ڤ‬ ࿇ሽᖲΰ‫ܶץ‬ᖞੌᕴ֗ངੌᕴαհૹၦႛપ‫ޡٵ‬࿇ሽᖲհ 1/5~1/2Δ‫ڜױڼڂ‬ᇘ࣍ৢືۖլ‫़ش۾‬ၴΔ‫׊‬լᏁᕡᔚ ᒣΔᕡᔚᒣ੡೏ਚᎽ෷ցٙΔᏁ૞ᑮᄶ֗‫ܐ‬থΔۖ‫ॺ׊‬ൄ ૹΖய෷ॺൄ೏Κᗏற۟ሽԺհ᠏ངய෷‫ױ‬ሒ 25 %~30 %Δ ‫׊‬ૉආᐒᑷ‫گڃ‬ΔঞᑷΕሽ᜔ࡉհ౨ᄭய෷‫ױ‬၌መ 80 %Ζ ኙᛩቼ‫ۆ‬਩՛Κ֚ྥ௛ᖲิ‫ڇ‬ኔᎾሎ᠏ᒤ໮փΔེ௜֏ढ ΰNOxαհඈ࣋ၦ‫࣍܅‬ 10 ppmΖᆖᛎΚߓอ‫ءګ‬ፖࠡ‫ה‬։ ཋ‫ڤ‬ሽᄭઌֺΔࠠ‫ڶ‬ઌᅝᤁञᚌႨΖᗏற‫ڶ‬ᐘࢤΚ‫شࠌױ‬ ߧ 1 െᛱՀᱹ঵₇⃥ከᐉ ‫ڍ‬ጟᙇᖗࢤᗏறΔࠏ‫ྥ֚ڕ‬௛Ε‫≇ׇ‬ΕᅁईΕ޳ईΕ௎ईΕ ಺તΕ‫س‬ᔆ౨࿛Ζೈ‫ڼ‬հ؆Δპྎᔚ࿇ሽᖲߓอ‫ࢤڇ‬౨Ղ ‫ڶࠠޓ‬ରᕏႚอ‫ޡٵ‬࿇ሽᖲߓอհᚌរΚ (ԫ) ‫א‬ངੌᕴ൳ࠫऱᙁ‫נ‬Δ᙮෷᡹ࡳࢤॺൄ೏Δ‫࣍܅‬ 0.05 Hz ᧢೯Δԫ౳՛ী‫ޡٵ‬ᖲ࣍՛ߓอຑ൷ழ᧢೯ၦ೏ሒ 0.2 HzΔՕী‫ޡٵ‬ᖲ࣍Օߓอຑ൷ழ᧢೯ၦՈ‫ڶ‬ 0.03 HzΖ (Բ) ‫ޡٵ‬࿇ሽᖲԫ౳ႛ౨୲‫ݴ‬լ၌መ 10 %հլؓᘝΔპྎ ᔚ࿇ሽᖲߓอ‫א‬ᖞੌᕴ֗ངੌᕴሶᠦ೏ຒ‫ة‬጖‫ڤ‬࿇ሽ ᖲፖ૤ሉΔ‫ࠌܛڼڂ‬೏ሒ 50 %հ૤ሉլؓᘝΔՈ౨ፂ ਍‫࣍܅‬ 3 %հሽᚘᘫंեឫΖ (Կ) ॺᒵࢤ૤ሉข‫س‬հᘫंሽੌ࣐ທ‫ګ‬ႚอ‫ޡٵ‬࿇ሽᖲิ հ޳ᖲᆺׂ೏᙮஡೯Δ‫܀‬პྎᔚ࿇ሽᖲߓอ‫ڶ‬ᖞੌᕴ ֗ངੌᕴ‫܂‬ሶᠦΔ‫٤ݙ‬լᄎ‫޳ڶ‬ᖲᆺׂ஡೯հംᠲข ‫س‬Ζ (؄) ႚอ‫ޡٵ‬࿇ሽᖲิ࣐‫ڂ‬ਚᎽሽੌመՕۖᗈᄤᒵഎࢨࠌ ᠏ၗ‫ށڶ‬ឰհ‫ٲ‬ᙠΔპྎᔚ࿇ሽᖲߓอ‫࣍ط‬ᆖ‫ط‬ངੌ ᕴ൳ࠫΔ‫ࠌױ‬೏ຒ‫ة‬጖‫ڤ‬࿇ሽᖲհਚᎽሽੌૻࠫ࣍ԫ ࡳᒤ໮փΰԫ౳੡ 1.4~2.0 puαΔ‫ۖڂ‬౨ᝩ‫܍‬ຍࠄ‫ٲ‬ ᙠΖ (ն) ೏ຒ‫ة‬጖‫ڤ‬࿇ሽᖲࠠ‫ֺڶ‬ႚอ‫ޡٵ‬࿇ሽᖲ‫ޓ‬೏հඔ೯ ౨Ժΰપ 1.8~2.5 ଍αΔࠏ‫ڕ‬ 100 hp ್ሒ‫ط‬ 400 kW ೏ ຒ‫ة‬጖‫ڤ‬࿇ሽᖲ‫ױܛ‬ඔ೯Δۖլທ‫ګ‬መՕհሽᚘೂᡩΖ 3. െᛱՀᱹ঵ᑨ₇⃥ʠᶇἄ᫠ᗼ (ԫ) ೯ኪᑓী პྎᔚ࿇ሽᖲߓอհ೯ኪᑓী२Լ‫ڇࠐڣ‬ IEL ႛ‫נ‬෼ ֟ᑇ༓ᒧΔ֮᣸[1]ଈ٣༼‫נ‬១໢հᒵࢤ֏პྎᔚ࿇ሽ ᖲᑓীΔᓳຒᕴ֗ྎᔚᖲຟ‫א׽‬ԫၸ᠏ངࠤᑇ२‫ۿ‬Δ ࿇ሽᖲ‫ֺ࣍إא‬᠏ຒհტᚨሽᚘ।‫ق‬Δᖞੌᕴ೗๻੡ ࡳሽੌ૤ሉհԿઌ٤ंᖞੌΔ٦‫ྤא‬ჾ؈ߓอ੡ছ༼ ‫ط‬ᖲሽ‫פ‬෷ຑ࿨ᖲඳߓอፖሽԺߓอΖ ֮᣸[2]‫א‬ MatLab-Simulink-PSB ৬‫ݙم‬ᖞհპྎᔚ࿇ ሽᖲߓอΔპྎᖲᑓীঞ೶‫ە‬௛ྎᔚᖲᑓী৬‫م‬ [3~7]Δຒ৫൳ࠫ֗ᗏற൳ࠫ݁‫ץ‬ਔ‫ڇ‬փΔ‫܀‬ᄵ৫൳ࠫ ঞ ๯ ࢙ ฃ Δ ࿇ ሽ ᖲ Ε ᖞ ੌ ᕴ ֗ ང ੌ ᕴ ঞ ຟ ආ ‫ش‬ MatLab-Simulink-PSB ୚ᇘᑓীΔࠡխངੌᕴհ൳ࠫආ ౧ᐈᓳ᧢ (PWM) ֱ‫ڤ‬Δࠀ‫ࠏֺא‬ᗨ։൳ࠫᕴ (PI Controller) ൳ࠫΔᖞ᧯ᑓীբᔞ‫ٽ‬ᇡา೯ኪ۩੡հᑓ ᚵ։࣫౨ԺΖ‫ء܀‬ᑓীႛ৬‫୾ࡰم‬ሎ᠏ᑓ‫ڤ‬Δٍ‫ڇܛ‬
  • 3. ኚṪṞŘെᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ 13 ࡐࡳ᙮෷ՀΔ൳ࠫ૤ሉሽᚘΔኙࠡ‫ה‬ᑓ‫ڤ‬հሎ᠏ࠀྤ ᑓᚵ౨ԺΖ ֮᣸[8]ഗ‫ء‬Ղऎ᦭[2]հᑓীΔ‫ނ܀‬ᄵ৫൳ࠫ౏Եᑓী փΔࠡᑓীսႛ৬‫୾ࡰم‬ሎ᠏ᑓ‫ڤ‬Δ൫ངੌᕴհሽᚘ ൳ࠫආ‫ش‬௽ࡳᘫं௣ೈ౧ᐈᓳ᧢(Specific Harmonic Elimination PWM)൳ֱࠫ‫ڤ‬Ζ ऴ່ࠩ२༓‫ڣ‬Δ‫ݙ‬ᖞऱპྎᔚ࿇ሽᖲߓอ೯ኪᑓীթ ດዬ๯࿇୶‫ࠐנ‬Δ֮᣸[9]ᇡาಘᓵԱ᠏ངሽሁᑓীΔ ࠀ‫܂‬Աԫߓ٨೯ኪᑓᚵΔ֮᣸[10]ലპྎᔚᖲΕ࿇ሽ ᖲ֗᠏ངሽሁຟᐊ‫ګ‬ MatLab-Simulink-PSB ᑓิΔ௅ ᖕᏁ‫ޣ‬౨৬‫ࠀم‬ᑓᚵլ‫ٵ‬णउհ೯ኪ᥼ᚨΔ֮᣸[11] ঞ࿇୶‫ݙ່נ‬ᖞऱპྎᔚ࿇ሽᖲߓอ೯ኪᑓীΔ౨ట ‫إ‬ᑓᚵᖲิհࡰ୾֗ࠀᜤ೯ኪ᥼ᚨΖ (Բ) ᘫंեឫ პྎᔚ࿇ሽᖲߓอ‫࣍ط‬ආ‫ش‬ངੌᕴലऴੌᢸሽᚘ᠏ང ੡ߓอ᙮෷ሽᚘΔ‫ࠌܛ‬բ಻ᆜᒵៀंᕴΔս‫ڇژ‬ઌᅝ ᣤૹհᘫंംᠲΖ֮᣸[12]ኔྒྷԫຝ 480 VΕ30 kW პ ྎᔚ࿇ሽᖲิངੌᕴᙁ‫נ‬հᘫंΔ࿨࣠࿇෼ऴ൷ຑ൷ ழ᜔ሽᚘᘫंեឫ່೏ሒ 2.6 %Δ᜔ሽੌᘫंեឫ່ ೏ሒ 67 %Δࠡխ 7 ‫ڻ‬ᘫंեឫ່ᣤૹሒ 40 %Ζૉᆖ ᧢ᚘᕴຑ൷ঞሽੌᘫंեឫ່೏ሒ 47 %Δឈྥ૾‫܀܅‬ սઌᅝՕΖᘫंեឫᙟ૤ሉ྇᎘ۖყ‫ݮ‬ᣤૹΔ‫ࠌܛ܀‬ ᠰࡳሎ᠏Հս‫ڶ‬ 12 %հሽੌᘫंեឫΖ֮᣸[8]༼‫אנ‬ ᙊႚዝጩऄ (Genetic Algorithm) ๻ૠᑓᒫ൳ࠫᕴ (Fuzzy Controller) ൳ࠫ PWM ངੌᕴΔ᎘ሉழࠌ 7 ‫ڻ‬ ᘫं‫ط‬ 20 %૾۟ 5 %ΖլመՂ૪֮᣸ࢬઔߒऱຟਢֺ ለ‫៱۔‬ऱᖲิΔለᄅऱᖲิհᘫंեឫբ޲ຍᏖᣤૹ [13]Ζ პྎᔚ࿇ሽᖲೈԱኙߓอࣹԵᘫंΔࠡ࿇ሽᖲࡳ՗៥ ิ‫ߪء‬Ո‫ٵ‬ᑌᔡ࠹ሽੌᘫंհ୭Δ‫ڼ‬ᘫं‫ط‬ք౧ंᖞ ੌᕴ֧ದΔᘫंեឫ‫ڇ‬ຝ։૤ሉՀყ‫ݮ‬ᣤૹΔ‫ڼڂ‬Δ ‫୾ࡰڇ‬ሎ᠏Հႊ௽ܑࣹრΔშ߻ࡳ՗៥ิᗈᄤΖ‫׼‬ԫ ֱ૿ࠐ઎Δૉ౨૾‫܅‬࿇ሽᖲࡳ՗៥ิհሽੌᘫंե ឫΔঞ࿇ሽᖲല‫ױ‬՛ী֏Δ‫࣍ܗڶ‬࿇ሽᖲհ೏ຒሎ᠏Ζ ֮᣸[14]‫شܓܛ‬ඔ೯ངੌᕴΔലࠡ๻ૠ੡‫׌‬೯ៀंᕴ ‫ࡳࠫލא‬՗៥ิհሽੌᘫंΔ‫ڂ‬੡ඔ೯ངੌᕴ੡ࡐ‫ڶ‬ ಻ໂΔ‫ڼڂ‬լᏺ‫ءګ۶ٚף‬੡່ࠡՕᚌរΔ‫܀‬ඔ೯ང ੌᕴ୲ၦႛપᖲิհ 10 %Δ‫ޏ‬࿳౨Ժ࠹ૻΖ֮᣸[15] ঞ‫࣋٤ݙ‬ඵք౧ंᖞੌᕴۖ‫شޏ‬ PWM ᖞੌᕴ‫྇א‬᎘ ࿇ሽᖲࡳ՗៥ิሽੌᘫंեឫΔய࣠ᚌฆΔլመᄎࠌ ‫༼ۖڂءګ‬೏Ζ (Կ) ‫פ‬෷൳ࠫᕴ๻ૠ ։ཋ‫ڤ‬ሽᄭհ‫פ‬෷൳ࠫᕴՕຟ‫ࡳࡐא‬ऴੌሽᚘᄭհང ੌᕴ੡๻ૠਮዌΔ֮᣸[16]ֺለԱԿጟࠢীֱ‫ڤ‬Δࠡ ԫ ੡ ኲ ं ᕴ ಻ ‫ٽ‬ ሽ ੌ ൳ ࠫ ሽ ᚘ ᄭ ང ੌ ᕴ հ ਮ ዌ (DC-DC ChopperϟCC-VSI)ΔࠡԲ੡ሴੌ᧯ངੌᕴ಻ ‫ٽ‬ᇖᚍᕴհਮዌ (SCR INVϟCompensator)ΔࠡԿ੡‫إ‬ ࢐౧ᐈᓳ᧢ሽᚘᄭངੌᕴհਮዌ (SPWM-VSI)Δ൳ࠫ ऄঞഗ‫ء‬Ղຟਢᆖ‫ط‬൳ࠫངੌᕴሽੌઌߡ֗Օ՛ࠐ൳ ࠫ‫ڶ‬ய֗ྤய‫פ‬෷Δᔞ‫ߓٽ‬อࠀᜤᑓ‫ڤ‬ሎ᠏Ζ ֮᣸[17]‫ڇ‬ઊฃᘫंΕլؓᘝΕ࿇ሽᖲ೯ኪΕߓอ೯ ኪ֗ආ‫ش‬෻უ֊ངၲᣂᑓ‫ڤ‬ՀΔ༼‫נ‬ຏ‫ش‬հ൳ࠫᕴᑓ ‫ڤ‬Δࠌངੌᕴհছ‫ٻ‬൳ࠫᕴ֗‫ڃ‬඄൳ࠫᕴࠫ‫֏ڤ‬Δࠀ ‫່ڇ‬৵‫א‬լᒔࡳၦലছ૪೗๻ᠾᆙΖ ഄԫലპྎᔚ࿇ሽᖲᑓী౏Ե‫פ‬෷൳ࠫᕴ๻ૠृ‫ڶ׽‬ ֮᣸[1]Δլመ‫ڕ‬ছࢬ૪ࠡპྎᔚ࿇ሽᖲᑓীႛַ࣍ᄕ ១֏ᑓীΔ‫܀‬ଖ൓ࣹრऱਢࠡ൳ࠫᕴհ๻ૠආ‫ٻش‬ၦ ൳ࠫΔլ‫הࠡ࣍ٵ‬ආొၦ൳ࠫृΖ ‫פ‬෷൳ࠫᕴೈՂ૪ආ AC-DC-AC ृ؆ΔՈ‫ڶ‬ආ‫ش‬ AC-AC ृΖ֮᣸[18]༼‫נ‬ආ‫ش‬ٌੌٌ۟ੌ᠏ངᕴ (Cycloconverter) հਮዌΔࠀ‫ٻא‬ၦ൳ֱࠫ‫ڤ‬൳ࠫ‫ڶ‬ய ֗ྤய‫פ‬෷Ζ ֮᣸[19]༼‫נ‬ఢೄ᠏ངᕴ (Matrix Converter) ਮዌΔኙ ԫଡԿઌᙁԵ/Կઌᙁ‫ߓנ‬อΔ‫شࠌױ‬ 9 ଡٌੌၲᣂሒ ‫ګ‬Δࠡࠀආ‫ش‬ 3 ‫ڻ‬ᘫंࣹԵࠌ່Օሽᚘ᠏ང෷ሒ 0.866Δ੡ᆏઊၲᣂ֊ངհૠጩழၴΔආ़ၴ‫ٻ‬ၦᓳ᧢ (SVM) ֱ‫ڤ‬Δࢤ౨֗ய෷݁ᚌ࣍ൄ‫ش‬հ AC-DC-AC ਮዌΔ‫ױ‬൦֜መᓤᠧΖ (؄) ሎ᠏ᑓ‫֊ڤ‬ང პྎᔚ࿇ሽᖲߓอլ‫܂ױ׽‬੡ֆ‫్ش‬ሽᄭΔٍ‫܂ױ‬੡ ጹ৺ሽᄭࢨໂ‫ش‬ሽᄭΔ๺‫ڍ‬໱‫ݦٽ‬ඨᖲิ‫ٵ‬ழࠠ‫ࠟڶ‬ ጟ‫פ‬౨Δ‫ڼ܀‬Բृհ൳ࠫഗ‫ء‬Ղਢլ‫ٵ‬ऱΔᅝ‫܂‬੡ֆ ‫్ش‬ሽᄭழΔ‫ؘ‬ႊፖߓอ‫ޡٵ‬Δ‫ڼ‬ழᖲิႊ੡‫ڶ‬ய/ ྤய‫פ‬෷൳ࠫᑓ‫ڤ‬ (P-Q Controlled Mode)Δᅝ‫܂‬੡ໂ ‫ش‬ሽᄭழΔᖲิ‫ؘ‬ႊ૤ᖜ૤ሉᏁၦ֗֘ᚨ૤ሉ᧢೯Δ ‫ڼ‬ ழ ᖲ ิ ႊ ੡ ࡐ ࡳ ᙮ ෷ ֗ ሽ ᚘ ൳ ࠫ ᑓ ‫ڤ‬ (f-V Controlled Mode)Δ‫ࠟڂ‬ጟᑓ‫ࢬڤ‬Ꮑၦྒྷ֗൳ࠫհ೶ᑇ լ‫ٵ‬Δᖲิԫ౳ྤऄ‫ٵ‬ழ‫ࠟ࣍ش‬ጟ‫ش‬ຜΖ ֮᣸[20]ԯ༼‫נ‬ԫጟᜤ‫ٽ‬൳ࠫᕴΔࠡփಱሁ੡૤ሉሽ ᚘ൳ࠫΔ؆ಱሁ੡‫פ‬෷ᑪੌ൳ࠫΔ؆ಱሁ‫ߓڇ‬อࠀᜤ ሎ᠏ழ೯‫܂‬Δ൳ࠫངੌᕴ༼ࠎ‫ڶ‬ய֗ྤய‫פ‬෷Δᅝߓ อࠎሽሂๅࠌᖲิ‫୾ࡰګݮ‬ሎ᠏ழΔ؆ಱሁ൳ࠫᕴᙁ ‫נ‬ਗࡉۖ؈‫شפװ‬Δ‫ڼ‬ழ‫ໍ׽‬փಱሁ೯‫܂‬Δ‫ܛ‬ངੌᕴ ۞೯‫ط‬ P-Q ൳ࠫᑓ‫ڤ‬᠏ང੡ f-V ൳ࠫᑓ‫ڤ‬Ζ‫ڼ‬ীᜤ‫ٽ‬ ൳ࠫᕴ౨༼ࠎᖙ‫܂‬ᑓ‫ڤ‬ၴհྤᜓ᠏ང੡ࠡᚌរΔ‫܀‬ᖲ ิፖߓอႊյઌٌངᇷಛΔ‫ؘڼڂ‬ႊ੡խ؇൳ࠫΔᔞ ‫ٽ‬ᖲิႃխ໱‫ٽ‬Ζ ኙ࣍ᖲิ։ཋ໱‫ٽ‬Δ‫࣍ط‬ᖲิၴٌངᇷಛլ࣐Δխ؇ ൳ࠫࠀլᔞ‫ٽ‬Ζ֮᣸[21]ԯ༼‫נ‬ᣊ‫ۿ‬Օী‫ޡٵ‬ᖲิհ Հি൳ࠫᑓ‫ڤ‬ (Droop Mode)Δࠌངੌᕴհ൳ࠫ‫׽‬Ꮑၦ ྒྷ‫פߪء‬෷֗ሽᚘΕሽੌ‫ױܛ‬Δլႊፖࠡ‫ה‬ᖲิٌང ᇷ ಛ Δ ۖ ‫׊‬ ᖲ ิ ‫ױ‬ ᙟ რ ሎ ᠏ ࣍ ࡰ ୾ ᑓ ‫ڤ‬ (Island Mode)Εሽጻࠀᜤᑓ‫ڤ‬ (Grid-connected Mode) ֗‫ڍ‬ᖲ ᑓ‫ڤ‬ (Multi-machine Mode)Δլႊᠰ؆൳ࠫ೯‫܂‬Ζ‫ڼ‬ ীՀি൳ࠫᑓ‫ڶࠠڤ‬ፖՕী‫ޡٵ‬ᖲิઌ‫ٵ‬հ௽ࢤ੡ࠡ ᚌរΔ‫܀‬᙮෷ྤऄፂ਍ࡐࡳΔ‫᥼׊‬ᚨለኬྤऄ‫܂‬੡ඕ
  • 4. 14 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺ Speed/Load Reference W(xs+1) ys+z N V V V w(xs+1) ėɺ ҤࠣെᛱՀᑨ՗ּ/ΝԦ࿳Ӽ₇⃥ᑁࠣ‫א‬ᄲ ᖲิ 1 2 3 4 5 w 25 30 31.09 45 26.02 x 0 0 1.059 1.25 3.213 y 0.05 0.05 3.05 2.5 5 z 1 1 1 1 1 V FD-MAX 1.5 1.75 1.77 1.6 1.34 V FD-MIN -0.1 -0.26 -0.17 -0.1 -0.2 ėʷ ҤࠣെᛱՀᑨᥣᅆ࿳Ӽ₇⃥ᑁࠣ‫א‬ᄲ ᖲิ 1 2 3 4 5 K3 0.77 0.68 0.725 0.76 0.716 T 0 0 0 0 0 a 1 1 1 1 1 b 0.05 0.05 0.05 0.05 0.2 c 1 1 1 1 1 Tf 0.4 0.2 0.2 0.2 0.1 Kf 0 0 0 0 0 ECR 0.01 0.01 0.01 0.01 0.01 TCD 0.1 0.2 0.2 0.2 0.2 af -0.299 -0.47 -0.359 -0.316 -0.396 bf 1.3 1.47 1.38 1.316 1.396 cf 1.5 0.5 0.5 0.5 0.5 ტ૤ሉհໂ‫ش‬ሽᄭΔ‫ڼ‬੡ࠡ‫׌‬૞౒រΖ Ղ૪Բ֮᣸੡ႛ‫ڶ‬հሎ᠏ᑓ‫֊ڤ‬ངઔߒΔ‫܀‬ຟ࢙ฃპ ྎᔚ࿇ሽᖲᑓীΔۖ೗๻ངੌᕴ‫ࡳࡐط‬ऴੌሽᚘᄭࠎ ሽΔຍጟ೗๻ࠃኔՂ‫؈౒ࠡڶ‬Δࠏ‫ڕ‬პྎᔚ࿇ሽᖲհ ೯ኪ᥼ᚨՈઌᅝ‫ݶ‬Δլߠ൓౨࢙ฃࠡ‫ش܂‬Δۖ‫ૹ່׊‬ ૞ऱਢ‫ڇ‬ຍጟ೗๻ՀΔྤऄ൓वሎ᠏ᑓ‫֊ڤ‬ངኙპྎ ᔚ࿇ሽᖲิհᐙ᥼Ζ (ն) ෗‫ٽ‬ሎ᠏ ່२ᖂ੺ດዬᣂࣹპྎᔚ࿇ሽᖲิፖࠡ‫ה‬։ཋ‫ڤ‬࿇ሽ ᖲิհ෗‫ٽ‬ሎ᠏ംᠲΔࠏ‫֮ڕ‬᣸[22]‫܂‬ԱԫଡଅԺᖲ ิፖპྎᔚᖲิ෗‫ٽ‬ሎ᠏ऱଡூઔߒΔ֮᣸[23]֗[24] ঞ൶ಘᗏறሽ‫ۃ‬ᖲิፖპྎᔚᖲิ෗‫ٽ‬ሎ᠏ऱ᡹ࡳ৫ ംᠲΔլመຍࠄઔߒຟᝫ‫׽‬ਢದ‫ޡ‬ၸ੄Δᙟထპྎᔚ ࿇ሽᖲิऱ‫ګ‬ᑵΔ෗‫ٽ‬ሎ᠏ലਢຍԫᏆ഑‫ࠐآ‬ऱઔߒ ૹរΖ ʷȮ₇⃥ᑁࠣ ‫א֮ء‬ MatLab-Simulink-PSB ኔ෼პྎᔚ࿇ሽߓอհ ᖞ᧯ᑓীΔ‫ץ‬ਔპྎᔚᖲᑓীΕ‫ة‬጖࿇ሽᖲᑓীΕ᙮෷᧢ ངሽሁᑓীΕ૤ሉᑓীΕៀंᕴᑓীΕऴੌᢸሽᚘ൳ࠫᑓ ীΕངੌᕴ‫פ‬෷൳ࠫᑓী࿛Δࠡխ᙮෷᧢ངሽሁΕ૤ሉΕ ៀंᕴ࿛‫ױڂ‬ආ‫ش‬୚ᇘᑓীΔլ٦ᇡ૪Δࠡ‫ה‬ຝ։ঞ։૪ ‫ڕ‬ՀΖ ėɿ ᖝᷬೣᱹ঵ᑨ‫א‬ᄲ R ( Ω ) 0.17 dL (mH) 1.9 qL (mH) 1.9 p 4 λ (wb) 1.629 ߧ 2 ՗ּ/ΝԦ࿳Ӽ₇⃥ᑁࠣ ߧ 3 ᥣᅆ࿳Ӽ₇⃥ᑁࠣ 1. െᛱՀᑨᑁࠣ პྎᔚᖲᑓী‫؄طױ‬ଡ‫׌‬૞൳ࠫߓอࠐ༴૪Δ։ܑ੡ ᠏ຒ/૤ሉ൳ࠫߓอΕᄵ৫൳ࠫߓอΕඔ೯൳ࠫߓอ֗ᗏற ൳ࠫߓอΖࠡխᄵ৫൳ࠫߓอ֗ඔ೯൳ࠫߓอ‫࣍ط‬լ‫ءڇ‬ ֮൶ಘᒤ໮փΔ‫ڼڂ‬լ‫᠇ף‬૪Ζ (ԫ) ᠏ຒ/૤ሉ൳ࠫߓอᑓী ࠢীპྎᔚᖲհ᠏ຒ/૤ሉ൳ࠫᕴ (Governor) ‫ࠟڶ‬ጟ ী‫ڤ‬Δ։ܑ੡ GE Speedtronic ী‫֗ڤ‬ Woodward ী‫ڤ‬Ζ ‫֮ء‬ආছृΔ‫ڕ‬ቹ 2 ࢬ‫ق‬Δᓳᖞ z ‫ګױ‬੡ Droop ࢨ Isochronous ᑓ‫ڤ‬ሎ᠏ (1ΚDroop ModeΕ0ΚIsochronous Mode)ΔwΕxΕy ։ܑ੡ᏺટ֗Ꮖ٣Εᆵ৵ழၴൄᑇΔ ᙁԵ੡᠏ຒ/૤ሉᏁၦ֗᠏ຒ ( N )Δᙁ‫נ‬੡ᗏறᏁၦ ಛᇆ ( FDV )Ζ।ԫࢬ٨੡ 5 ຝࠢীპྎᔚᖲᑓীհ೶ ᑇΔࠡխ 1 ᇆᖲ੡‫֮ء‬ઔߒᖲิΖ (Բ) ᗏற൳ࠫߓอᑓী ࠢীᗏற൳ࠫߓอਮዌ‫ڕ‬ቹ 3 ࢬ‫ق‬Δᑓী೶ᑇ٨࣍। ԲΖ‫ط‬᠏ຒ/૤ሉ൳ࠫᕴΕᄵ৫൳ࠫᕴ֗ඔ೯൳ࠫᕴᙁ ‫נ‬հᗏறᏁၦಛᇆ‫ֺ܂‬ለΔ‫܅ط‬ଖᙇᖗၲᣂ࠷ࠡ՛ृ
  • 5. ኚṪṞŘെᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ 15 ߧ 4 ᳅ᙟࡓ঵ࣱ࿳Ӽ₇⃥ᑁࠣ ߧ 5 ဘᙟ‫ݽ‬ SPWM ʁࠡ࿳Ӽᑁࠣ ੡ᗏறᏁၦಛᇆΔֱჇ 1 ੡ Governor ࢏ᙈΔֱჇ 2 ੡ ൳ࠫᎺ೯ኪΔֱჇ 3 ੡ᗏறߓอ೯ኪΔֱჇ 4 ੡ᗏற ߓอհ‫ڃ‬඄ൄᑇΔᖞ᧯ᗏறߓอᙁ‫נ‬੡ᗏறੌၦ೯ኪ ಛᇆΰwfαΔֱჇ 5 ੡ᗏᗈᕴ࢏ᙈΔֱჇ 6 ੡௛ྎᔚ ᖲ೯ኪΔֱჇ 7 ੡௛ྎᔚᖲ᠏ఢข‫ࠤس‬ᑇΖ 2. ᖝᷬೣᱹ঵ᑨᑁࠣ ‫֮ء‬ආ‫ش‬ MatLab-Simulink-PSB ୚ᇘ‫ة‬጖‫ڤ‬࿇ሽᖲᑓ ীΔຍਢԫଡ᠏՗೶‫ە‬ၗհԲၸणኪᑓীΔ೯ኪֱ࿓‫ڕڤ‬ Հࢬ‫ق‬Δ೶ᑇঞ٨࣍।ԿΖ ሽᖲֱ࿓‫ڤ‬Κ q d q d d d d d pNi L L i L R v L i dt d +−= 1 ΰ1α q d q d q q q q q L pN pNi L L i L R v L i dt d λ −−−= 1 ΰ2α ᠏ఢֱ࿓‫ڤ‬Κ ( )1.5e q d q d qT p i L L i iλ   = + −    ΰ3α ᖲඳֱ࿓‫ڤ‬Κ ( )me TDNT J N dt d −−= 1 ΰ4α N dt d =θ ΰ5α ߧ 6 െᛱՀᑨՒ๗੘ະ 3. ᳅ᙟࡓ঵ࣱ࿳Ӽ₇⃥ᑁࠣ პྎᔚ࿇ሽߓอհऴੌᢸሽᚘ൳ࠫፖଅԺ࿇ሽᖲิ ࢨᗏறሽ‫ิۃ‬ฃ‫ڶ‬լ‫ٵ‬Δ৵ԲृՕીຟආ‫ش‬ԫ్ࣙᚘ‫ڤ‬ኲ ंᕴᓳᖞऴੌᢸሽᚘΔ‫܀‬პྎᔚ࿇ሽߓอঞലऴੌᢸሽᚘ ‫ڃ‬඄۟პྎᔚᖲհ᠏ຒ/૤ሉ൳ࠫᕴΔ‫ڕ‬ቹ 4 ࢬ‫ق‬Δ‫ط‬პྎ ᔚᖲհຒ৫൳ࠫፂ਍ऴੌᢸሽᚘհ᡹ࡳΖ 4. ဘᙟ‫ݽ‬࿳Ӽᑁࠣ ੡Ա౨൶ಘ‫ٺ‬ጟլ‫ٵ‬ᑓ‫ڤ‬հሎ᠏Δ‫֮ء‬ආ‫ش‬Հিᑓ‫ڤ‬ հ SPWM ൳ֱࠫ‫ڤ‬Δਮዌ‫ڕ‬ቹ 5 ࢬ‫ق‬Δ൳ࠫᕴᙁ‫נ‬੡ᓳ᧢ ਐᑇ m ֗ઌߡ µ Δಬ۟ SPWM ข‫س‬ᕴข‫س‬ᤛ࿇౧ंΖઌ ߡ µ ‫إڇ‬ൄणउՀਢ‫ط‬ P-f հՀি௽ࢤެࡳΔ‫܀‬ਢᅝᖲิ ‫פ‬෷ᙁ‫נ‬ሒ່ࠩՕૻࠫଖழΔ֊ང່۟Օ‫פ‬෷൳ࠫᑓ‫ڤ‬Ζ ۖᓳ᧢ਐᑇ m ‫إڇ‬ൄणउՀਢ‫ط‬ሽᚘ൳ࠫެࡳΔ‫܀‬ਢᅝᙁ ‫נ‬ሽੌሒ່ࠩՕૻࠫଖழΔ֊ང່۟Օሽੌ൳ࠫᑓ‫ڤ‬Ζ ຍጟངੌᕴ൳ࠫᑓ‫ྤڤ‬ᓵਢ‫ڇ‬ᖲิࠓᜤሽጻࢨਢ‫ڍ‬ ᖲյᜤຟࠠ‫۞ڶ‬೯‫ޡٵ‬ऱ‫פ‬౨Δ‫ڂ‬੡ SPWM ข‫س‬ᕴข‫س‬հ ‫࢐إ‬ᓳ᧢ಛᇆ‫ڕ‬Հࢬ‫ق‬Δ ( )[ ]tmvm µsin×= ΰ6α ᅝࠟᖲࠀᜤሎ᠏ழΔ‫ޢ‬ԫᖲิࠉࠡՀি௽ࢤ։಻૤ ሉΔૉԫᖲิհ᙮෷೏࣍‫׼‬ԫᖲิΔࠡጤሽᚘઌߡ஁ᏺՕΔ ᄎࠌᖲิ‫פ‬෷ᙁ‫נ‬ᏺՕΔ‫ڕ‬Հࢬ‫ق‬Δΰ೗๻ EΕV ੡ࠟጤሽ ᚘΔ Eµ Ε Vµ ੡ࠟጤሽᚘઌߡΔX ੡ࠟጤၴհሽ‫ݼ‬α [ ]VE X EV P µµ −= sin ΰ7α ࠉᖕՀি௽ࢤΔ‫ڼ‬ലࠌ᙮෷૾‫܅‬Δ‫ࠟڼڂ‬ᖲല۞೯‫ٵ‬ ‫ޡ‬Ζ‫ٵ‬ᑌऱΔ‫ڇ‬ᖲิࠓᜤሽጻழΔᖲิᄎ۞೯ፖሽጻ‫ޡٵ‬Δ ‫ڍڇ‬ᖲյᜤழΔᖲิၴՈᄎ۞೯‫ޡٵ‬Ζ ɿȮ‫ו‬՗ᑁೣ՗ဘՒ๗ᑁბӠኔ 1.5 1 0.5 0 1.5 1 0.5 0 1.5 1 0.5 0 0.5 1 0.98 0.96 0.94 time-sec time-sec time-sec time-sec 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 FuelDemandTurbineTorque FuelFlowSpeed
  • 6. 16 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺ 1500 1000 500 0 -500 2000 1000 0 -1000 -2000 1000 500 0 -500 -1000 1.4 1.2 1 0.8 0.6 0.4 time-sec time-sec time-sec time-sec 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 time-sec time-sec time-sec time-sec 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 VdcVab(load) Vab(inverter)Modulaton-Index 3 2 1 0 -1 -2 -3 3 2 1 0 -1 2 1 0 -1 -2 1.02 1.015 1.01 1.005 1 0.995 Ia-pu Speed-pu Va-puElectricPower-pu 1 0.5 0 -0.5 -1 lnput : Signal numbert : Start time [s] : Number of cycles : Fundamental frequency [Hz] : Max Frequency [Hz] : Frequency axis : Display style : 0.2 0.2002 0.2004 0.2006 0.2008 0.201 0.2012 0.2014 0.2016 Time (s) Fundamental (1200Hz) = 0.6556 , THD = 16.67% FFT window: 2 of 1800 cycles of selected signal 0 1 2 3 4 5 6 7 15 10 5 0 Mag(%ofFundamental) Frequency (Hz) X 10 4 0.4 0.2 0 -0.2 -0.4 lnput : Signal numbert : Start time [s] : Number of cycles : Fundamental frequency [Hz] : Max Frequency [Hz] : Frequency axis : Display style : 1.2 1.2002 1.2004 1.2006 1.2008 1.201 1.2012 1.2014 1.2016 Time (s) Fundamental (1200Hz) = 0.3047 , THD = 22.23% FFT window: 2 of 1800 cycles of selected signal 0 1 2 3 4 5 6 7 20 15 10 5 0 Mag(%ofFundamental) Frequency (Hz) X 10 4 iso_fixfreq_scope2 la 1 0.2 2 Display FFT window 1200 70000 Hertz Bar(relativetoFund.orDC) Display Close iso_fixfreq_scope2 la 1 1.2 2 Display FFT window 1200 70000 Hertz Bar(relativetoFund.orDC) Display Close Structure : Structure : ߧ 7 ગ஌‫ו‬՗ᑁೣʠ₇⃥ከᐉ ߧ 8 ગ஌ᑁೣΝԦӡဘᆹʠՒ๗੘ະŘ(a) ဘᙟ‫ݽ‬ ϳȮ(b) ᱹ঵ᑨϳ 1. െᛱՀᑨՒ๗੘ະ პྎᔚᖲ೯ኪᑓী‫ط‬᠏ຒ/૤ሉ൳ࠫߓอፖᗏற൳ࠫ ߓอᑓীᖞ‫ګۖٽ‬Δ‫ף‬Ղ૤ሉ‫ױܛ‬൶ಘࠡ೯ኪ᥼Δ೯ኪֱ ࿓‫ڕڤ‬ՀΚ ( ) DNPP dt dN H elecmech +−=2 ΰ8α ࠡխ H ੡᠏՗ክၦൄᑇΰ௛ྎᔚᖲΕ࿇ሽᖲ֗ᚘᜍᖲ հ᜔‫ٽ‬αΕD ੡ॴ‫؍‬এᑇΔN ੡᠏ຒΔ mechP ֗ elecP ։ܑ੡ პྎᔚᖲᙁ‫נ‬ᖲඳ‫פ‬෷֗࿇ሽᖲᙁ‫נ‬ሽ‫פ‬෷Ζ ‫ء‬ઔߒᖲิ H ੡ 8.22 sΕD ੡ 0.1 N-m-s/radΔᑓᚵழ ೗๻ 0 ઞழ‫ף‬Ե໢‫ޡۯ‬ၸ૤ሉሽ‫פ‬෷Δ15 ઞழ૤ሉ૾੡ 0.5 puΖቹ 6 ੡೯ኪᑓᚵ࿨࣠ΔփܶᗏறᏁၦΕᗏறੌၦΕྎ ᔚᖲ᠏ఢ֗᠏ຒΔ‫ط‬ቹ‫ױ‬वΔ᡹ࡳழၴપᏁ 5 ઞؐ‫׳‬Ζ 2. ગ஌‫ו‬՗ᑁೣՒ๗੘ະ ቹ 7 ੡൶ಘპྎᔚ࿇ሽᖲࡰ୾ሎ᠏հਮዌቹΔ250 kVA/1200 Hz პྎᔚ࿇ሽᖲิᙁ‫נ‬ᆖᖞੌΕៀं৵ಬԵ ߧ 9 ᱹ঵ᑨ঵ᙟᘘഐ‫̢ંד‬Ř(a) ֲԦԊȮ(b) ֲԦര ߧ 10 ࿳Ӽ‫ݽ‬ʠ MatLab-Simulink-PSB Ễೣ IGBT ิ‫ګ‬հངੌᕴΔངੌᕴࡐࡳ‫א‬ 50 Hz ሎ᠏Δ‫ط‬ሽᚘᓳ ᖞᕴ൳ࠫ‫ڇ‬ 380 V ‫ۯ‬ᄷΔᙁ‫נ‬ᆖ LC ሽሁៀൾ೏᙮եឫΔ ࠎᚨࠟಱሁ‫ٺ‬ 100 kW հ૤ሉΔࠡխԫಱሁ‫ط‬ឰሁᕴ൳ࠫΔ ‫ڇ‬ 0.3 ઞழല 100 kW ૤ሉ࠵ೈΔ‫א‬ᑓᚵ૤ሉ᧢೯հ೯ኪ᥼ ᚨΖ ࡰ୾ᑓ‫ڤ‬૤ሉ֊ངழհ೯ኪ᥼ᚨ‫ڕ‬ቹ 8 ࢬ‫ق‬Δ(a)੡ང ੌᕴೡհ᥼ᚨ (‫ܶץ‬ऴੌᢸሽᚘΕངੌᕴᙁ‫נ‬ᒵሽᚘΕ૤ ሉሽᚘ֗ PWM հᓳ᧢ਐᑇ)Δ(b)ঞ੡࿇ሽᖲհ᥼ᚨ (‫ܶץ‬ A ઌሽੌፖሽᚘΕ᠏ຒ֗ሽ‫פ‬෷)Δ‫ط‬ቹ‫ױ‬वΔሽߓอհ᥼ ᚨॺൄ‫ݶ‬ຒΔ᡹ࡳழၴ᎛᎛՛࣍ᖲඳߓอΔ‫ڼڂ‬Δ‫ڇ‬൶ಘ პྎᔚ࿇ሽᖲࡰ୾ሎ᠏೯ኪ᥼ᚨழΔ࢙ฃპྎᔚᖲհ೯ኪ ਢ‫ٽ‬෻ऱΖ ‫ྎ࣍ط‬ᔚᖲ᥼ᚨለኬΔ‫ط‬ቹ‫ױ‬઎‫נ‬Δ‫࠵ڇ‬ሉழΔऴੌ ሽᚘ‫ۯ‬ᄷ‫༼ؘ‬೏‫א‬ᇖᚍᖲሽ౨ၦհؓᘝΔՈ‫ڼڂ‬ངੌᕴᙁ 1 3 3 Pe f(u) p2f Vabc (pu) Freq Freq wt sin_cos 2 0 abc sin_cos abc_to_dq0 Transformation Vd_ref (pu) Vq_ref (pu) Selector Vd Vq P1 Discrete P1 Controller Vd Vq inverter 0 VO 1 2 m Vabc_inv hypot modulation index dqo sin_cos abc Dq0_to_abc Transformation
  • 7. ኚṪṞŘെᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ 17 1500 1000 500 0 1500 1000 500 0 2000 1000 0 -1000 -2000 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 VdcVab(load) Vab(inverter) ModulationIndex 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 4 2 0 -2 -4 1.02 1 0.98 Ia-puSpeed-pu 4 2 0 -2 -4 Va-pu 4 3 2 1 0 -1 ElectricPower-pu time-sec time-sec time-sec time-sec time-sec time-sec time-sec time-sec 52 51.5 51 50.5 50 49.5 49 48.5 48 Frequency-Hz 0 0.5 1 1.5 2 2.5 time-sec 4 3 2 1 0 -1 ElectricPower-pu 0 0.5 1 1.5 2 2.5 52 51 50 49 48 Frequency-Hz 0 0.5 1 1.5 2 2.5 time-sec time-sec ߧ 11 ગ஌/ʏ⊓‫ו‬՗ᑁೣ՗ဘʠ₇⃥ከᐉ ߧ 12 ગ஌/ʏ⊓‫ו‬՗ᑁೣ՗ဘʠ MatLab-Simulink- PSB Ễೣ ߧ 13 ગ஌/঵ℐʏ⊓ᑁೣ՗ဘᆹʠՒ๗੘ະŘ(a) ဘ ᙟ‫ݽ‬ϳȮ(b) ᱹ঵ᑨϳ ‫נ‬ሽᚘ‫ۯ‬ᄷՈᇿထ༼೏Δ‫ڼ܀‬ழሽᚘᓳᖞᕴലᓳ᧢‫ڂ‬ᑇ‫ط‬ 0.82 ᓳ૾੡ 0.62Δࠌ૤ሉሽᚘԫऴፂ਍᡹ࡳΔ࿇ሽᖲֱ૿ ঞ‫ط‬ሽ‫פ‬෷᥼ᚨ‫ױ‬઎‫נ‬Δ‫ڇ‬༓‫׏‬՛࣍ 0.1 ઞփ‫ط‬ 0.8 pu ૾ ۟ 0.6 pu ֘ᚨ૤ሉհ‫᧢ޏ‬Δ‫᧩ྤࠀ׊‬ထऱᑉኪឫ೯ข‫س‬Ζ ߧ 14 ગ஌/঵ℐʏ⊓ᑁೣ՗ဘᆹᱹ঵ᑨ⃅ં᪓Ւ๗੘ະ ߧ 15 ᅠ 32 ಙ᳈ȁదᨊᗼʁʠ੘ະ ቹ 9(a)Ε(b)ၞԫ‫࠵ق᧩ޡ‬ೈ૤ሉছ৵հ࿇ሽᖲሽੌं ‫֗ݮ‬᙮ᢜ։ؒΔଖ൓ࣹრऱਢΔ࠵ሉ৵հ᜔ሽੌᘫंեឫ ੡ 22.23 %Δۖ࠵ሉছ੡ 16.67 %Δ᧩ྥ࿇ሽᖲ᎘ሉֺૹሉ ࢭ࠹‫ޓ‬ᣤૹऱᘫंեឫΔຍፖᑵवऱࡰ୾ሎ᠏լᔞ‫܂ٽ‬ຝ ։૤ሉሎ᠏෼ွ‫ٽܭ‬Ζ 3. ગ஌/঵ℐʏ⊓‫ו‬՗ᑁೣ՗ဘ ‫ڇ‬൶ಘპྎᔚ࿇ሽᖲࡰ୾/ሽጻࠀᜤሎ᠏ᑓ‫ڤ‬᠏ང ழΔངੌᕴආ‫ش‬Հি൳ࠫᑓ‫ڤ‬Δྤሉ᙮෷ (f0) ๻੡ 1.04 puΔՀি෷ (D) ๻੡ 0.04Δሽᚘ൳ࠫᕴհֺࠏൄᑇ ( pk ) ๻ ੡ 0.4 Ε ᗨ ։ ൄ ᑇ ( ik ) ๻ ੡ 500 Δ ‫א‬ MatLab-Simulink-PSB ኔ෼հ൳ࠫᕴ‫ڕ‬ቹ 10 ࢬ‫ق‬Ζߓอਮ ዌঞ‫ڇ‬૤ሉጤฃ‫܂‬ଥ‫ޏ‬Δ଺‫ء‬ᆖឰሁᕴࢬ൷հ૤ሉ‫ޏ‬੡ຑ ൷ԫຝ 250 kVAΕ380 V/25 kV ᧢ᚘᕴΔᆖឰሁᕴຑ۟ 10 MVA/25 kV/50 Hz ሽጻΔ‫ڕ‬ቹ 11 ࢬ‫ق‬Δࠡ MatLab- Simulink-PSB ࿓‫ڕڤ‬ቹ 12 ࢬ‫ق‬Ζᑓᚵழឰሁᕴ٣অ਍ၲሁ ࠌᖲิᗑ‫م‬᡹ࡳࠎᚨ 100 kW ૤ሉΔ0.3 ઞழឰሁᕴ‫ދ‬ԵΔ ࠌᖲิፖሽጻࠀᜤሎ᠏Δ2 ઞழឰሁᕴ٦ሂๅΔᖲิ਀༚ ࡰ୾ሎ᠏Ζ ቹ 13 ᧩‫ࠀ/୾ࡰق‬ᜤሎ᠏ᑓ‫ڤ‬᠏ངհ೯ኪΔ(a) ੡ང ੌᕴೡհ᥼ᚨΔሎ᠏ᑓ‫֊ڤ‬ངழऴੌሽᚘᑉኪડ૾۟પ 300 VΔ᠏ངཚၴ PWM հᓳ᧢‫ڂ‬ᑇՂ່֒۟ՕૻࠫଖΔ‫ڂ‬ ‫᥼ࠌڼ‬ᚨழၴࢮऱֺለ९Δ(b) ੡࿇ሽᖲհ᥼ᚨΔ‫֊ڇ‬ང
  • 8. 18 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺ MTG1 REC INV Filter 100kW MTG2 380V TR 25kV CBK CBK Grid REC INV Filter 100kW 380V TR 25kV CBK 52 51 50 49 48 2 1.5 1 0.5 0 Frequency-Hz time-sec ElectricPower-pu 0 0.5 1 1.5 2 2.5 time-sec 0 0.5 1 1.5 2 2.5 52 51 50 49 48 2 1.5 1 0.5 0 Frequency-Hz time-sec ElectricPower-pu 0 0.5 1 1.5 2 2.5 time-sec 0 0.5 1 1.5 2 2.5 ė߈ ʃ‫׺‬᳈ȁదʠᕗԡ ઌߡ஁(৫) 72 32 peakP (pu) 2.05 1.5 maxf∆ (Hz) 1.2 0.9 ழ࿇ሽᖲᑉኪሽੌપሒ 3 pu ୽ଖΔᑉኪឫ೯ሽ‫פ‬෷પሒ 2 pu ୽ኙ୽ଖΔឫ೯Օ՛પፖႚอ‫ޡٵ‬࿇ሽᖲิᔡ࠹໢ઌ൷ ‫چ‬ਚᎽ‫ٵ‬࿛్Δ᧩ߠ‫୾ࡰط‬ᑓ‫ڤ‬᠏ང੡ሽጻࠀᜤᑓ‫ڤ‬ኙპ ྎᔚ࿇ሽᖲิข‫ॺس‬ൄՕऱᓢᚰΔ‫ڼڂ‬ᚨ‫/୾ࡰ࣍ش‬ሽጻࠀ ᜤᑓ‫ڤ‬հᖲิ‫ؘ‬ႊֺ໢ొ‫୾ࡰ܂‬ᑓ‫ڤ‬ሎ᠏հᖲิࠠ‫ޓڶ‬Օ ऱឫ೯୲‫ݴ‬౨Ժ๻ૠΖቹ 14 ঞ੡᙮෷᥼ᚨΔ‫ط‬ቹ‫ױ‬वΔང ੌᕴၲࡨழ‫א‬ 50.6 Hz ሎ᠏Δ֊ངழ᙮෷ડ૾۟ 49.4 HzΔ հ৵પक़၄ 1.2 ઞթ᡹ࡳ࣍ 50 Hz ፖሽጻ‫ޡٵ‬Δ‫܀‬ᅝ٦‫ڻ‬ ᗑ‫م‬ሎ᠏ழΔ᙮෷༓‫਀ࠥم׏‬༚᡹ࡳΖ ࠃኔՂΔࠀᜤข‫س‬ऱᓢᚰፖࠀᜤᛳၴհሽᚘઌߡ஁‫ڶ‬ ᣂΔՂ૪ᑓᚵ੡ 72 ৫ሽᚘઌߡ஁հणउΔૉઌߡ஁ଥ‫ޏ‬੡ 32 ৫Δঞ࿇ሽᖲሽ‫פ‬෷֗ངੌᕴᙁ‫נ‬᙮෷‫ڕ‬ቹ 15 ࢬ‫ق‬Δ ‫ط‬ቹ‫ױ‬वΔࠀᜤข‫س‬ऱᓢᚰ᧢൓ֺለᒷࡉΖ।؄ঞലࠟጟ णउհ࿇ሽᖲᑉኪឫ೯ሽ‫פ‬෷୽ଖ ( peakP ) ֗ངੌᕴᙁ ‫נ‬᙮෷່Օ‫᧢ޏ‬ၦ ( maxf∆ ) ٨।ֺለΔ‫ط‬।‫ױ‬वΔᑉኪឫ ೯ሽ‫פ‬෷୽ଖ‫ڶ‬ 25 %հ஁ฆΖ 4. ગ஌/঵ℐʏ⊓/घᑨ‫ו‬՗ᑁೣ՗ဘ ੡൶ಘࡰ୾/ሽጻࠀᜤ/‫ڍ‬ᖲሎ᠏ᑓ‫ڤ‬հ᠏ང೯ኪΔߓ อਮዌԾฃ‫ޏޓ܂‬Δ‫ڕ‬ቹ 16 ࢬ‫ق‬Δೈ଺ࠐհ࿇ሽᖲิ؆Δ ߓอ٦‫ף‬Ե‫׼‬ԫຝઌ‫ٵ‬ਮዌհᖲิΔࠟຝᖲิᆖឰሁᕴຑ ൷۟ሽጻΖᄅᖲิՈ‫܂‬Հি൳ࠫΔࠡྤሉ᙮෷๻੡ 1.02 puΔՀি෷๻੡ 0.04Ζᑓᚵழࠟຝᖲิ‫٣۞ٺ‬᡹ࡳᗑ‫م‬ሎ ᠏Δ0.2 ઞழࠟᖲຟᆖ‫ط‬ឰሁᕴ‫ދ‬Եፖሽጻࠀᜤሎ᠏Δ1.1 ઞழሽጻᆖឰሁᕴሂๅΔࠌߓอ᧢‫ࠟګ‬ᖲࠀᜤሎ᠏ਮዌΖ ቹ 17(a)Ε(b) ։ܑ᧩‫ࠟق‬ຝᖲิհ᙮෷֗ሽ‫פ‬෷᥼ ᚨΔ࿇ሽᖲิ MTG1 ၲࡨழࠎᚨ 0.6 pu ‫פ‬෷Δࠀ‫א‬ 50.4 Hz ሎ᠏Δࠀᜤ۟ሽᄭ৵Δࠎᚨ‫פ‬෷༼೏۟ 1 puΔ‫׊‬᙮෷۞೯ ፖሽᄭ‫ޡٵ‬੡ 50 HzΔᅝ᧢‫ࠟګ‬ᖲࠀᜤΔᆖࠟᖲิ‫פ‬෷։ ಻৵᙮෷᡹ࡳ࣍ 50.3 HzΔ࿇ሽᖲิ MTG2 ঞၲࡨ‫א‬ 50.2 Hz ሎ᠏Δࠀᜤ۟ሽᄭ৵᙮෷‫ٵ‬ᑌፖሽᄭ‫ޡٵ‬੡ 50 HzΔ֊ ང‫ࠟګ‬ᖲࠀᜤ৵ঞ‫ٵ‬ᑌ᡹ࡳ࣍ 50.3 HzΖլᓵࡰ୾ᑓ‫ڤ‬᠏ང ੡ሽጻࠀᜤᑓ‫ࢨڤ‬ሽጻࠀᜤᑓ‫ڤ‬᠏ང੡‫ڍ‬ᖲᑓ‫ڤ‬Δ᠏ང᡹ ࡳழၴຟՕપ‫ڇ‬ 2 ઞ‫א‬փΖ ௽ܑଖ൓ࣹრऱਢࠟຝ࿇ሽᖲิհሽ‫פ‬෷Δৰ୲࣐‫ױ‬ ࿇෼ࠡᑉኪ୽ኙ୽ଖ᎛Օ࣍ 2 puΔ᧩‫ق‬ᅝࠟຝ࿇ሽᖲิ‫ٵ‬ ழࠓᜤሽጻழΔኙᖲิທ‫ګ‬հᓢᚰ᎛ֺ໢ᖲࠓᜤሽጻழՕ ৰ‫ڍ‬Δᓢᚰ࿓৫լ՛࣍ႚอ‫ޡٵ‬࿇ሽᖲิᔡ࠹Կઌ൷‫چ‬ਚ Ꮍհणउΰီൣउۖࡳપ 3 pu~6 pu ୽ኙ୽ଖαΔ᧩‫ق‬ᚨ‫ش‬ ࣍‫ڍ‬ᖲ/ሽጻࠀᜤᑓ‫ڤ‬հᖲิ‫ؘ‬ႊ‫່ڶ‬Օऱᓢᚰ୲‫ݴ‬౨Ժ հ๻ૠΖ ߧ 16 ગ஌/঵ℐʏ⊓/घᑨ‫ו‬՗ᑁೣ՗ဘʠ₇⃥ከᐉ ߧ 17 ᱹ঵ᑨ⃅ʠં᪓‫ד‬঵Լ᪓੘ະŘ(a) MTG1Ȯ(b) MTG2 ߈Ȯȭʴ⎞⃌ʴ ੡Ա౨ଫࠠࡰ୾Εሽጻࠀᜤ֗‫ڍ‬ᖲ࿛ᑓ‫ڤ‬հሎ᠏౨ ԺΔპྎᔚ࿇ሽᖲิ‫א‬ P-f Հিᑓ‫ڤ‬൳ࠫਢለࠋऱᙇᖗΔ ‫ܛ֮ء‬ኙຍጟᣊীऱპྎᔚ࿇ሽᖲิհሎ᠏ᑓ‫ڤ‬᠏ང‫܂‬೯ ኪᑓᚵ։࣫Δ࿨࣠‫ڶ‬Հ٨༓រଖ൓ࣹრΚ 1. პྎᔚᖲ֘ᚨ૤ሉ‫᧢ޏ‬પᏁ 5 ઞհ᡹ࡳழၴΔۖངੌᕴ ঞ༓‫׏‬ᛳၴ‫ګݙ‬Δ‫ڇڼڂ‬൶ಘངੌᕴೡհሽԺߓอᑉኪ ᥼ᚨழΔ࢙ฃპྎᔚᖲ֘ᚨਢ‫ױ‬൷࠹ऱΖ 2. ‫ط‬ሽጻࠀᜤᑓ‫ڍࢨڤ‬ᖲᑓ‫ڤ‬᠏ང‫୾ࡰڃ‬ᑓ‫ڤ‬༓‫׏‬ᛳၴ‫ݙ‬ ‫ګ‬Δ‫୾ࡰط܀‬ᑓ‫ڤ‬᠏ང੡ሽጻࠀᜤᑓ‫طࢨڤ‬ሽጻࠀᜤᑓ ‫ڤ‬᠏ང੡‫ڍ‬ᖲᑓ‫ڤ‬Δ᠏ང᡹ࡳழၴঞຟપ‫ڇ‬ 1~2 ઞΔ‫ڼ‬ ፖპྎᔚᖲ֘ᚨழၴઌֺࠀ‫᧩ࣔآ‬ऱ՛Δ‫ڇڼڂ‬൶ಘሎ ᠏ᑓ‫ڤ‬᠏ངழΔ౨‫࢙ܡ‬ฃპྎᔚᖲ֘ᚨଶ‫ڇړ‬ᢰ੺រՂΖ
  • 9. ኚṪṞŘെᛱՀᱹ঵ᑨ‫ו‬՗ᑁೣ՗ဘʠՒ๗ᑁბ 19 3. ԫ౳ভᎁპྎᔚ࿇ሽᖲิհངੌᕴࠠ‫ॺڶ‬ൄ‫ݶ‬ຒऱଯ࿨ (Blocking) ᤛ࿇౨ԺΔ‫ڇ‬ᖲิᔡ࠹ᒵሁ൷‫چ‬ਚᎽழ౨Օ ༏‫ࠫލ‬ᑉኪ‫פ‬෷ឫ೯Δ‫ڼڂ‬ᖲิ౨‫א‬ለ‫܅‬ऱൎ৫ࠐ๻ ૠΖ௅ᖕ‫ء‬ᑓᚵ࿨࣠Δຍԫរ‫ࠀ׏ۿ‬լ‫إ٤ݙ‬ᒔΔ‫ࡰڇ‬ ୾ሎ᠏ᑓ‫ڤ‬Հ૤ሉ֊ངᒔኔլᄎኙპྎᔚ࿇ሽᖲิທ‫ګ‬ ᧩ထऱᑉኪ‫פ‬෷ឫ೯Δ‫܀‬໢ԫᖲิ‫୾ࡰط‬ᑓ‫ڤ‬᠏ང੡ሽ ጻࠀᜤᑓ‫ڤ‬ழথᄎኙᖲิข‫ॺس‬ൄՕऱឫ೯Δۖࠟຝᖲ ิ‫ٵ‬ழࠓᜤሽጻழΔኙᖲิທ‫ګ‬հᓢᚰ‫ޓ‬ՕΔᓢᚰ࿓৫ լ՛࣍ႚอ‫ޡٵ‬࿇ሽᖲิᔡ࠹Կઌ൷‫چ‬ਚᎽհणउΰࠃ ኔՂᓢᚰ࿓৫ႊီࠓᜤᛳၴհઌߡ஁ۖࡳαΔ‫ڶࠠڼڂ‬ ᑓ‫ڤ‬᠏ང‫פ‬౨հᖲิ‫ؘ‬ႊֺྤ‫פڼ‬౨հᖲิࠠ‫ޓڶ‬Օऱ ᓢᚰ୲‫ݴ‬౨Ժ๻ૠΰࠏ‫ޓڕ‬ൎႇऱᖲඳൎ৫αΔࠀॺࢬ ‫ڶ‬ᖲীհპྎᔚ࿇ሽᖲิຟ౨‫א‬ለ‫܅‬ऱൎ৫ࠐ๻ૠΖ Ὢ⚦€೧ D ॴ‫؍‬এᑇ E ಬሽጤሽᚘ H ክၦൄᑇ di ऴၗሽੌ qi ٌၗሽੌ J ክၦ dL ऴၗሽტ qL ٌၗሽტ m ᓳ᧢ਐᑇ N ᠏՗᠏ຒ p ᄕኙ elecP ሽ‫פ‬෷ mechP ᖲඳ‫פ‬෷ R ࡳ՗ሽॴ eT ሽ጖᠏ఢ mT ᖲඳ᠏ఢ dv ऴၗሽᚘ qv ٌၗሽᚘ V ࠹ሽጤሽᚘ X ሽ‫ݼ‬ θ ᠏՗ߡ৫ λ ጖ຏ µ ઌߡ Eµ ಬሽጤઌߡ Vµ ࠹ሽጤઌߡ ‫≙א‬ᄽ᪇ 1. Lasseter, R., “Dynamic Models for Micro-turbine and Fuel Cells,” Power Engineering Society Summer Meeting, IEEE, Vol. 2, pp. 761-766 (2001). 2. Nagpal, M., Moshref, A., Morison, G. K., and Kundur, P., “Experience with Testing and Modeling of Gas Turbines,” Power Engineering Society Winter Meeting, IEEE, Vol. 2, pp. 652-656 (2001). 3. Cano, A., Jurado, F., and Carpio, J., “Modelling of Power Plants Based on Gasifier/Gas Turbine Technologies,” Africon Conference in Africa, IEEE, Vol. 2, pp. 797-802 (2002). 4. Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies, “Dynamic Models for Combined Cycle Plants in Power System Studies,” IEEE Trans. Power Systems, Vol. 9, No. 3, pp. 1698-1708 (1994). 5. Hannett, L. N., Jee, G., and Fardanesh, B., “A Governor/Turbine Model for a Twin-shaft Combustion Turbine,” IEEE Trans. Power Systems, Vol. 10, No. 1, pp. 133-140 (1995). 6. Zhang, Q., and So, P. L., “Dynamic Modeling of a Combined Cycle Plant for Power System Stability Studies,” Power Engineering Society Winter Meeting, IEEE, Vol. 2, pp. 1538-1543 (2000). 7. Banetta, S., Ippolito, M., Poli, D., and Possenti, A., “A Model of Cogeneration Plants Based on Small-size Gas Turbines,” International Conference and Exhibition on Electricity Distribution, CIRED, Vol. 4, pp. 4-21 (2001). 8. Jurado, F., Ortega, M., and Acero, N., “Enhancing the Electrical Performance of a Micro-turbine Using a Genetic Fuzzy Controller,” Electric Machines and Drives Conference, IEEE, Vol. 3, pp. 1748-1754 (2003). 9. Fethi, O., Dessaint, L. A., and Al-Haddad, K., “Modeling and Simulation of the Electric Part of a Grid Connected Microturbine,” Power Engineering Society General Meeting, IEEE, Vol. 2, pp. 2212-2219 (2004). 10. Guda, S. R., Wang, C., and Nehrir, M. H., “A Simulink-based Microturbine Model for Distributed Generation Studies,” Proceedings of the 37th Annual North American Power Symposium, pp. 269-274 (2005). 11. Gaonkar, D. N., Patel, R. N., and Pillai, G. N., “Dynamic Model of Microturbine Generation System for Grid Connected/Islanding Operation,” International Conference
  • 10. 20 ༬ċણӤ Ὦʷ֓ɿֱ Ὦɺቅ ᖁߡʪ֓ɼ౺ on Industrial Technology (ICIT 2006), IEEE, pp. 305-310 (2006). 12. Etezadi, M., and Choma, K., “Harmonic Characteristics of a new 30 kW Microturbine Generator,” Harmonics and Quality of Power, IEEE, Vol. 3, pp. 816-820 (2000). 13. Amorim, A., Cardoso, A. L., Oyarzabal, J., and Melo, N., “Analysis of the Connection of a Microturbine to a Low Voltage Grid,” International Conference on Future Power Systems, pp. 1-5 (2005). 14. Suter, M., “Active Filter for a Microturbine,” Telecommunication Energy Conference, IEE, Vol. 484, pp. 162-165 (2001). 15. Zhang, K., and Chang, L., “Harmonic Current Reduction for a PWM Rectifier with Very Low Carrier Ratio in a Microturbine System,” Canadian Conference on Electrical and Computer Engineering, pp. 587-590 (2005). 16. Chen, Z., and Spooner, E., “Wind Turbine Power Converters: A Comparative Study,” Power Electronics and Variable Speed Drives Conference, IEE, Vol. 456, pp. 471-476 (1998). 17. Mollerstedt, E., and Stothert, A., “A Model of a Microturbine Line-side Converter,” International Conference on Power System Technology, IEEE, Vol. 2, pp. 909-914 (2000). 18. Hofmeester, N. H. M., and Polinder, H., “Modelling and Control of a Cycloconverter with Permanent Magnet Generator,” European Conference on Power Electronics and Applications, European Power Electronics Association, Vol. 4, pp. 382-387 (1993). 19. Vickers, S. L., Al Zahawi, B. A. T., and Shuttleworth, R., “Matrix Converter Application for Direct-drive Gas Turbine Generator Sets,” Power Electronics and Variable Speed Drives Conference, IEE, Vol. 429, pp. 103-107 (1996). 20. Illindala, M., and Venkataramanan, G., “Control of Distribution Generation System to Mitigate Load and Line Imbalance,” Power Electronics Specialists Conference, IEEE, Vol. 4, pp. 2013-2018 (2002). 21. Barsali, S., Ceraolo, M., Pelacchi, P., and Poli, D., “Control Techniques of Dispersed Generators to Improve the Continuity of Electricity Supply,” Power Engineering Society Winter Meeting, IEEE, Vol. 2, pp. 789-794 (2002). 22. Colson, C. M., Wang, C., Nehrir, M. H., Guda, S. R., and Li, J., “Stand-alone Hybrid Wind-Microturbine Distributed Generation System: A Case Study,” Proceedings of the 39th North American Power Symposium (NAPS '07), pp. 337-341 (2007). 23. Al-Hinai, A., Sedhisigarchi, K., and Feliachi, A., “Stability Enhancement of a Distribution Network Comprising a Fuel Cell and a Microturbine,” Power Engineering Society General Meeting, IEEE, Vol. 2, pp. 2156-2161 (2004). 24. Jurado, F., and Jose, R. S., “Adaptive Control of a Fuel Cell-Microturbine Hybrid Power Plant,” IEEE Trans. Energy Conversion, Vol. 18, No. 2, pp. 342-347 (2003). 2007 ‫ڣ‬ 03 ִ 01 ֲ ‫گ‬ᒚ 2007 ‫ڣ‬ 04 ִ 02 ֲ ॣᐉ 2008 ‫ڣ‬ 03 ִ 04 ֲ ᓤᐉ 2008 ‫ڣ‬ 03 ִ 06 ֲ ൷࠹