SlideShare uma empresa Scribd logo
1 de 45
Baixar para ler offline
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Query Answering in Probabilistic Datalog+/–
Ontologies under Group Preferences
Thomas Lukasiewicz, Maria Vanina Martinez,
Gerardo I. Simari, and Oana Tifrea-Marciuska
Department of Computer Science, University of Oxford, UK
July 5, 2013
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 1 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Introduction
Datalog+/–
Databases and Queries
The Chase
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 2 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Motivation
◮ Web → Social Semantic Web
◮ model group of users (e.g., movie night, trip) that can handle
◮ qualitative preferences of users
◮ disagreement between users
◮ efficiency



◮ model uncertainty (e.g., information integration from travel sites)
◮ Desire: ontology language that handles preferences of a group of
users and can handle uncertainty
1
1image source: www.boundless.com
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 3 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Motivation
◮ Web → Social Semantic Web
◮ model group of users (e.g., movie night, trip) that can handle
◮ qualitative preferences of users
◮ disagreement between users
◮ efficiency



our previous work in SUM2013
◮ model uncertainty (e.g., information integration from travel sites)
◮ Desire: ontology language that handles preferences of a group of
users and can handle uncertainty
1
1image source: www.boundless.com
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 3 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
Datalog+/– (1/3)
◮ A database (instance) D for R is a (possibly infinite) set of atoms
with predicates from a finite set of predicate symbols R and
arguments from a set of data constants ∆.
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2),
museum(m1), museum(m2), park(p1), free entrance(p1)}.
◮ A conjunctive query (CQ) over R has the form Q(X) = ∃Y Φ(X, Y),
where Φ(X, Y) is a conjunction of atoms
Q(X) = park(X) ∧ free entrance(X).
◮ A Boolean CQ (BCQ) over R is a CQ of the form Q(), often written
as the set of all its atoms, without quantifiers.
Q() = ∃Xpark(X) ∧ free entrance(X).
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 4 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
Datalog+/– (2/3)
◮ Answers to CQs and BCQs are defined via homomorphisms, which
are mappings µ: ∆ ∪ ∆N ∪ V → ∆ ∪ ∆N ∪ V such that
1. c ∈ ∆ (set of constants) implies µ(c) = c,
2. c ∈ ∆N (set of labelled nulls) implies µ(c) ∈ ∆ ∪ ∆N ,
3. µ is naturally extended to atomic formula, sets of atomic formulas,
and conjunctions of atomic formulas.
◮ The set of all answers Q(D) is the set of all tuples t over a set of
data constants s.t. ∃µ µ: X ∪ Y → ∆ ∪ ∆N s.t. µ(Φ(X, Y)) ⊆ D and
µ(X) = t.
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2),
museum(m1), museum(m2), park(p1), free entrance(p1)}.
For Q(X) = park(X) ∧ free entrance(X)
the set of all answers over D is Q(D) = {p1}.
For Q() = ∃Xpark(X) ∧ free entrance(X)
the answer is YES.
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 5 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
Datalog+/– (3/3)
◮ Tuple-generating dependency (TGD): constraint of the form
∀X∀Y Φ(X, Y) → ∃Z Ψ(X, Z), where Φ(X, Y) and Ψ(X, Z) are
conjunctions of atoms over a set of predicates R, called the body
and the head, respectively.
museum(X) → SS(X)
◮ For a database D for R, and a set of TGDs Σ on R, the set of
models of D and Σ, denoted mods(D, Σ), is the set of all (possibly
infinite) databases B such that
◮ D ⊆ B and
◮ every σ ∈ Σ is satisfied in B.
◮ The set of answers for a CQ Q to D and Σ, denoted ans(Q, D, Σ),
is the set of all tuples a such that a ∈ Q(B) for all B ∈ mods(D, Σ).
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 6 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
◮ The chase is a procedure for repairing a DB relative to a set of
dependencies.
◮ D ∪ Σ |= Q iff chase(D, Σ) |= Q.
◮ A TGD σ is guarded iff it contains an atom in its body that contains
all universally quantified variables of σ.
σ1 : P(X) ∧ R(X, Y ) ∧ Q(Y ) → ∃R(Y , Z) YES.
σ2 : R(X, Y ) ∧ R(Y , Z) → R(X, Z) NO.
If Σ consists of guarded TGDs, CQs can be evaluated on a fragment
of constant depth k ∗ |Q|, PTIME in data complexity.
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 7 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1), act(a2),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1), act(a2), act(s1),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1), act(a2), act(s1),
act(s2),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1), act(a2), act(s1),
act(s2), act(m1),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1), act(a2), act(s1),
act(s2), act(m1), act(m2),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1), act(a2), act(s1),
act(s2), act(m1), act(m2), act(p1),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1), act(a2), act(s1),
act(s2), act(m1), act(m2), act(p1),
requireEquip(a1, e1),
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Databases and Queries
The Chase
TGD Chase
Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in
D. If not already in D, the application of σ on D adds an atom with fresh
nulls corresponding to each existentially quantified variable in head(σ).
Example. Let O = (D, Σ) be an ontology describing travel activities:
Σ = {museum(X) → SS(X), park(A) → SS(A),
SS(A) → act(A), relax(X) → act(X),
adv(X) → act(X), sport(X) → act(X),
adv(X) → ∃Y requireEquip(X, Y )};
D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1),
adv(a2), museum(m1), museum(m2), park(p1)}
chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1),
act(r2), act(a1), act(a2), act(s1),
act(s2), act(m1), act(m2), act(p1),
requireEquip(a1, e1), requireEquip(a2, e2)}
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
◮ A preference relation is a binary relation ≻ ⊆ HPref × HPref.
◮ A user preference model U induces a preference relation over a
subset of HOnt, denoted ≻U ;
act(s1
)
act(s2
) act(a2
) act(a1
)
act(p1
) act(m1
) act(m2
)
act(r1
) act(r2
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 9 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Definition
A group preference model U = (U1, . . . , Un) for n 1 users is a
collection of n user preference models.
u1 u2
u3
act(s1
)
act(s2
) act(a2
) act(a1
)
act(p1
) act(m1
) act(m2
)
act(r1
) act(r2
)
act(s2
)
act(p1
) act(m2
) act(m1
)
act(s1
) act(r1
) act(r2
)
act(a2
) act(a1
)
act(m1
) act(m2
)
act(p1
) act(r1
) act(r2
)
act(s2
) act(a2
) act(a1
) act(s1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 10 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Probabilistic Model
◮ A preference relation ≻ is score-based if is defined as follows:
a1 ≻ a2 iff score(a1) > score(a2).
◮ Model assigns a probability to each atom (using e.g. Markov logic
and Bayesian networks).
0.8
0.44
0.75
0.6
0.52
0.4
0.34
0.3
0.1
PrM
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
)
act(a1
)
act(r2
)
act(a2
)
act(s1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 11 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Challenges of the given model
0.8
0.44
0.75
0.6
0.52
0.4
0.34
0.3
0.1
u1 u2
u3
PrM
act(s1
)
act(s2
) act(a2
) act(a1
)
act(p1
) act(m1
) act(m2
)
act(r1
) act(r2
)
act(s2
)
act(p1
) act(m2
) act(m1
)
act(s1
) act(r1
) act(r2
)
act(a2
) act(a1
)
act(m1
) act(m2
)
act(p1
) act(r1
) act(r2
)
act(s2
) act(a2
) act(a1
) act(s1
)
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
)
act(a1
)
act(r2
)
act(a2
)
act(s1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 12 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Preference Merging and Aggregation.
◮ Challenge 1: user preference model and the probabilistic model in
disagreement: preference merging operators
◮ Challenge 2: user preference models may be in disagreement with
each other: preference aggregation operator
Definition
Let ≻U be an SPO and ≻M be a score-based preference relation. A
preference merging operator ⊗(≻U , ≻M ) yields a relation ≻∗
such that
1. ≻∗
is an SPO
2. if a1 ≻U a2 and a1 ≻M a2, then a1 ≻∗
a2.
Definition
Let U = (U1, . . . , Un) be a group preference model, where every Ui is
an SPO. A preference aggregation operator on U yields an SPO ≻∗
.
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 13 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Definition
A GPP-Datalog+/– ontology has the form KB = (O, U, M, ⊗, ),
where
◮ O is a Datalog+/– ontology
◮ U = (U1, . . . , Un) is a group preference model with n 1
◮ M is a probabilistic model (with Herbrand bases HOnt, HPref,
and HM, respectively, such that HPref ⊆ HOnt)
◮ ⊗ is a preference merging operator
◮ is the preference aggregation operator
We say that KB is a guarded iff O is guarded.
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 14 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
DAQ queries
Definition
Let KB = (O, U, M, ⊗, ) be a GPP-Datalog+/– ontology, where
U = (U1, . . . , Un), and Q(X) = q1(X1) ∨ · · · ∨ qn(Xn) be a DAQ. Then, a
skyline answer to Q relative to ≻∗
= (⊗(≻U1
, ≻M ), . . . , ⊗(≻Un
, ≻M )) is
any θqi entailed by O such that no θ′
exists with O |= θ′
qj and
θ′
qj ≻∗
θqi , where θ and θ′
are ground substitutions for the variables in
Q(X).
A substitution is a mapping from variables to variables or constants.
◮ Intuitively, a skyline-answer is an answer that is the most preferred.
◮ A 1-rank answer is a skyline answer
◮ A 2-rank answer is the first and second most preferred answers.
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 15 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user
◮ t ∈ [0, 1]: the influence of probabilistic model (0 - high)
◮ 0.34 − 0.6 > 0.1 No =⇒ keep relation
0.8
0.44
0.75
0.6
0.52
0.4
0.34
0.3
0.1
PrM
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
)
act(a1
)
act(r2
)
act(a2
)
act(s1
)
act(s1
)
act(m1
)
act(m2
)
act(p1
)
act(r1
)act(r2
)
act(s2
)
act(a2
) act(a1
)
t=0.1
u2
act(m1
)act(m2
)act(p1
)
act(r1
) act(r2
)
act(s2
)
act(a2
)
act(a1
)
act(s1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 16 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user
◮ 0.75 − 0.6 > 0.1 Yes =⇒ inverse relation
0.8
0.44
0.75
0.6
0.52
0.4
0.34
0.3
0.1
PrM
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
)
act(a1
)
act(r2
)
act(a2
)
act(s1
)
act(s1
)
act(m1
)
act(m2
)
act(p1
)
act(r1
)act(r2
)
act(s2
)
act(a2
) act(a1
)
t=0.1
u2
act(m1
)act(m2
)act(p1
)
act(r1
) act(r2
)
act(s2
)
act(a2
)
act(a1
)
act(s1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 17 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user
◮ no relation
u2
t = 0.1u3
t = 0.3
act(s1
)
act(m1
)
u1
t = 0
act(r2
)
act(a2
)
act(m2
)
act(r1
)
act(p1
) act(a1
) act(s2
)
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
) act(r2
)
act(a2
) act(a1
) act(s1
)
act(p1
)
act(s2
)
act(a2
)
act(s1
)
act(m1
)
act(a1
)
act(m2
)
act(r2
)
act(r1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 18 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user
◮ relation with weight 1
u2
t = 0.1u3
t = 0.3
act(s1
)
act(m1
)
u1
t = 0
act(r2
)
act(a2
)
act(m2
)
act(r1
)
act(p1
) act(a1
) act(s2
)
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
) act(r2
)
act(a2
) act(a1
) act(s1
)
act(p1
)
act(s2
)
act(a2
)
act(s1
)
act(m1
)
act(a1
)
act(m2
)
act(r2
)
act(r1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 19 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user
◮ relation with weight 2
u2
t = 0.1u3
t = 0.3
act(s1
)
act(m1
)
u1
t = 0
act(r2
)
act(a2
)
act(m2
)
act(r1
)
act(p1
) act(a1
) act(s2
)
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
) act(r2
)
act(a2
) act(a1
) act(s1
)
act(p1
)
act(s2
)
act(a2
)
act(s1
)
act(m1
)
act(a1
)
act(m2
)
act(r2
)
act(r1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 20 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user
◮ relation with weight 3
u2
t = 0.1u3
t = 0.3
act(s1
)
act(m1
)
u1
t = 0
act(r2
)
act(a2
)
act(m2
)
act(r1
)
act(p1
) act(a1
) act(s2
)
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
) act(r2
)
act(a2
) act(a1
) act(s1
)
act(p1
)
act(s2
)
act(a2
)
act(s1
)
act(m1
)
act(a1
)
act(m2
)
act(r2
)
act(r1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 21 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user (Final Graph)
◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 1
◮ k-rank answer to Q act(m1) .
act(m2
)
act(r2
)
act(a2
)
act(m1
)
act(p1
)
act(s2
)
act(r1
)
act(s1
)
act(a1
)
1
2
1
2
3
1
12
2 2
2
1
2
2
1
2
1
2
1
1
2
2
1
2
2
2
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user (Final Graph)
◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 2
◮ k-rank answer to Q act(m1) , act(p1) .
act(m2
)
act(r2
)
act(a2
)
act(p1
)
act(s2
)
act(r1
)
act(s1
)
act(a1
)
2
1
2
3
1
1
1
2
2
1
2
1
2
1
1
2
2
1
2
2
2
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user (Final Graph)
◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 3
◮ k-rank answer to Q act(m1) , act(p1) , act(s2) .
act(a2
)
act(s1
)
act(a1
)
1
1
1
2
1
2
2
2
2
act(r1
)
1
2
1
act(r2
)
3
2
act(m2
)
2
1
1
1
act(s2
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user (Final Graph)
◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 4
◮ k-rank answer to Q act(m1) , act(p1) , act(s2) , act(m2) .
act(a2
)
act(s1
)
act(a1
)
1
1
1
22
2
2
2
act(r1
)
1
2
1
act(r2
)
3
2
act(m2
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user (Final Graph)
◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 5
◮ k-rank answer to Q act(m1) , act(p1) , act(s2) , act(m2) , act(r2) .
act(a2
)
act(s1
)
act(a1
)
1
1
2
2
2
act(r1
)
1
2
1
act(r2
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Collapse to single user (Theorem)
Theorem
Let KB = (O, U, M, ⊗, ) be a GPP-Datalog+/– ontology, Q be a
DAQ, and k 0. If O is a guarded Datalog+/– ontology and the
removeCycles subroutine does not remove any unnecessary edges, then
Algorithm k-Rank-CSU
◮ correctly computes k-rank answers to Q
◮ Complexity: O(poly(|D|) · S + C) time in the data complexity, where
S is the cost of computing score(a) = PrKB (a) for any atom a such
that O |= a, and C is the cost of removeCycles.
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 23 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Voting
◮ different voting strategies e.g.,plurality voting
◮ that is computing the individual rankings first and then voting
Q = act(X), k = 2, and (t1, t2, t3) = (0, 0.1, 0.3). k-rank answer to Q
using voting is act(m1), act(m2) or act(m1), act(p1) .
act(s1
)
act(m1
)
u2
u1
u3
act(r2
)
act(a2
)
act(m2
)
act(r1
)
act(p1
) act(a1
) act(s2
)
act(m1
)
act(p1
)
act(s2
)
act(m2
)
act(r1
) act(r2
)
act(a2
) act(a1
) act(s1
)
act(p1
)
act(s2
)
act(a2
)
act(s1
)
act(m1
)
act(a1
)
act(m2
)
act(r2
)
act(r1
)
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 24 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Summary
◮ Extension of Datalog+/– that allows for dealing with both partially
ordered preferences of groups of users and probabilistic uncertainty.
◮ We have focused on answering DAQs (disjunctions of atomic
queries) k-rank queries in this context.
◮ Presented different operators to compute group preferences as a
merging and an aggregation of the preferences of single users with
probability-based preferences and with each other, respectively.
◮ We have then provided algorithms to answer k-rank queries
for DAQs under these group preferences.
◮ We have shown that, under certain reasonable conditions, such DAQ
answering in Datalog+/– can be done in polynomial time in the
data complexity.
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 25 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
Future work
◮ Implementing and testing the GPP-Datalog+/– framework.
◮ Explore which of the merging/aggregation operators is similar to
human judgment and thus well-suited as a general default
merging/aggregation operator for search and query answering in the
Social Semantic Web.
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 26 /27
Outline
Introduction
Datalog+/–
GPP-Datalog+/–
Group Preference Model
Probabilistic Model
Preference Merging and Aggregation
Strategies to Answer k-rank Disjunctive Atomic Queries
THANK YOU
Questions ?oana.tifrea@cs.ox.ac.uk
Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 27 /27

Mais conteúdo relacionado

Mais procurados

Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Ali Ajouz
 

Mais procurados (18)

Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
Fougeres Besancon Archimax
Fougeres Besancon ArchimaxFougeres Besancon Archimax
Fougeres Besancon Archimax
 
ABC: How Bayesian can it be?
ABC: How Bayesian can it be?ABC: How Bayesian can it be?
ABC: How Bayesian can it be?
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Locality-sensitive hashing for search in metric space
Locality-sensitive hashing for search in metric space Locality-sensitive hashing for search in metric space
Locality-sensitive hashing for search in metric space
 
Decision Making with Hierarchical Credal Sets (IPMU 2014)
Decision Making with Hierarchical Credal Sets (IPMU 2014)Decision Making with Hierarchical Credal Sets (IPMU 2014)
Decision Making with Hierarchical Credal Sets (IPMU 2014)
 
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
 
A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
CloSapn
CloSapnCloSapn
CloSapn
 
Interconnections of hybrid systems
Interconnections of hybrid systemsInterconnections of hybrid systems
Interconnections of hybrid systems
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
 
Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018
 
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...
 
Lecture 5: Structured Prediction
Lecture 5: Structured PredictionLecture 5: Structured Prediction
Lecture 5: Structured Prediction
 
Lecture 03: Machine Learning for Language Technology - Linear Classifiers
Lecture 03: Machine Learning for Language Technology - Linear ClassifiersLecture 03: Machine Learning for Language Technology - Linear Classifiers
Lecture 03: Machine Learning for Language Technology - Linear Classifiers
 

Destaque

Command Presence - Today's Facility Manager Magazine September 2009
Command Presence - Today's Facility Manager Magazine September 2009Command Presence - Today's Facility Manager Magazine September 2009
Command Presence - Today's Facility Manager Magazine September 2009
timothycummings
 
Google Anita Borg Memorial Scholarship - my story
Google Anita Borg Memorial Scholarship - my storyGoogle Anita Borg Memorial Scholarship - my story
Google Anita Borg Memorial Scholarship - my story
Oana Tifrea-Marciuska
 

Destaque (6)

Command Presence - Today's Facility Manager Magazine September 2009
Command Presence - Today's Facility Manager Magazine September 2009Command Presence - Today's Facility Manager Magazine September 2009
Command Presence - Today's Facility Manager Magazine September 2009
 
Encouraging Girls to Participate in Computer Science
Encouraging Girls to Participate in Computer ScienceEncouraging Girls to Participate in Computer Science
Encouraging Girls to Participate in Computer Science
 
Google Anita Borg Memorial Scholarship - my story
Google Anita Borg Memorial Scholarship - my storyGoogle Anita Borg Memorial Scholarship - my story
Google Anita Borg Memorial Scholarship - my story
 
Computing k-rank Answers with Ontological CP-nets
Computing k-rank Answers with Ontological CP-netsComputing k-rank Answers with Ontological CP-nets
Computing k-rank Answers with Ontological CP-nets
 
Fun Office
Fun OfficeFun Office
Fun Office
 
Micro service, Containers & Cluster Management
Micro service, Containers & Cluster ManagementMicro service, Containers & Cluster Management
Micro service, Containers & Cluster Management
 

Semelhante a Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences

Lecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhsLecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhs
Stéphane Canu
 
l1-Embeddings and Algorithmic Applications
l1-Embeddings and Algorithmic Applicationsl1-Embeddings and Algorithmic Applications
l1-Embeddings and Algorithmic Applications
Grigory Yaroslavtsev
 

Semelhante a Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences (20)

Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
 
Ip3614981501
Ip3614981501Ip3614981501
Ip3614981501
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 
ijcai09submodularity.ppt
ijcai09submodularity.pptijcai09submodularity.ppt
ijcai09submodularity.ppt
 
PAGOdA poster
PAGOdA posterPAGOdA poster
PAGOdA poster
 
Single source shortes path in dag
Single source shortes path in dagSingle source shortes path in dag
Single source shortes path in dag
 
Otter 2016-11-28-01-ss
Otter 2016-11-28-01-ssOtter 2016-11-28-01-ss
Otter 2016-11-28-01-ss
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Lecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhsLecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhs
 
Hybrid dynamics in large-scale logistics networks
Hybrid dynamics in large-scale logistics networksHybrid dynamics in large-scale logistics networks
Hybrid dynamics in large-scale logistics networks
 
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
 
Scala as a Declarative Language
Scala as a Declarative LanguageScala as a Declarative Language
Scala as a Declarative Language
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
(α ψ)- Construction with q- function for coupled fixed point
(α   ψ)-  Construction with q- function for coupled fixed point(α   ψ)-  Construction with q- function for coupled fixed point
(α ψ)- Construction with q- function for coupled fixed point
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017
 
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Problem
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming ProblemHigher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Problem
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Problem
 
ベイジアンディープニューラルネット
ベイジアンディープニューラルネットベイジアンディープニューラルネット
ベイジアンディープニューラルネット
 
l1-Embeddings and Algorithmic Applications
l1-Embeddings and Algorithmic Applicationsl1-Embeddings and Algorithmic Applications
l1-Embeddings and Algorithmic Applications
 
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
 

Mais de Oana Tifrea-Marciuska

The domain model of adaptive learning system - presentation
The domain model of adaptive learning system - presentationThe domain model of adaptive learning system - presentation
The domain model of adaptive learning system - presentation
Oana Tifrea-Marciuska
 

Mais de Oana Tifrea-Marciuska (11)

Poster Presentation @ Oxford AI day
Poster Presentation @ Oxford AI dayPoster Presentation @ Oxford AI day
Poster Presentation @ Oxford AI day
 
Artificial intelligence for Social Good
Artificial intelligence for Social GoodArtificial intelligence for Social Good
Artificial intelligence for Social Good
 
VLDB Phd Workshop
VLDB Phd WorkshopVLDB Phd Workshop
VLDB Phd Workshop
 
Personalised Search for the Social Semantic Web
Personalised Search for the Social Semantic WebPersonalised Search for the Social Semantic Web
Personalised Search for the Social Semantic Web
 
Combining Existential Rules with the Power of CP-Theories
Combining Existential Rules with the Power of CP-TheoriesCombining Existential Rules with the Power of CP-Theories
Combining Existential Rules with the Power of CP-Theories
 
Combining Existential Rules with the Power of CP-Theories
Combining Existential Rules with the Power of CP-TheoriesCombining Existential Rules with the Power of CP-Theories
Combining Existential Rules with the Power of CP-Theories
 
OxBridge conference - my thesis in a minute
OxBridge conference - my thesis in a  minuteOxBridge conference - my thesis in a  minute
OxBridge conference - my thesis in a minute
 
Anita Borg birthday week 2015 @ Toplita - Romania
Anita Borg birthday week 2015 @ Toplita - RomaniaAnita Borg birthday week 2015 @ Toplita - Romania
Anita Borg birthday week 2015 @ Toplita - Romania
 
IMPROVING PERSONALIZED SEARCH ON SOCIAL WEB BASED ON SIMILARITIES BETWEEN USERS
IMPROVING PERSONALIZED SEARCH ON SOCIAL WEB BASED ON SIMILARITIES BETWEEN USERSIMPROVING PERSONALIZED SEARCH ON SOCIAL WEB BASED ON SIMILARITIES BETWEEN USERS
IMPROVING PERSONALIZED SEARCH ON SOCIAL WEB BASED ON SIMILARITIES BETWEEN USERS
 
Group preferences in social networks
Group preferences in social networksGroup preferences in social networks
Group preferences in social networks
 
The domain model of adaptive learning system - presentation
The domain model of adaptive learning system - presentationThe domain model of adaptive learning system - presentation
The domain model of adaptive learning system - presentation
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 

Último (20)

Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 

Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences

  • 1. Outline Introduction Datalog+/– GPP-Datalog+/– Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences Thomas Lukasiewicz, Maria Vanina Martinez, Gerardo I. Simari, and Oana Tifrea-Marciuska Department of Computer Science, University of Oxford, UK July 5, 2013 Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 1 /27
  • 2. Outline Introduction Datalog+/– GPP-Datalog+/– Introduction Datalog+/– Databases and Queries The Chase GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 2 /27
  • 3. Outline Introduction Datalog+/– GPP-Datalog+/– Motivation ◮ Web → Social Semantic Web ◮ model group of users (e.g., movie night, trip) that can handle ◮ qualitative preferences of users ◮ disagreement between users ◮ efficiency    ◮ model uncertainty (e.g., information integration from travel sites) ◮ Desire: ontology language that handles preferences of a group of users and can handle uncertainty 1 1image source: www.boundless.com Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 3 /27
  • 4. Outline Introduction Datalog+/– GPP-Datalog+/– Motivation ◮ Web → Social Semantic Web ◮ model group of users (e.g., movie night, trip) that can handle ◮ qualitative preferences of users ◮ disagreement between users ◮ efficiency    our previous work in SUM2013 ◮ model uncertainty (e.g., information integration from travel sites) ◮ Desire: ontology language that handles preferences of a group of users and can handle uncertainty 1 1image source: www.boundless.com Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 3 /27
  • 5. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase Datalog+/– (1/3) ◮ A database (instance) D for R is a (possibly infinite) set of atoms with predicates from a finite set of predicate symbols R and arguments from a set of data constants ∆. D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1), free entrance(p1)}. ◮ A conjunctive query (CQ) over R has the form Q(X) = ∃Y Φ(X, Y), where Φ(X, Y) is a conjunction of atoms Q(X) = park(X) ∧ free entrance(X). ◮ A Boolean CQ (BCQ) over R is a CQ of the form Q(), often written as the set of all its atoms, without quantifiers. Q() = ∃Xpark(X) ∧ free entrance(X). Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 4 /27
  • 6. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase Datalog+/– (2/3) ◮ Answers to CQs and BCQs are defined via homomorphisms, which are mappings µ: ∆ ∪ ∆N ∪ V → ∆ ∪ ∆N ∪ V such that 1. c ∈ ∆ (set of constants) implies µ(c) = c, 2. c ∈ ∆N (set of labelled nulls) implies µ(c) ∈ ∆ ∪ ∆N , 3. µ is naturally extended to atomic formula, sets of atomic formulas, and conjunctions of atomic formulas. ◮ The set of all answers Q(D) is the set of all tuples t over a set of data constants s.t. ∃µ µ: X ∪ Y → ∆ ∪ ∆N s.t. µ(Φ(X, Y)) ⊆ D and µ(X) = t. D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1), free entrance(p1)}. For Q(X) = park(X) ∧ free entrance(X) the set of all answers over D is Q(D) = {p1}. For Q() = ∃Xpark(X) ∧ free entrance(X) the answer is YES. Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 5 /27
  • 7. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase Datalog+/– (3/3) ◮ Tuple-generating dependency (TGD): constraint of the form ∀X∀Y Φ(X, Y) → ∃Z Ψ(X, Z), where Φ(X, Y) and Ψ(X, Z) are conjunctions of atoms over a set of predicates R, called the body and the head, respectively. museum(X) → SS(X) ◮ For a database D for R, and a set of TGDs Σ on R, the set of models of D and Σ, denoted mods(D, Σ), is the set of all (possibly infinite) databases B such that ◮ D ⊆ B and ◮ every σ ∈ Σ is satisfied in B. ◮ The set of answers for a CQ Q to D and Σ, denoted ans(Q, D, Σ), is the set of all tuples a such that a ∈ Q(B) for all B ∈ mods(D, Σ). Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 6 /27
  • 8. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase ◮ The chase is a procedure for repairing a DB relative to a set of dependencies. ◮ D ∪ Σ |= Q iff chase(D, Σ) |= Q. ◮ A TGD σ is guarded iff it contains an atom in its body that contains all universally quantified variables of σ. σ1 : P(X) ∧ R(X, Y ) ∧ Q(Y ) → ∃R(Y , Z) YES. σ2 : R(X, Y ) ∧ R(Y , Z) → R(X, Z) NO. If Σ consists of guarded TGDs, CQs can be evaluated on a fragment of constant depth k ∗ |Q|, PTIME in data complexity. Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 7 /27
  • 9. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 10. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 11. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 12. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 13. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 14. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 15. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), act(a2), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 16. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), act(a2), act(s1), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 17. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), act(a2), act(s1), act(s2), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 18. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), act(a2), act(s1), act(s2), act(m1), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 19. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), act(a2), act(s1), act(s2), act(m1), act(m2), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 20. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), act(a2), act(s1), act(s2), act(m1), act(m2), act(p1), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 21. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), act(a2), act(s1), act(s2), act(m1), act(m2), act(p1), requireEquip(a1, e1), Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 22. Outline Introduction Datalog+/– GPP-Datalog+/– Databases and Queries The Chase TGD Chase Informally, a TGD σ is applicable in a DB D if body(σ) maps to atoms in D. If not already in D, the application of σ on D adds an atom with fresh nulls corresponding to each existentially quantified variable in head(σ). Example. Let O = (D, Σ) be an ontology describing travel activities: Σ = {museum(X) → SS(X), park(A) → SS(A), SS(A) → act(A), relax(X) → act(X), adv(X) → act(X), sport(X) → act(X), adv(X) → ∃Y requireEquip(X, Y )}; D = {sport(s1), sport(s2), relax(r1), relax(r2), adv(a1), adv(a2), museum(m1), museum(m2), park(p1)} chase(D, Σ) = D ∪ {SS(m1), SS(m2), SS(p1), act(r1), act(r2), act(a1), act(a2), act(s1), act(s2), act(m1), act(m2), act(p1), requireEquip(a1, e1), requireEquip(a2, e2)} Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 8 /27
  • 23. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries ◮ A preference relation is a binary relation ≻ ⊆ HPref × HPref. ◮ A user preference model U induces a preference relation over a subset of HOnt, denoted ≻U ; act(s1 ) act(s2 ) act(a2 ) act(a1 ) act(p1 ) act(m1 ) act(m2 ) act(r1 ) act(r2 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 9 /27
  • 24. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Definition A group preference model U = (U1, . . . , Un) for n 1 users is a collection of n user preference models. u1 u2 u3 act(s1 ) act(s2 ) act(a2 ) act(a1 ) act(p1 ) act(m1 ) act(m2 ) act(r1 ) act(r2 ) act(s2 ) act(p1 ) act(m2 ) act(m1 ) act(s1 ) act(r1 ) act(r2 ) act(a2 ) act(a1 ) act(m1 ) act(m2 ) act(p1 ) act(r1 ) act(r2 ) act(s2 ) act(a2 ) act(a1 ) act(s1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 10 /27
  • 25. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Probabilistic Model ◮ A preference relation ≻ is score-based if is defined as follows: a1 ≻ a2 iff score(a1) > score(a2). ◮ Model assigns a probability to each atom (using e.g. Markov logic and Bayesian networks). 0.8 0.44 0.75 0.6 0.52 0.4 0.34 0.3 0.1 PrM act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(a1 ) act(r2 ) act(a2 ) act(s1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 11 /27
  • 26. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Challenges of the given model 0.8 0.44 0.75 0.6 0.52 0.4 0.34 0.3 0.1 u1 u2 u3 PrM act(s1 ) act(s2 ) act(a2 ) act(a1 ) act(p1 ) act(m1 ) act(m2 ) act(r1 ) act(r2 ) act(s2 ) act(p1 ) act(m2 ) act(m1 ) act(s1 ) act(r1 ) act(r2 ) act(a2 ) act(a1 ) act(m1 ) act(m2 ) act(p1 ) act(r1 ) act(r2 ) act(s2 ) act(a2 ) act(a1 ) act(s1 ) act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(a1 ) act(r2 ) act(a2 ) act(s1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 12 /27
  • 27. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Preference Merging and Aggregation. ◮ Challenge 1: user preference model and the probabilistic model in disagreement: preference merging operators ◮ Challenge 2: user preference models may be in disagreement with each other: preference aggregation operator Definition Let ≻U be an SPO and ≻M be a score-based preference relation. A preference merging operator ⊗(≻U , ≻M ) yields a relation ≻∗ such that 1. ≻∗ is an SPO 2. if a1 ≻U a2 and a1 ≻M a2, then a1 ≻∗ a2. Definition Let U = (U1, . . . , Un) be a group preference model, where every Ui is an SPO. A preference aggregation operator on U yields an SPO ≻∗ . Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 13 /27
  • 28. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Definition A GPP-Datalog+/– ontology has the form KB = (O, U, M, ⊗, ), where ◮ O is a Datalog+/– ontology ◮ U = (U1, . . . , Un) is a group preference model with n 1 ◮ M is a probabilistic model (with Herbrand bases HOnt, HPref, and HM, respectively, such that HPref ⊆ HOnt) ◮ ⊗ is a preference merging operator ◮ is the preference aggregation operator We say that KB is a guarded iff O is guarded. Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 14 /27
  • 29. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries DAQ queries Definition Let KB = (O, U, M, ⊗, ) be a GPP-Datalog+/– ontology, where U = (U1, . . . , Un), and Q(X) = q1(X1) ∨ · · · ∨ qn(Xn) be a DAQ. Then, a skyline answer to Q relative to ≻∗ = (⊗(≻U1 , ≻M ), . . . , ⊗(≻Un , ≻M )) is any θqi entailed by O such that no θ′ exists with O |= θ′ qj and θ′ qj ≻∗ θqi , where θ and θ′ are ground substitutions for the variables in Q(X). A substitution is a mapping from variables to variables or constants. ◮ Intuitively, a skyline-answer is an answer that is the most preferred. ◮ A 1-rank answer is a skyline answer ◮ A 2-rank answer is the first and second most preferred answers. Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 15 /27
  • 30. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user ◮ t ∈ [0, 1]: the influence of probabilistic model (0 - high) ◮ 0.34 − 0.6 > 0.1 No =⇒ keep relation 0.8 0.44 0.75 0.6 0.52 0.4 0.34 0.3 0.1 PrM act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(a1 ) act(r2 ) act(a2 ) act(s1 ) act(s1 ) act(m1 ) act(m2 ) act(p1 ) act(r1 )act(r2 ) act(s2 ) act(a2 ) act(a1 ) t=0.1 u2 act(m1 )act(m2 )act(p1 ) act(r1 ) act(r2 ) act(s2 ) act(a2 ) act(a1 ) act(s1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 16 /27
  • 31. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user ◮ 0.75 − 0.6 > 0.1 Yes =⇒ inverse relation 0.8 0.44 0.75 0.6 0.52 0.4 0.34 0.3 0.1 PrM act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(a1 ) act(r2 ) act(a2 ) act(s1 ) act(s1 ) act(m1 ) act(m2 ) act(p1 ) act(r1 )act(r2 ) act(s2 ) act(a2 ) act(a1 ) t=0.1 u2 act(m1 )act(m2 )act(p1 ) act(r1 ) act(r2 ) act(s2 ) act(a2 ) act(a1 ) act(s1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 17 /27
  • 32. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user ◮ no relation u2 t = 0.1u3 t = 0.3 act(s1 ) act(m1 ) u1 t = 0 act(r2 ) act(a2 ) act(m2 ) act(r1 ) act(p1 ) act(a1 ) act(s2 ) act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(r2 ) act(a2 ) act(a1 ) act(s1 ) act(p1 ) act(s2 ) act(a2 ) act(s1 ) act(m1 ) act(a1 ) act(m2 ) act(r2 ) act(r1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 18 /27
  • 33. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user ◮ relation with weight 1 u2 t = 0.1u3 t = 0.3 act(s1 ) act(m1 ) u1 t = 0 act(r2 ) act(a2 ) act(m2 ) act(r1 ) act(p1 ) act(a1 ) act(s2 ) act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(r2 ) act(a2 ) act(a1 ) act(s1 ) act(p1 ) act(s2 ) act(a2 ) act(s1 ) act(m1 ) act(a1 ) act(m2 ) act(r2 ) act(r1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 19 /27
  • 34. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user ◮ relation with weight 2 u2 t = 0.1u3 t = 0.3 act(s1 ) act(m1 ) u1 t = 0 act(r2 ) act(a2 ) act(m2 ) act(r1 ) act(p1 ) act(a1 ) act(s2 ) act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(r2 ) act(a2 ) act(a1 ) act(s1 ) act(p1 ) act(s2 ) act(a2 ) act(s1 ) act(m1 ) act(a1 ) act(m2 ) act(r2 ) act(r1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 20 /27
  • 35. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user ◮ relation with weight 3 u2 t = 0.1u3 t = 0.3 act(s1 ) act(m1 ) u1 t = 0 act(r2 ) act(a2 ) act(m2 ) act(r1 ) act(p1 ) act(a1 ) act(s2 ) act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(r2 ) act(a2 ) act(a1 ) act(s1 ) act(p1 ) act(s2 ) act(a2 ) act(s1 ) act(m1 ) act(a1 ) act(m2 ) act(r2 ) act(r1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 21 /27
  • 36. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user (Final Graph) ◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 1 ◮ k-rank answer to Q act(m1) . act(m2 ) act(r2 ) act(a2 ) act(m1 ) act(p1 ) act(s2 ) act(r1 ) act(s1 ) act(a1 ) 1 2 1 2 3 1 12 2 2 2 1 2 2 1 2 1 2 1 1 2 2 1 2 2 2 Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
  • 37. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user (Final Graph) ◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 2 ◮ k-rank answer to Q act(m1) , act(p1) . act(m2 ) act(r2 ) act(a2 ) act(p1 ) act(s2 ) act(r1 ) act(s1 ) act(a1 ) 2 1 2 3 1 1 1 2 2 1 2 1 2 1 1 2 2 1 2 2 2 Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
  • 38. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user (Final Graph) ◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 3 ◮ k-rank answer to Q act(m1) , act(p1) , act(s2) . act(a2 ) act(s1 ) act(a1 ) 1 1 1 2 1 2 2 2 2 act(r1 ) 1 2 1 act(r2 ) 3 2 act(m2 ) 2 1 1 1 act(s2 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
  • 39. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user (Final Graph) ◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 4 ◮ k-rank answer to Q act(m1) , act(p1) , act(s2) , act(m2) . act(a2 ) act(s1 ) act(a1 ) 1 1 1 22 2 2 2 act(r1 ) 1 2 1 act(r2 ) 3 2 act(m2 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
  • 40. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user (Final Graph) ◮ Q = act(X), (t1, t2, t3) = (0, 0.1, 0.3), k = 5 ◮ k-rank answer to Q act(m1) , act(p1) , act(s2) , act(m2) , act(r2) . act(a2 ) act(s1 ) act(a1 ) 1 1 2 2 2 act(r1 ) 1 2 1 act(r2 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 22 /27
  • 41. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Collapse to single user (Theorem) Theorem Let KB = (O, U, M, ⊗, ) be a GPP-Datalog+/– ontology, Q be a DAQ, and k 0. If O is a guarded Datalog+/– ontology and the removeCycles subroutine does not remove any unnecessary edges, then Algorithm k-Rank-CSU ◮ correctly computes k-rank answers to Q ◮ Complexity: O(poly(|D|) · S + C) time in the data complexity, where S is the cost of computing score(a) = PrKB (a) for any atom a such that O |= a, and C is the cost of removeCycles. Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 23 /27
  • 42. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Voting ◮ different voting strategies e.g.,plurality voting ◮ that is computing the individual rankings first and then voting Q = act(X), k = 2, and (t1, t2, t3) = (0, 0.1, 0.3). k-rank answer to Q using voting is act(m1), act(m2) or act(m1), act(p1) . act(s1 ) act(m1 ) u2 u1 u3 act(r2 ) act(a2 ) act(m2 ) act(r1 ) act(p1 ) act(a1 ) act(s2 ) act(m1 ) act(p1 ) act(s2 ) act(m2 ) act(r1 ) act(r2 ) act(a2 ) act(a1 ) act(s1 ) act(p1 ) act(s2 ) act(a2 ) act(s1 ) act(m1 ) act(a1 ) act(m2 ) act(r2 ) act(r1 ) Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 24 /27
  • 43. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Summary ◮ Extension of Datalog+/– that allows for dealing with both partially ordered preferences of groups of users and probabilistic uncertainty. ◮ We have focused on answering DAQs (disjunctions of atomic queries) k-rank queries in this context. ◮ Presented different operators to compute group preferences as a merging and an aggregation of the preferences of single users with probability-based preferences and with each other, respectively. ◮ We have then provided algorithms to answer k-rank queries for DAQs under these group preferences. ◮ We have shown that, under certain reasonable conditions, such DAQ answering in Datalog+/– can be done in polynomial time in the data complexity. Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 25 /27
  • 44. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries Future work ◮ Implementing and testing the GPP-Datalog+/– framework. ◮ Explore which of the merging/aggregation operators is similar to human judgment and thus well-suited as a general default merging/aggregation operator for search and query answering in the Social Semantic Web. Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 26 /27
  • 45. Outline Introduction Datalog+/– GPP-Datalog+/– Group Preference Model Probabilistic Model Preference Merging and Aggregation Strategies to Answer k-rank Disjunctive Atomic Queries THANK YOU Questions ?oana.tifrea@cs.ox.ac.uk Oana Tifrea-Marciuska Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences slide 27 /27