SlideShare uma empresa Scribd logo
1 de 40
Baixar para ler offline
Algebraic Methods 1 Mathematics 1 Level 4 © University of Wales Newport 2009 This work is licensed under a  Creative Commons Attribution 2.0 License .
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algebraic Methods 1
Mathematical Syntax The area of a rectangle is given by: Area = Length x Breath Area = L x B or L.B or LB When two symbols are written next to each other then this implies that they are multiplied. This is not true for numbers 23 is not 2 x 3. Also a shorthand for 2 x 2 x 2 x 2 x 2 is 2 5 And a x a x a x a x a x a is a 6 We must also be aware that 2a is not the same as a 2 One is a + a the other is a x a Algebraic Methods 1
Indices We can now look at what happens when we combine expressions which have indices: e.g. a 4  x a 3  = (a x a x a x a) x (a x a x a) (a x a x a x a) x (a x a x a) = a x a x a x a x a x a x a = a 7 When multiplying powers of the same letter we add the indices a n  x a m  = a n+m e.g. When dividing powers of the same letter we subtract the indices a n     a m  = a n-m Algebraic Methods 1
Examples ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algebraic Methods 1
Common error What does 2a 2  mean? Does it mean 2 x a x a  or  2a x 2a It means the first one! If we wanted the second one we would write it as (2a) 2   So the indices only effect the adjacent letter unless a bracket is used. e.g. 1. (2a) 3 2. (3ab) 2 3. (ab) 3  x (a 2 b) 2 simplify these expressions Algebraic Methods 1
Powers Roots and Reciprocals What does (a 2 ) 3  give us? (a x a) x (a x a) x (a x a) = a x a x a x a x a x a = a 6 When raising a power of a term to a new power we multiply the indices (a n ) m  = a nxm What does √a 8  give us? a x a x a x a x a x a x a x a = (a x a x a x a) x (a x a x a x a)   = (a x a x a x a) 2 When rooting a power of a term we divide the indices √ (a n ) = a n  m m Algebraic Methods 1
Powers Roots and Reciprocals What does a    a give us? a 1    a 1  = a 1-1  = a 0 but we also know that this equals 1 Any term raised to the power 0 equals 1 and conversely 1 can be thought as any term to the power 0 What does 1/a 2  give us? 1    a 2  = a 0    a 2  = a 0-2  = a -2   When reciprocating a power of a term we change the sign of the index  1/a n  = a -n Algebraic Methods 1
Addition and Subtraction Consider the equation: 6 + 8  = 14 We know that 3 x 2 4 x 2 7 x 2 i.e. three lots of something plus four lots of something equals seven lots of something or 3a + 4a = 7a Take care – it does not equal 7a 2 Same with subtraction: 10 a pples  – 4 a pples  = 6 a pples Note addition and subtraction only work if the letter is the same. 5 apples plus 6 oranges does not equal 11 ? Algebraic Methods 1
Number lines -8 -7 -6 -5 -4 -3 -2 -1  0 +1 +2 +3 +4 +5 +6 +7 +8  Notes Positive numbers are to the right of zero Negative numbers are to the left of zero So 5a – 7a means start at 5 and move 7 to the left. The only sign that can be omitted in front of a term is a positive sign The only sign that can be omitted between two terms is a multiplication sign. Only similar terms can be added or subtracted  2a 2 b + 3ab 2  cannot be performed. Subtraction Addition
Simplify Algebraic Methods 1
B O D M A S This indicate the order in which mathematical operations must be carried out in order to generate the correct answer: B rackets O rder (power) D ivision M ultiplication A ddition S ubtraction What is the answer to the equation: 7 + 2 x 4  Most calculators have BODMAS built in so if we want 7 added onto 2 then multiplied by 4 we must use brackets. is it  36 or 15?
Brackets in algebra Brackets allow us to treat whatever is inside as a single quantity. i.e. 4a – (2a + 7b) means that 2a + 7b as a whole is  subtracted from 4a. 5(5x – 2y) means that 5x – 2y is all multiplied  by 5 Consider 3(4 + 1) – 2(2 + 4) 3 x 5 – 2 x 6 = 15 – 12  = 3  12 + 3 – 4 + 8  = 19  12 + 3 – 4 – 8 = 3  Algebraic Methods 1
Rules for the removal of simple brackets Every term inside the bracket must be multiplied by the quantity outside the bracket. If the sign in front of the bracket is positive the signs inside the bracket remain unchanged. (no sign is assumed to be positive. If the sign in front of the bracket is negative the signs inside the bracket are changed. 1.  3(a+b) + 4(5a+b) 2.  3(a-b) + 4(2a+b) 3.  6(a+2b-c) + (a-b+c) 4.  2(3a-4b) – (a+b) + 2(a+b) 5.  3(a-2b+3c) – 2(b+4c) 6.  -4(a-3b) – 3(-3a-b) 7.  2p(q+r) – p(3q-2r) 8.  11a(2b+c) – 3a(3b-2c) 9.  a(a+b-c) – b(a-b+c) 10. a(b+c) – b(c+a) + c(a+b) Algebraic Methods 1
Solution to simple equations If we have an equation with one unknown quantity then it is possible to determine the unknown quantity. e.g. 9 = 3 + 2x x is the unknown quantity. To determine its value we need to rearrange the equation so that we have x = Process: 9 = 3 + 2x subtract 3 from each side. 6 = 2x divide each sides by 2 3 = x answer x = 3  e.g. 4x -3 = x + 18 Process 4x -3 = x + 18 add 3 to each side 4x = x + 21 subtract x from each side 3x = 21 divide each side by 3 x = 7 answer x = 7
Solution to simple equations Always aim to make the unknown a positive quantity: e.g. 5 – 2x = x +7 Process 5 – 2x = x +7 add 2x to each side 5 = 3x + 7 subtract 7 from each side -2 = 3x divide each side by 3 -2/3 = x Answer x = -2/3 Examples 1.  4a = a + 9 2.  4x – 3 = 2x +3 3.  a – 3 = 2a – 14 4.  7x + 1 = 1 + 6x 5.  7(a – 5) = 3(4 – a) Algebraic Methods 1
Solution to equations involving fractions Useful steps – any compound numerator or denominator should be placed in brackets and any number not written as a fraction should be made into a fraction. e.g. We now multiply through by the lowest common denominator. (5 x 2 x 1 = 10) 2 5 6x + 4 - 5x – 20 = 40 combine like terms x - 16 = 40 add 16 to each side x = 56 Answer  Algebraic Methods 1
Solution to equations involving fractions Lowest Common Denominator  (LCD) is the lowest number that a series of numbers can be divided by and still give a whole number. e.g. the numbers 2, 3, 4, 6 when multiplied gives 144 144/2 = 72 144/3 = 48 144/4 = 36 144/6 = 24 But there is a lower number which also is fine and this is 12 12/2 = 6 12/3 = 4 12/4 = 3 12/6 = 2 To determine this lowest value we write down the factors of each number. 2 = 2  3 = 3  4 = 2 x 2  6 = 3 x 2 Leaving us 2 x 2 x 3 = 12 Algebraic Methods 1
Solution to equations involving fractions e.g. LCD = 12 2 4 3 6 12 – 2x - 10 = 8x +28 - 3x + 30 combine like terms 2 – 2x = 5x + 58 add 2x to each side 2 = 7x + 58 subtract 58 from each side -56 = 7x divide each side by 7 -8 = x Answer x = -8 Algebraic Methods 1
Solution to equations involving fractions If we have a single fraction equal to a another single fraction then we can cross multiply: 5 x 5a = 3 x 2  25a = 6 Examples:
Transposition of Formulae In the formula: P = I 2 R P  is said to be the subject of the formula. We may know I and P and need to work out R – to do this we must make R the subject of the formula. The process of altering the formula is called transposition. The best way of seeing who this is achieved is by looking at examples. e.g. e.g. H = I 2 RT (make R the subject) Algebraic Methods 1
Transposition of Formulae If we have quotients then we do the following: e.g. e.g. Algebraic Methods 1
Transposition of Formulae If we have plus or minus signs then we do the following: e.g. T = t + 273 (make t the subject) subtract 273 from both sides  T – 273 = t  t = T - 273 e.g. Algebraic Methods 1
Transposition of Formulae If we have brackets then we do the following: e.g. e.g.
Transposition of Formulae e.g. e.g.
Examples
Transposition of Formulae If we have roots and/or powers then we do the following:  e.g. e.g.
Examples Algebraic Methods 1
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algebraic Methods 1
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2
Chapter 2  Algebraic  Methods 2

Mais conteúdo relacionado

Mais de School of Design Engineering Fashion & Technology (DEFT), University of Wales, Newport

Mais de School of Design Engineering Fashion & Technology (DEFT), University of Wales, Newport (13)

Introduction to fourier analysis
Introduction to fourier analysisIntroduction to fourier analysis
Introduction to fourier analysis
 
Semiconductor theory
Semiconductor theorySemiconductor theory
Semiconductor theory
 
Number codes
Number codesNumber codes
Number codes
 
Decoders student
Decoders studentDecoders student
Decoders student
 
Number codes students
Number codes studentsNumber codes students
Number codes students
 
Logic gates
Logic gatesLogic gates
Logic gates
 
Design considerations
Design considerationsDesign considerations
Design considerations
 
Number bases
Number basesNumber bases
Number bases
 
Sequential Logic
Sequential LogicSequential Logic
Sequential Logic
 
Logic Equation Simplification
Logic Equation SimplificationLogic Equation Simplification
Logic Equation Simplification
 
Stabilised Power Supplies
Stabilised Power SuppliesStabilised Power Supplies
Stabilised Power Supplies
 
Amplifier Compensation
Amplifier CompensationAmplifier Compensation
Amplifier Compensation
 
Counter And Sequencer Design- Student
Counter And Sequencer Design- StudentCounter And Sequencer Design- Student
Counter And Sequencer Design- Student
 

Último

Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptxmary850239
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Celine George
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDhatriParmar
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6Vanessa Camilleri
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptxAneriPatwari
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxAnupam32727
 

Último (20)

Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
 

Chapter 2 Algebraic Methods 2

  • 1. Algebraic Methods 1 Mathematics 1 Level 4 © University of Wales Newport 2009 This work is licensed under a Creative Commons Attribution 2.0 License .
  • 2.
  • 3. Mathematical Syntax The area of a rectangle is given by: Area = Length x Breath Area = L x B or L.B or LB When two symbols are written next to each other then this implies that they are multiplied. This is not true for numbers 23 is not 2 x 3. Also a shorthand for 2 x 2 x 2 x 2 x 2 is 2 5 And a x a x a x a x a x a is a 6 We must also be aware that 2a is not the same as a 2 One is a + a the other is a x a Algebraic Methods 1
  • 4. Indices We can now look at what happens when we combine expressions which have indices: e.g. a 4 x a 3 = (a x a x a x a) x (a x a x a) (a x a x a x a) x (a x a x a) = a x a x a x a x a x a x a = a 7 When multiplying powers of the same letter we add the indices a n x a m = a n+m e.g. When dividing powers of the same letter we subtract the indices a n  a m = a n-m Algebraic Methods 1
  • 5.
  • 6. Common error What does 2a 2 mean? Does it mean 2 x a x a or 2a x 2a It means the first one! If we wanted the second one we would write it as (2a) 2 So the indices only effect the adjacent letter unless a bracket is used. e.g. 1. (2a) 3 2. (3ab) 2 3. (ab) 3 x (a 2 b) 2 simplify these expressions Algebraic Methods 1
  • 7. Powers Roots and Reciprocals What does (a 2 ) 3 give us? (a x a) x (a x a) x (a x a) = a x a x a x a x a x a = a 6 When raising a power of a term to a new power we multiply the indices (a n ) m = a nxm What does √a 8 give us? a x a x a x a x a x a x a x a = (a x a x a x a) x (a x a x a x a) = (a x a x a x a) 2 When rooting a power of a term we divide the indices √ (a n ) = a n  m m Algebraic Methods 1
  • 8. Powers Roots and Reciprocals What does a  a give us? a 1  a 1 = a 1-1 = a 0 but we also know that this equals 1 Any term raised to the power 0 equals 1 and conversely 1 can be thought as any term to the power 0 What does 1/a 2 give us? 1  a 2 = a 0  a 2 = a 0-2 = a -2 When reciprocating a power of a term we change the sign of the index 1/a n = a -n Algebraic Methods 1
  • 9. Addition and Subtraction Consider the equation: 6 + 8 = 14 We know that 3 x 2 4 x 2 7 x 2 i.e. three lots of something plus four lots of something equals seven lots of something or 3a + 4a = 7a Take care – it does not equal 7a 2 Same with subtraction: 10 a pples – 4 a pples = 6 a pples Note addition and subtraction only work if the letter is the same. 5 apples plus 6 oranges does not equal 11 ? Algebraic Methods 1
  • 10. Number lines -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 Notes Positive numbers are to the right of zero Negative numbers are to the left of zero So 5a – 7a means start at 5 and move 7 to the left. The only sign that can be omitted in front of a term is a positive sign The only sign that can be omitted between two terms is a multiplication sign. Only similar terms can be added or subtracted 2a 2 b + 3ab 2 cannot be performed. Subtraction Addition
  • 12. B O D M A S This indicate the order in which mathematical operations must be carried out in order to generate the correct answer: B rackets O rder (power) D ivision M ultiplication A ddition S ubtraction What is the answer to the equation: 7 + 2 x 4 Most calculators have BODMAS built in so if we want 7 added onto 2 then multiplied by 4 we must use brackets. is it 36 or 15?
  • 13. Brackets in algebra Brackets allow us to treat whatever is inside as a single quantity. i.e. 4a – (2a + 7b) means that 2a + 7b as a whole is subtracted from 4a. 5(5x – 2y) means that 5x – 2y is all multiplied by 5 Consider 3(4 + 1) – 2(2 + 4) 3 x 5 – 2 x 6 = 15 – 12 = 3  12 + 3 – 4 + 8 = 19  12 + 3 – 4 – 8 = 3  Algebraic Methods 1
  • 14. Rules for the removal of simple brackets Every term inside the bracket must be multiplied by the quantity outside the bracket. If the sign in front of the bracket is positive the signs inside the bracket remain unchanged. (no sign is assumed to be positive. If the sign in front of the bracket is negative the signs inside the bracket are changed. 1. 3(a+b) + 4(5a+b) 2. 3(a-b) + 4(2a+b) 3. 6(a+2b-c) + (a-b+c) 4. 2(3a-4b) – (a+b) + 2(a+b) 5. 3(a-2b+3c) – 2(b+4c) 6. -4(a-3b) – 3(-3a-b) 7. 2p(q+r) – p(3q-2r) 8. 11a(2b+c) – 3a(3b-2c) 9. a(a+b-c) – b(a-b+c) 10. a(b+c) – b(c+a) + c(a+b) Algebraic Methods 1
  • 15. Solution to simple equations If we have an equation with one unknown quantity then it is possible to determine the unknown quantity. e.g. 9 = 3 + 2x x is the unknown quantity. To determine its value we need to rearrange the equation so that we have x = Process: 9 = 3 + 2x subtract 3 from each side. 6 = 2x divide each sides by 2 3 = x answer x = 3 e.g. 4x -3 = x + 18 Process 4x -3 = x + 18 add 3 to each side 4x = x + 21 subtract x from each side 3x = 21 divide each side by 3 x = 7 answer x = 7
  • 16. Solution to simple equations Always aim to make the unknown a positive quantity: e.g. 5 – 2x = x +7 Process 5 – 2x = x +7 add 2x to each side 5 = 3x + 7 subtract 7 from each side -2 = 3x divide each side by 3 -2/3 = x Answer x = -2/3 Examples 1. 4a = a + 9 2. 4x – 3 = 2x +3 3. a – 3 = 2a – 14 4. 7x + 1 = 1 + 6x 5. 7(a – 5) = 3(4 – a) Algebraic Methods 1
  • 17. Solution to equations involving fractions Useful steps – any compound numerator or denominator should be placed in brackets and any number not written as a fraction should be made into a fraction. e.g. We now multiply through by the lowest common denominator. (5 x 2 x 1 = 10) 2 5 6x + 4 - 5x – 20 = 40 combine like terms x - 16 = 40 add 16 to each side x = 56 Answer Algebraic Methods 1
  • 18. Solution to equations involving fractions Lowest Common Denominator (LCD) is the lowest number that a series of numbers can be divided by and still give a whole number. e.g. the numbers 2, 3, 4, 6 when multiplied gives 144 144/2 = 72 144/3 = 48 144/4 = 36 144/6 = 24 But there is a lower number which also is fine and this is 12 12/2 = 6 12/3 = 4 12/4 = 3 12/6 = 2 To determine this lowest value we write down the factors of each number. 2 = 2 3 = 3 4 = 2 x 2 6 = 3 x 2 Leaving us 2 x 2 x 3 = 12 Algebraic Methods 1
  • 19. Solution to equations involving fractions e.g. LCD = 12 2 4 3 6 12 – 2x - 10 = 8x +28 - 3x + 30 combine like terms 2 – 2x = 5x + 58 add 2x to each side 2 = 7x + 58 subtract 58 from each side -56 = 7x divide each side by 7 -8 = x Answer x = -8 Algebraic Methods 1
  • 20. Solution to equations involving fractions If we have a single fraction equal to a another single fraction then we can cross multiply: 5 x 5a = 3 x 2 25a = 6 Examples:
  • 21. Transposition of Formulae In the formula: P = I 2 R P is said to be the subject of the formula. We may know I and P and need to work out R – to do this we must make R the subject of the formula. The process of altering the formula is called transposition. The best way of seeing who this is achieved is by looking at examples. e.g. e.g. H = I 2 RT (make R the subject) Algebraic Methods 1
  • 22. Transposition of Formulae If we have quotients then we do the following: e.g. e.g. Algebraic Methods 1
  • 23. Transposition of Formulae If we have plus or minus signs then we do the following: e.g. T = t + 273 (make t the subject) subtract 273 from both sides T – 273 = t t = T - 273 e.g. Algebraic Methods 1
  • 24. Transposition of Formulae If we have brackets then we do the following: e.g. e.g.
  • 27. Transposition of Formulae If we have roots and/or powers then we do the following: e.g. e.g.
  • 29.