SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
279:H1534-H1539, 2000. ;Am J Physiol Heart Circ Physiol
Joseph S. Janicki
Luiz S. Matsubara, Beatriz B. Matsubara, Marina P. Okoshi, Antonio C. Cicogna and
papillary muscle function
Alterations in myocardial collagen content affect rat
You might find this additional info useful...
24 articles, 11 of which you can access for free at:This article cites
http://ajpheart.physiology.org/content/279/4/H1534.full#ref-list-1
15 other HighWire-hosted articles:This article has been cited by
http://ajpheart.physiology.org/content/279/4/H1534#cited-by
including high resolution figures, can be found at:Updated information and services
http://ajpheart.physiology.org/content/279/4/H1534.full
can be found at:Physiology
American Journal of Physiology - Heart and CirculatoryaboutAdditional material and information
http://www.the-aps.org/publications/ajpheart
This information is current as of July 25, 2013.
1522-1539. Visit our website at http://www.the-aps.org/.
Pike, Bethesda MD 20814-3991. Copyright © 2000 the American Physiological Society. ISSN: 0363-6135, ESSN:
molecular levels. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville
cardiovascular function at all levels of organization ranging from the intact animal to the cellular, subcellular, and
physiology of the heart, blood vessels, and lymphatics, including experimental and theoretical studies of
publishes original investigations on theAmerican Journal of Physiology - Heart and Circulatory Physiology
byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
Alterations in myocardial collagen content
affect rat papillary muscle function
LUIZ S. MATSUBARA,1
BEATRIZ B. MATSUBARA,1
MARINA P. OKOSHI,1
ANTONIO C. CICOGNA,1
AND JOSEPH S. JANICKI2
1
Departamento de Clı´nica Me´dica, Faculdade de Medicina de Botucatu, Universidade Estadual
Paulista, Botucatu, Sa˜o Paulo, Brazil 18618-000; and 2
Department of Anatomy, Physiology,
and Pharmacology, Auburn University, Auburn, Alabama 36849-5517
Received 15 June 1999; accepted in final form 19 April 2000
Matsubara, Luiz S., Beatriz B. Matsubara, Marina P.
Okoshi, Antonio C. Cicogna, and Joseph S. Janicki.
Alterations in myocardial collagen content affect rat papil-
lary muscle function. Am J Physiol Heart Circ Physiol 279:
H1534–H1539, 2000.—We investigated the influence of myo-
cardial collagen volume fraction (CVF, %) and hydroxypro-
line concentration (␮g/mg) on rat papillary muscle function.
Collagen excess was obtained in 10 rats with unilateral renal
ischemia for 5 wk followed by 3-wk treatment with ramipril
(20 mg⅐kgϪ1
⅐dayϪ1
) (RHTR rats; CVF ϭ 3.83 Ϯ 0.80, hy-
droxyproline ϭ 3.79 Ϯ 0.50). Collagen degradation was in-
duced by double infusion of oxidized glutathione (GSSG rats;
CVF ϭ 2.45 Ϯ 0.52, hydroxyproline ϭ 2.85 Ϯ 0.18). Nine
untreated rats were used as controls (CFV ϭ 3.04 Ϯ 0.58,
hydroxyproline ϭ 3.21 Ϯ 0.30). Active stiffness (AS;
g⅐cmϪ2
⅐%Lmax
Ϫ1
) and myocyte cross-sectional area (MA;
␮m2
) were increased in the GSSG rats compared with con-
trols [AS 5.86 vs. 3.96 (P Ͻ 0.05); MA 363 Ϯ 59 vs. 305 Ϯ 28
(P Ͻ 0.05)]. In GSSG and RHTR groups the passive tension-
length curves were shifted downwards, indicating decreased
passive stiffness, and upwards, indicating increased passive
stiffness, respectively. Decreased collagen content induced by
GSSG is related to myocyte hypertrophy, decreased passive
stiffness, and increased AS, and increased collagen concen-
tration causes myocardial diastolic dysfunction with no effect
on systolic function.
renovascular hypertension; fibrosis; oxidized glutathione; ac-
tive stiffness; passive stiffness
MYOCARDIAL COLLAGEN CONCENTRATION is elevated in
chronic arterial hypertension, aortic stenosis, experi-
mental renovascular hypertension, and genetic hyper-
tension (2, 6, 17, 28). In view of the mechanical
strength and inextensibility of collagen (19), an in-
creased concentration of this material within the myo-
cardium would be expected to have a significant influ-
ence on left ventricular (LV) chamber and myocardial
stiffness. Studies in spontaneously hypertensive rats
(SHR), which show a marked increase in myocardial
stiffness and fibrosis, appear to suggest that a change
in intrinsic myocardial function may be caused at least
in part by alterations in the extracellular matrix (5).
However, significant hypertrophy also occurs in these
various models of LV pressure overload, and one could
argue that myocyte enlargement also contributes to
the abnormal stiffness.
Two studies designed to determine the separate in-
fluences of hypertrophy and abnormal collagen concen-
tration on myocardial stiffness have resulted in con-
flicting conclusions (23, 25). Narayan et al. (23)
assumed a spherical LV to calculate myocardial stiff-
ness from LV pressure and volume data and concluded
that increased collagen accumulation, but not hyper-
trophy, was responsible for an abnormal diastolic stiff-
ness in the SHR. Schraeger et al. (25) used ventricular
strips from SHR with and without hypertrophy to
obtain tension-length curves and reported that in-
creased collagen concentration does not affect muscle
stiffness.
Others suggested that increased connective tissue
would be responsible for the increased passive stiffness
of hypertrophied trabecular and papillary muscles;
however, they did not experimentally rule out the po-
tential contribution of muscle hypertrophy (4, 14). It
was further suggested that myocardial fibrosis may
restrict myofibrillar motion and thereby impair systolic
and diastolic function (29). Conrad et al. (12) observed
in SHR failing hearts a reduction in tension develop-
ment in association with an increased LV hydroxypro-
line concentration, but they did not conclude whether
the myocardial dysfunction was caused by fibrosis or by
a relative reduction in the number of myocytes.
On the other hand, few studies have addressed the
effects of decreased collagen content without ischemia
on myocardial function. Caulfield et al. (10) observed
that the loss of collagen struts that interconnect myo-
cytes had no effect on either myocyte contractility or
force delivery to the ventricle. However, they did find
this loss to cause a marked dilation of the ventricle and
increased distensibility. Thus the purpose of this study
was to analyze the relationship between LV myocar-
dial collagen content and papillary muscle passive and
active stiffness. To this end, LV papillary muscles from
Address for reprint requests and other correspondence: L. S. Mat-
subara, Departamento de Clı´nica Me´dica, Faculdade de Medicina de
Botucatu, 18618-000 Botucatu, Sa˜o Paulo, Brazil (E-Mail: lsmatsu
@fmb.unesp.br).
The costs of publication of this article were defrayed in part by the
payment of page charges. The article must therefore be hereby
marked ‘‘advertisement’’ in accordance with 18 U.S.C. Section 1734
solely to indicate this fact.
Am J Physiol Heart Circ Physiol
279: H1534–H1539, 2000.
0363-6135/00 $5.00 Copyright © 2000 the American Physiological Society http://www.ajpheart.orgH1534
byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
groups of rats with different amounts of myocardial
collagen were studied.
METHODS
Experimental procedure. Thirty-three male Wistar rats
were used in the study. Their care and use conformed with
National Institutes of Health guidelines and the protocol was
approved by the University Animal Care and Use Commit-
tee. In the first group, 10 rats (6 wk old) were anesthetized
with pentobarbital sodium (50 mg/kg ip), and renal hyper-
tension was produced by placing a silver clip around the left
renal artery to constrict it to an external diameter of 0.25
mm; the contralateral kidney remained normally perfused.
After a 5-wk follow-up, the rats were treated for 3 wk with
the angiotensin-converting enzyme (ACE) inhibitor ramipril
(20 mg⅐kgϪ1
⅐dayϪ1
in drinking water; RHTR group). In the
second group (GSSG group, n ϭ 14), myocardial collagen
degradation was induced using the method described by
Caulfield and Wolkowicz (11). Briefly, 10 wk-old rats were
anesthetized and received two intravenous infusions over 3 h
(0.11 ml/min), 1 wk apart, of 20 ml of a 2 mM solution of
oxidized glutathione. The animals were killed 3 wk after the
second infusion, when myocardial hydroxyproline is expected
to be at a minimum (11). A third group (control, n ϭ 9)
consisted of unoperated and untreated normotensive rats
that were the same age as the other two groups at the end of
the experiment (i.e., 14 wk old). All rats were housed in a
temperature-controlled room (24°C) with 12-h light:dark cy-
cles, and food and water were supplied ad libitum. At the end
of the experiment, tail cuff systolic arterial pressure (SAP)
was measured in all rats.
Isolated papillary muscle study. The animals were anes-
thetized with pentobarbital sodium (50 mg/kg ip), and the
body weight (BW) was recorded at the time of death. The
chest was opened by median sternotomy, and the heart was
removed and placed in oxygenated Krebs-Henseleit solution
at 28°C. The LV and septal wall were separated from the
right ventricle, and their weights were determined. One
papillary muscle was dissected from the LV, mounted be-
tween two spring clips, and placed vertically in a bathing
chamber. The lower spring clip was attached to a Kyowa
model 120T-20B force transducer by a thin (1/15,000 in.)
steel wire. The upper spring clip was connected by a thin wire
to a rigid lever arm above which was mounted an adjustable
micrometer stop for the adjustment of unstimulated muscle
length. Oxygenated (95% O2-5% CO2) bathing medium con-
sisted of (in mM) 118.5 NaCl, 4.69 KCl, 2.52 CaCl2, 1.16
MgSO4, 1.18 KH2PO4, 5.50 glucose, and 25.88 NaHCO3 dis-
solved in deionized water. The temperature of the bathing
medium was maintained at 28°C.
The muscle preparation was placed between two parallel
platinum electrodes and stimulated at a frequency of 0.2 Hz,
using square-wave pulses of 5-ms duration. Voltage was set
to a value 10% greater than the minimum required to pro-
duce a maximal mechanical response. After 60 min, during
which the preparation stabilized, the muscle was loaded to
contract isometrically and stretched to the peak length of its
tension-length curve (Lmax).
Once a stable Lmax was determined, the muscle was made
to contract isometrically at Lmax and the resultant isometric
contraction parameters were determined, which included
peak developed active tension (AT, g/mm2
), resting tension
(RT, g/mm2
), peak rate of isometric tension development
(ϩdT/dt, g⅐mmϪ2
⅐sϪ1
), peak rate of tension decrease (ϪdT/
dt, g⅐mmϪ2
⅐sϪ1
), time to peak tension (TPT, ms), and time
from peak tension to 50% relaxation (RT1/2, ms). Active and
passive tension-length curves were derived from data ob-
tained at lengths corresponding to 90%, 92%, 94%, 96%, 98%,
and 100% of Lmax. The muscle length was measured with a
Gaertner cathetometer and telescope. At the end of the ex-
periment, the muscle between the spring clips was weighed
and its cross-sectional area (CSA) was calculated, assuming
cylindrical uniformity and a specific gravity of 1.00. All val-
ues of force were normalized for muscle CSA.
Biochemical study. It has been demonstrated that hy-
droxyproline concentration in the LV free wall is similar to
that in the papillary muscle (15). Therefore, we assumed that
the hydroxyproline observed in the apex of the LV is repre-
sentative of that in the entire ventricle, including the papil-
lary muscle. We measured hydroxyproline in tissue obtained
from the LV apex according to the method described by
Switzer (27). Briefly, the tissue was dried for 4 h using a
SpeedVac Concentrator SC 100 attached to a refrigerated
condensation trap TR 100 and vacuum pump VP 100 (Savant
Instruments, Farmingdale, NY). Tissue dry weight was de-
termined, and the samples were hydrolyzed overnight at
110°C with 6 N HCl (1 ml/10 mg dry tissue). An aliquot of 50
␮l of hydrolysate was transferred to an Eppendorf tube and
dried in the SpeedVac Concentrator. One milliliter of deion-
ized water was added, and the sample was transferred to a
tube. One milliliter of potassium borate buffer (pH 8.7) was
added to maintain stable pH, and the sample was oxidized
with 0.3 ml of chloramine T solution at room temperature for
exactly 20 min. The oxidation was stopped by the addition of
1 ml of 3.6 M sodium thiosulfate with thorough mixing for
10 s. The solution was then saturated with 1.5 g of KCl, and
the tubes were capped and heated in boiling water for 20 min.
After the tubes cooled to room temperature, 2.5 ml of toluene
were added and the tubes were shaken over 5 min. The tubes
were briefly centrifuged at low speed, and 1 ml of toluene
extract was transferred to a 12 ϫ 75 mm test tube. In the
next step, 0.4 ml of Ehrlich’s reagent was added to allow the
color to develop for 30 min. Absorbencies were read at 565 nm
with a double-beam spectrophotometer (A-160 spectropho-
tometer, Shimadzu) against a reagent blank. Deionized wa-
ter and 20 ␮g/ml hydroxyproline were used as blank and
standard, respectively.
Histology and morphometry. Transverse sections of LV
were fixed in 10% buffered Formalin and embedded in par-
affin. Five-micrometer-thick sections were cut from the
blocked tissue and stained with hematoxylin-eosin and with
the collagen-specific stain picrosirius red (Sirius red F3BA in
aqueous saturated picric acid). Myocyte CSA (MA) was de-
termined for at least 100 myocytes per slide stained with
hematoxylin-eosin. The measurements were performed using
a Leica microscope (ϫ40 magnification lens) attached to a
video camera and connected to a personal computer equipped
with image analyzer software (Image-Pro Plus 3.0, Media
Cybernetics, Silver Spring, MD). MA was measured with a
digitizing pad, and the selected cells were transversely cut
with the nucleus clearly identified in the center of the myo-
cyte. Interstitial collagen volume fraction (CVF) was deter-
mined for the entire section of the heart stained with picro-
sirius red using an automated image analyzer (Image-Pro
Plus 3.0, Media Cybernetics). The components of the cardiac
tissue were identified according to their color level: red for
collagen fibers, yellow for myocytes, and white for interstitial
space. The digitized profiles were sent to a computer that
calculated collagen volume fraction as the sum of all connec-
tive tissue areas divided by the sum of all connective tissue
and myocyte areas. On the average, 35 microscopic fields
were analyzed with a ϫ20 lens. Perivascular collagen was
excluded from this analysis.
H1535COLLAGEN AND MYOCARDIAL MECHANICS
byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
Statistics. All grouped data were expressed as means Ϯ SD
and compared by one-way ANOVA and post hoc Tukeys test.
Statistical analyses were performed with SigmaStat statisti-
cal software (Jandel Scientific Software, San Rafael, CA).
Differences with P Յ 0.05 were considered significant.
Straight lines were fit to the systolic tension-length relations
using linear regression analysis (22). The resulting slopes
corresponded to AS, and the means among the groups were
compared by ANOVA. Before the diastolic tension-length
relationship was compared for the three groups, the resting
tension at the muscle length corresponding to 90% of Lmax
(L90) was subtracted from all subsequent tension data in each
experiment to have all tension-length curves intercepting the
y-axis origin at L90.
The diastolic tension-length curves for the three groups
were fit to monoexponential relations of the form RT ϭ
A[e
B
(L Ϫ L0)
Ϫ 1], where A and B are fitting parameters and L0
is the muscle length corresponding to zero resting tension.
These nonlinear relations were compared by constructing an
F ratio from the residual sum of squares. This test deter-
mines whether separate fits to three groups are significantly
better than the fit to data pooled from all groups. Accord-
ingly, a significant F ratio indicates that the two sets of data
being compared were significantly different from one an-
other. For all comparisons, statistical significance was taken
to be P Ͻ 0.05/k where k is the number of comparisons (24).
RESULTS
Average group values for BW, LV weight (LVW),
right ventricular weight, papillary muscle CSA, SAP,
and LVW normalized to BW (LVW/BW) are shown in
Table 1. In the RHTR group, treatment with an ACE
inhibitor for 3 wk significantly reduced systolic blood
pressure from an average value of 202 Ϯ 31 mmHg to
111 Ϯ 11 mmHg (P Ͻ 0.001) and regressed LVW to a
value comparable to the control and GSSG groups. MA
was significantly higher in the GSSG group compared
with control and RHTR groups (Fig. 1). CVF and hy-
droxyproline (Fig. 2) were statistically higher in RHTR
than in the other two groups. The difference between
GSSG and control groups reached a level of signifi-
cance of 10% (Fig. 2A), whereas hydroxyproline was
statistically lower in the GSSG compared with the
control group (Fig. 2B).
The isolated papillary muscle functional parameters
RT, Lmax, AT at Lmax, AT at L90, ϩdT/dt, ϪdT/dt, TPT,
TR1/2, and AS are shown in Table 2. RT was signifi-
cantly higher in the RHTR group (0.64 Ϯ 0.08 g/mm2
)
compared with control (0.47 Ϯ 0.14 g/mm2
) and GSSG
(0.35 Ϯ 0.10 g/mm2
) groups. AT at L90 and at Lmax were
not different among the groups.
In all experiments the relation between peak devel-
oped active tension and muscle length was linear, as
evidenced by the coefficient of determination (r2
),
which was typically Ͼ0.94. This finding means that at
least 94% of the sum of squares of deviations of AT
values about their means is attributable to the linear
relation between AT and muscle length (22). The slope
of these linear regressions corresponds to the myocar-
dial AS, which was significantly increased in the GSSG
group compared with the control group (5.86 Ϯ 1.14 vs.
3.96 Ϯ 1.33 g⅐mmϪ2
⅐%Lmax
Ϫ1
; P ϭ 0.008). The differ-
ences between GSSG and RHTR groups and between
control and RHTR groups were not statistically signif-
icant (Fig. 3).
The passive tension-length curve from the RHTR
group was shifted upward from that of the control
group (F ϭ 14.25; P Ͻ 0.01) and that of the GSSG group
(F ϭ 38.8; P Ͻ 0.01), reflecting an increased passive
stiffness. The GSSG curve was shifted downwards
from the control group (F ϭ 9.95; P Ͻ 0.01), indicating
decreased passive stiffness (Fig. 3).
DISCUSSION
In a previous study (21), we showed that renovascu-
lar hypertension induces marked myocardial hypertro-
phy and interstitial fibrosis. Treatment with ramipril
for 3 wk did not reverse perivascular and interstitial
fibrosis but fully treated the arterial hypertension and
promoted regression of myocardial hypertrophy.
Therefore, we used that experimental model to study
myocardial function in papillary muscle from rat heart
with increased collagen concentration without myocar-
dial hypertrophy. In the present study, collagen
Table 1. Group comparisons of morphometric
parameters and tail cuff systolic arterial pressure
in control, GSSG, and RHTR rats
Control GSSG RHTR
BW, g 329Ϯ17 332Ϯ20 346Ϯ30
SAP, mmHg 136Ϯ14 129Ϯ18 111Ϯ11*
LVW, g 0.66Ϯ0.07 0.65Ϯ0.05 0.69Ϯ0.14
LVW/BW, mg/g 2.01Ϯ0.16 1.96Ϯ0.09 1.90Ϯ0.17
RVW, g 0.21Ϯ0.03 0.19Ϯ0.05 0.21Ϯ0.04
CSA, mm2
0.84Ϯ0.18 0.78Ϯ0.17 0.86Ϯ0.22
Data are presented as means Ϯ SD. BW, body weight; SAP,
systolic arterial pressure; LVW/BW, left ventricle weight (LVW) to
BW ratio; RVW, right ventricle weight; CSA, papillary muscle cross-
sectional area. *P Ͻ 0.05 vs. control. See METHODS for description of
the control, oxidized glutathione (GSSG), and ramipril-treated rat
(RHTR) groups.
Fig. 1. Myocyte cross-sectional area in control, oxidized glutathione
(GSSG), and ramipril-treated rat (RHTR) groups. Data are means Ϯ
SD analyzed by one-way ANOVA with Tukey’s posttest procedure.
H1536 COLLAGEN AND MYOCARDIAL MECHANICS
byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
amount was measured with CVF and hydroxyproline.
It has been shown that total volume fraction is closely
related to hydroxyproline concentration in the LV (28),
and in our study both measurements indicated that the
interstitial collagen was altered in the treated groups
relative to the control rats. However, we observed that
the CVF measurement was associated with a greater
variation than the measurement of hydroxyproline,
and, consequently, the decrease in CVF in the GSSG
group came close but did not reach the level of statis-
tical significance. The variability of CVF might be
caused in part by the measurement method used. In
the present investigation we used a ϫ20 microscope
objective to obtain a large field. This magnification
would detect only large perimysial collagen fibers,
thereby decreasing the sensitivity of the measurement.
Even so, a power analysis indicated that the difference
between the GSSG and control groups would have
reached the level of significance if but a few additional
histological samples were available.
Despite similar LVW, the papillary muscles were
significantly stiffer in the group with greater collagen
concentration. This result is similar to that obtained by
Narayan et al. (23) using hydralazine to prevent myo-
cyte hypertrophy but not abnormal collagen accumula-
tion in SHR. The collagen excess resulted in abnor-
mally elevated passive myocardial stiffness. In
contrast, Schraeger and co-workers (25) concluded that
ACE inhibitor-induced regression of LV hypertrophy in
Fig. 3. Left ventricular papillary muscle active and passive tension-
length curves obtained from control, GSSG, and RHTR groups.
Results are presented as means Ϯ SD. The active stiffness (AS)
obtained from the GSSG group was statistically higher than that
from controls (P ϭ 0.008). Statistically, no differences were observed
between GSSG and RHTR groups (P ϭ 0.493) and between control
and RHTR groups (P ϭ 0.085). AS was analyzed by ANOVA and post
hoc Tukey’s test. The RHTR passive tension-length curve was shifted
upwards compared with either control (F ϭ 14.25; P Ͻ 0.01) or GSSG
(F ϭ 38.8; P Ͻ 0.01) groups. The curve from the GSSG group was
shifted downwards compared with the control group (F ϭ 9.95; P Ͻ
0.01). The passive tension-length curves were fitted to a monoexpo-
nential relation, and comparisons were made by constructing an F
ratio from the residual sum of squares. Statistical significance was
taken to be P Յ 0.05/k where k is the number of comparisons.
Table 2. Papillary muscle isometric contraction data
for the control, GSSG, and RHTR groups
Control GSSG RHTR
RT, g/mm2
0.47Ϯ0.14 0.35Ϯ0.10 0.64Ϯ0.08*†
AT at Lmax, g/mm2
8.05Ϯ1.59 9.44Ϯ1.86 8.52Ϯ1.72
AT at L90, g/mm2
5.64Ϯ1.26 5.95Ϯ1.64 5.23Ϯ1.58
RT1/2, ms 290Ϯ54 272Ϯ23 280Ϯ47
Lmax, mm 6.23Ϯ0.99 6.07Ϯ0.50 6.31Ϯ0.81
ϩdT/dt, g⅐mmϪ2
⅐sϪ1
75.8Ϯ21.1 84.3Ϯ21.0 72.8Ϯ16.5
ϪdT/dt, g⅐mmϪ2
⅐sϪ1
19.0Ϯ5.5 21.8Ϯ4.9 18.8Ϯ4.1
AS, g⅐mmϪ2
⅐%Lmax
Ϫ1
3.96Ϯ1.33 5.86Ϯ1.14* 5.21Ϯ1.18
TPT, ms 201Ϯ16 193Ϯ12 204Ϯ17
Data are reported as means Ϯ SD. RT, resting tension; AT, active
tension; ϩdT/dt, peak rate of isometric tension development; ϪdT/dt,
peak rate of tension decrease; TPT, time to peak tension; Lmax,
muscle length at peak of the tension-length curve; L90, muscle length
at 90% of Lmax; RT1/2, time from peak tension to 50% relaxation; AS,
active stiffness. *P Ͻ 0.05 vs. control; *†P Ͻ 0.05 vs. GSSG.
Fig. 2. Collagen volume fraction (A) and hydroxyproline concentra-
tion (B) in control, GSSG, and RHTR groups. Data are means Ϯ SD
analyzed by one-way ANOVA with Tukey’s posttest procedure.
H1537COLLAGEN AND MYOCARDIAL MECHANICS
byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
SHR significantly decreased the passive stiffness of
skinned trabecular muscle despite abnormally ele-
vated hydroxyproline levels. It is not clear to what
extent, if any, the 48-h incubation in the skinning
solution at 0°C influenced their observations. The dis-
crepancies observed between the studies may be
caused by the animal strains as well as by the different
experimental models used to produce hypertrophy and
fibrosis.
In our study, using the model of presumed collage-
nase activation by oxidized glutathione described by
Caulfield and Wolkowicz (11), it was possible to induce,
in vivo, an 11% reduction of myocardial collagen con-
centration measured by hydroxyproline concentration
and a 19% reduction in the interstitial CVF. These
results are less expressive than the 30–35% reduction
in collagen as reported by Caulfield et al. (10). The
authors have shown that the double infusion of GSSG
resulted in no visible myocyte damage at any time as
examined by light microscopy and scanning electron
microscope (SEM). The collagen matrix alteration was
not visible by light microscopy; SEM revealed damage
to the endomysium with loss of the weave that sur-
rounds groups of myocytes and the struts that inter-
connect myocyte to myocyte and myocyte to adjacent
capillaries, with no change in coiled perimysial fibers.
These changes in the fibrillar collagen network re-
sulted in increased ventricular volume and compliance,
suggesting that damage to the intermyocyte struts and
to the weave complex might be more important than
the decrease in myocardial collagen. Other studies
have shown that the double infusion of GSSG in rats
promotes a reduction in CVF, ventricular dilatation,
and a shift to the right of the diastolic pressure-volume
curve of the entire LV (18, 20). However, a similar
effect in the papillary muscle preparation has not been
studied previously. The main advantage of this prepa-
ration is that the muscle force and length are directly
measured and that the mathematical assumptions re-
quired when myocardial mechanical characteristics
are evaluated in the LV chamber are unnecessary.
The study of cardiac function in the whole heart is
based on the pressure-volume and stress-strain rela-
tionships. In that condition, myocardial stiffness is
derived from chamber measurements using mathemat-
ical models and assumptions regarding LV shape. If
the LV is assumed to be a thick-walled sphere, the
stress will be underestimated (30), whereas the as-
sumption of an ellipsoid shape would result in an
overestimated wall stress (7). Therefore, isolated mus-
cle experiments provide descriptions of myocardial be-
havior without the influence of chamber and wall ge-
ometry. In our study, the diastolic tension-length
relations obtained for the three groups were different
from each other, showing that the changes in collagen
content, measured by hydroxyproline and CVF, are
associated with myocardial passive properties. Com-
pared with the control group, the diastolic tension-
length curves were significantly shifted upwards and
to the left in the RHTR group and downwards and to
the right in the GSSG group. Therefore, our results
allow us to conclude that the decreased passive stiff-
ness in the GSSG group strongly correlates with the
fibrillar collagen loss and that increased collagen con-
tent strongly correlates with the elevated passive stiff-
ness observed in the RHTR group. Previous studies
have suggested that collagen cross-linking (9) may
affect myocardial stiffness, regardless of collagen
amount. In addition to the effect of altered collagen
amounts, it is important to be mindful of the effects of
collagen crosslink density, as well as collagen type
(type I or III) and collagen distribution. At present, we
cannot rule out that changes in the collagen character-
istics might also have influenced myocardial stiffness
in the present study. Nevertheless, the results clearly
indicate that alterations in collagen concentration and
papillary muscle function are correlated.
Ventricular elastance and myocardial stiffness are
indexes of contractility of the ventricular chamber and
myocardium, respectively (8, 26). Elastance is the ratio
of the change in peak isovolumetric pressure for a
given change in volume, and stiffness is defined as the
ratio of the change in active force related to change in
muscle length (8). Myocardial contractility is a very
complex property of the heart that is difficult to mea-
sure directly. During the last two decades it has been
proposed that an ideal index of myocardial contractility
must be able to measure the ability of the myocardium
to generate force independently of loading condition.
The slope of the linear pressure-volume relationship in
the isolated canine heart has been shown to be rela-
tively independent of preload and afterload and there-
fore has been used as an index of contractility (26).
Using the slope of active tension-length (active stiff-
ness) as an index of myocardial contractility, we have
shown an enhancement of active stiffness when the
muscle is stretched from 90% to 100% of Lmax in the
GSSG group. The mechanisms underlying the associa-
tion between decreased myocardial collagen and en-
hanced active stiffness are not well established, and
the results presented in this study do not answer all
the questions concerning this matter. When collagen is
reduced, ventricular dilatation occurs (10) and myocyte
hypertrophy takes place in response to alterations in
the loading state of the ventricle (17). Therefore, myo-
cyte hypertrophy might play an important role in the
improvement in contractility observed in the GSSG
group. Another explanation would be related to the
intracellular glutathione metabolisms. The glutathi-
one level in the heart is ϳ1.2 ␮M/g (16), mainly in the
reduced form, GSH, because of the high activity of
GSSG reductase (13). That means that, inside the cell,
most of the infused GSSG was rapidly converted to
GSH. The action of excess GSH or GSSG in the heart is
not completely elucidated. Bauer et al. (3), working on
fiber bundles from papillary muscle of porcine right
ventricle, observed an increased sensitivity of contrac-
tile protein to calcium and, consequently, an increased
force development in the presence of GSH. In our
study, considering that the half-life of the glutathione
is only a few minutes (1), it is doubtful that the double
infusion of oxidized glutathione might increase the
H1538 COLLAGEN AND MYOCARDIAL MECHANICS
byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
glutathione level in the cardiac tissue after 3 wk.
Nevertheless, this is a very complex matter that re-
quires further study. Active tension and active stiff-
ness in papillary muscles from RHTR rats were similar
to those in the control rats, suggesting that regression
of hypertrophy by treatment with an ACE inhibitor is
associated with preserved myocardial contractility.
We conclude that decreased collagen content induced
by GSSG is associated with myocyte hypertrophy, de-
creased passive stiffness, and increased active stiff-
ness. Abnormally high collagen concentration corre-
lates with myocardial diastolic dysfunction and has no
relation with systolic function.
This study was supported by a grant from Fundac¸a˜o de Amparo a`
Pesquisa do Estado de Sa˜o Paulo (FAPESP), Sa˜o Paulo, Brazil, Proc.
No. 92/4528–1.
REFERENCES
1. Ammon HPT, Melien MCM, and Verpohl EJ. Pharmacoki-
netics of intravenously administered glutathione in the rat.
J Pharm Pharmacol 38: 721–725, 1986.
2. Anversa P, Olivetti G, and Melissari M. Morphometric study
of myocardial hypertrophy induced by abdominal aortic stenosis.
Lab Invest 40: 341–349, 1979.
3. Bauer SF, Schwarz K, and Ruegg JC. Glutathione alters
calcium responsiveness of cardiac skinned fibers. Basic Res Car-
diol 84: 591–596, 1989.
4. Bing OHL, Matsushita S, Farburg BL, and Levine HJ.
Mechanical properties of rat cardiac muscle during experimental
hypertrophy. Circ Res 28: 234–245, 1971.
5. Boluyt MO, O’Neil E, Meredith AL, Bing OHL, Brooks WW,
Conrad CH, Crow MT, and Lakatta EG. Alterations in car-
diac gene expression during the transition from stable hypertro-
phy to failure. Circ Res 75: 23–32, 1994.
6. Brilla CG, Janicki JS, and Weber KT. Impaired diastolic
function and coronary reserve in genetic hypertension: role of
interstitial fibrosis and medial thickening of intramyocardial
coronary artery. Circ Res 69: 107–115, 1991.
7. Burns J, Covell J, Meyrs R, and Ross JJ. Comparison of
directly measured left ventricular wall stress and stress calcu-
lated from geometric references figures. Circ Res 28: 611–621,
1971.
8. Campbell KB, Taheri H, Kirkpatrick RD, Burton T, and
Hunter WC. Similarities between dynamic elastance of left
ventricular chamber and papillary muscle of rabbit heart. Am J
Physiol Heart Circ Physiol 264: H1926–H1941, 1993.
9. Capasso JM, Robinson TF, and Anversa P. Alteration in
collagen cross-linking impair myocardial contractility in mouse
heart. Circ Res 65: 1657–1664, 1989.
10. Caulfield JB, Norton P, and Weaver RD. Cardiac dilatation
associated with collagen alterations. Mol Cell Biochem 118:
171–179, 1992.
11. Caulfield JB and Wolkowicz PE. Myocardial connective tis-
sue alterations. Toxicol Pathol 18: 488–496, 1990.
12. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG,
and Bing OHL. Myocardial fibrosis and stiffness with hyper-
trophy and heart failure in spontaneously hypertensive rats.
Circulation 91: 161–170, 1995.
13. Curello S, Ceconi C, Bigoli B, Ferrari R, Albertini A, and
Guarnieri C. Changes in the cardiac glutathione status after
ischemia and reperfusion. Experientia 41: 42–43, 1985.
14. Holubarsch CH, Holubarsch T, Jacob R, Medugorac I, and
Thiedemann K. Passive elastic properties of myocardium in
different models of hypertrophy: a study comparing mechanical,
chemical, and morphometric parameters. Perspect Cardiovasc
Res 7: 323–336, 1983.
15. Imataka K, Naito S, Seko Y, and Fujii J. Hydroxyproline in
all parts of the rabbit heart in hypertension and in its reversal.
J Mol Cell Cardiol 21: 133–139, 1989.
16. Ishikawa T and Sies H. Cardiac transport of glutathione
disulfide and s-conjugate. J Biol Chem 259: 3838–3843, 1984.
17. Janicki JS. Myocardial collagen remodeling and left ventricu-
lar diastolic function. Braz J Med Biol Res 25: 975–982, 1992.
18. Janicki JS and Matsubara BB. Myocardial collagen and left
ventricular diastolic dysfunction. In: Left Ventricular Diastolic
Dysfunction and Heart Failure, edited by Gaasch W and LeWin-
ter M. Philadelphia, PA: Lea and Febiger, 1994, p. 125–140.
19. MacKenna DA, Omens JH, and Covell JW. Left ventricular
perimysial collagen fibers uncoil rather than stretch during
diastolic filling. Basic Res Cardiol 91: 111–122, 1996.
20. Matsubara BB, Henegar JR, and Janicki JS. Structural and
functional role of myocardial collagen in the normal rat heart
(Abstract). Circulation 84: 212, 1991.
21. Matsubara LS, Matsubara BB, Okoshi MP, Franco M, and
Cicogna AC. Myocardial fibrosis rather than hypertrophy in-
duces diastolic dysfunction in renovascular hypertensive rats.
Can J Physiol Pharmacol 75: 1328–1334, 1997.
22. McClave JT and Dietrich FH. Simple linear regression. In:
Statistics (3rd ed.). San Francisco, CA: Dellen, 1985, p. 581–635.
23. Narayan S, Janicki JS, Shroff SG, Pick R, and Weber KT.
Myocardial collagen and mechanics after preventing hypertro-
phy in hypertensive rats. Am J Hypertens 2: 675–682, 1989.
24. Ratkowsky D. Comparing parameter estimates from more than
one data set. In: Nonlinear Regression Modelling; a Unified and
Practical Approach. New York: Dekker, 1983, p. 135–145.
25. Schraeger JA, Canby CA, Rongish BJ, Kawai M, and To-
manek RJ. Normal left ventricular diastolic compliance after
regression of hypertrophy. J Cardiovasc Pharmacol 23: 349–
357, 1994.
26. Suga H, Sagawa K, and Shoukas AA. Load independence of
the instantaneous pressure-volume ratio of the canine left ven-
tricle and effects of epinephrine and heart rate on the ratio. Circ
Res 32: 314–322, 1973.
27. Switzer BR. Determination of hydroxyproline in tissue. J Nutr
Biochem 2: 229- 231, 1991.
28. Weber KT, Janicki JS, Pick R, Abrahams C, Shroff SG, and
Bashey RI. Collagen in the hypertrophied pressure-overloaded
myocardium. Circulation 75: 140–147, 1987.
29. Weber KT, Pick R, Jalil JE, Janicki JS, and Carroll EP.
Patterns of myocardial fibrosis. J Mol Cell Cardiol 21, Suppl. V:
121–131, 1989.
30. Yin FCP. Ventricular wall stress. Circ Res 49: 829–842, 1981.
H1539COLLAGEN AND MYOCARDIAL MECHANICS
byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom

Mais conteúdo relacionado

Mais procurados

FINAL CURO 2016 Szymonik
FINAL CURO 2016 SzymonikFINAL CURO 2016 Szymonik
FINAL CURO 2016 SzymonikJoanna Szymonik
 
"The highly trained marathon runner.. epitome of health or fittest person in ...
"The highly trained marathon runner.. epitome of health or fittest person in ..."The highly trained marathon runner.. epitome of health or fittest person in ...
"The highly trained marathon runner.. epitome of health or fittest person in ...Kiely Bridge
 
Dehydration accelerates reductions in cerebral blood flow during prolonged ex...
Dehydration accelerates reductions in cerebral blood flow during prolonged ex...Dehydration accelerates reductions in cerebral blood flow during prolonged ex...
Dehydration accelerates reductions in cerebral blood flow during prolonged ex...Benjamin Garcia
 
Glenn et al-Body Endogenous Nutritive Support Following TBI
Glenn et al-Body Endogenous Nutritive Support Following TBI Glenn et al-Body Endogenous Nutritive Support Following TBI
Glenn et al-Body Endogenous Nutritive Support Following TBI Dr. George A. Brooks
 
Hepcidin Poster - BSH April 2015
Hepcidin Poster - BSH April 2015Hepcidin Poster - BSH April 2015
Hepcidin Poster - BSH April 2015Nicola Svenson
 
Salon a 13 kasim 11.30 12.45 emre karakoç-i̇ng
Salon a 13 kasim 11.30   12.45 emre karakoç-i̇ngSalon a 13 kasim 11.30   12.45 emre karakoç-i̇ng
Salon a 13 kasim 11.30 12.45 emre karakoç-i̇ngtyfngnc
 
Calpain Inhibitors and Modulation of Ischaemia Reperfusion Induced Apoptosis ...
Calpain Inhibitors and Modulation of Ischaemia Reperfusion Induced Apoptosis ...Calpain Inhibitors and Modulation of Ischaemia Reperfusion Induced Apoptosis ...
Calpain Inhibitors and Modulation of Ischaemia Reperfusion Induced Apoptosis ...iosrjce
 
Summaryofdoubleblindstudyv2
Summaryofdoubleblindstudyv2Summaryofdoubleblindstudyv2
Summaryofdoubleblindstudyv2andavar
 
Review paper osteoarthritis and its possible treatments
Review paper osteoarthritis and its possible treatmentsReview paper osteoarthritis and its possible treatments
Review paper osteoarthritis and its possible treatmentsvalrivera
 
Effects of Grape Seed Extract Supplementation on Exercise Performance in Athl...
Effects of Grape Seed Extract Supplementation on Exercise Performance in Athl...Effects of Grape Seed Extract Supplementation on Exercise Performance in Athl...
Effects of Grape Seed Extract Supplementation on Exercise Performance in Athl...Crimsonpublishers-Sportsmedicine
 
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...Association of cardio metabolic risk factors, serum nitric oxide metabolite a...
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...iosrjce
 
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...Prof. Hesham N. Mustafa
 
Lipoproteins and Lipid Peroxidation in Thyroid disorders
Lipoproteins and Lipid Peroxidation in Thyroid disordersLipoproteins and Lipid Peroxidation in Thyroid disorders
Lipoproteins and Lipid Peroxidation in Thyroid disordersIOSR Journals
 
ASTASHINE CAPSULES: AN EXCELLENT CHOICE FOR A CARDIOVASCULAR HEALTH ABSTRACT
ASTASHINE CAPSULES: AN EXCELLENT CHOICE FOR A CARDIOVASCULAR HEALTH  ABSTRACTASTASHINE CAPSULES: AN EXCELLENT CHOICE FOR A CARDIOVASCULAR HEALTH  ABSTRACT
ASTASHINE CAPSULES: AN EXCELLENT CHOICE FOR A CARDIOVASCULAR HEALTH ABSTRACTPUGOS Products Pvt Ltd
 
Glutathione supplementation attenuates
Glutathione supplementation attenuatesGlutathione supplementation attenuates
Glutathione supplementation attenuatesStephen M. Black
 
Osteoarthitis and its possible treatments
Osteoarthitis and its possible treatmentsOsteoarthitis and its possible treatments
Osteoarthitis and its possible treatmentsvalrivera
 
Fda Iri Dgf Workshop 09 Sep2011 W Irish
Fda Iri Dgf Workshop 09 Sep2011 W IrishFda Iri Dgf Workshop 09 Sep2011 W Irish
Fda Iri Dgf Workshop 09 Sep2011 W Irishbirish
 
Rui Maio - Portugal - Tuesday 29 - Organ Donor Care. New Alternatives
Rui Maio  - Portugal - Tuesday 29 - Organ Donor Care. New AlternativesRui Maio  - Portugal - Tuesday 29 - Organ Donor Care. New Alternatives
Rui Maio - Portugal - Tuesday 29 - Organ Donor Care. New Alternativesincucai_isodp
 

Mais procurados (19)

FINAL CURO 2016 Szymonik
FINAL CURO 2016 SzymonikFINAL CURO 2016 Szymonik
FINAL CURO 2016 Szymonik
 
ACSM poster_2007
ACSM poster_2007ACSM poster_2007
ACSM poster_2007
 
"The highly trained marathon runner.. epitome of health or fittest person in ...
"The highly trained marathon runner.. epitome of health or fittest person in ..."The highly trained marathon runner.. epitome of health or fittest person in ...
"The highly trained marathon runner.. epitome of health or fittest person in ...
 
Dehydration accelerates reductions in cerebral blood flow during prolonged ex...
Dehydration accelerates reductions in cerebral blood flow during prolonged ex...Dehydration accelerates reductions in cerebral blood flow during prolonged ex...
Dehydration accelerates reductions in cerebral blood flow during prolonged ex...
 
Glenn et al-Body Endogenous Nutritive Support Following TBI
Glenn et al-Body Endogenous Nutritive Support Following TBI Glenn et al-Body Endogenous Nutritive Support Following TBI
Glenn et al-Body Endogenous Nutritive Support Following TBI
 
Hepcidin Poster - BSH April 2015
Hepcidin Poster - BSH April 2015Hepcidin Poster - BSH April 2015
Hepcidin Poster - BSH April 2015
 
Salon a 13 kasim 11.30 12.45 emre karakoç-i̇ng
Salon a 13 kasim 11.30   12.45 emre karakoç-i̇ngSalon a 13 kasim 11.30   12.45 emre karakoç-i̇ng
Salon a 13 kasim 11.30 12.45 emre karakoç-i̇ng
 
Calpain Inhibitors and Modulation of Ischaemia Reperfusion Induced Apoptosis ...
Calpain Inhibitors and Modulation of Ischaemia Reperfusion Induced Apoptosis ...Calpain Inhibitors and Modulation of Ischaemia Reperfusion Induced Apoptosis ...
Calpain Inhibitors and Modulation of Ischaemia Reperfusion Induced Apoptosis ...
 
Summaryofdoubleblindstudyv2
Summaryofdoubleblindstudyv2Summaryofdoubleblindstudyv2
Summaryofdoubleblindstudyv2
 
Review paper osteoarthritis and its possible treatments
Review paper osteoarthritis and its possible treatmentsReview paper osteoarthritis and its possible treatments
Review paper osteoarthritis and its possible treatments
 
Effects of Grape Seed Extract Supplementation on Exercise Performance in Athl...
Effects of Grape Seed Extract Supplementation on Exercise Performance in Athl...Effects of Grape Seed Extract Supplementation on Exercise Performance in Athl...
Effects of Grape Seed Extract Supplementation on Exercise Performance in Athl...
 
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...Association of cardio metabolic risk factors, serum nitric oxide metabolite a...
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...
 
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
 
Lipoproteins and Lipid Peroxidation in Thyroid disorders
Lipoproteins and Lipid Peroxidation in Thyroid disordersLipoproteins and Lipid Peroxidation in Thyroid disorders
Lipoproteins and Lipid Peroxidation in Thyroid disorders
 
ASTASHINE CAPSULES: AN EXCELLENT CHOICE FOR A CARDIOVASCULAR HEALTH ABSTRACT
ASTASHINE CAPSULES: AN EXCELLENT CHOICE FOR A CARDIOVASCULAR HEALTH  ABSTRACTASTASHINE CAPSULES: AN EXCELLENT CHOICE FOR A CARDIOVASCULAR HEALTH  ABSTRACT
ASTASHINE CAPSULES: AN EXCELLENT CHOICE FOR A CARDIOVASCULAR HEALTH ABSTRACT
 
Glutathione supplementation attenuates
Glutathione supplementation attenuatesGlutathione supplementation attenuates
Glutathione supplementation attenuates
 
Osteoarthitis and its possible treatments
Osteoarthitis and its possible treatmentsOsteoarthitis and its possible treatments
Osteoarthitis and its possible treatments
 
Fda Iri Dgf Workshop 09 Sep2011 W Irish
Fda Iri Dgf Workshop 09 Sep2011 W IrishFda Iri Dgf Workshop 09 Sep2011 W Irish
Fda Iri Dgf Workshop 09 Sep2011 W Irish
 
Rui Maio - Portugal - Tuesday 29 - Organ Donor Care. New Alternatives
Rui Maio  - Portugal - Tuesday 29 - Organ Donor Care. New AlternativesRui Maio  - Portugal - Tuesday 29 - Organ Donor Care. New Alternatives
Rui Maio - Portugal - Tuesday 29 - Organ Donor Care. New Alternatives
 

Destaque (20)

RomanèS
RomanèSRomanèS
RomanèS
 
Com Ensenyar Llengua A Xinesos Lh
Com Ensenyar Llengua A Xinesos LhCom Ensenyar Llengua A Xinesos Lh
Com Ensenyar Llengua A Xinesos Lh
 
Unidad i parte a[1]
Unidad i   parte a[1]Unidad i   parte a[1]
Unidad i parte a[1]
 
Blogger-ohje
Blogger-ohjeBlogger-ohje
Blogger-ohje
 
Securing Your Salesforce Org: The Human Factor
Securing Your Salesforce Org: The Human FactorSecuring Your Salesforce Org: The Human Factor
Securing Your Salesforce Org: The Human Factor
 
Asci Pd On A Shoestring V2
Asci Pd On A Shoestring V2Asci Pd On A Shoestring V2
Asci Pd On A Shoestring V2
 
Moea introduction by deb
Moea introduction by debMoea introduction by deb
Moea introduction by deb
 
Laserfiche document management solutions
Laserfiche document management solutionsLaserfiche document management solutions
Laserfiche document management solutions
 
Gany bajany-ki-hurmat
Gany bajany-ki-hurmatGany bajany-ki-hurmat
Gany bajany-ki-hurmat
 
The Boomer Retirement Time Bomb
The Boomer Retirement Time BombThe Boomer Retirement Time Bomb
The Boomer Retirement Time Bomb
 
Be-namazi
Be-namaziBe-namazi
Be-namazi
 
Fireworks
FireworksFireworks
Fireworks
 
Three brave boys
Three brave boysThree brave boys
Three brave boys
 
Presentation'as
Presentation'asPresentation'as
Presentation'as
 
Dash berlin - janeiro
Dash berlin - janeiroDash berlin - janeiro
Dash berlin - janeiro
 
Languages
LanguagesLanguages
Languages
 
Catch agile
Catch agileCatch agile
Catch agile
 
DiMatteo Insurance Service Summary Jd 7 18 06
DiMatteo Insurance Service Summary Jd 7 18 06DiMatteo Insurance Service Summary Jd 7 18 06
DiMatteo Insurance Service Summary Jd 7 18 06
 
Sanciones Ourense
Sanciones OurenseSanciones Ourense
Sanciones Ourense
 
Control Pacients Fumadors
Control Pacients FumadorsControl Pacients Fumadors
Control Pacients Fumadors
 

Semelhante a Myocardial collagen affects heart muscle function

Vol 1,issue 7 paper (5) page 26-31
Vol 1,issue 7 paper (5) page 26-31Vol 1,issue 7 paper (5) page 26-31
Vol 1,issue 7 paper (5) page 26-31IJAMHC
 
0c9605215046f7a34f000000
0c9605215046f7a34f0000000c9605215046f7a34f000000
0c9605215046f7a34f000000terencehilado
 
Curación acelerada de tendón de aquiles en ratas en resp uesta a acs 2009 a...
Curación acelerada de tendón de aquiles en ratas en resp uesta a acs 2009   a...Curación acelerada de tendón de aquiles en ratas en resp uesta a acs 2009   a...
Curación acelerada de tendón de aquiles en ratas en resp uesta a acs 2009 a...Dr. Manuel Concepción
 
Comparison of surgically_repaired_achilles_tendon_tears_using_platelet_rich_f...
Comparison of surgically_repaired_achilles_tendon_tears_using_platelet_rich_f...Comparison of surgically_repaired_achilles_tendon_tears_using_platelet_rich_f...
Comparison of surgically_repaired_achilles_tendon_tears_using_platelet_rich_f...Dr. Manuel Concepción
 
The Vascular Endothelium, Nutrients, and Diseases
The Vascular Endothelium, Nutrients, and DiseasesThe Vascular Endothelium, Nutrients, and Diseases
The Vascular Endothelium, Nutrients, and DiseasesSuthipong Pongworn
 
The Heart is a Target Organ in Offspring Rats Due to Maternal Hypertension
The Heart is a Target Organ in Offspring Rats Due to Maternal HypertensionThe Heart is a Target Organ in Offspring Rats Due to Maternal Hypertension
The Heart is a Target Organ in Offspring Rats Due to Maternal HypertensionSymbiosis Group
 
225 animal models of heart attack part 2
225 animal models of heart attack part 2225 animal models of heart attack part 2
225 animal models of heart attack part 2SHAPE Society
 
Circulation-2003-Spragg-929-32
Circulation-2003-Spragg-929-32Circulation-2003-Spragg-929-32
Circulation-2003-Spragg-929-32Morteza Loghmani
 
Fall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserFall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserCody Heiser
 
Abstract world congress
Abstract world congressAbstract world congress
Abstract world congressSergio Pinski
 

Semelhante a Myocardial collagen affects heart muscle function (20)

H1898.full
H1898.fullH1898.full
H1898.full
 
Vol 1,issue 7 paper (5) page 26-31
Vol 1,issue 7 paper (5) page 26-31Vol 1,issue 7 paper (5) page 26-31
Vol 1,issue 7 paper (5) page 26-31
 
0c9605215046f7a34f000000
0c9605215046f7a34f0000000c9605215046f7a34f000000
0c9605215046f7a34f000000
 
Curación acelerada de tendón de aquiles en ratas en resp uesta a acs 2009 a...
Curación acelerada de tendón de aquiles en ratas en resp uesta a acs 2009   a...Curación acelerada de tendón de aquiles en ratas en resp uesta a acs 2009   a...
Curación acelerada de tendón de aquiles en ratas en resp uesta a acs 2009 a...
 
Comparison of surgically_repaired_achilles_tendon_tears_using_platelet_rich_f...
Comparison of surgically_repaired_achilles_tendon_tears_using_platelet_rich_f...Comparison of surgically_repaired_achilles_tendon_tears_using_platelet_rich_f...
Comparison of surgically_repaired_achilles_tendon_tears_using_platelet_rich_f...
 
International Journal of Hepatology & Gastroenterology
International Journal of Hepatology & GastroenterologyInternational Journal of Hepatology & Gastroenterology
International Journal of Hepatology & Gastroenterology
 
The Vascular Endothelium, Nutrients, and Diseases
The Vascular Endothelium, Nutrients, and DiseasesThe Vascular Endothelium, Nutrients, and Diseases
The Vascular Endothelium, Nutrients, and Diseases
 
The Heart is a Target Organ in Offspring Rats Due to Maternal Hypertension
The Heart is a Target Organ in Offspring Rats Due to Maternal HypertensionThe Heart is a Target Organ in Offspring Rats Due to Maternal Hypertension
The Heart is a Target Organ in Offspring Rats Due to Maternal Hypertension
 
Vp watch editorial - v2 n2- 2002
Vp watch   editorial - v2 n2- 2002Vp watch   editorial - v2 n2- 2002
Vp watch editorial - v2 n2- 2002
 
225 animal models of heart attack part 2
225 animal models of heart attack part 2225 animal models of heart attack part 2
225 animal models of heart attack part 2
 
225 animal models of heart attack part 2
225 animal models of heart attack part 2225 animal models of heart attack part 2
225 animal models of heart attack part 2
 
Vp watch2002
Vp watch2002Vp watch2002
Vp watch2002
 
Changes in the Bladder After Spinal Cord Injury and Expression of VEGF and AP...
Changes in the Bladder After Spinal Cord Injury and Expression of VEGF and AP...Changes in the Bladder After Spinal Cord Injury and Expression of VEGF and AP...
Changes in the Bladder After Spinal Cord Injury and Expression of VEGF and AP...
 
Circulation-2003-Spragg-929-32
Circulation-2003-Spragg-929-32Circulation-2003-Spragg-929-32
Circulation-2003-Spragg-929-32
 
Fall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserFall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiser
 
Yang{JMCC_2009]
Yang{JMCC_2009]Yang{JMCC_2009]
Yang{JMCC_2009]
 
Abstract world congress
Abstract world congressAbstract world congress
Abstract world congress
 
Cbd ca2
Cbd ca2Cbd ca2
Cbd ca2
 
Hyperkalemia
HyperkalemiaHyperkalemia
Hyperkalemia
 
Papel do TRV027
Papel do TRV027 Papel do TRV027
Papel do TRV027
 

Último

2025 Inpatient Prospective Payment System (IPPS) Proposed Rule
2025 Inpatient Prospective Payment System (IPPS) Proposed Rule2025 Inpatient Prospective Payment System (IPPS) Proposed Rule
2025 Inpatient Prospective Payment System (IPPS) Proposed RuleShelby Lewis
 
College Call Girls Mumbai Alia 9910780858 Independent Escort Service Mumbai
College Call Girls Mumbai Alia 9910780858 Independent Escort Service MumbaiCollege Call Girls Mumbai Alia 9910780858 Independent Escort Service Mumbai
College Call Girls Mumbai Alia 9910780858 Independent Escort Service Mumbaisonalikaur4
 
hyderabad call girl.pdfRussian Call Girls in Hyderabad Amrita 9907093804 Inde...
hyderabad call girl.pdfRussian Call Girls in Hyderabad Amrita 9907093804 Inde...hyderabad call girl.pdfRussian Call Girls in Hyderabad Amrita 9907093804 Inde...
hyderabad call girl.pdfRussian Call Girls in Hyderabad Amrita 9907093804 Inde...delhimodelshub1
 
Call Girls Uppal 7001305949 all area service COD available Any Time
Call Girls Uppal 7001305949 all area service COD available Any TimeCall Girls Uppal 7001305949 all area service COD available Any Time
Call Girls Uppal 7001305949 all area service COD available Any Timedelhimodelshub1
 
Book Call Girls in Noida Pick Up Drop With Cash Payment 9711199171 Call Girls
Book Call Girls in Noida Pick Up Drop With Cash Payment 9711199171 Call GirlsBook Call Girls in Noida Pick Up Drop With Cash Payment 9711199171 Call Girls
Book Call Girls in Noida Pick Up Drop With Cash Payment 9711199171 Call GirlsCall Girls Noida
 
Hi,Fi Call Girl In Marathahalli - 7001305949 with real photos and phone numbers
Hi,Fi Call Girl In Marathahalli - 7001305949 with real photos and phone numbersHi,Fi Call Girl In Marathahalli - 7001305949 with real photos and phone numbers
Hi,Fi Call Girl In Marathahalli - 7001305949 with real photos and phone numbersnarwatsonia7
 
Russian Call Girls in Goa Samaira 7001305949 Independent Escort Service Goa
Russian Call Girls in Goa Samaira 7001305949 Independent Escort Service GoaRussian Call Girls in Goa Samaira 7001305949 Independent Escort Service Goa
Russian Call Girls in Goa Samaira 7001305949 Independent Escort Service Goanarwatsonia7
 
Russian Escorts Delhi | 9711199171 | all area service available
Russian Escorts Delhi | 9711199171 | all area service availableRussian Escorts Delhi | 9711199171 | all area service available
Russian Escorts Delhi | 9711199171 | all area service availablesandeepkumar69420
 
Kukatpally Call Girls Services 9907093804 High Class Babes Here Call Now
Kukatpally Call Girls Services 9907093804 High Class Babes Here Call NowKukatpally Call Girls Services 9907093804 High Class Babes Here Call Now
Kukatpally Call Girls Services 9907093804 High Class Babes Here Call NowHyderabad Call Girls Services
 
Gurgaon Sector 68 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few ...
Gurgaon Sector 68 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few ...Gurgaon Sector 68 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few ...
Gurgaon Sector 68 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few ...ggsonu500
 
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service GurgaonCall Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service GurgaonCall Girls Service Gurgaon
 
Book Call Girls in Hosur - 7001305949 | 24x7 Service Available Near Me
Book Call Girls in Hosur - 7001305949 | 24x7 Service Available Near MeBook Call Girls in Hosur - 7001305949 | 24x7 Service Available Near Me
Book Call Girls in Hosur - 7001305949 | 24x7 Service Available Near Menarwatsonia7
 
Russian Call Girls in Raipur 9873940964 Book Hot And Sexy Girls
Russian Call Girls in Raipur 9873940964 Book Hot And Sexy GirlsRussian Call Girls in Raipur 9873940964 Book Hot And Sexy Girls
Russian Call Girls in Raipur 9873940964 Book Hot And Sexy Girlsddev2574
 
Call Girls Kukatpally 7001305949 all area service COD available Any Time
Call Girls Kukatpally 7001305949 all area service COD available Any TimeCall Girls Kukatpally 7001305949 all area service COD available Any Time
Call Girls Kukatpally 7001305949 all area service COD available Any Timedelhimodelshub1
 
Call Girls Hyderabad Kirti 9907093804 Independent Escort Service Hyderabad
Call Girls Hyderabad Kirti 9907093804 Independent Escort Service HyderabadCall Girls Hyderabad Kirti 9907093804 Independent Escort Service Hyderabad
Call Girls Hyderabad Kirti 9907093804 Independent Escort Service Hyderabaddelhimodelshub1
 
Call Girls Service Chandigarh Grishma ❤️🍑 9907093804 👄🫦 Independent Escort Se...
Call Girls Service Chandigarh Grishma ❤️🍑 9907093804 👄🫦 Independent Escort Se...Call Girls Service Chandigarh Grishma ❤️🍑 9907093804 👄🫦 Independent Escort Se...
Call Girls Service Chandigarh Grishma ❤️🍑 9907093804 👄🫦 Independent Escort Se...High Profile Call Girls Chandigarh Aarushi
 

Último (20)

2025 Inpatient Prospective Payment System (IPPS) Proposed Rule
2025 Inpatient Prospective Payment System (IPPS) Proposed Rule2025 Inpatient Prospective Payment System (IPPS) Proposed Rule
2025 Inpatient Prospective Payment System (IPPS) Proposed Rule
 
College Call Girls Mumbai Alia 9910780858 Independent Escort Service Mumbai
College Call Girls Mumbai Alia 9910780858 Independent Escort Service MumbaiCollege Call Girls Mumbai Alia 9910780858 Independent Escort Service Mumbai
College Call Girls Mumbai Alia 9910780858 Independent Escort Service Mumbai
 
hyderabad call girl.pdfRussian Call Girls in Hyderabad Amrita 9907093804 Inde...
hyderabad call girl.pdfRussian Call Girls in Hyderabad Amrita 9907093804 Inde...hyderabad call girl.pdfRussian Call Girls in Hyderabad Amrita 9907093804 Inde...
hyderabad call girl.pdfRussian Call Girls in Hyderabad Amrita 9907093804 Inde...
 
Call Girl Guwahati Aashi 👉 7001305949 👈 🔝 Independent Escort Service Guwahati
Call Girl Guwahati Aashi 👉 7001305949 👈 🔝 Independent Escort Service GuwahatiCall Girl Guwahati Aashi 👉 7001305949 👈 🔝 Independent Escort Service Guwahati
Call Girl Guwahati Aashi 👉 7001305949 👈 🔝 Independent Escort Service Guwahati
 
Call Girls Uppal 7001305949 all area service COD available Any Time
Call Girls Uppal 7001305949 all area service COD available Any TimeCall Girls Uppal 7001305949 all area service COD available Any Time
Call Girls Uppal 7001305949 all area service COD available Any Time
 
Book Call Girls in Noida Pick Up Drop With Cash Payment 9711199171 Call Girls
Book Call Girls in Noida Pick Up Drop With Cash Payment 9711199171 Call GirlsBook Call Girls in Noida Pick Up Drop With Cash Payment 9711199171 Call Girls
Book Call Girls in Noida Pick Up Drop With Cash Payment 9711199171 Call Girls
 
Hi,Fi Call Girl In Marathahalli - 7001305949 with real photos and phone numbers
Hi,Fi Call Girl In Marathahalli - 7001305949 with real photos and phone numbersHi,Fi Call Girl In Marathahalli - 7001305949 with real photos and phone numbers
Hi,Fi Call Girl In Marathahalli - 7001305949 with real photos and phone numbers
 
Russian Call Girls in Goa Samaira 7001305949 Independent Escort Service Goa
Russian Call Girls in Goa Samaira 7001305949 Independent Escort Service GoaRussian Call Girls in Goa Samaira 7001305949 Independent Escort Service Goa
Russian Call Girls in Goa Samaira 7001305949 Independent Escort Service Goa
 
Russian Escorts Delhi | 9711199171 | all area service available
Russian Escorts Delhi | 9711199171 | all area service availableRussian Escorts Delhi | 9711199171 | all area service available
Russian Escorts Delhi | 9711199171 | all area service available
 
Kukatpally Call Girls Services 9907093804 High Class Babes Here Call Now
Kukatpally Call Girls Services 9907093804 High Class Babes Here Call NowKukatpally Call Girls Services 9907093804 High Class Babes Here Call Now
Kukatpally Call Girls Services 9907093804 High Class Babes Here Call Now
 
VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service LucknowVIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
 
Gurgaon Sector 68 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few ...
Gurgaon Sector 68 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few ...Gurgaon Sector 68 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few ...
Gurgaon Sector 68 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few ...
 
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service GurgaonCall Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
 
Call Girl Dehradun Aashi 🔝 7001305949 🔝 💃 Independent Escort Service Dehradun
Call Girl Dehradun Aashi 🔝 7001305949 🔝 💃 Independent Escort Service DehradunCall Girl Dehradun Aashi 🔝 7001305949 🔝 💃 Independent Escort Service Dehradun
Call Girl Dehradun Aashi 🔝 7001305949 🔝 💃 Independent Escort Service Dehradun
 
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
 
Book Call Girls in Hosur - 7001305949 | 24x7 Service Available Near Me
Book Call Girls in Hosur - 7001305949 | 24x7 Service Available Near MeBook Call Girls in Hosur - 7001305949 | 24x7 Service Available Near Me
Book Call Girls in Hosur - 7001305949 | 24x7 Service Available Near Me
 
Russian Call Girls in Raipur 9873940964 Book Hot And Sexy Girls
Russian Call Girls in Raipur 9873940964 Book Hot And Sexy GirlsRussian Call Girls in Raipur 9873940964 Book Hot And Sexy Girls
Russian Call Girls in Raipur 9873940964 Book Hot And Sexy Girls
 
Call Girls Kukatpally 7001305949 all area service COD available Any Time
Call Girls Kukatpally 7001305949 all area service COD available Any TimeCall Girls Kukatpally 7001305949 all area service COD available Any Time
Call Girls Kukatpally 7001305949 all area service COD available Any Time
 
Call Girls Hyderabad Kirti 9907093804 Independent Escort Service Hyderabad
Call Girls Hyderabad Kirti 9907093804 Independent Escort Service HyderabadCall Girls Hyderabad Kirti 9907093804 Independent Escort Service Hyderabad
Call Girls Hyderabad Kirti 9907093804 Independent Escort Service Hyderabad
 
Call Girls Service Chandigarh Grishma ❤️🍑 9907093804 👄🫦 Independent Escort Se...
Call Girls Service Chandigarh Grishma ❤️🍑 9907093804 👄🫦 Independent Escort Se...Call Girls Service Chandigarh Grishma ❤️🍑 9907093804 👄🫦 Independent Escort Se...
Call Girls Service Chandigarh Grishma ❤️🍑 9907093804 👄🫦 Independent Escort Se...
 

Myocardial collagen affects heart muscle function

  • 1. 279:H1534-H1539, 2000. ;Am J Physiol Heart Circ Physiol Joseph S. Janicki Luiz S. Matsubara, Beatriz B. Matsubara, Marina P. Okoshi, Antonio C. Cicogna and papillary muscle function Alterations in myocardial collagen content affect rat You might find this additional info useful... 24 articles, 11 of which you can access for free at:This article cites http://ajpheart.physiology.org/content/279/4/H1534.full#ref-list-1 15 other HighWire-hosted articles:This article has been cited by http://ajpheart.physiology.org/content/279/4/H1534#cited-by including high resolution figures, can be found at:Updated information and services http://ajpheart.physiology.org/content/279/4/H1534.full can be found at:Physiology American Journal of Physiology - Heart and CirculatoryaboutAdditional material and information http://www.the-aps.org/publications/ajpheart This information is current as of July 25, 2013. 1522-1539. Visit our website at http://www.the-aps.org/. Pike, Bethesda MD 20814-3991. Copyright © 2000 the American Physiological Society. ISSN: 0363-6135, ESSN: molecular levels. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville cardiovascular function at all levels of organization ranging from the intact animal to the cellular, subcellular, and physiology of the heart, blood vessels, and lymphatics, including experimental and theoretical studies of publishes original investigations on theAmerican Journal of Physiology - Heart and Circulatory Physiology byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
  • 2. Alterations in myocardial collagen content affect rat papillary muscle function LUIZ S. MATSUBARA,1 BEATRIZ B. MATSUBARA,1 MARINA P. OKOSHI,1 ANTONIO C. CICOGNA,1 AND JOSEPH S. JANICKI2 1 Departamento de Clı´nica Me´dica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Sa˜o Paulo, Brazil 18618-000; and 2 Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, Alabama 36849-5517 Received 15 June 1999; accepted in final form 19 April 2000 Matsubara, Luiz S., Beatriz B. Matsubara, Marina P. Okoshi, Antonio C. Cicogna, and Joseph S. Janicki. Alterations in myocardial collagen content affect rat papil- lary muscle function. Am J Physiol Heart Circ Physiol 279: H1534–H1539, 2000.—We investigated the influence of myo- cardial collagen volume fraction (CVF, %) and hydroxypro- line concentration (␮g/mg) on rat papillary muscle function. Collagen excess was obtained in 10 rats with unilateral renal ischemia for 5 wk followed by 3-wk treatment with ramipril (20 mg⅐kgϪ1 ⅐dayϪ1 ) (RHTR rats; CVF ϭ 3.83 Ϯ 0.80, hy- droxyproline ϭ 3.79 Ϯ 0.50). Collagen degradation was in- duced by double infusion of oxidized glutathione (GSSG rats; CVF ϭ 2.45 Ϯ 0.52, hydroxyproline ϭ 2.85 Ϯ 0.18). Nine untreated rats were used as controls (CFV ϭ 3.04 Ϯ 0.58, hydroxyproline ϭ 3.21 Ϯ 0.30). Active stiffness (AS; g⅐cmϪ2 ⅐%Lmax Ϫ1 ) and myocyte cross-sectional area (MA; ␮m2 ) were increased in the GSSG rats compared with con- trols [AS 5.86 vs. 3.96 (P Ͻ 0.05); MA 363 Ϯ 59 vs. 305 Ϯ 28 (P Ͻ 0.05)]. In GSSG and RHTR groups the passive tension- length curves were shifted downwards, indicating decreased passive stiffness, and upwards, indicating increased passive stiffness, respectively. Decreased collagen content induced by GSSG is related to myocyte hypertrophy, decreased passive stiffness, and increased AS, and increased collagen concen- tration causes myocardial diastolic dysfunction with no effect on systolic function. renovascular hypertension; fibrosis; oxidized glutathione; ac- tive stiffness; passive stiffness MYOCARDIAL COLLAGEN CONCENTRATION is elevated in chronic arterial hypertension, aortic stenosis, experi- mental renovascular hypertension, and genetic hyper- tension (2, 6, 17, 28). In view of the mechanical strength and inextensibility of collagen (19), an in- creased concentration of this material within the myo- cardium would be expected to have a significant influ- ence on left ventricular (LV) chamber and myocardial stiffness. Studies in spontaneously hypertensive rats (SHR), which show a marked increase in myocardial stiffness and fibrosis, appear to suggest that a change in intrinsic myocardial function may be caused at least in part by alterations in the extracellular matrix (5). However, significant hypertrophy also occurs in these various models of LV pressure overload, and one could argue that myocyte enlargement also contributes to the abnormal stiffness. Two studies designed to determine the separate in- fluences of hypertrophy and abnormal collagen concen- tration on myocardial stiffness have resulted in con- flicting conclusions (23, 25). Narayan et al. (23) assumed a spherical LV to calculate myocardial stiff- ness from LV pressure and volume data and concluded that increased collagen accumulation, but not hyper- trophy, was responsible for an abnormal diastolic stiff- ness in the SHR. Schraeger et al. (25) used ventricular strips from SHR with and without hypertrophy to obtain tension-length curves and reported that in- creased collagen concentration does not affect muscle stiffness. Others suggested that increased connective tissue would be responsible for the increased passive stiffness of hypertrophied trabecular and papillary muscles; however, they did not experimentally rule out the po- tential contribution of muscle hypertrophy (4, 14). It was further suggested that myocardial fibrosis may restrict myofibrillar motion and thereby impair systolic and diastolic function (29). Conrad et al. (12) observed in SHR failing hearts a reduction in tension develop- ment in association with an increased LV hydroxypro- line concentration, but they did not conclude whether the myocardial dysfunction was caused by fibrosis or by a relative reduction in the number of myocytes. On the other hand, few studies have addressed the effects of decreased collagen content without ischemia on myocardial function. Caulfield et al. (10) observed that the loss of collagen struts that interconnect myo- cytes had no effect on either myocyte contractility or force delivery to the ventricle. However, they did find this loss to cause a marked dilation of the ventricle and increased distensibility. Thus the purpose of this study was to analyze the relationship between LV myocar- dial collagen content and papillary muscle passive and active stiffness. To this end, LV papillary muscles from Address for reprint requests and other correspondence: L. S. Mat- subara, Departamento de Clı´nica Me´dica, Faculdade de Medicina de Botucatu, 18618-000 Botucatu, Sa˜o Paulo, Brazil (E-Mail: lsmatsu @fmb.unesp.br). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked ‘‘advertisement’’ in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Am J Physiol Heart Circ Physiol 279: H1534–H1539, 2000. 0363-6135/00 $5.00 Copyright © 2000 the American Physiological Society http://www.ajpheart.orgH1534 byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
  • 3. groups of rats with different amounts of myocardial collagen were studied. METHODS Experimental procedure. Thirty-three male Wistar rats were used in the study. Their care and use conformed with National Institutes of Health guidelines and the protocol was approved by the University Animal Care and Use Commit- tee. In the first group, 10 rats (6 wk old) were anesthetized with pentobarbital sodium (50 mg/kg ip), and renal hyper- tension was produced by placing a silver clip around the left renal artery to constrict it to an external diameter of 0.25 mm; the contralateral kidney remained normally perfused. After a 5-wk follow-up, the rats were treated for 3 wk with the angiotensin-converting enzyme (ACE) inhibitor ramipril (20 mg⅐kgϪ1 ⅐dayϪ1 in drinking water; RHTR group). In the second group (GSSG group, n ϭ 14), myocardial collagen degradation was induced using the method described by Caulfield and Wolkowicz (11). Briefly, 10 wk-old rats were anesthetized and received two intravenous infusions over 3 h (0.11 ml/min), 1 wk apart, of 20 ml of a 2 mM solution of oxidized glutathione. The animals were killed 3 wk after the second infusion, when myocardial hydroxyproline is expected to be at a minimum (11). A third group (control, n ϭ 9) consisted of unoperated and untreated normotensive rats that were the same age as the other two groups at the end of the experiment (i.e., 14 wk old). All rats were housed in a temperature-controlled room (24°C) with 12-h light:dark cy- cles, and food and water were supplied ad libitum. At the end of the experiment, tail cuff systolic arterial pressure (SAP) was measured in all rats. Isolated papillary muscle study. The animals were anes- thetized with pentobarbital sodium (50 mg/kg ip), and the body weight (BW) was recorded at the time of death. The chest was opened by median sternotomy, and the heart was removed and placed in oxygenated Krebs-Henseleit solution at 28°C. The LV and septal wall were separated from the right ventricle, and their weights were determined. One papillary muscle was dissected from the LV, mounted be- tween two spring clips, and placed vertically in a bathing chamber. The lower spring clip was attached to a Kyowa model 120T-20B force transducer by a thin (1/15,000 in.) steel wire. The upper spring clip was connected by a thin wire to a rigid lever arm above which was mounted an adjustable micrometer stop for the adjustment of unstimulated muscle length. Oxygenated (95% O2-5% CO2) bathing medium con- sisted of (in mM) 118.5 NaCl, 4.69 KCl, 2.52 CaCl2, 1.16 MgSO4, 1.18 KH2PO4, 5.50 glucose, and 25.88 NaHCO3 dis- solved in deionized water. The temperature of the bathing medium was maintained at 28°C. The muscle preparation was placed between two parallel platinum electrodes and stimulated at a frequency of 0.2 Hz, using square-wave pulses of 5-ms duration. Voltage was set to a value 10% greater than the minimum required to pro- duce a maximal mechanical response. After 60 min, during which the preparation stabilized, the muscle was loaded to contract isometrically and stretched to the peak length of its tension-length curve (Lmax). Once a stable Lmax was determined, the muscle was made to contract isometrically at Lmax and the resultant isometric contraction parameters were determined, which included peak developed active tension (AT, g/mm2 ), resting tension (RT, g/mm2 ), peak rate of isometric tension development (ϩdT/dt, g⅐mmϪ2 ⅐sϪ1 ), peak rate of tension decrease (ϪdT/ dt, g⅐mmϪ2 ⅐sϪ1 ), time to peak tension (TPT, ms), and time from peak tension to 50% relaxation (RT1/2, ms). Active and passive tension-length curves were derived from data ob- tained at lengths corresponding to 90%, 92%, 94%, 96%, 98%, and 100% of Lmax. The muscle length was measured with a Gaertner cathetometer and telescope. At the end of the ex- periment, the muscle between the spring clips was weighed and its cross-sectional area (CSA) was calculated, assuming cylindrical uniformity and a specific gravity of 1.00. All val- ues of force were normalized for muscle CSA. Biochemical study. It has been demonstrated that hy- droxyproline concentration in the LV free wall is similar to that in the papillary muscle (15). Therefore, we assumed that the hydroxyproline observed in the apex of the LV is repre- sentative of that in the entire ventricle, including the papil- lary muscle. We measured hydroxyproline in tissue obtained from the LV apex according to the method described by Switzer (27). Briefly, the tissue was dried for 4 h using a SpeedVac Concentrator SC 100 attached to a refrigerated condensation trap TR 100 and vacuum pump VP 100 (Savant Instruments, Farmingdale, NY). Tissue dry weight was de- termined, and the samples were hydrolyzed overnight at 110°C with 6 N HCl (1 ml/10 mg dry tissue). An aliquot of 50 ␮l of hydrolysate was transferred to an Eppendorf tube and dried in the SpeedVac Concentrator. One milliliter of deion- ized water was added, and the sample was transferred to a tube. One milliliter of potassium borate buffer (pH 8.7) was added to maintain stable pH, and the sample was oxidized with 0.3 ml of chloramine T solution at room temperature for exactly 20 min. The oxidation was stopped by the addition of 1 ml of 3.6 M sodium thiosulfate with thorough mixing for 10 s. The solution was then saturated with 1.5 g of KCl, and the tubes were capped and heated in boiling water for 20 min. After the tubes cooled to room temperature, 2.5 ml of toluene were added and the tubes were shaken over 5 min. The tubes were briefly centrifuged at low speed, and 1 ml of toluene extract was transferred to a 12 ϫ 75 mm test tube. In the next step, 0.4 ml of Ehrlich’s reagent was added to allow the color to develop for 30 min. Absorbencies were read at 565 nm with a double-beam spectrophotometer (A-160 spectropho- tometer, Shimadzu) against a reagent blank. Deionized wa- ter and 20 ␮g/ml hydroxyproline were used as blank and standard, respectively. Histology and morphometry. Transverse sections of LV were fixed in 10% buffered Formalin and embedded in par- affin. Five-micrometer-thick sections were cut from the blocked tissue and stained with hematoxylin-eosin and with the collagen-specific stain picrosirius red (Sirius red F3BA in aqueous saturated picric acid). Myocyte CSA (MA) was de- termined for at least 100 myocytes per slide stained with hematoxylin-eosin. The measurements were performed using a Leica microscope (ϫ40 magnification lens) attached to a video camera and connected to a personal computer equipped with image analyzer software (Image-Pro Plus 3.0, Media Cybernetics, Silver Spring, MD). MA was measured with a digitizing pad, and the selected cells were transversely cut with the nucleus clearly identified in the center of the myo- cyte. Interstitial collagen volume fraction (CVF) was deter- mined for the entire section of the heart stained with picro- sirius red using an automated image analyzer (Image-Pro Plus 3.0, Media Cybernetics). The components of the cardiac tissue were identified according to their color level: red for collagen fibers, yellow for myocytes, and white for interstitial space. The digitized profiles were sent to a computer that calculated collagen volume fraction as the sum of all connec- tive tissue areas divided by the sum of all connective tissue and myocyte areas. On the average, 35 microscopic fields were analyzed with a ϫ20 lens. Perivascular collagen was excluded from this analysis. H1535COLLAGEN AND MYOCARDIAL MECHANICS byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
  • 4. Statistics. All grouped data were expressed as means Ϯ SD and compared by one-way ANOVA and post hoc Tukeys test. Statistical analyses were performed with SigmaStat statisti- cal software (Jandel Scientific Software, San Rafael, CA). Differences with P Յ 0.05 were considered significant. Straight lines were fit to the systolic tension-length relations using linear regression analysis (22). The resulting slopes corresponded to AS, and the means among the groups were compared by ANOVA. Before the diastolic tension-length relationship was compared for the three groups, the resting tension at the muscle length corresponding to 90% of Lmax (L90) was subtracted from all subsequent tension data in each experiment to have all tension-length curves intercepting the y-axis origin at L90. The diastolic tension-length curves for the three groups were fit to monoexponential relations of the form RT ϭ A[e B (L Ϫ L0) Ϫ 1], where A and B are fitting parameters and L0 is the muscle length corresponding to zero resting tension. These nonlinear relations were compared by constructing an F ratio from the residual sum of squares. This test deter- mines whether separate fits to three groups are significantly better than the fit to data pooled from all groups. Accord- ingly, a significant F ratio indicates that the two sets of data being compared were significantly different from one an- other. For all comparisons, statistical significance was taken to be P Ͻ 0.05/k where k is the number of comparisons (24). RESULTS Average group values for BW, LV weight (LVW), right ventricular weight, papillary muscle CSA, SAP, and LVW normalized to BW (LVW/BW) are shown in Table 1. In the RHTR group, treatment with an ACE inhibitor for 3 wk significantly reduced systolic blood pressure from an average value of 202 Ϯ 31 mmHg to 111 Ϯ 11 mmHg (P Ͻ 0.001) and regressed LVW to a value comparable to the control and GSSG groups. MA was significantly higher in the GSSG group compared with control and RHTR groups (Fig. 1). CVF and hy- droxyproline (Fig. 2) were statistically higher in RHTR than in the other two groups. The difference between GSSG and control groups reached a level of signifi- cance of 10% (Fig. 2A), whereas hydroxyproline was statistically lower in the GSSG compared with the control group (Fig. 2B). The isolated papillary muscle functional parameters RT, Lmax, AT at Lmax, AT at L90, ϩdT/dt, ϪdT/dt, TPT, TR1/2, and AS are shown in Table 2. RT was signifi- cantly higher in the RHTR group (0.64 Ϯ 0.08 g/mm2 ) compared with control (0.47 Ϯ 0.14 g/mm2 ) and GSSG (0.35 Ϯ 0.10 g/mm2 ) groups. AT at L90 and at Lmax were not different among the groups. In all experiments the relation between peak devel- oped active tension and muscle length was linear, as evidenced by the coefficient of determination (r2 ), which was typically Ͼ0.94. This finding means that at least 94% of the sum of squares of deviations of AT values about their means is attributable to the linear relation between AT and muscle length (22). The slope of these linear regressions corresponds to the myocar- dial AS, which was significantly increased in the GSSG group compared with the control group (5.86 Ϯ 1.14 vs. 3.96 Ϯ 1.33 g⅐mmϪ2 ⅐%Lmax Ϫ1 ; P ϭ 0.008). The differ- ences between GSSG and RHTR groups and between control and RHTR groups were not statistically signif- icant (Fig. 3). The passive tension-length curve from the RHTR group was shifted upward from that of the control group (F ϭ 14.25; P Ͻ 0.01) and that of the GSSG group (F ϭ 38.8; P Ͻ 0.01), reflecting an increased passive stiffness. The GSSG curve was shifted downwards from the control group (F ϭ 9.95; P Ͻ 0.01), indicating decreased passive stiffness (Fig. 3). DISCUSSION In a previous study (21), we showed that renovascu- lar hypertension induces marked myocardial hypertro- phy and interstitial fibrosis. Treatment with ramipril for 3 wk did not reverse perivascular and interstitial fibrosis but fully treated the arterial hypertension and promoted regression of myocardial hypertrophy. Therefore, we used that experimental model to study myocardial function in papillary muscle from rat heart with increased collagen concentration without myocar- dial hypertrophy. In the present study, collagen Table 1. Group comparisons of morphometric parameters and tail cuff systolic arterial pressure in control, GSSG, and RHTR rats Control GSSG RHTR BW, g 329Ϯ17 332Ϯ20 346Ϯ30 SAP, mmHg 136Ϯ14 129Ϯ18 111Ϯ11* LVW, g 0.66Ϯ0.07 0.65Ϯ0.05 0.69Ϯ0.14 LVW/BW, mg/g 2.01Ϯ0.16 1.96Ϯ0.09 1.90Ϯ0.17 RVW, g 0.21Ϯ0.03 0.19Ϯ0.05 0.21Ϯ0.04 CSA, mm2 0.84Ϯ0.18 0.78Ϯ0.17 0.86Ϯ0.22 Data are presented as means Ϯ SD. BW, body weight; SAP, systolic arterial pressure; LVW/BW, left ventricle weight (LVW) to BW ratio; RVW, right ventricle weight; CSA, papillary muscle cross- sectional area. *P Ͻ 0.05 vs. control. See METHODS for description of the control, oxidized glutathione (GSSG), and ramipril-treated rat (RHTR) groups. Fig. 1. Myocyte cross-sectional area in control, oxidized glutathione (GSSG), and ramipril-treated rat (RHTR) groups. Data are means Ϯ SD analyzed by one-way ANOVA with Tukey’s posttest procedure. H1536 COLLAGEN AND MYOCARDIAL MECHANICS byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
  • 5. amount was measured with CVF and hydroxyproline. It has been shown that total volume fraction is closely related to hydroxyproline concentration in the LV (28), and in our study both measurements indicated that the interstitial collagen was altered in the treated groups relative to the control rats. However, we observed that the CVF measurement was associated with a greater variation than the measurement of hydroxyproline, and, consequently, the decrease in CVF in the GSSG group came close but did not reach the level of statis- tical significance. The variability of CVF might be caused in part by the measurement method used. In the present investigation we used a ϫ20 microscope objective to obtain a large field. This magnification would detect only large perimysial collagen fibers, thereby decreasing the sensitivity of the measurement. Even so, a power analysis indicated that the difference between the GSSG and control groups would have reached the level of significance if but a few additional histological samples were available. Despite similar LVW, the papillary muscles were significantly stiffer in the group with greater collagen concentration. This result is similar to that obtained by Narayan et al. (23) using hydralazine to prevent myo- cyte hypertrophy but not abnormal collagen accumula- tion in SHR. The collagen excess resulted in abnor- mally elevated passive myocardial stiffness. In contrast, Schraeger and co-workers (25) concluded that ACE inhibitor-induced regression of LV hypertrophy in Fig. 3. Left ventricular papillary muscle active and passive tension- length curves obtained from control, GSSG, and RHTR groups. Results are presented as means Ϯ SD. The active stiffness (AS) obtained from the GSSG group was statistically higher than that from controls (P ϭ 0.008). Statistically, no differences were observed between GSSG and RHTR groups (P ϭ 0.493) and between control and RHTR groups (P ϭ 0.085). AS was analyzed by ANOVA and post hoc Tukey’s test. The RHTR passive tension-length curve was shifted upwards compared with either control (F ϭ 14.25; P Ͻ 0.01) or GSSG (F ϭ 38.8; P Ͻ 0.01) groups. The curve from the GSSG group was shifted downwards compared with the control group (F ϭ 9.95; P Ͻ 0.01). The passive tension-length curves were fitted to a monoexpo- nential relation, and comparisons were made by constructing an F ratio from the residual sum of squares. Statistical significance was taken to be P Յ 0.05/k where k is the number of comparisons. Table 2. Papillary muscle isometric contraction data for the control, GSSG, and RHTR groups Control GSSG RHTR RT, g/mm2 0.47Ϯ0.14 0.35Ϯ0.10 0.64Ϯ0.08*† AT at Lmax, g/mm2 8.05Ϯ1.59 9.44Ϯ1.86 8.52Ϯ1.72 AT at L90, g/mm2 5.64Ϯ1.26 5.95Ϯ1.64 5.23Ϯ1.58 RT1/2, ms 290Ϯ54 272Ϯ23 280Ϯ47 Lmax, mm 6.23Ϯ0.99 6.07Ϯ0.50 6.31Ϯ0.81 ϩdT/dt, g⅐mmϪ2 ⅐sϪ1 75.8Ϯ21.1 84.3Ϯ21.0 72.8Ϯ16.5 ϪdT/dt, g⅐mmϪ2 ⅐sϪ1 19.0Ϯ5.5 21.8Ϯ4.9 18.8Ϯ4.1 AS, g⅐mmϪ2 ⅐%Lmax Ϫ1 3.96Ϯ1.33 5.86Ϯ1.14* 5.21Ϯ1.18 TPT, ms 201Ϯ16 193Ϯ12 204Ϯ17 Data are reported as means Ϯ SD. RT, resting tension; AT, active tension; ϩdT/dt, peak rate of isometric tension development; ϪdT/dt, peak rate of tension decrease; TPT, time to peak tension; Lmax, muscle length at peak of the tension-length curve; L90, muscle length at 90% of Lmax; RT1/2, time from peak tension to 50% relaxation; AS, active stiffness. *P Ͻ 0.05 vs. control; *†P Ͻ 0.05 vs. GSSG. Fig. 2. Collagen volume fraction (A) and hydroxyproline concentra- tion (B) in control, GSSG, and RHTR groups. Data are means Ϯ SD analyzed by one-way ANOVA with Tukey’s posttest procedure. H1537COLLAGEN AND MYOCARDIAL MECHANICS byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
  • 6. SHR significantly decreased the passive stiffness of skinned trabecular muscle despite abnormally ele- vated hydroxyproline levels. It is not clear to what extent, if any, the 48-h incubation in the skinning solution at 0°C influenced their observations. The dis- crepancies observed between the studies may be caused by the animal strains as well as by the different experimental models used to produce hypertrophy and fibrosis. In our study, using the model of presumed collage- nase activation by oxidized glutathione described by Caulfield and Wolkowicz (11), it was possible to induce, in vivo, an 11% reduction of myocardial collagen con- centration measured by hydroxyproline concentration and a 19% reduction in the interstitial CVF. These results are less expressive than the 30–35% reduction in collagen as reported by Caulfield et al. (10). The authors have shown that the double infusion of GSSG resulted in no visible myocyte damage at any time as examined by light microscopy and scanning electron microscope (SEM). The collagen matrix alteration was not visible by light microscopy; SEM revealed damage to the endomysium with loss of the weave that sur- rounds groups of myocytes and the struts that inter- connect myocyte to myocyte and myocyte to adjacent capillaries, with no change in coiled perimysial fibers. These changes in the fibrillar collagen network re- sulted in increased ventricular volume and compliance, suggesting that damage to the intermyocyte struts and to the weave complex might be more important than the decrease in myocardial collagen. Other studies have shown that the double infusion of GSSG in rats promotes a reduction in CVF, ventricular dilatation, and a shift to the right of the diastolic pressure-volume curve of the entire LV (18, 20). However, a similar effect in the papillary muscle preparation has not been studied previously. The main advantage of this prepa- ration is that the muscle force and length are directly measured and that the mathematical assumptions re- quired when myocardial mechanical characteristics are evaluated in the LV chamber are unnecessary. The study of cardiac function in the whole heart is based on the pressure-volume and stress-strain rela- tionships. In that condition, myocardial stiffness is derived from chamber measurements using mathemat- ical models and assumptions regarding LV shape. If the LV is assumed to be a thick-walled sphere, the stress will be underestimated (30), whereas the as- sumption of an ellipsoid shape would result in an overestimated wall stress (7). Therefore, isolated mus- cle experiments provide descriptions of myocardial be- havior without the influence of chamber and wall ge- ometry. In our study, the diastolic tension-length relations obtained for the three groups were different from each other, showing that the changes in collagen content, measured by hydroxyproline and CVF, are associated with myocardial passive properties. Com- pared with the control group, the diastolic tension- length curves were significantly shifted upwards and to the left in the RHTR group and downwards and to the right in the GSSG group. Therefore, our results allow us to conclude that the decreased passive stiff- ness in the GSSG group strongly correlates with the fibrillar collagen loss and that increased collagen con- tent strongly correlates with the elevated passive stiff- ness observed in the RHTR group. Previous studies have suggested that collagen cross-linking (9) may affect myocardial stiffness, regardless of collagen amount. In addition to the effect of altered collagen amounts, it is important to be mindful of the effects of collagen crosslink density, as well as collagen type (type I or III) and collagen distribution. At present, we cannot rule out that changes in the collagen character- istics might also have influenced myocardial stiffness in the present study. Nevertheless, the results clearly indicate that alterations in collagen concentration and papillary muscle function are correlated. Ventricular elastance and myocardial stiffness are indexes of contractility of the ventricular chamber and myocardium, respectively (8, 26). Elastance is the ratio of the change in peak isovolumetric pressure for a given change in volume, and stiffness is defined as the ratio of the change in active force related to change in muscle length (8). Myocardial contractility is a very complex property of the heart that is difficult to mea- sure directly. During the last two decades it has been proposed that an ideal index of myocardial contractility must be able to measure the ability of the myocardium to generate force independently of loading condition. The slope of the linear pressure-volume relationship in the isolated canine heart has been shown to be rela- tively independent of preload and afterload and there- fore has been used as an index of contractility (26). Using the slope of active tension-length (active stiff- ness) as an index of myocardial contractility, we have shown an enhancement of active stiffness when the muscle is stretched from 90% to 100% of Lmax in the GSSG group. The mechanisms underlying the associa- tion between decreased myocardial collagen and en- hanced active stiffness are not well established, and the results presented in this study do not answer all the questions concerning this matter. When collagen is reduced, ventricular dilatation occurs (10) and myocyte hypertrophy takes place in response to alterations in the loading state of the ventricle (17). Therefore, myo- cyte hypertrophy might play an important role in the improvement in contractility observed in the GSSG group. Another explanation would be related to the intracellular glutathione metabolisms. The glutathi- one level in the heart is ϳ1.2 ␮M/g (16), mainly in the reduced form, GSH, because of the high activity of GSSG reductase (13). That means that, inside the cell, most of the infused GSSG was rapidly converted to GSH. The action of excess GSH or GSSG in the heart is not completely elucidated. Bauer et al. (3), working on fiber bundles from papillary muscle of porcine right ventricle, observed an increased sensitivity of contrac- tile protein to calcium and, consequently, an increased force development in the presence of GSH. In our study, considering that the half-life of the glutathione is only a few minutes (1), it is doubtful that the double infusion of oxidized glutathione might increase the H1538 COLLAGEN AND MYOCARDIAL MECHANICS byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom
  • 7. glutathione level in the cardiac tissue after 3 wk. Nevertheless, this is a very complex matter that re- quires further study. Active tension and active stiff- ness in papillary muscles from RHTR rats were similar to those in the control rats, suggesting that regression of hypertrophy by treatment with an ACE inhibitor is associated with preserved myocardial contractility. We conclude that decreased collagen content induced by GSSG is associated with myocyte hypertrophy, de- creased passive stiffness, and increased active stiff- ness. Abnormally high collagen concentration corre- lates with myocardial diastolic dysfunction and has no relation with systolic function. This study was supported by a grant from Fundac¸a˜o de Amparo a` Pesquisa do Estado de Sa˜o Paulo (FAPESP), Sa˜o Paulo, Brazil, Proc. No. 92/4528–1. REFERENCES 1. Ammon HPT, Melien MCM, and Verpohl EJ. Pharmacoki- netics of intravenously administered glutathione in the rat. J Pharm Pharmacol 38: 721–725, 1986. 2. Anversa P, Olivetti G, and Melissari M. Morphometric study of myocardial hypertrophy induced by abdominal aortic stenosis. Lab Invest 40: 341–349, 1979. 3. Bauer SF, Schwarz K, and Ruegg JC. Glutathione alters calcium responsiveness of cardiac skinned fibers. Basic Res Car- diol 84: 591–596, 1989. 4. Bing OHL, Matsushita S, Farburg BL, and Levine HJ. Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ Res 28: 234–245, 1971. 5. Boluyt MO, O’Neil E, Meredith AL, Bing OHL, Brooks WW, Conrad CH, Crow MT, and Lakatta EG. Alterations in car- diac gene expression during the transition from stable hypertro- phy to failure. Circ Res 75: 23–32, 1994. 6. Brilla CG, Janicki JS, and Weber KT. Impaired diastolic function and coronary reserve in genetic hypertension: role of interstitial fibrosis and medial thickening of intramyocardial coronary artery. Circ Res 69: 107–115, 1991. 7. Burns J, Covell J, Meyrs R, and Ross JJ. Comparison of directly measured left ventricular wall stress and stress calcu- lated from geometric references figures. Circ Res 28: 611–621, 1971. 8. Campbell KB, Taheri H, Kirkpatrick RD, Burton T, and Hunter WC. Similarities between dynamic elastance of left ventricular chamber and papillary muscle of rabbit heart. Am J Physiol Heart Circ Physiol 264: H1926–H1941, 1993. 9. Capasso JM, Robinson TF, and Anversa P. Alteration in collagen cross-linking impair myocardial contractility in mouse heart. Circ Res 65: 1657–1664, 1989. 10. Caulfield JB, Norton P, and Weaver RD. Cardiac dilatation associated with collagen alterations. Mol Cell Biochem 118: 171–179, 1992. 11. Caulfield JB and Wolkowicz PE. Myocardial connective tis- sue alterations. Toxicol Pathol 18: 488–496, 1990. 12. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, and Bing OHL. Myocardial fibrosis and stiffness with hyper- trophy and heart failure in spontaneously hypertensive rats. Circulation 91: 161–170, 1995. 13. Curello S, Ceconi C, Bigoli B, Ferrari R, Albertini A, and Guarnieri C. Changes in the cardiac glutathione status after ischemia and reperfusion. Experientia 41: 42–43, 1985. 14. Holubarsch CH, Holubarsch T, Jacob R, Medugorac I, and Thiedemann K. Passive elastic properties of myocardium in different models of hypertrophy: a study comparing mechanical, chemical, and morphometric parameters. Perspect Cardiovasc Res 7: 323–336, 1983. 15. Imataka K, Naito S, Seko Y, and Fujii J. Hydroxyproline in all parts of the rabbit heart in hypertension and in its reversal. J Mol Cell Cardiol 21: 133–139, 1989. 16. Ishikawa T and Sies H. Cardiac transport of glutathione disulfide and s-conjugate. J Biol Chem 259: 3838–3843, 1984. 17. Janicki JS. Myocardial collagen remodeling and left ventricu- lar diastolic function. Braz J Med Biol Res 25: 975–982, 1992. 18. Janicki JS and Matsubara BB. Myocardial collagen and left ventricular diastolic dysfunction. In: Left Ventricular Diastolic Dysfunction and Heart Failure, edited by Gaasch W and LeWin- ter M. Philadelphia, PA: Lea and Febiger, 1994, p. 125–140. 19. MacKenna DA, Omens JH, and Covell JW. Left ventricular perimysial collagen fibers uncoil rather than stretch during diastolic filling. Basic Res Cardiol 91: 111–122, 1996. 20. Matsubara BB, Henegar JR, and Janicki JS. Structural and functional role of myocardial collagen in the normal rat heart (Abstract). Circulation 84: 212, 1991. 21. Matsubara LS, Matsubara BB, Okoshi MP, Franco M, and Cicogna AC. Myocardial fibrosis rather than hypertrophy in- duces diastolic dysfunction in renovascular hypertensive rats. Can J Physiol Pharmacol 75: 1328–1334, 1997. 22. McClave JT and Dietrich FH. Simple linear regression. In: Statistics (3rd ed.). San Francisco, CA: Dellen, 1985, p. 581–635. 23. Narayan S, Janicki JS, Shroff SG, Pick R, and Weber KT. Myocardial collagen and mechanics after preventing hypertro- phy in hypertensive rats. Am J Hypertens 2: 675–682, 1989. 24. Ratkowsky D. Comparing parameter estimates from more than one data set. In: Nonlinear Regression Modelling; a Unified and Practical Approach. New York: Dekker, 1983, p. 135–145. 25. Schraeger JA, Canby CA, Rongish BJ, Kawai M, and To- manek RJ. Normal left ventricular diastolic compliance after regression of hypertrophy. J Cardiovasc Pharmacol 23: 349– 357, 1994. 26. Suga H, Sagawa K, and Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ven- tricle and effects of epinephrine and heart rate on the ratio. Circ Res 32: 314–322, 1973. 27. Switzer BR. Determination of hydroxyproline in tissue. J Nutr Biochem 2: 229- 231, 1991. 28. Weber KT, Janicki JS, Pick R, Abrahams C, Shroff SG, and Bashey RI. Collagen in the hypertrophied pressure-overloaded myocardium. Circulation 75: 140–147, 1987. 29. Weber KT, Pick R, Jalil JE, Janicki JS, and Carroll EP. Patterns of myocardial fibrosis. J Mol Cell Cardiol 21, Suppl. V: 121–131, 1989. 30. Yin FCP. Ventricular wall stress. Circ Res 49: 829–842, 1981. H1539COLLAGEN AND MYOCARDIAL MECHANICS byguestonJuly25,2013http://ajpheart.physiology.org/Downloadedfrom