Materiais Piezoeletricos

26.357 visualizações

Publicada em

Trabalho sobre materiais piezoeletricos

Publicada em: Educação
0 comentários
12 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
26.357
No SlideShare
0
A partir de incorporações
0
Número de incorporações
8
Ações
Compartilhamentos
0
Downloads
843
Comentários
0
Gostaram
12
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Materiais Piezoeletricos

  1. 1. UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE MARABÁ FACULDADE DE ENGENHARIA DE MATERIAIS MATERIAIS PIEZOELÉTRICOS Marabá – PA 2013
  2. 2. UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE MARABÁ FACULDADE DE ENGENHARIA DE MATERIAIS MATERIAIS PIEZOELÉTRICOS Trabalho apresentado ao Prof. Msc. Luis Fernando como forma de avaliação da disciplina de Materiais Metálicos, do 5º semestre do curso Engenharia dos Materiais. Discentes: Adielson Rafael Marinho João Henrique Assunção Leonardo Vilarinho Jr. Pryscila Albuquerque Torben Ulisses da Silva Marabá – PA 2013
  3. 3. 1. INTRODUÇÃO Com os avanços tecnológicos atuais, podemos desenvolver vários materiais úteis ao dia a dia, dentre os quais, alguns podem ser muito importantes na geração de energia limpa e sustentável. Dessa forma, com todo um contexto sócio- ambiental presente, pesquisas nessa área se tornaram essenciais e cada vez mais, materiais com essas características vêm sendo desenvolvidos e aplicados. Dentre esses, um grupo especial de materiais, com uma propriedade muito interessante, já são usados há algum tempo e estudos para novas utilizações acontecem atualmente. Refere-se aos materiais com a propriedade piezoelétrica. A grosso modo, piezoeletricidadeé a capacidade de alguns materiaisgerarem tensão elétricapor resposta a uma pressão mecânica. O termo “piezo" é derivado da palavra grega que significa pressão. Assim como a geração de uma tensão por uma deformação mecânica é possível, o efeito reverso também pode acontecer, com a ocorrência de uma deformação mecânica em função da aplicação de tensão elétrica. As aplicações dos materiais com propriedades piezoelétricas são variadas, indo desde sensores para estacionamento, passando por telas touche screnn de dispositivos móveis, até transdutores ultrassonicos empregados em sistemas de radar e sonar, além de novas aplicações que vem sendo desenvolvidas com a utilização de nanotecnologia e a busca por formas sustentáveis de se aproveitar e maximizar a energia que pode ser gerada pelos piezoelétricos. Desta forma, torna-se muito importante o estudo desses materiais e seu comportamento nas mais variadas aplicações. Portanto, este trabalho visa explanar sobre os piezoelétricos e sua utilidade no nosso dia a dia e importancia para a ciencia, bem como fundamentação teórica desse fenômeno.
  4. 4. 2. O EFEITO PIEZOELÉTRICO E SEU FUNCIONAMENTO Em 1880, Jacques e Pierre Curie descobriram que um potencial elétrico poderia ser gerado aplicando-se pressão a cristais de quartzo, a sais de Rochelle, e até a cristais de cana de açucar. Nomearam este fenômeno de “o efeito piezo" (Katzir 2003). Segundo Callister (2008), em um material piezoelétrico, a polarização é induzida e um campo elétrico é estabelecido através de uma amostra pela aplicação de forças externas. A piezoeletricidade inversa foi deduzida matematicamente dos princípios fundamentais da termodinâmica por Lippmann em 1881. Os Curies confirmaram imediatamente a existência do “efeito piezo inverso" (quando expostos a determinados potenciais elétricos, tais materiais mudavam sua forma, se expandindo ou se contraindo),e continuaram os estudos para obter a prova quantitativa da reversibilidade completadas deformações eletro-elasto-mecânicas em cristais piezoelétricos. A figura 01 (a) ilustra o comportamento piezoelétrico, onde a aplicação de uma tensão produz uma diferença de potencial elétrico mensurável através do material piezoelétrico. Já a figura 01 (b) ilustra o efeito piezoelétrico reverso, no qual uma diferença de potencial elétrico muda a magnitude da polarização no material piezoelétrico e, consequentemente, sua espessura. Figura 01: (a) efeito piezoelétrico. (b) efeito piezoelétrico reverso. (De Shackelford, James F. Introduction to materials science for engineers, 6ª Ed, p.363) A piezoeletricidade está baseada na formação de forte dipolo entre íons de cargas contrárias na estrutura cristalina de um cristal iônico. A cristalografia prevê
  5. 5. a definição da simetria de um cristal iônico em função de um ponto, eixo ou plano (ou combinação desses). A partir desses elementos de simetria, todos os cristais são divididos em 32 grupos diferentes, sendo que 21 destes 32 grupos não possuem um centro de simetria (condição necessária para existir piezoeletricidade) e 20 deles são piezoelétricos. A orientação cristalina aleatória faz com que materiais piezoelétricos não estejam naturalmente ativos. É necessário polarizar os cristalitos piezoelétricos e isto só é possível através de técnicas que proporcionem uma orientação preferencial da estrutura cristalina durante o processo de fabricação. Um método simples, porém bastante empregado para a orientação de domínios é o processo „poling‟, que será visto na unidade 4.5. Em um cristal piezoelétrico, as cargas positivas e negativas estão separadas, mas simetricamente distribuídas, o que o torna eletricamente neutro. Quando um stress mecânico é aplicado, esta simetria é perturbada, e a carga elétrica causada por esta assimetria gera uma tensão por todo o material. Um cubo de quartzo de 1cm3 , com 2kN de força aplicada, pode gerar uma tensão de aproximadamente 12500 V. 2.1 Constantes Piezoelétrica Para selecionar um material piezelétrico para aplicações tecnológicasprocura-se, em geral, se conhecer algumas de suas propriedades, entre elaspodemos destacar: a) Constante de carga piezoelétrica d (m / V ou C / N) Informa qual é a proporção entre a variação dimensional (∆l) do materialpiezoelétrico (em metros) e a diferença de potencial aplicada (em Volts), e entrea geração de cargas elétricas (em Coulomb) e a força aplicada no material (emNewton). Essa informação é usada principalmente em projetos deposicionadorespiezoelétricos e sensores de força/deformação. b) Constante de tensão piezoelétrica g (V.m / N) Informa qual é a proporção entre a diferença de potencial gerada (em Volts) ea força aplicada (em Newton) para o comprimento de 1 metro. Essa
  6. 6. informação éusada no projeto de detonadores de impacto e “magic clicks” (produz umacentelha elétrica que acende a chama de um fogão). c) Coeficiente de acoplamento k (Adimensional) Eficiência do material na transdução / conversão de energia elétrica emmecânica e vice versa.Essa informação é indispensável no controle de qualidade das cerâmicaspiezoelétricas e no projeto de dispositivos em que não se deseja a conversãocruzada de energia, ou seja, que uma vibração ou deformação em um eixo nãogere cargas elétricas ou diferença de potencial em outro eixo. Neste caso, quantomenor o respectivo fator de acoplamento melhor. d) Fator de qualidade mecânico Q (Adimensional) É uma medida das perdas mecânicas (amortecimento) do material. Usado noprojeto de dispositivos dinâmicos de alta potência. e) Temperatura de Curie TC (°C) É a temperatura na qual a estrutura cristalina do material sofre uma transiçãode fase e o mesmo deixa de apresentar propriedades piezoelétricas. Depois deultrapassada esta temperatura, o material perde a polarização remanescenteinduzida tornando-se inútil para a utilização como elemento transdutor de energiaelétrica em mecânica. Essa informação é indispensável no projeto dedispositivos que deverão operar em altas temperaturas e de alta potência. 3. APLICAÇÕES DE MATERIAIS PÍEZOELÉTRICOS O termo “piezoelétrico”, apesar de já conhecido desde o início do século passado, somente veio ganhar notoriedade a partir de 2008, quando boates londrinas passaram a utilizar cristais piezoelétricos nos pisos, para que, os freqüentadores, ao pular e dançar, exercessem involuntariamente uma pressão mecânica sobre a superfície, fazendo com quelâmpadas LED‟s fossem ativadas pela tensão elétrica gerada, iluminando de várias cores o piso vidrado. Mas foi ainda na I Guerra Mundial, em 1917, que o efeito piezoelétrico teve sua primeira utilidade em grande escala, sendo aplicado nos sonares que equipavam navios e submarinos, através de transdutores piezoelétricos. Posteriormente, o interesse por esses materiais aumentou e diversas pesquisas foram iniciadas, resultando em grande avanço nesse campo. Já na II Guerra
  7. 7. Mundial, os materiais com efeito piezoelétrico foram utilizados nos transmissores de comunicação de aeronaves e, com término do armistício, deu-se um verdadeiro “boom” em pesquisas para novas aplicações dos piezoelétricos, resultando em suas utilizações nos primeiros tipos de controles remoto, na indústria automotiva, em equipamentos de medicina, nas telecomunicações e nas mais variadas áreas. A seguir, falaremos mais um pouco sobre algumas das principais aplicações para materiais piezoelétricos. 3.1 Transdutores Piezoelétricos Transdutor é um dispositivo que converte uma forma de energia em outra forma de energia. Na maioria dos casos, consiste em converter energia elétrica num deslocamento mecânico ou converter alguma grandeza física não elétrica tal como som, temperatura, pressão, velocidade ou luz, numa grandeza elétrica. Com o recurso a transdutores podemos utilizar instrumentação eletrônica para medir, modificar e melhorar o atual estado tecnológico das aplicações industriais. Por exemplo, hoje em dia existem já transdutores integrados de temperatura com sensibilidades da ordem dos 10 a 200 mV por grau centígrado, extremamente lineares. Existem também transistores de efeito de campo sensíveis a diferentes íons, utilizados na medida de potenciais bioeletrônicos. Os transdutores são também hoje muito utilizados em telemetria (transmissão de informação quantificada à distância).As funções de um transdutor são: ser sensível à presença, magnitude e variação de um dado mensurado; proporcionar a saída de um sinal elétrico a ser lido por um leitor. Devido às propriedades piezoelétricas, os transdutores que atuam com esses materiais são capazes, então, de converter energia mecânica em energia elétrica e, a partir do efeito piezoelétrico reverso, realizar a operação contrária. A partir disso, podemos dividir os transdutores piezoelétricos em aplicações de forma passiva (sensores) e ativa (atuador). Havendo também um caso especial em que o transdutor pode atuar das duas formas: os transdutores ultrassônicos.
  8. 8. 3.1.1 Sensores Piezoelétricos Na forma passiva, o transdutor só recebe sinais. Aqui a propriedade piezoelétrica direta do material é explorada de forma a obter uma voltagem a partir de uma tensão mecânica externa.Para utilizar o princípio físico de materiais piezoelétricos, com o objetivo de torná-loum sensor de força, deve-se poder medir a carga elétrica na superfície do cristal(Putnam &Knapp 1996). Para isto, duas placas de metal são utilizadas nas extremidadesopostas do mesmo, tornando-o um capacitor. Na suaregião de operação, quanto maior a força de deformação aplicada no cristal, maior acarga elétrica na sua superfície. Esta carga resulta em uma tensão de q=C, onde q é a carga resultante de uma força F, e C é a capacitância do componente. Figura 02: Duas placas de metal em contato com o material piezoelétrico. (Obtida do site do Centro de Pesquisa Computacional em Música e Acústica da Universidade de Stanford: http://ccrma.stanford.edu/CCRMA/Courses/252/sensors/node7.html) Pelo método descrito acima, os cristais piezoelétricos agem como transdutores quetransformam força ou stress mecânico em carga elétrica que pode ser convertida emtensão. Alternativamente, o inverso também ocorre. Um exemplo deste fato é quetransdutores piezoelétricos podem ser encontrados em alto-falantes (eletricidade para mecânica).Em instrumentos musicais elétricos e microfones, as vibrações mecânicas dinâmicas (das cordas ou da voz) são transformadas em sinais elétricos (voltagem alternada) que são então amplificados e convertidos em som através de amplificadores. As balanças eletrônicas encontradas em supermercados ou aquelas muito precisas usadas em laboratórios de pesquisa têm seu funcionamento baseado na piezeletricidade, pois utilizam cristais que se polarizam
  9. 9. ao sofrerem umadeformação. Podemos ainda citar como outros exemplos: hidrofones, extensômetros, pick-ups de DJ's, ignitores de gás e sensores vibracionais. 3.1.2Atuadores Piezoelétricos No modo ativo, o transdutor, usando a propriedade piezoelétrica inversa dosmateriais, recebe um sinal elétrico e muda suas dimensões, enviando um sinalmecânico para o meio.O mesmo princípio também é usado no mapeamento de trincas emensaios não destrutivos de materiais.Suas aplicações incluem: sonares, micro-bombas (empregadas emimpressoras jato de tinta e micro-pipetas) e micro- posicionadores (eletrônica). 3.1.3 Transdutores ultrassônicos Materiais piezoelétricos são utilizados como transdutores ultrassônicos para aplicações de produção de imagens (para medicina, para testes industriais não- destrutivos, etc) e para aplicações de alta potência (tratamentos médicos, processos industriais, etc). Para a produção de imagens, o transdutor age tanto como um sensor como um atuador. Transdutores ultrassônicos podem injetar ondas ultrassônicas em um corpo, receber a onda de retorno e converter em um sinal elétrico (voltagem). A maioria dos transdutores médicos de ultrassom são piezoelétricos. Quando vários elementos são empilhados um sobre o outro e no final uma lâmina é colocada, pode-se controlar o cristal e com o deslocamento obtido, terá um cortador ultrassônico. Este tipo de ferramenta é útil no corte preciso de materiais plásticos ou similares, já que materiais leves não são afetados pela vibração ultrassônica. 3.2Motores Piezoelétricos Um motor piezoelétrico ou piezo motor é um tipo de motor elétrico baseado na mudança da forma de um dado material piezoelétrico quando um campo elétrico é aplicado. Motores piezoelétricos fazem uso da piezoeletricidade inversa, onde o material produz vibrações acústicas ou ultrassônicas para gerar movimentos lineares ou rotacionais. Em um mecanismo deste tipo, o alongamento em um único
  10. 10. plano do material é utilizado para gerar uma série de expansões, manutenções de posicionamento e contrações. A grande vantagem da utilização de um motor piezoelétrico é a sua extrema precisão (da ordem de nanômetros) e relativa alta velocidade, que é possível graças à sua alta taxa de resposta, assim como a rápida distorção do cristal piezoelétrico, o que permite que os passos sejam realizados a freqüências bastante elevadas (acima de 5 MHz). Este fato gera uma velocidade linear máxima de 800 mm por segundo, ou aproximadamente 2.9 km por hora. 3.3 Outras aplicações Músculos de metal para robôs miniaturizados ou para pequenas próteses. Esta é uma das visões que poderão se tornar realidade graças a uma descoberta feita por um laboratório alemão. Os cientistas criaram um novo material metálico, à base de platina, mas com nanoporos. O novo material se expande e se contrai sob a ação de uma corrente elétrica. Desta forma, o material converte diretamente energia elétrica em mecânica e vice-versa. O novo material agora desenvolvido, além de poder custar mais barato, trabalha com voltagens mais baixas. É a primeira vez que alterações macroscópicas de comprimento, visíveis e mensuráveis, foram observadas em um material metálico, com tão baixa corrente. A conversão direta de eletricidade em energia mecânica pode ser utilizada para a criação de "músculos metálicos" que darão movimento a pequenos robôs ou mesmo a próteses humanas. Mas as aplicações possíveis do material passam ainda por válvulas microscópicas, ótica adaptativa e materiais inteligentes capazes de alterar seu formato conforme a necessidade. O efeito de transdução pode ser utilizado, por exemplo, em sensores que disparam o "air-bag" dos automóveis.A platina nanoparticulada foi produzida a partir da evaporação de platina pura em um ambiente fechado com gás nobre. Ao condensar-se, a platina forma partículas de menos do que 5 nanômetros de tamanho. Estas partículas foram então compactadas, formando um bloco poroso. Este bloco sólido foi mergulhado em um eletrólito, um fluido condutivo, que preencheu as cavidades. Quando o bloco é submetido a uma corrente elétrica, o fluido condutivo encarrega-se de fazer a eletricidade chegar a cada nanopartícula do sólido. A corrente elétrica altera as cargas do eletrólito. Como resultado, cargas elétricas são também induzidas nas
  11. 11. superfícies das nanopartículas, alterando o número de elétrons dos átomos dessas nanopartículas, o que altera sua identidade química.A grande novidade consiste no fato de que, ao se utilizar um metal, a carga induzida não é espalhada sobre uma ampla área como no caso dos semicondutores. A piezeletricidade em fibras têxteis revestidas de ZnO têm mostrado capaz de fabricar "nano sistemas auto-alimentados" com estresse mecânico do vento ou os movimentos do corpo.Em 2008, o Centro para a Caracterização da Nanoestrutura no Instituto de Tecnologia da Geórgia relatou a produção de um dispositivo de geração de energia elétrica (chamada de gerador da bomba de carga flexível) que entrega corrente alternada esticando e soltando nanofios de óxido de zinco. Este mini-gerador cria uma tensão oscilante até 45 milivolts, convertendo quase sete por cento da energia mecânica aplicada em eletricidade. Os pesquisadores usaram fios com comprimentos de 0,2-0,3 mm e diâmetros de 3-5 micrômetros, mas o dispositivo poderia ser reduzido para um tamanho menor. Os piezoelétricos também têm sido amplamente pesquisados para aplicação em geração de energia limpa e sustentável. Há uma infinidade de formas de obtenção. Pesquisas já realizaram testes com a aplicação de um filme piezoelétrico sob camadas de asfalto em rodovias, fazendo com que a corrente gerada pela deformação do asfalto (e do filme), aos carros passarem sobre o mesmo, seja captada e armazenada como energia elétrica. 4. ALGUNSMATERIAIS PIEZOELÉTRICOS O campo de aplicação dos materiais piezoelétricos é vasto, porém, ainda não são muitos os materiais explorados para tal. Abaixo destacaremos 3 materiais com propriedades piezoelétricas. O Titanato de Bário, que foi um dos primeiros compostos piezoelétricos utilizados, mas que hoje em dia está dando lugar a outras ligas; o TitanatoZirconato de Chumbo, que vem sendo o mais utilizado atualmente; e o óxido de zinco, que ainda não tem muita aplicação, porém, tem capacidade para ser muito explorado nos próximos anos. 4.1 Titanato de Bário (BaTiO3) O titanato de bário, BaTiO3 (com fórmula genérica ABX3) apresenta uma estrutura muito comum entre os minerais, estrutura esta de especial interesse pois é
  12. 12. a mesma de materiais como os ferroelétricos e os supercondutores. Possui aparência branca de cristais translúcidos. Não é solúvel em água, somente em ácidos concentrados. 4.1.1Estrutura Os "grandes" cátions azuis (de Ba ou genericamente A) e os ânions vermelhos (o X da fórmula - freqüentemente oxigênio) formam um empacotamento cúbico fechado, restando aos "pequenos" cátions B (de Ti neste exemplo) posições nos espaços octaédricos entre os ânions como pode ser visto na figura 03 (a).A estabilidade da estrutura depende dos raios iônicos relativos: se os cátions são muito pequenos para o empacotamento compacto com os ânions de oxigênio, eles podem ser levemente deslocados. Considerando que estes íons têm carga elétrica, tais deslocamentos podem levar a um momento de dipolo elétrico (cargas opostas separadas por uma pequena distância). 4.1.2Obtenção No estado sólido o Titanato de Bário possui cinco fases, de acordo com sua temperatura: hexagonal, cúbica, tetragonal, ortorrômbica e romboédrica. Estruturas cristalinas ordenadas respectivamente às temperaturas decrescentes. Pode ser obtido através da sinterização em fase líquida do carbonato de bário e dióxido de titânio, sendo muitas vezes misturado com o titanato de estrôncio. Figura 03: estrutura do titanato de bário (a). Célula unitária PZT do tipo Perovskite no estado cúbico simétrico acima da temperatura de Curie (antes da aplicação do campo elétrico) (b).
  13. 13. 4.2PZT (TitanatoZirconato de Chumbo) É um composto inorgânicotambém chamado PZT, sendo um material cristalino de estrutura tipo ABO3que apresenta um acentuado efeito piezoeléctrico. Trata-se de um sólido branco, que é insolúvel em todos os solventes. 4.2.1 Estrutura Com a fórmula química Pb [ Zr x Ti 1 - x] O 3 0 ≤ x ≤ 1) com fórmula característica da perovskita que pode ser interpretada como uma combinação da estrutura cubica simples (CS), com cúbica de corpo centrado (CCC) e a cúbica de face centrada (CFC), mas em uma análise cuidadosa, verifica-se que diferentes átomos ocupam as posições dos vértices (A), do centro (B) e das faces (O- ²). Como resultado, a estrutura da perovskita é um exemplo da rede cúbica de Bravais, com 5 íons (1 A, 1 B e 3O) por célula unitária, de acordo com a figura 03 (b) 4.2.2Propriedades Mecânicas e ensaios realizados O material cerâmico PZT (TitanatoZirconato de Chumbo) pode suportar pressões de até 250 MPa (250 x 106 N/m2 ) sem quebrar. Porém, não se deve, de modo algum, utilizar valores de pressão próximos a este em aplicações práticas, já que a despolarização ocorre a pressões na ordem de 20 a 30% deste limite mecânico. Para atuadores de empilhamento e estágios (combinações de viários materiais), limitações extras se aplicam como as saliências e as interações entre as interfaces.Os dados de capacidade de carga de um atuador, para aplicações praticas, devem ser suficientemente conservativos para a garantia de uma longa vida útil do mesmo.As cargas de tração de atuadores piezoelétricos não pré- carregados são limitadas de 5 a 10% do limite de carga compressiva. Existem diversos atuadores piezoelétricos com uma mola de pré-carga interna para aumentar sua capacidade de tração, o que é bastante recomendado para aplicações dinâmicas.A cerâmica PZT é especialmente sensívelà forças de rotação. Elas devem ser compensadas por medidas externas. 4.2.3Obtenção O PZT pode ser obtida através de diversos processos de síntese que diferem pela natureza dos precursores utilizado. No entanto a metodologia de
  14. 14. mistura dos óxidos é a mais barata e industrialmente utilizada, processos químicos também são empregados como o método sol-gel, coprecipitação e Pechini, estes processos químicos diminuem a energia necessária para formação da fase cristalina do PZT. 4.3 Óxido de Zinco – ZnO O óxido de zinco é um composto inorgânico com a fórmula ZnO. Ele geralmente aparece como um pó branco, praticamente insolúvel em água. O ZnO está presente na crosta terrestre como o mineral “zincite”, no entanto, a maior parte do ZnO utilizado comercialmente, é produzida sinteticamente. 4.3.1 Estrutura O óxido de zinco se cristaliza em três formas: wurtzita hexagonal, “zincblende” cúbico, e o sal de rocha, raramente observado. A estrutura wurtzita é mais estável em condições ambiente e, portanto, mais comum. A forma zincblende pode ser estabilizada pelo crescimento de ZnO sobre substratos, com uma estrutura de treliça cúbica, que resultam em piezeletricidade do ZnO hexagonal. Em ambos os casos, os centros de zinco e óxido são tetraédricos. A estrutura de sal de rocha (tipo NaCl) é observada apenas em pressões relativamente altas de cerca de 10 GPa. A ligação em ZnO é largamente iônica, o que explica a sua forte piezeletricidade. Devido às ligações polares Zn-S, os níveis de zinco e oxigênio suportam cargas elétricas (positivas e negativas, respectivamente). Portanto, para manter a neutralidade elétrica, tais níveis são reconstruídos em nível atômico, na maioria dos materiais relativos, mas não no ZnO - as suas superfícies são atomicamente planas, estáveis e não apresentam nenhuma reconstrução. Esta anomalia do ZnO não está totalmente esclarecida. 4.3.2Propriedades mecânicas O ZnO é um material relativamente macio, com dureza aproximada de 4,5 na escala de Mohs. Suas constantes elásticas são menores que as dos semicondutores III-V relevantes, tais como GaN. A capacidade de calor elevado e condutividade térmica, baixa expansão térmica e alta temperatura de derretimento de ZnO são benéficos para a cerâmica.
  15. 15. Entre os semicondutores tetraedricamente forçados, foi afirmado que o ZnO tem o maior tensor piezelétrico ou pelo menos comparável à de GaN e AlN. Esta propriedade faz com que seja um material tecnologicamente importante para muitas aplicações piezelétricas, que exigem um grande acoplamento eletromecânico. 4.3.3 Obtenção Para o uso industrial, o ZnO é produzido em níveis de 105 toneladas por ano, por três processos principais: Processo indireto (Francês): o zinco metálico é fundido em um cadinho de grafite e vaporizado em temperaturas acima de 907 ° C (geralmente em torno de 1000 ° C). Os vapores de zinco reagem instantaneamente com o oxigênio do ar para dar ZnO, acompanhados por uma queda em sua temperatura e luminosidade intensa. Partículas de óxido de zinco são transportadas para um duto de refrigeração e recolhidos em um saco. Seu produto é normalmente constituído por partículas de óxido de zinco aglomerados com tamanho médio de 0,1 a alguns micrômetros. Processo direto (Americano):noprocesso direto, o material inicial é de vários compostos de zinco contaminados, como os minérios de zinco ou de fundição de subprodutos. Ele é reduzido por aquecimento com aditivo de carbono (antracita, por exemplo) para produzir vapor de zinco, que é então oxidado como no processo indireto. Devido à menor pureza do material de origem, o produto final também é de qualidade inferior no processo direto, em comparação com o indireto. Processo químico, úmido: os processos químicos úmidos começaram com soluções purificadas de zinco, a partir dos quais o carbonato de zinco ou hidróxido de zinco é precipitado. Em seguida, é filtrado, lavado, secado e calcinado em temperaturas: ~ 800 ° C. O óxido de zinco em pó branco comum pode ser produzido em laboratório por eletrólise de uma solução de bicarbonato de sódio com um ânodo de zinco. Hidróxido de zinco e gás hidrogênio são produzidos. O hidróxido de zinco sob aquecimento se decompõe em óxido de zinco.
  16. 16. 4.4 Propriedades mecânicas de materiais Piezoelétricos Cerâmicas ferroelétricas e, particularmente, algumas das piezoelétricas, são elementos estruturais que precisam resistir razoavelmente a altos níveis de tensão nas suas condições de uso. De qualquer forma, é sempre preferível utilizar materiais ferroelétricos (como para a maioria das cerâmicas) em esforços de compressão do que em tensão (o esforço de tensão se torna então, um fator limitante). Dessa forma, é exigida boa resistência mecânica para esses materiais, porém, certa ductilidade é desejável para que se possam ter os efeitos de deformação mecânica apropriados. 4.5 Polarização – Tratamento pós-produção O principal tratamento dado aos materiais piezoelétricos é a polarização. A polarização (“poling") do material piezoelétrico consiste no seu aquecimento até que haja a superação da sua temperatura de Curie, fazendo com que a estrutura do seu cristal se torne centro-simétrica e todos os dipolos desapareçam. Então é aplicado um campo elétrico de intensidade elevada. Assim, a estrutura do cristal é deformada e se forma uma polarização no sentido indicado na figura abaixo. Posteriormente, o material é resfriado ainda na presença deste campo elétrico. Como consequência, os dipolos tendem a se alinhar com o campo aplicado, dando origem a uma polarização total diferente de zero, após o resfriamento.Finalmente, o campo elétrico é removido, concluindo o processo. Nem todos osdipolos conseguem retornar à sua orientação de origem (fenômeno da histerese), o que resulta em uma polarização remanescente através do material, assim como uma deformação permanente. A polarização é resumida de acordo com a figura 04. Figura 04: Orientação dos domínios durante a realização da polarização (GmbH&KG, 2006)
  17. 17. 5. VANTAGENS E DESVANTAGENS DOS MATERIAIS PIEZOELÉTRICOS Como vantagens notáveisdos materiais piezoelétricospodemos destacar: Podem ser utilizados para produção de energia a baixo custo, limpa e sustentável; É um campo vasto para pesquisas e conseqüente desenvolvimento de novos materiais; Podem ser implementados em diversas atividades mecânicas para a geração de energia; Como desvantagens, os piezoelétricos apresentam algumas limitações, abaixo, sendo a temperatura e suas variações as principais protagonistas destas limitações. : a) Envelhecimento natural (e acelerado pelas condições de uso): Com o passar do tempo, a polarização remanescente induzida durante o processo de fabricação das cerâmicas esvaece naturalmente, independentemente da ação de agentes externos ou do uso do material. b) Instabilidade das propriedades em função de variações de temperatura: Em eletrônica, estamos habituados a observar a mudança de propriedades e comportamento em todos os tipos de componentes, desde os resistores, que apresentam resistência maior quando aquecidos, aos semicondutores, que conduzem melhor aquecidos. No caso das cerâmicas, estas alterações também acontecem, porém, com maior intensidade e de forma imprevisível, devido à complexidade dos mecanismos envolvidos no efeito piezoelétrico. c) Limites de excitação elétricos e mecânicos: As cerâmicas piezoelétricas são materiais frágeis poucos resistentes à tração, sendo importante observar os limites de cada material para evitar quebras. No caso específico do PZT, há uma preocupação em relação ao chumbo, que é um metal pesado tóxico e, por conta disso, muitos órgãos reguladores europeus estão proibindo sua aplicação em componentes eletrônicos.
  18. 18. 6. CONCLUSÃO Apesar de poucos materiais piezoelétricos conhecidos, principalmente na área de materiais metálicos (Ligas), pode-se perceber a grande importância e a diversa aplicabilidade destes materiais. Sem falar que o estudo dos materiais piezoelétricos está ligado diretamente às inovações tecnológicas de grande valor, melhorando a exploração e o conhecimento de informações dos quais sem o mesmo não seria possível detectar. Pode-se, encontrar materiais piezoelétricos na indústria automobilística, aeronáutica, naval, de eletro-eletrônicos, médica etc. Portanto, tornam-se de muita importância os estudos dos materiais piezoelétricos, por se tratarem de materiais que podem representar um campo de atuação com futuro promissor para os engenheiros de materiais. 7. REFERÊNCIAS BIBLIOGRÁFICAS - Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. 7ª edição. Rio de Janeiro: LTC, 2008 - Droescher, R. E., Obtenção e caracterização microestrutural e elétrica de cerâmicas PZT-PMN. Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e Materiais. UFRS, Porto Alegre, 2009. - Inovação Tecnológica. Metal piezelétrico. Disponível em: http://www.inovacaotecnologica.com.br/noticias/noticia.phpartigo=0101600305 - Katzir, S. (2003), `The discovery of the piezoelectric effect', Archive for History ofExactSciences 57(1), 61-91. - Natal, G. S., Nanoposicionamento de precisão por controle adaptativo binário de atuadores piezoelétricos, COPPE/UFRJ, M.Sc., Engenharia Elétrica, 2008. - Pelegrini, M. V., Estudo de materiais piezoelétricos da família III-V obtidos por sputtering reativo visando sua aplicação em sensores e mems. Escola Politécnica USP, São Paulo, 2010. - Putnam, W. & Knapp, R. B. (1996), Input/Data Acquisition System Design for Human Computer Interfacing Course, Stanford University. - Shackelford, James F., Introdução à ciência dos materiais para engenheiros, 6ª ed. São Paulo. Person Prentice Hall, 2008.

×