SlideShare uma empresa Scribd logo
1 de 31
Baixar para ler offline
Theoretical Study of the Rupture of Graphene Membranes in a
Strong Electric Field
Krystle Reiss
Alma College
Senior Honors Defense
Alma, MI
April 21, 2016
Under the supervision of Dr. James W. Mazzuca
Outline
1 Electronic structure and molecular dynamics
2 Types of membranes
3 Electric fields
4 Concerted bombardment
5 Sequential bombardment
Graphene Properties
• Stronger than steel
• Can be stretched 120%
• 150× more mobile than silicon
• No band gap
• Thinnest material on Earth
• 2500 m2
per gram
Experiment
• The experiment: Membranes in 1 M KCl solution under a 3 V/nm field
• Density functional tight binding
E =
i
< Ψi|H|Ψi > +
1
2
α,β
γα,β∆qα∆qβ + Erep (1)
Solving Newton’s equations of motion
• Verlet Method
q(t + ∆t) = 2q(t) + a(t)(∆t)2
− q(t − ∆t) (2)
• Leap Frog Method
q(t + ∆t) = v t +
1
2
∆t ∆t + q(t) (3)
v t +
1
2
∆t = v t −
1
2
∆t + a(t)∆t (4)
• Velocity Verlet
q(t + ∆t) = q(t) + v(t)∆t +
a(t)∆t2
2
(5)
v(t + ∆t) = v(t) +
[a(t) + a(t + ∆t)]∆t
2
(6)
Environmental condtions
• Berendsen thermostat
v t +
1
2
∆t ← λv t +
1
2
∆t (7)
λ = 1 +
∆t
τT
T0
T(t − 1
2
∆t)
− 1
1
2
(8)
• Nose-Hoover thermostat
• Electric field
Calculation parameters
• DFTB+ 1.2 on the Beacon supercomputer
• mio and halorg parameter sets
• Velocity Verlet driver using 1.0 femtosecond time-step
• Nose-Hoover thermostat set to 300 K
• 5000 time-steps (5 ns)
Membrane types: Edge saturation
Membrane types: Sizes
• 218 carbons
• 5000 steps
• 508 carbons
• 2000-2500 steps
• 1018 carbons
• < 400 steps
Warped membranes
Input
Unconstrained output Frozen corners output
Graphene defects
Single vacancy
Reconstructed vacancy
Double vacancy
Stone-Wales defect
Defect effects
• Single vacancies resembled pristine membranes
• Double vacancy and SW defect caused folding
Electric field construction
• +15 eV point charge at 10.0 nm
• -15 eV point charge at -10.0 nm
• Field is perpendicular to the plane of the membrane
Results: 3 V/nm
• Flat membrane
• No field
-393
-392.5
-392
-391.5
-391
-390.5
-390
0 1000 2000 3000 4000 5000
Energy(EH)
Step
Total Energy
Potential Energy
Kinetic Energy
• Flat membrane
• 3 V/nm field
-393
-392.5
-392
-391.5
-391
-390.5
-390
0 1000 2000 3000 4000 5000
Energy(EH)
Step
Total Energy
Potential Energy
Kinetic Energy
• Warped membrane
• 3 V/nm field
-393
-392.5
-392
-391.5
-391
-390.5
-390
0 1000 2000 3000 4000 5000
Energy(EH)
Step
Total Energy
Potential Energy
Kinetic Energy
Results: 30 V/nm
Flat membrane
-393
-392.5
-392
-391.5
-391
-390.5
0 1000 2000 3000 4000 5000
Energy(EH)
Step
Total Energy
Potential Energy
Kinetic Energy
-393
-392.5
-392
-391.5
-391
-390.5
0 1000 2000 3000 4000 5000
Energy(EH)
Step
Total Energy
Potential Energy
Kinetic Energy
Warped membrane
-393
-392.5
-392
-391.5
-391
-390.5
-390
-389.5
0 1000 2000 3000 4000 5000
Energy(EH)
Step
Total Energy
Potential Energy
Kinetic Energy
-393
-392.5
-392
-391.5
-391
-390.5
-390
-389.5
0 1000 2000 3000 4000 5000
Energy(EH)
Step
Total Energy
Potential Energy
Kinetic Energy
Concerted ion bombardment
• No rupture from fields or defects
• Potassium and chloride ions in solution
• Applied field causes ions to accelerate
• Ions push through membrane
Parameters
• 10 chlorides initiated 5-15 ˚A away
• 1.0 EH (2626 kJ/mol) of kinetic energy
• Random uniform distribution
• No thermostat
−10
0
10
−10 0 10
ZPosition(Å)
X Position (Å)
Membrane 1
Membrane 2
Membrane 3
Sample input
Results
18.56 broken bonds
0
7
14
21
28
35
0 5 10 15 20 25 30 35 40
BondsBroken
Trial
Bonds Broken
Running Mean
Results
Is this physically realistic?
Sequential bombardment
• Ions initiated in pairs 5-10 ˚A away
• Pairs replaced with new ions after impact
• Total of 5 pairs initiated
• Repeated for 40 trials
• Made system more closely resemble ions in solution
• Better handled calculations that failed to converge
Results
0.4 EH
0.8 EH
0.6 EH
0.9 EH
0.7 EH
1.0 EH
Results
0.4 EH
0.13 broken bonds
0
1
2
3
4
5
0 5 10 15 20 25 30 35 40
BondsBroken
Trial
Bonds Broken
Running Mean
0.6 EH
1.23 broken bonds
0
1
2
3
4
5
0 5 10 15 20 25 30 35 40
BondsBroken
Trial
Bonds Broken
Running Mean
Results
0.7 EH
2.40 broken bonds
0
2
4
6
8
10
0 5 10 15 20 25 30 35 40
BondsBroken
Trial
Bonds Broken
Running Mean
0.8 EH
6.46 broken bonds
0
4
8
12
16
20
0 5 10 15 20 25 30 35 40
BondsBroken
Trial
Bonds Broken
Running Mean
Results
0.9 EH
10.58 broken bonds
0
6
12
18
24
30
0 5 10 15 20 25 30 35 40
BondsBroken
Trial
Bonds Broken
Running Mean
1.0 EH
13.90 broken bonds
0
6
12
18
24
30
0 5 10 15 20 25 30 35 40
BondsBroken
Trial
Bonds Broken
Running Mean
Results
0
5
10
15
0 0.2 0.4 0.6 0.8 1 1.2
BondsBroken(Mean)
Kinetic Energy (EH)
Conclusions
• No rupture from electric fields or defects
• Concerted bombardment tears membrane
• Sequential bombardment is more realistic
• Ions in solution can cause membrane to rupture
Future work
• Increase number of ions used
• Add potassium ions
• Completely tear membrane in half
References
• B. Aradi, B. Hourahine, and Th. Frauenheim. Dftb+, a sparse
matrix-based implementation of the dftb method, 2007.
• C. Daniels, A. Horning, A. Phillips, D.V.P. Massote, L. Liang, Z. Bullard,
B.G. Sumpter, and V. Meunier. Elastic, plastic, and fracture mechanisms
in graphene materials. J. Phys.: Condens. Matter, 27:1-18, 2015.
• C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson. A computer
simulation method for the calculation of equilibrium physical clusters of
molecules: Application to small water clusters. J. Chem. Phys.,
76:637-649, 1982.
• Christopher J. Cramer. Essentials of Computational Chemistry: Theories
and Models. 2nd edition, 2013.
• G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein. Explicit
reversible integrators for extended systems dynamics. Molecular Phys.,
87:1117-1157, 1996.
Acknowledgements
• Dr. James W. Mazzuca
• Dr. Jacek Jakowski
• Dr. Kwai Wong
• Jacob Blazejewski
Questions?

Mais conteúdo relacionado

Destaque

Curriculum vitae herzien (2)
Curriculum vitae herzien (2)Curriculum vitae herzien (2)
Curriculum vitae herzien (2)HarryCP60
 
Makalah google drive & kalender
Makalah google drive & kalenderMakalah google drive & kalender
Makalah google drive & kalenderHananda Elf
 
10 Tips for Coin Store Design
10 Tips for Coin Store Design10 Tips for Coin Store Design
10 Tips for Coin Store DesignScientificRevenue
 
Makalah membuat blog dan wordpress
Makalah membuat blog dan wordpressMakalah membuat blog dan wordpress
Makalah membuat blog dan wordpressHananda Elf
 
Causal Inference, Reinforcement Learning, and Continuous Optimization
Causal Inference, Reinforcement Learning, and Continuous OptimizationCausal Inference, Reinforcement Learning, and Continuous Optimization
Causal Inference, Reinforcement Learning, and Continuous OptimizationScientificRevenue
 
Teaching with Academic Social Networks and Self Regulated Learning in University
Teaching with Academic Social Networks and Self Regulated Learning in UniversityTeaching with Academic Social Networks and Self Regulated Learning in University
Teaching with Academic Social Networks and Self Regulated Learning in Universityanagroba
 

Destaque (15)

DOS AmberAdam
DOS AmberAdamDOS AmberAdam
DOS AmberAdam
 
Scientific Revenue and R
Scientific Revenue and RScientific Revenue and R
Scientific Revenue and R
 
Week3
Week3Week3
Week3
 
Week 5
Week 5Week 5
Week 5
 
Final
FinalFinal
Final
 
Blue-Skies-Brochure
Blue-Skies-BrochureBlue-Skies-Brochure
Blue-Skies-Brochure
 
Curriculum vitae herzien (2)
Curriculum vitae herzien (2)Curriculum vitae herzien (2)
Curriculum vitae herzien (2)
 
Makalah google drive & kalender
Makalah google drive & kalenderMakalah google drive & kalender
Makalah google drive & kalender
 
10 Tips for Coin Store Design
10 Tips for Coin Store Design10 Tips for Coin Store Design
10 Tips for Coin Store Design
 
Kano model
Kano modelKano model
Kano model
 
Makalah membuat blog dan wordpress
Makalah membuat blog dan wordpressMakalah membuat blog dan wordpress
Makalah membuat blog dan wordpress
 
The Future of Economics
The Future of EconomicsThe Future of Economics
The Future of Economics
 
Causal Inference, Reinforcement Learning, and Continuous Optimization
Causal Inference, Reinforcement Learning, and Continuous OptimizationCausal Inference, Reinforcement Learning, and Continuous Optimization
Causal Inference, Reinforcement Learning, and Continuous Optimization
 
Cultural awareness training
Cultural awareness trainingCultural awareness training
Cultural awareness training
 
Teaching with Academic Social Networks and Self Regulated Learning in University
Teaching with Academic Social Networks and Self Regulated Learning in UniversityTeaching with Academic Social Networks and Self Regulated Learning in University
Teaching with Academic Social Networks and Self Regulated Learning in University
 

Semelhante a Presentation

Defense 1
Defense 1Defense 1
Defense 1LANPDT
 
Monitoring of strain and seismic vibrations in structures
Monitoring of strain and seismic vibrations in structuresMonitoring of strain and seismic vibrations in structures
Monitoring of strain and seismic vibrations in structureskalyanabooshnam
 
Chapter Five Corona and Overhead line Insulators.pptx
Chapter Five Corona and Overhead line Insulators.pptxChapter Five Corona and Overhead line Insulators.pptx
Chapter Five Corona and Overhead line Insulators.pptxssuserc8d444
 
Carbon nanotubes for Aerospace applications
Carbon nanotubes for Aerospace applicationsCarbon nanotubes for Aerospace applications
Carbon nanotubes for Aerospace applicationsnasreenhabeeb
 
AES2013 Harnett plenary talk: Electrodes for microfluidic applications
AES2013 Harnett plenary talk: Electrodes for microfluidic applicationsAES2013 Harnett plenary talk: Electrodes for microfluidic applications
AES2013 Harnett plenary talk: Electrodes for microfluidic applicationsCK Harnett
 
SHEAR DESIGN OF PRESTRESSED CONCRETE
SHEAR DESIGN OF PRESTRESSED CONCRETESHEAR DESIGN OF PRESTRESSED CONCRETE
SHEAR DESIGN OF PRESTRESSED CONCRETEVibhanshu Singh
 
Design Optimization of Linear Generator for a Hydrokinetic Energy Converter
Design Optimization of Linear Generator for a Hydrokinetic Energy ConverterDesign Optimization of Linear Generator for a Hydrokinetic Energy Converter
Design Optimization of Linear Generator for a Hydrokinetic Energy ConverterIOSR Journals
 
experiential learning of scld.pptx
experiential learning of scld.pptxexperiential learning of scld.pptx
experiential learning of scld.pptxAMITKUMAR938671
 
Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear johny renoald
 
SUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesSUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesRichu Jose Cyriac
 
Experimental evaluation of strain in concrete elements
Experimental evaluation of strain in concrete elementsExperimental evaluation of strain in concrete elements
Experimental evaluation of strain in concrete elementsnisarg gandhi
 
file_5e883cd7d3f5c.pdf
file_5e883cd7d3f5c.pdffile_5e883cd7d3f5c.pdf
file_5e883cd7d3f5c.pdfpradyumna42
 
advanced materials characterisation 2.pptx
advanced materials characterisation 2.pptxadvanced materials characterisation 2.pptx
advanced materials characterisation 2.pptxambiliv222nt002
 
MODELING AND OPTIMIZATION OF COLD CRUCIBLE FURNACES FOR MELTING METALS
MODELING AND OPTIMIZATION OF COLD CRUCIBLE FURNACES FOR MELTING METALSMODELING AND OPTIMIZATION OF COLD CRUCIBLE FURNACES FOR MELTING METALS
MODELING AND OPTIMIZATION OF COLD CRUCIBLE FURNACES FOR MELTING METALSFluxtrol Inc.
 
Chapter1 breakdown in gases
Chapter1 breakdown in gasesChapter1 breakdown in gases
Chapter1 breakdown in gasesmukund mukund.m
 

Semelhante a Presentation (20)

Defense 1
Defense 1Defense 1
Defense 1
 
Monitoring of strain and seismic vibrations in structures
Monitoring of strain and seismic vibrations in structuresMonitoring of strain and seismic vibrations in structures
Monitoring of strain and seismic vibrations in structures
 
Solid breakdown (2) (1)
Solid breakdown (2) (1)Solid breakdown (2) (1)
Solid breakdown (2) (1)
 
AFMC Physics 2006
AFMC Physics  2006AFMC Physics  2006
AFMC Physics 2006
 
Chapter Five Corona and Overhead line Insulators.pptx
Chapter Five Corona and Overhead line Insulators.pptxChapter Five Corona and Overhead line Insulators.pptx
Chapter Five Corona and Overhead line Insulators.pptx
 
AFMC Physics 2005
AFMC Physics  2005AFMC Physics  2005
AFMC Physics 2005
 
AFMC Physics 1997
AFMC Physics  1997AFMC Physics  1997
AFMC Physics 1997
 
Carbon nanotubes for Aerospace applications
Carbon nanotubes for Aerospace applicationsCarbon nanotubes for Aerospace applications
Carbon nanotubes for Aerospace applications
 
AES2013 Harnett plenary talk: Electrodes for microfluidic applications
AES2013 Harnett plenary talk: Electrodes for microfluidic applicationsAES2013 Harnett plenary talk: Electrodes for microfluidic applications
AES2013 Harnett plenary talk: Electrodes for microfluidic applications
 
SHEAR DESIGN OF PRESTRESSED CONCRETE
SHEAR DESIGN OF PRESTRESSED CONCRETESHEAR DESIGN OF PRESTRESSED CONCRETE
SHEAR DESIGN OF PRESTRESSED CONCRETE
 
Design Optimization of Linear Generator for a Hydrokinetic Energy Converter
Design Optimization of Linear Generator for a Hydrokinetic Energy ConverterDesign Optimization of Linear Generator for a Hydrokinetic Energy Converter
Design Optimization of Linear Generator for a Hydrokinetic Energy Converter
 
experiential learning of scld.pptx
experiential learning of scld.pptxexperiential learning of scld.pptx
experiential learning of scld.pptx
 
Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear
 
SUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesSUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide Diodes
 
Two-Way Floor Slab
Two-Way Floor SlabTwo-Way Floor Slab
Two-Way Floor Slab
 
Experimental evaluation of strain in concrete elements
Experimental evaluation of strain in concrete elementsExperimental evaluation of strain in concrete elements
Experimental evaluation of strain in concrete elements
 
file_5e883cd7d3f5c.pdf
file_5e883cd7d3f5c.pdffile_5e883cd7d3f5c.pdf
file_5e883cd7d3f5c.pdf
 
advanced materials characterisation 2.pptx
advanced materials characterisation 2.pptxadvanced materials characterisation 2.pptx
advanced materials characterisation 2.pptx
 
MODELING AND OPTIMIZATION OF COLD CRUCIBLE FURNACES FOR MELTING METALS
MODELING AND OPTIMIZATION OF COLD CRUCIBLE FURNACES FOR MELTING METALSMODELING AND OPTIMIZATION OF COLD CRUCIBLE FURNACES FOR MELTING METALS
MODELING AND OPTIMIZATION OF COLD CRUCIBLE FURNACES FOR MELTING METALS
 
Chapter1 breakdown in gases
Chapter1 breakdown in gasesChapter1 breakdown in gases
Chapter1 breakdown in gases
 

Presentation

  • 1. Theoretical Study of the Rupture of Graphene Membranes in a Strong Electric Field Krystle Reiss Alma College Senior Honors Defense Alma, MI April 21, 2016 Under the supervision of Dr. James W. Mazzuca
  • 2. Outline 1 Electronic structure and molecular dynamics 2 Types of membranes 3 Electric fields 4 Concerted bombardment 5 Sequential bombardment
  • 3. Graphene Properties • Stronger than steel • Can be stretched 120% • 150× more mobile than silicon • No band gap • Thinnest material on Earth • 2500 m2 per gram
  • 4. Experiment • The experiment: Membranes in 1 M KCl solution under a 3 V/nm field • Density functional tight binding E = i < Ψi|H|Ψi > + 1 2 α,β γα,β∆qα∆qβ + Erep (1)
  • 5. Solving Newton’s equations of motion • Verlet Method q(t + ∆t) = 2q(t) + a(t)(∆t)2 − q(t − ∆t) (2) • Leap Frog Method q(t + ∆t) = v t + 1 2 ∆t ∆t + q(t) (3) v t + 1 2 ∆t = v t − 1 2 ∆t + a(t)∆t (4) • Velocity Verlet q(t + ∆t) = q(t) + v(t)∆t + a(t)∆t2 2 (5) v(t + ∆t) = v(t) + [a(t) + a(t + ∆t)]∆t 2 (6)
  • 6. Environmental condtions • Berendsen thermostat v t + 1 2 ∆t ← λv t + 1 2 ∆t (7) λ = 1 + ∆t τT T0 T(t − 1 2 ∆t) − 1 1 2 (8) • Nose-Hoover thermostat • Electric field
  • 7. Calculation parameters • DFTB+ 1.2 on the Beacon supercomputer • mio and halorg parameter sets • Velocity Verlet driver using 1.0 femtosecond time-step • Nose-Hoover thermostat set to 300 K • 5000 time-steps (5 ns)
  • 8. Membrane types: Edge saturation
  • 9. Membrane types: Sizes • 218 carbons • 5000 steps • 508 carbons • 2000-2500 steps • 1018 carbons • < 400 steps
  • 11. Graphene defects Single vacancy Reconstructed vacancy Double vacancy Stone-Wales defect
  • 12. Defect effects • Single vacancies resembled pristine membranes • Double vacancy and SW defect caused folding
  • 13. Electric field construction • +15 eV point charge at 10.0 nm • -15 eV point charge at -10.0 nm • Field is perpendicular to the plane of the membrane
  • 14. Results: 3 V/nm • Flat membrane • No field -393 -392.5 -392 -391.5 -391 -390.5 -390 0 1000 2000 3000 4000 5000 Energy(EH) Step Total Energy Potential Energy Kinetic Energy • Flat membrane • 3 V/nm field -393 -392.5 -392 -391.5 -391 -390.5 -390 0 1000 2000 3000 4000 5000 Energy(EH) Step Total Energy Potential Energy Kinetic Energy • Warped membrane • 3 V/nm field -393 -392.5 -392 -391.5 -391 -390.5 -390 0 1000 2000 3000 4000 5000 Energy(EH) Step Total Energy Potential Energy Kinetic Energy
  • 15. Results: 30 V/nm Flat membrane -393 -392.5 -392 -391.5 -391 -390.5 0 1000 2000 3000 4000 5000 Energy(EH) Step Total Energy Potential Energy Kinetic Energy -393 -392.5 -392 -391.5 -391 -390.5 0 1000 2000 3000 4000 5000 Energy(EH) Step Total Energy Potential Energy Kinetic Energy Warped membrane -393 -392.5 -392 -391.5 -391 -390.5 -390 -389.5 0 1000 2000 3000 4000 5000 Energy(EH) Step Total Energy Potential Energy Kinetic Energy -393 -392.5 -392 -391.5 -391 -390.5 -390 -389.5 0 1000 2000 3000 4000 5000 Energy(EH) Step Total Energy Potential Energy Kinetic Energy
  • 16. Concerted ion bombardment • No rupture from fields or defects • Potassium and chloride ions in solution • Applied field causes ions to accelerate • Ions push through membrane
  • 17. Parameters • 10 chlorides initiated 5-15 ˚A away • 1.0 EH (2626 kJ/mol) of kinetic energy • Random uniform distribution • No thermostat −10 0 10 −10 0 10 ZPosition(Å) X Position (Å) Membrane 1 Membrane 2 Membrane 3
  • 19. Results 18.56 broken bonds 0 7 14 21 28 35 0 5 10 15 20 25 30 35 40 BondsBroken Trial Bonds Broken Running Mean
  • 21. Sequential bombardment • Ions initiated in pairs 5-10 ˚A away • Pairs replaced with new ions after impact • Total of 5 pairs initiated • Repeated for 40 trials • Made system more closely resemble ions in solution • Better handled calculations that failed to converge
  • 22. Results 0.4 EH 0.8 EH 0.6 EH 0.9 EH 0.7 EH 1.0 EH
  • 23. Results 0.4 EH 0.13 broken bonds 0 1 2 3 4 5 0 5 10 15 20 25 30 35 40 BondsBroken Trial Bonds Broken Running Mean 0.6 EH 1.23 broken bonds 0 1 2 3 4 5 0 5 10 15 20 25 30 35 40 BondsBroken Trial Bonds Broken Running Mean
  • 24. Results 0.7 EH 2.40 broken bonds 0 2 4 6 8 10 0 5 10 15 20 25 30 35 40 BondsBroken Trial Bonds Broken Running Mean 0.8 EH 6.46 broken bonds 0 4 8 12 16 20 0 5 10 15 20 25 30 35 40 BondsBroken Trial Bonds Broken Running Mean
  • 25. Results 0.9 EH 10.58 broken bonds 0 6 12 18 24 30 0 5 10 15 20 25 30 35 40 BondsBroken Trial Bonds Broken Running Mean 1.0 EH 13.90 broken bonds 0 6 12 18 24 30 0 5 10 15 20 25 30 35 40 BondsBroken Trial Bonds Broken Running Mean
  • 26. Results 0 5 10 15 0 0.2 0.4 0.6 0.8 1 1.2 BondsBroken(Mean) Kinetic Energy (EH)
  • 27. Conclusions • No rupture from electric fields or defects • Concerted bombardment tears membrane • Sequential bombardment is more realistic • Ions in solution can cause membrane to rupture
  • 28. Future work • Increase number of ions used • Add potassium ions • Completely tear membrane in half
  • 29. References • B. Aradi, B. Hourahine, and Th. Frauenheim. Dftb+, a sparse matrix-based implementation of the dftb method, 2007. • C. Daniels, A. Horning, A. Phillips, D.V.P. Massote, L. Liang, Z. Bullard, B.G. Sumpter, and V. Meunier. Elastic, plastic, and fracture mechanisms in graphene materials. J. Phys.: Condens. Matter, 27:1-18, 2015. • C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson. A computer simulation method for the calculation of equilibrium physical clusters of molecules: Application to small water clusters. J. Chem. Phys., 76:637-649, 1982. • Christopher J. Cramer. Essentials of Computational Chemistry: Theories and Models. 2nd edition, 2013. • G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein. Explicit reversible integrators for extended systems dynamics. Molecular Phys., 87:1117-1157, 1996.
  • 30. Acknowledgements • Dr. James W. Mazzuca • Dr. Jacek Jakowski • Dr. Kwai Wong • Jacob Blazejewski