SlideShare uma empresa Scribd logo
1 de 13
Baixar para ler offline
 
  
ADIPEC 2013 Technical Conference Manuscript 
 
Name:  Edward Marszal 
Company: Kenexis Consulting Corporation 
Job title: President 
Address: 3366 Riverside Dr, Columbus, Ohio, 43221, USA 
Phone number: 614‐451‐7031 
Email: Edward.Marszal@kenexis.com 
Category: Case Studies 
 
Abstract ID: 555 
Title: Case Study: Implementing Performance Based Gas Detector Placement per ISA TR 84.00.07 on a Sulfur Recovery 
Unit 
Author(s): Edward Marszal, Elizabeth Smith 
This manuscript was prepared for presentation at the ADIPEC 2013 Technical Conference, Abu Dhabi, UAE, 10‐13 November 2013. 
This manuscript was selected for presentation by the ADIPEC 2013 Technical Committee Review and Voting Panel upon online submission of an 
abstract by the named author(s). 

 
Abstract: 

The placement of gas detectors has traditionally been an imprecise field of engineering.  With no detailed 
prescriptive rules on when and where to place gas detection equipment, designs have been left to experts 
who use their judgment along with rules of thumb to set designs.  These ad hoc methods have left industry 
in a position where different process units within the same refinery have vastly different gas detection 
designs for equipment in similar operating profiles.  Furthermore, often no documented basis for the 
selection exists making it difficult to justify the differences in designs between units to stakeholders and 
regulators. 
 
In 2011, ISA released a technical report describing performance based methods for fire and gas system 
(FGS) design.  This technical report laid out a safety lifecycle and introduced the new metric of “coverage” 
to define FGS designs.  The approach presented in ISA TR84.00.07 was applied to the problem of H2S gas 
detection on a refinery Sulfur Recovery unit.  All of the process equipment was assessed using calibrated 
semi‐quantitative techniques, resulting in graded areas with associated coverage targets.  Fire and gas 
mapping software was then utilized to confirm that the assigned coverage targets were achieved.  This 
paper describes how that project was executed, presents an overview of the results, and compares the 
resulting design against other process units and expectations. 
 
 

 
1 

 
Introduction

 

A Fire and Gas System (FGS) performance‐based design basis was developed for the Sulfur Recovery Units (SRUs) 
operated by a US Gulf Coast Refinery.  The study was performed to determine the hazard posed to personnel from 
process material releases in the vicinity of the SRUs.  The Sulfur Recovery Units are responsible for treating gases 
that have elevated levels of Hydrogen Sulfide (H2S) present, e.g. acid gas and sour water stripper gas produced as a 
byproduct of other refining processes.  As a result, the SRU has a significant inherent risk if a release were to occur.  
The study included analysis of the H2S hazards, dispersion modeling, an assessment of detector coverage, and 
recommendations for detector placement. 
 
The case study was performed based on guidelines from ANSI/ISA‐TR84.00.07‐2010 Technical Report Guidance on 
the Evaluation of Fire, Combustible Gas and Toxic Gas System Effectiveness.  The Performance‐Based FGS Lifecycle 
Process, as defined by this technical report, is shown in Figure 1. 
 
Figure 1  FGS Safety Lifecycle (from ANSI/ISA‐TR84.00.07‐2010) 

 
 
Step 1 can be determined by either the facility if the project is limited in scope, e. g. SRU included in the Case Study, 
or can be defined during execution of a project if an entire facility is being analyzed, e.g. offshore platforms. 
 
Steps 2 through 6 are discussed in the section of this paper that addresses the Hydrogen Sulfide Hazard Analysis, 
whereas Steps 7 through 11 are discussed in the Coverage Assessment section, although each step is not explicitly 
identified.  Note that Step 7, in this particular case study was provided as an existing H2S Detector Array that will 
remain in place, and Step 9 was not within the scope of this case study. 
 

Hydrogen Sulfide Hazard Analysis
Hydrogen sulfide‐containing process streams are treated in the Sulfur Recovery Unit to convert gaseous hydrogen 
sulfide to elemental sulfur.  The Claus reaction was used in this particular application. 
H2S + O2  S2 + 2 H2O 
As the H2S is being converted and recycled, there are various concentrations of H2S present in the SRU, ranging 
from less than 1% (v/v) to greater than 75% (v/v), or 1,000 ppm to 75,000 ppm.  These concentrations are hazardous 
to personnel.  Hydrogen sulfide is a broad spectrum toxin, meaning that it damages several different body systems 
simultaneously.  The most pronounced effects are as a pulmanotoxin resulting in pulmonary edema in 
concentrations in the low 300 ppm range and a neurotoxin resulting in rapid and then sudden loss of breathing at 
concentrations as low as the 500 ppm range. 
2 
 
 
Design Basis Scenarios and Dispersion Modeling 
The design was based on analysis of location and magnitude of hazard scenarios.  In this study, gas dispersion 
modeling was conducted for the identified credible hazard scenarios to determine the potential size of gas clouds 
and to determine which equipment had the potential to release hazardous concentrations of H2S.  Equipment of 
interest was identified based on this analysis, and existing detectors were modeled to determine coverage of 
identified hazard scenarios.  Since every possible hazard scenario cannot feasibly be analyzed, a subset of those 
scenarios that have been chosen as the basis of the design, those scenarios are herein designated as “Design‐Basis 
Scenarios”. 
 
Dispersion modeling was conducted to provide incident outcomes of design basis hazards.  In the case of H2S gas, 
the design basis hazard has been defined as an initial incipient stage gas cloud which can be detected at a point 
which allows for personnel egress from the affected area as well as preventing personnel entry into the area if 
unoccupied at the time of release. 
 
Dispersion modeling was performed using commercially available consequence analysis software and general 
parameters reflecting the condition at the facility. 
 
In selecting appropriate design‐basis scenarios, consideration was given to the predominant H2S‐containing streams 
present in the SRU.  In sulfur recovery units, release scenarios associated with 5 mm equivalent hole diameter were 
selected as credible design‐basis scenarios.  The released streams that were considered included: Acid Gas, Sour 
Water Stripper Gas, Tail Gas, and Rich Amine used for both Tail Gas Treatment and Acid Gas Treatment.  Tail Gas 
was modeled as a 25mm hole size due to the less concentrated process conditions and H2S concentrations. 
 
Credible hazard scenarios were identified that have the potential to result in personnel injury due to H2S exposure.  
A small leak (5 mm equivalent hole diameter for excepting Tail Gas) was identified as having the capability to create 
a hazardous situation while simultaneously being more difficult to detect than larger leaks. 
 
For H2S exposure, the level‐of‐concern for injuries is 100 ppm (parts per million v/v) airborne concentration (IDLH as 
per the United States National Institute of Occupational Safety Hygienists [NIOSH]) and life‐threatening effects at 
700 ppm airborne concentration or higher (immediate exposure).  In addition, lower concentrations associated with 
occupational exposure of 10 ppm were modeled, this concentration is the limit of detection / alarm capability for 
many common H2S detectors.  The Short‐Term Exposure Limit (STEL) as established by the American Conference of 
Government Industrial Hygienists (ACGIH) is 5 ppm as of 2010 publication (the STEL was previously 15 ppm).  The 
STEL is the exposure concentration not to be exceeded for up to 15 minutes, not more than 4 times per 8 hr day.  
The justification for lowering the STEL was to protect against minor irritation of the respiratory tract and a “brief 
change” in rate of oxygen uptake.  For each representative release scenario, H2S dispersion was modeled to four 
endpoints, as shown in Table 1. 
 
Table 1 – H2S Dispersion Endpoints 
Endpoint Concentration 
(ppm) 
700 
100 
10 

 

Notes
Potentially Fatal – Consistent w/ Course H2S Dispersion Study 
IDLH – Consistent w/ Course H2S Dispersion Study
H2S Detection High Alarm Concentration

 
3 
 
Commercially available computerized consequences analysis software was used to characterize the extent of toxic 
dispersion and the potential impact on personnel.  Table 2 shows the release rate of H2S, the duration of the release 
modeled, and the anticipated distance the H2S will travel downwind of the release point.  The reported distances 
are the IDLH concentrations and detectable concentrations, respectively.  
 
Table 2 
Design Basis Consequence Modeling  
Model 

Description 

Release Rate (lb/hr)

Duration 
(min) 

Distance to Endpoint (ft) 
Distance to  
100 ppm 

Distance to 10 
ppm 

S‐01 

Acid Gas ‐ 5mm vapor leak   

13 

60 

100 

540 

S‐02 

SWS Gas ‐ 5mm vapor leak 

9 

60 

60 

240 

S‐03 

Tail Gas ‐ 25 mm vapor leak 

170 

60 

50 

80 

S‐04 

Tail Gas Clean‐Up Rich Amine 

27 (1) 

60 

35 

160 

S‐05 
(1)

 

Acid Gas Clean‐Up Rich Amine 

144 (1) 

60 

90 

350 

Release Rate of H2S only 

 
Figure 2 shows the results of the Acid Gas design basis scenario dispersion modeling when taking a vertical cross‐
section of the dispersion profile.  This view represents the height of the cloud as well as the downwind distance 
reached by various concentrations of H2S. 
 
Figure 2  Acid Gas ‐ 5mm leak ‐ Vapor Dispersion ‐ Sideview 

 

 

Figure 3 shows the results of the Acid Gas design basis scenario dispersion modeling when taking a horizontal cross‐
section, or “footprint” of the dispersion profile.  This view represents the width of the cloud as well as the downwind 
distance reached by various concentrations of H2S at or near ground level.  This model type is used during the 
detector coverage assessment. 
 

4 
 
 
Figure 3 

 
Acid Gas ‐ 5mm leak ‐ Vapor Dispersion ‐ Footprint 

 

 

 
The gas dispersion analysis is also sensitive to meteorological conditions.  A wind rose was obtained to determine 
the relative probability of the release being blown in any specific direction.   
Also, the following atmospheric stability and wind speed condition was modeled after considering the range of 
atmospheric conditions that are likely to occur at the facility.    
 Adverse Nighttime: F class atmospheric stability with 1.5 m/s wind speed 
 
Toxic gas cloud sizes resulting from releases are very sensitive to the selected wind speed.  In addition, the wind 
direction distribution (wind rose) for the case study area was used to determine the probability of gas dispersing in 
any given direction around the point of release.  This is shown in Figure 4. 
 
 

5 
 
Figure 4 

 

Case Study Wind Rose 

 
 
Design Basis Consequence Assessment 
In order to assess the coverage provided by toxic gas detectors, the location, size and frequency of the design basis 
releases must be determined.  This is performed on an equipment‐by‐equipment basis, by first determining which of 
the representative release scenarios most accurately reflects the process material within each piece of equipment.  
The equipment must then be assigned a location in relation to other equipment and also gas detectors in the 
vicinity, which is typically done using plot plans.  The frequency of release is based on the type of equipment being 
analyzed.  Generally rotating equipment, such as pumps and compressors, is assigned a release frequency that is 
greater than that assigned to pressure vessels or shell and tube heat exchangers.  These frequencies can be obtained 
from publicly available databases of leak rates as well as proprietary data from specific process plants and operating 
companies. 
 
Table 3 shows some of the major pieces of SRU equipment considered for this study, the representative scenario 
applicable to that equipment, and the chosen release frequency (assuming a 5mm leak.  Please note, Table 3 does 
not include all leak sources included for this study. 
 
Table 3 
Sample of SRU Equipment and Associated Release Scenarios / Frequencies  
Representative 
Release Frequency 
Equipment Description 
Scenario 
(/yr) 
Amine Stripper Tower 
Stripper Reflux Pumps 
Acid Gas Scrubber 
SRU Scrubber Pumps 
Reactor 
SWS Gas Scrubber 

S01 
S01 
S01 
S01 
S01 
S02 

1E‐03 
1E‐02 
3E‐03 
1E‐02 
3E‐03 
3E‐03 
6 

 
 
Representative 
Scenario 

Release Frequency 
(/yr) 

SWS Gas Scrubber Pumps 
SWS Gas Knock‐Out 
Sour Water Pumps 
Tail Gas Treatment Reactor Feed Cooler 
Tail Gas Treatment Reactor 
Tail Gas Treatment Stripper 
Tail Gas Rich Solvent Pump 
Tail Gas Rich Solvent Flash Drum 
Acid Gas Rich Solvent Pumps 

S02 
S02 
S02 
S03 
S03 
S03 
S04 
S05 
S05 

1E‐02 
1E‐03 
1E‐02 
1E‐03 
3E‐03 
3E‐03 
1E‐02 
1E‐03 
1E‐02 

Acid Gas Lean / Rich Solvent Exchanger 

S05 

1E‐03 

Equipment Description 

 
The magnitude and frequency of releases has been determined based on the design scenarios and the types of 
equipment that process the hazardous material.  This is as inputs to the hazard assessment and the gas coverage 
assessment discussed in the following section. 
 

Gas Coverage Assessment
The Gas Coverage Assessment consisted of the following tasks for the case study discussed in this paper:  
 Define Performance Targets 


Mapping of Gas Releases 



Assess Detector Coverage 
o
o



Unmitigated Risk Assessment (without benefit of detectors) 
Mitigated Risk (first‐pass or existing detector design / layout) 

Modify FGS Design 

A Gas Detection System performance assessment typically also includes an assessment of the FGS Safety Availability.  
The Case Study on which this paper is based did not include this in the scope of the H2S hazard assessment, only an 
assessment of coverage was carried out. 
 
Defining Performance Targets 
The performance grade is a specification that defines the ability of an FGS function to detect, alarm, and if 
necessary, mitigate the consequence of a fire or gas release upon a demand condition.  In concept, a higher hazard 
installation should require higher levels of performance; while a lower hazard installation should allow for lower 
levels of performance, so that FGS resources can be more effectively allocated. 
 
Specification of target performance grade for fire and gas systems is an exercise in risk assessment.  For the Case 
Study, a semi‐quantitative risk assessment was performed to specify risk reduction requirements for each area using 
a scoring procedure.  The goal of this risk assessment was to assign a performance grade for each leak source within 
the Sulfur Recovery Unit zone.   
 
Each process area containing toxic gas hazards was characterized by one of four performance grades. These grades 
are listed in Table 4. 
7 
 
 

 
Table 4 

Gas Performance Grades 
Grade 

Exposure Definition 

Required 
Detector Coverage 

A 

Hydrocarbon processing, with high exposure. 

90% 

B 

Hydrocarbon processing, with moderate exposure. 
Hydrocarbon processing, with low or very‐low exposure. 

80% 
60% 

C 
No Grading 

~ 

Risk is tolerable w/o benefit of FGS 

 
Each of the grades serves to define a relative level of gas risk, with grade A being the highest risk areas and grade C 
being the lowest risk areas necessitating detection.  The grades correspond to required levels of FGS performance 
(i.e. detector coverage) as shown in Table 4. 
 
The Required Detector Coverage metric was chosen for this project.  Alternatively, the release frequency, detector 
coverage, FGS availability, and other factors (e.g. occupancy) can be assessed and compared verified against 
allowable risk targets (e.g. Target Mitigated Event Likelihood) as defined by the organization or facility. 
 
Gas performance grades were specified for gas functions which protect H2S processing areas.  Performance targets 
were selected toxic gas detection for each major equipment item.  A summary of the results are presented in Table 
5, which provides the selected performance target for gas functions in the SRU for the equipment containing the 
defined design basis scenarios.  The grade selections are based on equipment type, occupancy, process conditions, 
and toxic concentration. 
 
Table 5 
SRU Grade Selection Summary 
Plant: 1. Sulfur Recovery Unit
Zone ID
SRU

Zone Description

Zone Type

Sulfur Recovery Unit X - Toxic

Area Grading
Equip Tag
Acid Gas

Equipment Description
Acid Gas
79% H2S
<50 psig

Area Grading
Hazard Type

Grade

H2S Gas

A

Sour Water Stripper Sour Water Stripper Gas
Gas
40% H2S
<50 psig

H2S Gas

A

Tail Gas

H2S Gas

B

H2S Gas

C

Amine Regeneration Unit Rich H2S Gas
Amine

B

Tail Gas
0.8% H2S
<50 psig

TGU Rich Amine

Tail Gas Unit Rich Amine
1% H2S
50 - 100 psig

ARU Rich Amine

2% H2S
100 - 150 psig

 
Note: the grades reported here are only indicative of design basis scenarios within the zone.  FGS detection for all 
major equipment within each zone is defined independently based on the process stream conditions and equipment 
type.  As the detector coverage is relevant to an entire zone and ell equipment contained within the zone, this Case 
8 
 
Study chose the highest grade, A, as the criteria that must be met, i.e. the detectable scenarios must be greater than 
or equal to 90% of the total scenarios. 
 
Mapping Gas Releases 
The gas releases, as shown in Figures 2 and 3 and Table 3 are represented graphically using a commercially available 
FGS assessment tool.  The mapping analysis involves obtaining an equipment layout or plot plan of the zone being 
analyzed.  Figure 5 presents the Unmitigated Gas Risk.   
 
Figure 5  Unmitigated Gas Risk 

 

 
 
This is a composite of all of the equipment that were considered leak sources, a sample of this equipment is listed in 
Table 2.  The major equipment is shown here (with all identifying information removed) – the plot plan and overlay 
can be as detailed as the plot plans provided, resulting in varying degrees of detail in the geographic risk image. 
 
The FGS mapping software aggregates the release scenarios, consisting of concentration, frequency, and dispersion 
size, and plots the “footprint” overlaid on a plot plan of the unit.  The location of the release is defined by the user to 
coincide with the equipment that is the source of the leak.  The software output also shows the wind distribution 
and release frequency.   
As shown in Figure 5, the highest hazard frequency typically occurs in areas that contain the most equipment of 
concern.  Alternatively, it can occur in the vicinity of higher risk (i.e., higher leak rate) equipment, such as pumps or 
compressors.  Although not utilized in this case study, the release scenarios can also be represented in either the 
upwind or downwind direction from equipment by an appropriate distance – this distance is a property of the 
release orientation, release height, process conditions, and the material being released. 
 
9 
 
Detector Coverage Assessment 
FGS detector coverage was assessed in order to determine the risk posed by an H2S release in the SRU to personnel 
located in the SRU and ensure that the performance coverage targets are achieved. 
 
The existing layout of detectors was assessed to ensure the coverage footprint is sufficient to provide the required 
hazard alarms and control actions.  The effective range of selected detectors considers the expected environment 
based on test data. 
 
The existing design was analyzed to determine the gas scenario coverage.  This involves an assessment to determine 
how effective the proposed array of detectors will be in detecting an incipient hazard at a level that will alert 
personnel to a toxic gas release.  Using the FGS assessment software tool, Kenexis has reviewed the existing design 
and modified as necessary to deliver acceptable gas coverage.  As the detection of H2S within the process area of 
this Case Study does not initiate any automatic actions, and is instead used only for alarm, the coverage numbers 
were based on any single detector being in alarm state, or 1ooN.  It is also possible to report one or more detector’s 
ability to detect a hazard, i.e. 2ooN coverage, in instances where appropriate.  This is often used for fire detection as 
well as automated actions (e.g. shutdown, isolation, blowdown, and fire mitigation measures) based on gas 
detection as 2ooN vote‐to‐trip will reduce spurious activation.   
 
The initial design, which accounted for the location of existing detectors, included 11 gas detectors.  This resulted in 
an achieved coverage of 58.1%, which is graphically represented in Figure 6 and reported in Table 6.   
 
Table 6 
Detector Coverage Summary 
Layout 
Number of 
Achieved Coverage 
Zone 
Hazard 
Detectors 
(%, 1ooN) 
Existing 
8 
58.1% 
SRU 
Toxic – H2S 
Recommended 
15 
90.1% 
 

 

10 
 
Figure 6 

 

Mitigated Gas Risk – Existing Detector Layout 

 
 
Figure 7 represents detector placement after inclusion of the recommended detectors.  These detectors are in 
addition to those detectors already existing.  The Case Study focused on the inclusion of existing detectors with the 
addition of detectors to meet the performance targets.  

11 
 
Figure 7 

 

Mitigated Gas Risk – Recommended Detector Layout 

 
 
It is likely that the performance targets could have been achieved using fewer detectors had the Case Study included 
provisions for an “optimized design”, i.e. achieving desired coverage with the fewest installed detectors.  This is not 
meant to imply that the additional detectors do not offer hazard reduction to the facility, as they may be used for earlier 
detection, may be placed at locations that are heavily trafficked and therefore represent increased hazard to personnel, 
or represent areas in which increased awareness is desired. 

12 
 
 

References
ISA‐TR84.00.07 The Application of ANSI/ISA 84.00.01‐2004 Parts 1‐3 (IEC 61511 Parts 1‐3  
Instrumented Functions (SIFs) in Fire & Gas Systems 

Modified) for Safety 

Kenexis Case Study on H2S Hazard Analysis and Assessment performed for a US Refinery’s Sulfur Recovery Unit. 
 
 
 
 
 
 
 
 
 

 

13 
 

Mais conteúdo relacionado

Mais procurados

Electroserv+ Overview Brochure v1.1
Electroserv+ Overview Brochure v1.1Electroserv+ Overview Brochure v1.1
Electroserv+ Overview Brochure v1.1Jason McIntosh
 
Simmco Presentation
Simmco PresentationSimmco Presentation
Simmco Presentationsimmco
 
Introduction to The Augustus Group and RBI
Introduction to The Augustus Group and RBIIntroduction to The Augustus Group and RBI
Introduction to The Augustus Group and RBIEdwin A Merrick
 
JDick Resume 9-2015
JDick Resume 9-2015JDick Resume 9-2015
JDick Resume 9-2015John Dick
 
DD-Corporate-Brochure- V5
DD-Corporate-Brochure- V5DD-Corporate-Brochure- V5
DD-Corporate-Brochure- V5Vibin Vasudevan
 
BPippey_resume 2 Pg
BPippey_resume 2 PgBPippey_resume 2 Pg
BPippey_resume 2 PgBill Pippey
 
Intertek - Industry Services 2013
Intertek - Industry Services 2013Intertek - Industry Services 2013
Intertek - Industry Services 2013ogonzalez1997
 
Asset Integrity Management for purpose-built FPSOs and subsea system facilities
Asset Integrity Management for purpose-built FPSOs and subsea system facilitiesAsset Integrity Management for purpose-built FPSOs and subsea system facilities
Asset Integrity Management for purpose-built FPSOs and subsea system facilitiesAdvisian
 
Zentech Manufacturing Capabilities
Zentech Manufacturing CapabilitiesZentech Manufacturing Capabilities
Zentech Manufacturing CapabilitiesTransline Technology
 
clint herron resume (1)
clint herron resume (1)clint herron resume (1)
clint herron resume (1)Clint Herron
 
Westside case study 3 years without a recordable injury
Westside case study 3 years without a recordable injury Westside case study 3 years without a recordable injury
Westside case study 3 years without a recordable injury NSW Environment and Planning
 
PAC 2020 Santorin - Gopalkrishnan Yadav
PAC 2020 Santorin - Gopalkrishnan YadavPAC 2020 Santorin - Gopalkrishnan Yadav
PAC 2020 Santorin - Gopalkrishnan YadavNeotys
 

Mais procurados (19)

Electroserv+ Overview Brochure v1.1
Electroserv+ Overview Brochure v1.1Electroserv+ Overview Brochure v1.1
Electroserv+ Overview Brochure v1.1
 
CaseStudy_OnLine_Design
CaseStudy_OnLine_DesignCaseStudy_OnLine_Design
CaseStudy_OnLine_Design
 
Simmco Presentation
Simmco PresentationSimmco Presentation
Simmco Presentation
 
Malkin Panel: Blade Root Cause Analysis Processes and Inspection Methods
Malkin Panel: Blade Root Cause Analysis Processes and Inspection MethodsMalkin Panel: Blade Root Cause Analysis Processes and Inspection Methods
Malkin Panel: Blade Root Cause Analysis Processes and Inspection Methods
 
Introduction to The Augustus Group and RBI
Introduction to The Augustus Group and RBIIntroduction to The Augustus Group and RBI
Introduction to The Augustus Group and RBI
 
WP4_Work&Future
WP4_Work&FutureWP4_Work&Future
WP4_Work&Future
 
JDick Resume 9-2015
JDick Resume 9-2015JDick Resume 9-2015
JDick Resume 9-2015
 
DD-Corporate-Brochure- V5
DD-Corporate-Brochure- V5DD-Corporate-Brochure- V5
DD-Corporate-Brochure- V5
 
BPippey_resume 2 Pg
BPippey_resume 2 PgBPippey_resume 2 Pg
BPippey_resume 2 Pg
 
Intertek - Industry Services 2013
Intertek - Industry Services 2013Intertek - Industry Services 2013
Intertek - Industry Services 2013
 
RMA Resume 11112016
RMA Resume 11112016RMA Resume 11112016
RMA Resume 11112016
 
Asset Integrity Management for purpose-built FPSOs and subsea system facilities
Asset Integrity Management for purpose-built FPSOs and subsea system facilitiesAsset Integrity Management for purpose-built FPSOs and subsea system facilities
Asset Integrity Management for purpose-built FPSOs and subsea system facilities
 
Muhammad Resume
Muhammad ResumeMuhammad Resume
Muhammad Resume
 
MichaelSparksResume
MichaelSparksResumeMichaelSparksResume
MichaelSparksResume
 
Hvac brochure
Hvac brochureHvac brochure
Hvac brochure
 
Zentech Manufacturing Capabilities
Zentech Manufacturing CapabilitiesZentech Manufacturing Capabilities
Zentech Manufacturing Capabilities
 
clint herron resume (1)
clint herron resume (1)clint herron resume (1)
clint herron resume (1)
 
Westside case study 3 years without a recordable injury
Westside case study 3 years without a recordable injury Westside case study 3 years without a recordable injury
Westside case study 3 years without a recordable injury
 
PAC 2020 Santorin - Gopalkrishnan Yadav
PAC 2020 Santorin - Gopalkrishnan YadavPAC 2020 Santorin - Gopalkrishnan Yadav
PAC 2020 Santorin - Gopalkrishnan Yadav
 

Semelhante a Adipec 2013 technical conference manuscript - marszal

At the Intersection of NAAQS Modeling, Permitting, and Compliance
At the Intersection of NAAQS Modeling, Permitting, and ComplianceAt the Intersection of NAAQS Modeling, Permitting, and Compliance
At the Intersection of NAAQS Modeling, Permitting, and ComplianceShirley Rivera
 
Anubis Manufacturing Consultants Corporation uses EOS Additive Plastic Laser ...
Anubis Manufacturing Consultants Corporation uses EOS Additive Plastic Laser ...Anubis Manufacturing Consultants Corporation uses EOS Additive Plastic Laser ...
Anubis Manufacturing Consultants Corporation uses EOS Additive Plastic Laser ...Machine Tool Systems Inc.
 
Oberhettinger
OberhettingerOberhettinger
OberhettingerNASAPMC
 
Diberardinis ansi vent
Diberardinis ansi ventDiberardinis ansi vent
Diberardinis ansi ventDIv CHAS
 
Operation research ppt
Operation research pptOperation research ppt
Operation research pptLakshmiPriyaM6
 
1 re sume 2016 anders engstroem piping &amp; layout
1   re sume 2016 anders engstroem piping &amp; layout1   re sume 2016 anders engstroem piping &amp; layout
1 re sume 2016 anders engstroem piping &amp; layoutAnders Engstroem
 
Wind_energy_Program_FactSheet
Wind_energy_Program_FactSheetWind_energy_Program_FactSheet
Wind_energy_Program_FactSheetNicole Lundberg
 
New I&C Resume
New I&C ResumeNew I&C Resume
New I&C ResumeHal Coats
 
SEDS-3-Fold-1-UPDATED
SEDS-3-Fold-1-UPDATEDSEDS-3-Fold-1-UPDATED
SEDS-3-Fold-1-UPDATEDWayne Norris
 
Dnv rp g103 non intrusive inspection 2011
Dnv rp g103   non intrusive inspection 2011Dnv rp g103   non intrusive inspection 2011
Dnv rp g103 non intrusive inspection 2011Mohammad Shoeb Ahmed
 
FEA Based Pipe Stress Analysis - Introduction To Pipe Calculation System (PCS)
FEA Based Pipe Stress Analysis - Introduction To Pipe Calculation System (PCS)FEA Based Pipe Stress Analysis - Introduction To Pipe Calculation System (PCS)
FEA Based Pipe Stress Analysis - Introduction To Pipe Calculation System (PCS)Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Koorosh gobal Resume
Koorosh gobal ResumeKoorosh gobal Resume
Koorosh gobal ResumeKoorosh Gobal
 

Semelhante a Adipec 2013 technical conference manuscript - marszal (20)

At the Intersection of NAAQS Modeling, Permitting, and Compliance
At the Intersection of NAAQS Modeling, Permitting, and ComplianceAt the Intersection of NAAQS Modeling, Permitting, and Compliance
At the Intersection of NAAQS Modeling, Permitting, and Compliance
 
Anubis Manufacturing Consultants Corporation uses EOS Additive Plastic Laser ...
Anubis Manufacturing Consultants Corporation uses EOS Additive Plastic Laser ...Anubis Manufacturing Consultants Corporation uses EOS Additive Plastic Laser ...
Anubis Manufacturing Consultants Corporation uses EOS Additive Plastic Laser ...
 
Resume 9-21-16
Resume 9-21-16Resume 9-21-16
Resume 9-21-16
 
Oberhettinger
OberhettingerOberhettinger
Oberhettinger
 
Diberardinis ansi vent
Diberardinis ansi ventDiberardinis ansi vent
Diberardinis ansi vent
 
2014 Sandia Wind Turbine Blade Workshop- Griffith
2014 Sandia Wind Turbine Blade Workshop- Griffith2014 Sandia Wind Turbine Blade Workshop- Griffith
2014 Sandia Wind Turbine Blade Workshop- Griffith
 
Operation research ppt
Operation research pptOperation research ppt
Operation research ppt
 
1 re sume 2016 anders engstroem piping &amp; layout
1   re sume 2016 anders engstroem piping &amp; layout1   re sume 2016 anders engstroem piping &amp; layout
1 re sume 2016 anders engstroem piping &amp; layout
 
Axis Eng Contact and Brochure
Axis Eng Contact and BrochureAxis Eng Contact and Brochure
Axis Eng Contact and Brochure
 
Wind_energy_Program_FactSheet
Wind_energy_Program_FactSheetWind_energy_Program_FactSheet
Wind_energy_Program_FactSheet
 
New I&C Resume
New I&C ResumeNew I&C Resume
New I&C Resume
 
SEDS-3-Fold-1-UPDATED
SEDS-3-Fold-1-UPDATEDSEDS-3-Fold-1-UPDATED
SEDS-3-Fold-1-UPDATED
 
swapnil-CV
swapnil-CVswapnil-CV
swapnil-CV
 
Dnv rp g103 non intrusive inspection 2011
Dnv rp g103   non intrusive inspection 2011Dnv rp g103   non intrusive inspection 2011
Dnv rp g103 non intrusive inspection 2011
 
FEA Based Pipe Stress Analysis - Introduction To Pipe Calculation System (PCS)
FEA Based Pipe Stress Analysis - Introduction To Pipe Calculation System (PCS)FEA Based Pipe Stress Analysis - Introduction To Pipe Calculation System (PCS)
FEA Based Pipe Stress Analysis - Introduction To Pipe Calculation System (PCS)
 
20161206CJRogers
20161206CJRogers20161206CJRogers
20161206CJRogers
 
Vg (2)
Vg (2)Vg (2)
Vg (2)
 
DAR Resume Proj_Summary
DAR Resume Proj_SummaryDAR Resume Proj_Summary
DAR Resume Proj_Summary
 
Oil contamination paper_published_version
Oil contamination paper_published_versionOil contamination paper_published_version
Oil contamination paper_published_version
 
Koorosh gobal Resume
Koorosh gobal ResumeKoorosh gobal Resume
Koorosh gobal Resume
 

Último

unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...AliaaTarek5
 

Último (20)

unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
 

Adipec 2013 technical conference manuscript - marszal