SlideShare uma empresa Scribd logo
1 de 35
Baixar para ler offline
Wind Energy I




             Wind-blade
             interaction
       consequences for design

Michael Hölling, WS 2010/2011   slide 1
Wind Energy I                              Class content
                                                            5 Wind turbines in
                                                                                       6 Wind - blades
                                                              general
                                2 Wind measurements                                      interaction
                                                                                  7 Π-theorem

                                                                         8 Wind turbine
                                                                           characterization
                                  3 Wind field                                    9 Control strategies
                                    characterization
                                                                     10 Generator
    4 Wind power


                                                                     11 Electrics / grid




Michael Hölling, WS 2010/2011                     slide 2
Wind Energy I                           Lift and drag


                                             Fl       Fres
                                                             c

                                                  Fd

              u                        α                             dr


                                        1
  Lift force:              Fl = cl (α) · · ρ · A · u 2
                                        2
                                                                 with A = c · dr
                           1
  Drag force: Fd = cd (α) · · ρ · A · u 2
                           2

Michael Hölling, WS 2010/2011               slide 3
Wind Energy I                          Lift and drag

                                Direct force measurements




                                                     FL
                                    CL,F =    1
                                              2   · ρ · v2 · A

Michael Hölling, WS 2010/2011                slide 4
Wind Energy I                             Lift and drag

                                Pressure measurements




                                            pp − ps     L
                                   CL,p   = 1         ·
                                            2 · ρ · v2 c · η
           the so called Althaus factor η corrects for the finite length of L

Michael Hölling, WS 2010/2011                  slide 5
Wind Energy I                           Lift and drag

                                Test section in wind tunnel




Michael Hölling, WS 2010/2011               slide 6
Wind Energy I                           Lift and drag

                                Test section in wind tunnel




Michael Hölling, WS 2010/2011               slide 7
Wind Energy I                           Lift and drag

                                Test section in wind tunnel




Michael Hölling, WS 2010/2011               slide 8
Wind Energy I                           Lift and drag

                                Test section in wind tunnel




Michael Hölling, WS 2010/2011               slide 9
Wind Energy I                           Lift and drag

                    Lift coefficient for laminar inflow condition


                             1.2

                                1

                             0.8

                             0.6
                      c /1
                       L




                             0.4

                             0.2

                                                    force measurement
                                0
                                                    wall pressure measurement
                                                    reference Althaus
                             −0.2
                               −5   0    5       10        15       20      25
                                               AoA α / °

Michael Hölling, WS 2010/2011                slide 10
Wind Energy I                             Lift and drag

                                cl                            cd


                                     cd

                                               cl




                                          angle of attack α

Michael Hölling, WS 2010/2011                 slide 11
Wind Energy I                          Lift and drag

                                                                  cl (α)
                                Lift to drag ration:        (α) =
                                                                  cd (α)




                                                                           1/ (α)
             cl




                                        angle of attack α

Michael Hölling, WS 2010/2011              slide 12
Wind Energy I                   Rotor blade design




                                                     http://www.ecogeneration.com.au




Michael Hölling, WS 2010/2011         slide 13
Wind Energy I                   Rotor blade design




                                                     http://www.ecogeneration.com.au




Michael Hölling, WS 2010/2011         slide 13
Wind Energy I                         Velocities at rotor blade

            R                                 urotR = ω R         ures                       u2
                                                                   β
                                                                       uR
                                                                         ures
                                                                                             u2
                                    urot2 = ω r2                            β
                                                                            ur2

r                                                                               ures         u2
                                                                                       β
                          urot1 = ω r1                                                 ur1
                                                                 2
                                ω                            u2 = · u1
                                                                 3

Michael Hölling, WS 2010/2011                   slide 14
Wind Energy I                                Velocities at rotor blade
                                                               2
                                                       2
                                    ures (r) =           u1         + (ω · r)2
                                                       3

                              80
                                        ures
                              60
                 ures [m/s]




                              40


                              20


                               0
                                0       10        20           30        40      50
                                                       r [m]

Michael Hölling, WS 2010/2011                           slide 15
Wind Energy I                         Forces at rotor blade

                         plane of rotation
                                                         u2
                                                 urot
                                                        β ures
                                 Fl

                          Fres                      α
                                             .
                                       Fd
                                                             ω

                                                                     1
                                                                 Fl = · ρ · A · cl (α) · u2
                                                                     2                    res

                                                                     1
                                                                 Fd = · ρ · A · cd (α) · ures
                                                                                          2
                                                                     2
Michael Hölling, WS 2010/2011                     slide 16
Wind Energy I                              Forces at rotor blade
                      Force component in direction of rotation
                                                       u2
         plane of rotation
                                         urot
                                                   β   ures
        Fl
                  β                                                  1
                                                            Flrot   = · ρ · A · cl (α) · u2 · sin(β)
                                                                     2                    res
Fres                                           α
                                    .                                  1
                           Fd                               Fdrot   = − · ρ · A · cd (α) · u2 · cos(β)
                                                                       2                    res

                                                       ω
                                β


                                                1
                                        Frot   = · ρ · A · u2 · [cl (α) · sin(β) − cd (α) · cos(β)]
                                                2           res



Michael Hölling, WS 2010/2011                           slide 17
Wind Energy I                        Blade optimization using Betz
                     Maximal extractable power based on Betz
                                             For the whole plane:
                                                      16 1
                                             PBetz =    · · ρ · u1 · (π · R )
                                                                  3        2
                                                      27 2

                                dr           For a ring-segment:
                       r                               16 1
                                             dPBetz =     · · ρ · u3 · (2 · π · r · dr)
                                                       27 2        1
                                                                              dA




Michael Hölling, WS 2010/2011                    slide 18
Wind Energy I                   Blade optimization using Betz
 The design of the blade should achieve this dPBetz for each ring-
 segment !!!
 The mechanical power that can be converted by the segments
 dA of z rotor blades is given by:

                      1
     dProt       = z · · ρ · c(r) · dr ·ures · cl (α) · sin(β) · urot (r)
                                         2
                      2
                                    dA                             ω·r

 This should be equal to dPBetz for an optimum design:

      dProt = dPBetz


Michael Hölling, WS 2010/2011               slide 19
Wind Energy I                   Blade optimization using Betz
 After all the calculations the chord length can be determined
 by:
                   1 2·π·R 8                 1
           c(r) = ·            · ·
                   z    cl (α)   9        2· r 2+ 4
                                    λ· λ       R     9




 What is the right choice for:
 R=?
 cl(α) = ?
 z=?
 λ=?



Michael Hölling, WS 2010/2011               slide 20
Wind Energy I                    Blade optimization using Betz
 Rotor radius R determines the maximum extractable power
 from the wind and is linked to the power of the generator !

                                  1
                  Prated         = · ρ · cp · π · R ·urated
                                                   2  3
                                  2
                                                        A



                                           2 · Prated
                                R=                   3
                                       ρ · cp · π · urated


Michael Hölling, WS 2010/2011                slide 21
Wind Energy I                   Blade optimization using Betz
    Rotor blade design depends on cl(α), chosen for a good ε(α)




                                                                1/ (α)
             cl




                                        angle of attack α


Michael Hölling, WS 2010/2011               slide 22
Wind Energy I                   Blade optimization using Betz
 Influence of λ and z:

 Key words:

 Stability !

 minimizing costs !




Michael Hölling, WS 2010/2011               slide 23
Wind Energy I                              Blade optimization using Betz
 After all the calculations the chord length can be determined
 by:
                   1 2·π·R 8                 1
           c(r) = ·            · ·
                   z    cl (α)   9        2· r 2+ 4
                                    λ· λ       R     9
                                           20
                                           18           c(r)
With:                                      16
                                           14
          z=3                              12
                                c(r) [m]




     cl (α) = 1                            10
                                            8
          λ=7                               6
         R = 50m                            4
                                            2
                                            0
                                             0     10          20           30   40   50
                                                                    r [m]
Michael Hölling, WS 2010/2011                            slide 24
Wind Energy I                        Blade optimization using Betz
 Good approximation for c(r) for λ > 3 and r > 15% R :
                                     1 2·π·R 8       1
                               c(r) ≈ ·        · · 2
                                     z  cl (α)  9 λ ·                 r
                                                                      R

                               20
                               18          c(r)
                               16          c(r) approx
                               14
                               12
                    c(r) [m]




                               10
                                8
                                6
                                4
                                2
                                0
                                 0    10       20           30   40       50
                                                    r [m]
Michael Hölling, WS 2010/2011                       slide 25
Wind Energy I                   Blade optimization using Betz
 To keep the ratio of chord length to thickness constant, this
 decaying behavior is also valid for the thickness t(r) !



                                        t
                                                 c

                                    c(r)
                                         = const.
                                    t(r)

                                              1
                                     ⇒ t(r) ∝
                                              r


Michael Hölling, WS 2010/2011               slide 26
Wind Energy I                           Blade optimization using Betz

    How does the angle of attack α change with increasing r ?

           ures                        u2       β changes with:
             β
                 uR                                            u2
                                                     tan(β) =
                                                              urot
                    ures
                                       u2                                 2 R
                      β                                    ⇒ β = arctan    ·
                      ur2                                                 3 λ·r

                          ures         u2
                                 β
                                 ur1
                                            r

Michael Hölling, WS 2010/2011                        slide 27
Wind Energy I                          Blade optimization using Betz
     This change in β has to accounted for to keep α constant
     --> mounting angle γ to plane of rotation changes with r !

                                     urot
                                            β   ures

                                γ

                                        α
                                                                  γ =β−α
                                 .

                                                ω



                                plane of rotation


Michael Hölling, WS 2010/2011                          slide 28
Wind Energy I                      Blade optimization using Betz


 For:
          α=3         ◦                     80
          λ=7                               70               !
                                                             "
          R = 50m                           60
                                angle [°]   50
                                            40
                                            30
                                            20
                                            10
                                             0
                                              0       10         20           30   40   50
                                                                      r [m]

Michael Hölling, WS 2010/2011                     slide 29
Wind Energy I                   Blade optimization using Betz

                    Change of size and angle with increasing r




Michael Hölling, WS 2010/2011               slide 30
Wind Energy I                              Blade optimization using Betz

                 Real rotor blades often start their profile at 15% of the
                                       rotor radius

           20                                                              80
           18            c(r)                                              70         !
           16                                                                         "
                                                                           60
           14




                                                               angle [°]
           12                                                              50
c(r) [m]




           10                                                              40
            8                                                              30
            6
                                                                           20
            4
            2                                                              10
            0                                                               0
             0      10          20           30   40     50                  0   10       20           30   40   50
                                     r [m]                                                     r [m]




    Michael Hölling, WS 2010/2011                         slide 31
Wind Energy I                   Blade optimization using Betz

                                    Real rotor blades




Michael Hölling, WS 2010/2011               slide 32
Wind Energy I                   Blade optimization using Betz
                                     Modern design:




Michael Hölling, WS 2010/2011               slide 33
Wind Energy I                     Blade optimization using Betz
                                              Modern design:
                                  Enercon E-126




                                http://www.wind-energy-the-facts.org


Michael Hölling, WS 2010/2011                                slide 33

Mais conteúdo relacionado

Destaque

Small Wind Guide
Small Wind GuideSmall Wind Guide
Small Wind Guidemandika
 
What is alternative energy
What is alternative energyWhat is alternative energy
What is alternative energyKen Glen
 
Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...DiegoFooter
 
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...Renewable NRG Systems
 
Subsonic Wind Tunnel @ 30m/s
Subsonic Wind Tunnel @ 30m/sSubsonic Wind Tunnel @ 30m/s
Subsonic Wind Tunnel @ 30m/sUmer Mover
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016Tuong Do
 
Wind Tunnel Introduction and Demo Slides
Wind Tunnel Introduction and Demo SlidesWind Tunnel Introduction and Demo Slides
Wind Tunnel Introduction and Demo SlidesLizzy Guido (she/her)
 
Wind Energy Lecture slides
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slidesKeith Vaugh
 
Horizontal Axis Wind Turbine
Horizontal Axis Wind TurbineHorizontal Axis Wind Turbine
Horizontal Axis Wind TurbineSameer Kasba
 
Different types of wind farms
Different types of wind farmsDifferent types of wind farms
Different types of wind farmssannuthi yaramapu
 

Destaque (18)

Small Wind Guide
Small Wind GuideSmall Wind Guide
Small Wind Guide
 
What is alternative energy
What is alternative energyWhat is alternative energy
What is alternative energy
 
Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...
 
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
 
Subsonic Wind Tunnel @ 30m/s
Subsonic Wind Tunnel @ 30m/sSubsonic Wind Tunnel @ 30m/s
Subsonic Wind Tunnel @ 30m/s
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Wind Tunnel Introduction and Demo Slides
Wind Tunnel Introduction and Demo SlidesWind Tunnel Introduction and Demo Slides
Wind Tunnel Introduction and Demo Slides
 
Wind Energy Lecture slides
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slides
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
 
Wind tunnel testing aerospace
Wind tunnel testing aerospaceWind tunnel testing aerospace
Wind tunnel testing aerospace
 
Wind Tunnel Ex
Wind Tunnel ExWind Tunnel Ex
Wind Tunnel Ex
 
Wind tunnel
Wind tunnelWind tunnel
Wind tunnel
 
Horizontal Axis Wind Turbine
Horizontal Axis Wind TurbineHorizontal Axis Wind Turbine
Horizontal Axis Wind Turbine
 
Different types of wind farms
Different types of wind farmsDifferent types of wind farms
Different types of wind farms
 
Wind energy basics
Wind energy basicsWind energy basics
Wind energy basics
 
Wind tunnels
  Wind tunnels   Wind tunnels
Wind tunnels
 
Wind tunnel design
Wind tunnel designWind tunnel design
Wind tunnel design
 

Mais de Tuong Do

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTuong Do
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTuong Do
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandTuong Do
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionTuong Do
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaTuong Do
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoTuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióTuong Do
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamTuong Do
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamTuong Do
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Tuong Do
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamTuong Do
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Tuong Do
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Tuong Do
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationTuong Do
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsTuong Do
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Tuong Do
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013Tuong Do
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Tuong Do
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Tuong Do
 
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...Tuong Do
 

Mais de Tuong Do (20)

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh học
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introduction
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV Vietnam
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in Vietnam
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integration
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptations
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
 
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
 

Último

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 

Último (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 

Wind energy I. Lesson 7. Wind blade interaction

  • 1. Wind Energy I Wind-blade interaction consequences for design Michael Hölling, WS 2010/2011 slide 1
  • 2. Wind Energy I Class content 5 Wind turbines in 6 Wind - blades general 2 Wind measurements interaction 7 Π-theorem 8 Wind turbine characterization 3 Wind field 9 Control strategies characterization 10 Generator 4 Wind power 11 Electrics / grid Michael Hölling, WS 2010/2011 slide 2
  • 3. Wind Energy I Lift and drag Fl Fres c Fd u α dr 1 Lift force: Fl = cl (α) · · ρ · A · u 2 2 with A = c · dr 1 Drag force: Fd = cd (α) · · ρ · A · u 2 2 Michael Hölling, WS 2010/2011 slide 3
  • 4. Wind Energy I Lift and drag Direct force measurements FL CL,F = 1 2 · ρ · v2 · A Michael Hölling, WS 2010/2011 slide 4
  • 5. Wind Energy I Lift and drag Pressure measurements pp − ps L CL,p = 1 · 2 · ρ · v2 c · η the so called Althaus factor η corrects for the finite length of L Michael Hölling, WS 2010/2011 slide 5
  • 6. Wind Energy I Lift and drag Test section in wind tunnel Michael Hölling, WS 2010/2011 slide 6
  • 7. Wind Energy I Lift and drag Test section in wind tunnel Michael Hölling, WS 2010/2011 slide 7
  • 8. Wind Energy I Lift and drag Test section in wind tunnel Michael Hölling, WS 2010/2011 slide 8
  • 9. Wind Energy I Lift and drag Test section in wind tunnel Michael Hölling, WS 2010/2011 slide 9
  • 10. Wind Energy I Lift and drag Lift coefficient for laminar inflow condition 1.2 1 0.8 0.6 c /1 L 0.4 0.2 force measurement 0 wall pressure measurement reference Althaus −0.2 −5 0 5 10 15 20 25 AoA α / ° Michael Hölling, WS 2010/2011 slide 10
  • 11. Wind Energy I Lift and drag cl cd cd cl angle of attack α Michael Hölling, WS 2010/2011 slide 11
  • 12. Wind Energy I Lift and drag cl (α) Lift to drag ration: (α) = cd (α) 1/ (α) cl angle of attack α Michael Hölling, WS 2010/2011 slide 12
  • 13. Wind Energy I Rotor blade design http://www.ecogeneration.com.au Michael Hölling, WS 2010/2011 slide 13
  • 14. Wind Energy I Rotor blade design http://www.ecogeneration.com.au Michael Hölling, WS 2010/2011 slide 13
  • 15. Wind Energy I Velocities at rotor blade R urotR = ω R ures u2 β uR ures u2 urot2 = ω r2 β ur2 r ures u2 β urot1 = ω r1 ur1 2 ω u2 = · u1 3 Michael Hölling, WS 2010/2011 slide 14
  • 16. Wind Energy I Velocities at rotor blade 2 2 ures (r) = u1 + (ω · r)2 3 80 ures 60 ures [m/s] 40 20 0 0 10 20 30 40 50 r [m] Michael Hölling, WS 2010/2011 slide 15
  • 17. Wind Energy I Forces at rotor blade plane of rotation u2 urot β ures Fl Fres α . Fd ω 1 Fl = · ρ · A · cl (α) · u2 2 res 1 Fd = · ρ · A · cd (α) · ures 2 2 Michael Hölling, WS 2010/2011 slide 16
  • 18. Wind Energy I Forces at rotor blade Force component in direction of rotation u2 plane of rotation urot β ures Fl β 1 Flrot = · ρ · A · cl (α) · u2 · sin(β) 2 res Fres α . 1 Fd Fdrot = − · ρ · A · cd (α) · u2 · cos(β) 2 res ω β 1 Frot = · ρ · A · u2 · [cl (α) · sin(β) − cd (α) · cos(β)] 2 res Michael Hölling, WS 2010/2011 slide 17
  • 19. Wind Energy I Blade optimization using Betz Maximal extractable power based on Betz For the whole plane: 16 1 PBetz = · · ρ · u1 · (π · R ) 3 2 27 2 dr For a ring-segment: r 16 1 dPBetz = · · ρ · u3 · (2 · π · r · dr) 27 2 1 dA Michael Hölling, WS 2010/2011 slide 18
  • 20. Wind Energy I Blade optimization using Betz The design of the blade should achieve this dPBetz for each ring- segment !!! The mechanical power that can be converted by the segments dA of z rotor blades is given by: 1 dProt = z · · ρ · c(r) · dr ·ures · cl (α) · sin(β) · urot (r) 2 2 dA ω·r This should be equal to dPBetz for an optimum design: dProt = dPBetz Michael Hölling, WS 2010/2011 slide 19
  • 21. Wind Energy I Blade optimization using Betz After all the calculations the chord length can be determined by: 1 2·π·R 8 1 c(r) = · · · z cl (α) 9 2· r 2+ 4 λ· λ R 9 What is the right choice for: R=? cl(α) = ? z=? λ=? Michael Hölling, WS 2010/2011 slide 20
  • 22. Wind Energy I Blade optimization using Betz Rotor radius R determines the maximum extractable power from the wind and is linked to the power of the generator ! 1 Prated = · ρ · cp · π · R ·urated 2 3 2 A 2 · Prated R= 3 ρ · cp · π · urated Michael Hölling, WS 2010/2011 slide 21
  • 23. Wind Energy I Blade optimization using Betz Rotor blade design depends on cl(α), chosen for a good ε(α) 1/ (α) cl angle of attack α Michael Hölling, WS 2010/2011 slide 22
  • 24. Wind Energy I Blade optimization using Betz Influence of λ and z: Key words: Stability ! minimizing costs ! Michael Hölling, WS 2010/2011 slide 23
  • 25. Wind Energy I Blade optimization using Betz After all the calculations the chord length can be determined by: 1 2·π·R 8 1 c(r) = · · · z cl (α) 9 2· r 2+ 4 λ· λ R 9 20 18 c(r) With: 16 14 z=3 12 c(r) [m] cl (α) = 1 10 8 λ=7 6 R = 50m 4 2 0 0 10 20 30 40 50 r [m] Michael Hölling, WS 2010/2011 slide 24
  • 26. Wind Energy I Blade optimization using Betz Good approximation for c(r) for λ > 3 and r > 15% R : 1 2·π·R 8 1 c(r) ≈ · · · 2 z cl (α) 9 λ · r R 20 18 c(r) 16 c(r) approx 14 12 c(r) [m] 10 8 6 4 2 0 0 10 20 30 40 50 r [m] Michael Hölling, WS 2010/2011 slide 25
  • 27. Wind Energy I Blade optimization using Betz To keep the ratio of chord length to thickness constant, this decaying behavior is also valid for the thickness t(r) ! t c c(r) = const. t(r) 1 ⇒ t(r) ∝ r Michael Hölling, WS 2010/2011 slide 26
  • 28. Wind Energy I Blade optimization using Betz How does the angle of attack α change with increasing r ? ures u2 β changes with: β uR u2 tan(β) = urot ures u2 2 R β ⇒ β = arctan · ur2 3 λ·r ures u2 β ur1 r Michael Hölling, WS 2010/2011 slide 27
  • 29. Wind Energy I Blade optimization using Betz This change in β has to accounted for to keep α constant --> mounting angle γ to plane of rotation changes with r ! urot β ures γ α γ =β−α . ω plane of rotation Michael Hölling, WS 2010/2011 slide 28
  • 30. Wind Energy I Blade optimization using Betz For: α=3 ◦ 80 λ=7 70 ! " R = 50m 60 angle [°] 50 40 30 20 10 0 0 10 20 30 40 50 r [m] Michael Hölling, WS 2010/2011 slide 29
  • 31. Wind Energy I Blade optimization using Betz Change of size and angle with increasing r Michael Hölling, WS 2010/2011 slide 30
  • 32. Wind Energy I Blade optimization using Betz Real rotor blades often start their profile at 15% of the rotor radius 20 80 18 c(r) 70 ! 16 " 60 14 angle [°] 12 50 c(r) [m] 10 40 8 30 6 20 4 2 10 0 0 0 10 20 30 40 50 0 10 20 30 40 50 r [m] r [m] Michael Hölling, WS 2010/2011 slide 31
  • 33. Wind Energy I Blade optimization using Betz Real rotor blades Michael Hölling, WS 2010/2011 slide 32
  • 34. Wind Energy I Blade optimization using Betz Modern design: Michael Hölling, WS 2010/2011 slide 33
  • 35. Wind Energy I Blade optimization using Betz Modern design: Enercon E-126 http://www.wind-energy-the-facts.org Michael Hölling, WS 2010/2011 slide 33