SlideShare a Scribd company logo
1 of 44
Download to read offline
Wind Energy I




                           Wind field
                        characterization


Michael Hölling, WS 2010/2011   slide 1
Wind Energy I                              Class content
                                                            5 Wind turbines in
                                                                                       6 Wind - blades
                                                              general
                                2 Wind measurements                                      interaction
                                                                                  7 Π-theorem

                                                                         8 Wind turbine
                                                                           characterization
                                  3 Wind field                                    9 Control strategies
                                    characterization
                                                                     10 Generator
    4 Wind power


                                                                     11 Electrics / grid




Michael Hölling, WS 2010/2011                     slide 2
Wind Energy I                    Motivation

 Why should we know anything about the wind field ?
                                Atmospheric boundary layer (ABL)




Michael Hölling, WS 2010/2011       slide 3
Wind Energy I                    Motivation

 Why should we know anything about the wind field ?
                                Atmospheric boundary layer (ABL)




Michael Hölling, WS 2010/2011       slide 3
Wind Energy I                    Motivation

 Why should we know anything about the wind field ?
                                Atmospheric boundary layer (ABL)




Michael Hölling, WS 2010/2011       slide 3
Wind Energy I                         Motivation
 Enercon E-126                          BARD 5.0




http://www.wind-energy-the-facts.org                http://www.ecogeneration.com.au




 Michael Hölling, WS 2010/2011           slide 4
Wind Energy I                   Motivation

 GROWIAN - Große Windkraftanlage (Big Wind energy converter)




Michael Hölling, WS 2010/2011     slide 5
Wind Energy I                   Resource wind
                                m 2 ρ·V                 ρ·A·x 2
 Kinetic energy of wind: E =       ·u =           ·u =
                                                    2
                                                             ·u
                                 2           2            2
 Corresponding power                 d ρ·A·x 2
 for constant velocity u : Pair =                   ·u
                                     dt       2
                                     1            2 dx
                                 =     ·ρ·A·u ·
                                     2               dt
                                     1
                                 =     · ρ · A · u3
                                     2
 Wind energy converter can NOT convert 100% of that energy !
 Consequently the power of the wind energy converter is also
 smaller:                      1
                 PW EC = cp · · ρ · A · u3 = cp · Pair
                               2
Michael Hölling, WS 2010/2011       slide 6
Wind Energy I                              Resource wind

              Power curve of wind energy converter - theory
                                                          rated
                           2.0
                                                                    P(u)
                           1.6
               P(u) [MW]




                           1.2
                                                          cut out
                           0.8    cut in

                           0.4

                           0.0
                              0            10                20        30
                                                u [m/s]
Michael Hölling, WS 2010/2011                   slide 7
Wind Energy I                   Resource wind

              Power curve of wind energy converter - reality




Michael Hölling, WS 2010/2011       slide 8
Wind Energy I                   Resource wind
               Annual mean wind speed taken from wind atlas




Michael Hölling, WS 2010/2011       slide 9
Wind Energy I                             Resource wind

 Estimation of Annual Energy Production (AEP) based on annual
 mean wind speed from wind atlas:
                           2.0
                                                                     P(u)
                           1.6
               P(u) [MW]




                           1.2

                           0.8
                                  500kW
                           0.4            u    annual       ≈ 7m/s

                           0.0
                              0           10                  20        30
                                                u [m/s]

Michael Hölling, WS 2010/2011                    slide 10
Wind Energy I                             Resource wind

 Is such a calculation realistic ? How does real wind behave ?
                                Wind velocity time series (20 days)




Michael Hölling, WS 2010/2011                  slide 11
Wind Energy I                    Resource wind

                 Calculation of 10-minute averaged wind speed




Michael Hölling, WS 2010/2011        slide 12
Wind Energy I                    Resource wind

                 Calculation of 10-minute averaged wind speed




Michael Hölling, WS 2010/2011        slide 12
Wind Energy I                   Resource wind

               Distribution of 10-minute averaged wind speeds
               (u)




Michael Hölling, WS 2010/2011       slide 13
Wind Energy I                   Resource wind
    Estimation of energy production based on wind distribution




                                               (u)




Michael Hölling, WS 2010/2011       slide 14
Wind Energy I                   Resource wind
    Estimation of energy production based on wind distribution




                                               (u)




Michael Hölling, WS 2010/2011       slide 14
Wind Energy I                          Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                      (u)




Michael Hölling, WS 2010/2011              slide 14
Wind Energy I                          Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                      (u)




Michael Hölling, WS 2010/2011              slide 14
Wind Energy I                          Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                      (u)




Michael Hölling, WS 2010/2011              slide 14
Wind Energy I                          Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                      (u)




Michael Hölling, WS 2010/2011              slide 14
Wind Energy I                                   Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                                 (u)
energy production:
              N                   N
      E=           E(ui ) =            counts(ui )/6 · P (ui )
             i=1                 i=1

Michael Hölling, WS 2010/2011                         slide 14
Wind Energy I                   Resource wind
 Comparison of energy production for mean wind speed and 10-
 minute averaged wind speed distribution (example based on
 data of 20 days):




                                 u = 6.3m/s                 244 kW




                                          E    =   counts(< u >)[h] · P (< u >)
                                               =   24 · 20 · 244 = 117120kW h


Michael Hölling, WS 2010/2011       slide 15
Wind Energy I                               Resource wind

                                E(u)




        N                 N
E=           E(ui ) =           counts(ui )/6 · P (ui ) = 166, 920kWh
       i=1               i=1

Michael Hölling, WS 2010/2011                     slide 16
Wind Energy I                        Resource wind

                        Description of wind speed distribution
               (u)




Michael Hölling, WS 2010/2011            slide 17
Wind Energy I                    Resource wind

                Convert to probability density by normalization




Michael Hölling, WS 2010/2011        slide 18
Wind Energy I                    Resource wind

               Distribution can be fitted by Weibull distribution



    A = scaling parameter

    k = form parameter

                                                            A=7

                                                            k = 2.59




Michael Hölling, WS 2010/2011         slide 19
Wind Energy I                      Resource wind

                                Weibull distribution




                                                       u [m/s]

Michael Hölling, WS 2010/2011           slide 20
Wind Energy I                             Resource wind

                                Wind speed variation with height
                                          Atmospheric boundary layer (ABL)




Michael Hölling, WS 2010/2011                 slide 21
Wind Energy I                   Wind field characterization

 Meteorological approach:
         logarithmic profile

         roughness length for topographical effects

         thermal effects

 International Electrotechnical Commission (IEC) approach:
         power law profile

         standard for site assessment

 Alternative approach:
         stochastic analysis

         high frequency data for better understanding


Michael Hölling, WS 2010/2011             slide 22
Wind Energy I                   Meteorological approach

 Wind speed u (mean values) as a function of height z:

 Logarithmic profile:




     u* = friction velocity (typically between
     0.1m/s and 0.5m/s)

     k = von Karman constant, about 0.4

     z0 = surface roughness length




Michael Hölling, WS 2010/2011               slide 23
Wind Energy I                   Meteorological approach

                                                          classes
                                                          3

                                                          2

                                                          1
                                                          0




Michael Hölling, WS 2010/2011            slide 24
Wind Energy I                   Meteorological approach

                                                          classes
                                                          3

                                                          2

                                                          1
                                                          0




Michael Hölling, WS 2010/2011            slide 25
Wind Energy I                   Meteorological approach

                     Influence of friction velocity u* on profile




Michael Hölling, WS 2010/2011            slide 26
Wind Energy I                   Meteorological approach

                     Influence of friction velocity u* on profile




Michael Hölling, WS 2010/2011            slide 27
Wind Energy I                   Meteorological approach

 Thermal effects make ABL stable, neutral or unstable
                                                          Monin Obukhov
                                                              length




Michael Hölling, WS 2010/2011            slide 28
Wind Energy I                        IEC approach

 Wind speed u (mean values) as a function of height z:

 Power law profile:




                                                    z2
 α needs to be fitted from data !

Velocity at height z can be determined by:
                                     α
                                z                   z1
              u(z) = u(z1 ) ·
                                z1
Commonly used for wind energy applications !

Michael Hölling, WS 2010/2011            slide 29
Wind Energy I                   Wind profile

          What is the difference between the two approaches ?




Michael Hölling, WS 2010/2011      slide 30
Wind Energy I                           Wind profile

          What is the difference between the two approaches ?




                                           u(z2)

                                u(z1)




Michael Hölling, WS 2010/2011              slide 30
Wind Energy I                           Wind profile

          What is the difference between the two approaches ?




                                           u(z2)

                                u(z1)




Michael Hölling, WS 2010/2011              slide 31
Wind Energy I Site characterization / assessment

 IEC demands information for site characterization:

     annual mean wind velocity

     parameters for Weibull distribution of 10-min averaged wind
     speeds

     annual mean wind profile
                                     σ<u>10min
     turbulence intensity       Ti =
                                     < u >10min




Michael Hölling, WS 2010/2011         slide 32
Wind Energy I                       Alternative approach

                                What happens in reality ?




Michael Hölling, WS 2010/2011              slide 33
Wind Energy I                       Alternative approach

                                What happens in reality ?




Michael Hölling, WS 2010/2011              slide 34

More Related Content

Viewers also liked

Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...DiegoFooter
 
Wind energy I. Lesson 6. Wind turbines in general P2
Wind energy I. Lesson 6. Wind turbines in general P2Wind energy I. Lesson 6. Wind turbines in general P2
Wind energy I. Lesson 6. Wind turbines in general P2Tuong Do
 
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...Renewable NRG Systems
 
Computational flow optimization of Wind turbine blades
Computational flow optimization of Wind turbine bladesComputational flow optimization of Wind turbine blades
Computational flow optimization of Wind turbine bladesSarath Pagadala
 
Wind Energy Lecture slides
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slidesKeith Vaugh
 
Horizontal Axis Wind Turbine
Horizontal Axis Wind TurbineHorizontal Axis Wind Turbine
Horizontal Axis Wind TurbineSameer Kasba
 
Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point PresentationKurt Kublbeck
 

Viewers also liked (10)

Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...Alternative Energy for Permaculturists. Choosing the right alternative energy...
Alternative Energy for Permaculturists. Choosing the right alternative energy...
 
Wind energy I. Lesson 6. Wind turbines in general P2
Wind energy I. Lesson 6. Wind turbines in general P2Wind energy I. Lesson 6. Wind turbines in general P2
Wind energy I. Lesson 6. Wind turbines in general P2
 
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
 
Computational flow optimization of Wind turbine blades
Computational flow optimization of Wind turbine bladesComputational flow optimization of Wind turbine blades
Computational flow optimization of Wind turbine blades
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Wind Energy Lecture slides
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slides
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
 
Horizontal Axis Wind Turbine
Horizontal Axis Wind TurbineHorizontal Axis Wind Turbine
Horizontal Axis Wind Turbine
 
Wind energy basics
Wind energy basicsWind energy basics
Wind energy basics
 
Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point Presentation
 

Similar to Wind energy I. Lesson 3. Wind field characterization

Bill Powers | Powers Engineering
Bill Powers | Powers EngineeringBill Powers | Powers Engineering
Bill Powers | Powers EngineeringGW Solar Institute
 
Micro Wind Turbine paper
Micro Wind Turbine paperMicro Wind Turbine paper
Micro Wind Turbine paperAlex Glass
 
諾貝爾獎共同得主克拉克博士來台分享《全球能源創新》講座
諾貝爾獎共同得主克拉克博士來台分享《全球能源創新》講座諾貝爾獎共同得主克拉克博士來台分享《全球能源創新》講座
諾貝爾獎共同得主克拉克博士來台分享《全球能源創新》講座meebox
 
Powergen Wave Dragon Article 351
Powergen Wave Dragon Article 351Powergen Wave Dragon Article 351
Powergen Wave Dragon Article 351e.friismadsen
 
Airfoil linear wind generator (alwg) as a novel wind energy extraction approach
Airfoil linear wind generator (alwg) as a novel wind energy extraction approachAirfoil linear wind generator (alwg) as a novel wind energy extraction approach
Airfoil linear wind generator (alwg) as a novel wind energy extraction approachijmech
 
Using time frequency and wavelet analysis to assess turbulence-rotor interact...
Using time frequency and wavelet analysis to assess turbulence-rotor interact...Using time frequency and wavelet analysis to assess turbulence-rotor interact...
Using time frequency and wavelet analysis to assess turbulence-rotor interact...ndkelley
 
Model of Ocean Wave Energy Converter Based on Water Mass Gravity Force as a R...
Model of Ocean Wave Energy Converter Based on Water Mass Gravity Force as a R...Model of Ocean Wave Energy Converter Based on Water Mass Gravity Force as a R...
Model of Ocean Wave Energy Converter Based on Water Mass Gravity Force as a R...AM Publications
 
(디히터 독일탈핵과정)
(디히터 독일탈핵과정)(디히터 독일탈핵과정)
(디히터 독일탈핵과정)Heejung Lee
 
Ee w04.2 w_ 2. electricity generation _ part 3 (generation technologies)
Ee  w04.2 w_ 2. electricity generation _ part 3 (generation technologies)Ee  w04.2 w_ 2. electricity generation _ part 3 (generation technologies)
Ee w04.2 w_ 2. electricity generation _ part 3 (generation technologies)Silvester Van Koten
 
WAVE ENERGY CONVERTER
WAVE ENERGY CONVERTERWAVE ENERGY CONVERTER
WAVE ENERGY CONVERTERHamid Raza
 
MAE 586 Report of Wind Tunnel VAWT Simulations
MAE 586 Report of Wind Tunnel VAWT SimulationsMAE 586 Report of Wind Tunnel VAWT Simulations
MAE 586 Report of Wind Tunnel VAWT SimulationsObaida Mohammad
 
The stable atmospheric boundary layer a challenge for wind turbine operatio...
The stable atmospheric boundary layer   a challenge for wind turbine operatio...The stable atmospheric boundary layer   a challenge for wind turbine operatio...
The stable atmospheric boundary layer a challenge for wind turbine operatio...ndkelley
 
Aeroelastic Flutter Energy Harvesting
Aeroelastic Flutter Energy HarvestingAeroelastic Flutter Energy Harvesting
Aeroelastic Flutter Energy HarvestingIRJET Journal
 
Domestic Solar - Aero - Hydro Power Generation System
Domestic Solar - Aero - Hydro Power Generation SystemDomestic Solar - Aero - Hydro Power Generation System
Domestic Solar - Aero - Hydro Power Generation SystemIOSR Journals
 
Renew2014.UiS&Uvigo_Jose V.Taboada
Renew2014.UiS&Uvigo_Jose V.TaboadaRenew2014.UiS&Uvigo_Jose V.Taboada
Renew2014.UiS&Uvigo_Jose V.TaboadaJose V.Taboada
 
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine	Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine Franco Bontempi
 
An Overview of Wind Power Generation and Design Aspects in India
An Overview of Wind Power Generation and Design Aspects in IndiaAn Overview of Wind Power Generation and Design Aspects in India
An Overview of Wind Power Generation and Design Aspects in Indiaijiert bestjournal
 

Similar to Wind energy I. Lesson 3. Wind field characterization (20)

Bill Powers | Powers Engineering
Bill Powers | Powers EngineeringBill Powers | Powers Engineering
Bill Powers | Powers Engineering
 
Micro Wind Turbine paper
Micro Wind Turbine paperMicro Wind Turbine paper
Micro Wind Turbine paper
 
Offshore wind 2019
Offshore wind 2019Offshore wind 2019
Offshore wind 2019
 
諾貝爾獎共同得主克拉克博士來台分享《全球能源創新》講座
諾貝爾獎共同得主克拉克博士來台分享《全球能源創新》講座諾貝爾獎共同得主克拉克博士來台分享《全球能源創新》講座
諾貝爾獎共同得主克拉克博士來台分享《全球能源創新》講座
 
Powergen Wave Dragon Article 351
Powergen Wave Dragon Article 351Powergen Wave Dragon Article 351
Powergen Wave Dragon Article 351
 
Airfoil linear wind generator (alwg) as a novel wind energy extraction approach
Airfoil linear wind generator (alwg) as a novel wind energy extraction approachAirfoil linear wind generator (alwg) as a novel wind energy extraction approach
Airfoil linear wind generator (alwg) as a novel wind energy extraction approach
 
Using time frequency and wavelet analysis to assess turbulence-rotor interact...
Using time frequency and wavelet analysis to assess turbulence-rotor interact...Using time frequency and wavelet analysis to assess turbulence-rotor interact...
Using time frequency and wavelet analysis to assess turbulence-rotor interact...
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
 
Model of Ocean Wave Energy Converter Based on Water Mass Gravity Force as a R...
Model of Ocean Wave Energy Converter Based on Water Mass Gravity Force as a R...Model of Ocean Wave Energy Converter Based on Water Mass Gravity Force as a R...
Model of Ocean Wave Energy Converter Based on Water Mass Gravity Force as a R...
 
(디히터 독일탈핵과정)
(디히터 독일탈핵과정)(디히터 독일탈핵과정)
(디히터 독일탈핵과정)
 
Ee w04.2 w_ 2. electricity generation _ part 3 (generation technologies)
Ee  w04.2 w_ 2. electricity generation _ part 3 (generation technologies)Ee  w04.2 w_ 2. electricity generation _ part 3 (generation technologies)
Ee w04.2 w_ 2. electricity generation _ part 3 (generation technologies)
 
WAVE ENERGY CONVERTER
WAVE ENERGY CONVERTERWAVE ENERGY CONVERTER
WAVE ENERGY CONVERTER
 
MAE 586 Report of Wind Tunnel VAWT Simulations
MAE 586 Report of Wind Tunnel VAWT SimulationsMAE 586 Report of Wind Tunnel VAWT Simulations
MAE 586 Report of Wind Tunnel VAWT Simulations
 
The stable atmospheric boundary layer a challenge for wind turbine operatio...
The stable atmospheric boundary layer   a challenge for wind turbine operatio...The stable atmospheric boundary layer   a challenge for wind turbine operatio...
The stable atmospheric boundary layer a challenge for wind turbine operatio...
 
Aeroelastic Flutter Energy Harvesting
Aeroelastic Flutter Energy HarvestingAeroelastic Flutter Energy Harvesting
Aeroelastic Flutter Energy Harvesting
 
Comparative study of two control strategies proportional integral and fuzzy l...
Comparative study of two control strategies proportional integral and fuzzy l...Comparative study of two control strategies proportional integral and fuzzy l...
Comparative study of two control strategies proportional integral and fuzzy l...
 
Domestic Solar - Aero - Hydro Power Generation System
Domestic Solar - Aero - Hydro Power Generation SystemDomestic Solar - Aero - Hydro Power Generation System
Domestic Solar - Aero - Hydro Power Generation System
 
Renew2014.UiS&Uvigo_Jose V.Taboada
Renew2014.UiS&Uvigo_Jose V.TaboadaRenew2014.UiS&Uvigo_Jose V.Taboada
Renew2014.UiS&Uvigo_Jose V.Taboada
 
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine	Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine
Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine
 
An Overview of Wind Power Generation and Design Aspects in India
An Overview of Wind Power Generation and Design Aspects in IndiaAn Overview of Wind Power Generation and Design Aspects in India
An Overview of Wind Power Generation and Design Aspects in India
 

More from Tuong Do

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTuong Do
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTuong Do
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandTuong Do
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionTuong Do
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaTuong Do
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoTuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióTuong Do
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016Tuong Do
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamTuong Do
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamTuong Do
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Tuong Do
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamTuong Do
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Tuong Do
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Tuong Do
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationTuong Do
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsTuong Do
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Tuong Do
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013Tuong Do
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Tuong Do
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Tuong Do
 

More from Tuong Do (20)

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh học
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introduction
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV Vietnam
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in Vietnam
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integration
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptations
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
 

Recently uploaded

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdfssuserdda66b
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 

Recently uploaded (20)

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 

Wind energy I. Lesson 3. Wind field characterization

  • 1. Wind Energy I Wind field characterization Michael Hölling, WS 2010/2011 slide 1
  • 2. Wind Energy I Class content 5 Wind turbines in 6 Wind - blades general 2 Wind measurements interaction 7 Π-theorem 8 Wind turbine characterization 3 Wind field 9 Control strategies characterization 10 Generator 4 Wind power 11 Electrics / grid Michael Hölling, WS 2010/2011 slide 2
  • 3. Wind Energy I Motivation Why should we know anything about the wind field ? Atmospheric boundary layer (ABL) Michael Hölling, WS 2010/2011 slide 3
  • 4. Wind Energy I Motivation Why should we know anything about the wind field ? Atmospheric boundary layer (ABL) Michael Hölling, WS 2010/2011 slide 3
  • 5. Wind Energy I Motivation Why should we know anything about the wind field ? Atmospheric boundary layer (ABL) Michael Hölling, WS 2010/2011 slide 3
  • 6. Wind Energy I Motivation Enercon E-126 BARD 5.0 http://www.wind-energy-the-facts.org http://www.ecogeneration.com.au Michael Hölling, WS 2010/2011 slide 4
  • 7. Wind Energy I Motivation GROWIAN - Große Windkraftanlage (Big Wind energy converter) Michael Hölling, WS 2010/2011 slide 5
  • 8. Wind Energy I Resource wind m 2 ρ·V ρ·A·x 2 Kinetic energy of wind: E = ·u = ·u = 2 ·u 2 2 2 Corresponding power d ρ·A·x 2 for constant velocity u : Pair = ·u dt 2 1 2 dx = ·ρ·A·u · 2 dt 1 = · ρ · A · u3 2 Wind energy converter can NOT convert 100% of that energy ! Consequently the power of the wind energy converter is also smaller: 1 PW EC = cp · · ρ · A · u3 = cp · Pair 2 Michael Hölling, WS 2010/2011 slide 6
  • 9. Wind Energy I Resource wind Power curve of wind energy converter - theory rated 2.0 P(u) 1.6 P(u) [MW] 1.2 cut out 0.8 cut in 0.4 0.0 0 10 20 30 u [m/s] Michael Hölling, WS 2010/2011 slide 7
  • 10. Wind Energy I Resource wind Power curve of wind energy converter - reality Michael Hölling, WS 2010/2011 slide 8
  • 11. Wind Energy I Resource wind Annual mean wind speed taken from wind atlas Michael Hölling, WS 2010/2011 slide 9
  • 12. Wind Energy I Resource wind Estimation of Annual Energy Production (AEP) based on annual mean wind speed from wind atlas: 2.0 P(u) 1.6 P(u) [MW] 1.2 0.8 500kW 0.4 u annual ≈ 7m/s 0.0 0 10 20 30 u [m/s] Michael Hölling, WS 2010/2011 slide 10
  • 13. Wind Energy I Resource wind Is such a calculation realistic ? How does real wind behave ? Wind velocity time series (20 days) Michael Hölling, WS 2010/2011 slide 11
  • 14. Wind Energy I Resource wind Calculation of 10-minute averaged wind speed Michael Hölling, WS 2010/2011 slide 12
  • 15. Wind Energy I Resource wind Calculation of 10-minute averaged wind speed Michael Hölling, WS 2010/2011 slide 12
  • 16. Wind Energy I Resource wind Distribution of 10-minute averaged wind speeds (u) Michael Hölling, WS 2010/2011 slide 13
  • 17. Wind Energy I Resource wind Estimation of energy production based on wind distribution (u) Michael Hölling, WS 2010/2011 slide 14
  • 18. Wind Energy I Resource wind Estimation of energy production based on wind distribution (u) Michael Hölling, WS 2010/2011 slide 14
  • 19. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) Michael Hölling, WS 2010/2011 slide 14
  • 20. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) Michael Hölling, WS 2010/2011 slide 14
  • 21. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) Michael Hölling, WS 2010/2011 slide 14
  • 22. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) Michael Hölling, WS 2010/2011 slide 14
  • 23. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) energy production: N N E= E(ui ) = counts(ui )/6 · P (ui ) i=1 i=1 Michael Hölling, WS 2010/2011 slide 14
  • 24. Wind Energy I Resource wind Comparison of energy production for mean wind speed and 10- minute averaged wind speed distribution (example based on data of 20 days): u = 6.3m/s 244 kW E = counts(< u >)[h] · P (< u >) = 24 · 20 · 244 = 117120kW h Michael Hölling, WS 2010/2011 slide 15
  • 25. Wind Energy I Resource wind E(u) N N E= E(ui ) = counts(ui )/6 · P (ui ) = 166, 920kWh i=1 i=1 Michael Hölling, WS 2010/2011 slide 16
  • 26. Wind Energy I Resource wind Description of wind speed distribution (u) Michael Hölling, WS 2010/2011 slide 17
  • 27. Wind Energy I Resource wind Convert to probability density by normalization Michael Hölling, WS 2010/2011 slide 18
  • 28. Wind Energy I Resource wind Distribution can be fitted by Weibull distribution A = scaling parameter k = form parameter A=7 k = 2.59 Michael Hölling, WS 2010/2011 slide 19
  • 29. Wind Energy I Resource wind Weibull distribution u [m/s] Michael Hölling, WS 2010/2011 slide 20
  • 30. Wind Energy I Resource wind Wind speed variation with height Atmospheric boundary layer (ABL) Michael Hölling, WS 2010/2011 slide 21
  • 31. Wind Energy I Wind field characterization Meteorological approach: logarithmic profile roughness length for topographical effects thermal effects International Electrotechnical Commission (IEC) approach: power law profile standard for site assessment Alternative approach: stochastic analysis high frequency data for better understanding Michael Hölling, WS 2010/2011 slide 22
  • 32. Wind Energy I Meteorological approach Wind speed u (mean values) as a function of height z: Logarithmic profile: u* = friction velocity (typically between 0.1m/s and 0.5m/s) k = von Karman constant, about 0.4 z0 = surface roughness length Michael Hölling, WS 2010/2011 slide 23
  • 33. Wind Energy I Meteorological approach classes 3 2 1 0 Michael Hölling, WS 2010/2011 slide 24
  • 34. Wind Energy I Meteorological approach classes 3 2 1 0 Michael Hölling, WS 2010/2011 slide 25
  • 35. Wind Energy I Meteorological approach Influence of friction velocity u* on profile Michael Hölling, WS 2010/2011 slide 26
  • 36. Wind Energy I Meteorological approach Influence of friction velocity u* on profile Michael Hölling, WS 2010/2011 slide 27
  • 37. Wind Energy I Meteorological approach Thermal effects make ABL stable, neutral or unstable Monin Obukhov length Michael Hölling, WS 2010/2011 slide 28
  • 38. Wind Energy I IEC approach Wind speed u (mean values) as a function of height z: Power law profile: z2 α needs to be fitted from data ! Velocity at height z can be determined by: α z z1 u(z) = u(z1 ) · z1 Commonly used for wind energy applications ! Michael Hölling, WS 2010/2011 slide 29
  • 39. Wind Energy I Wind profile What is the difference between the two approaches ? Michael Hölling, WS 2010/2011 slide 30
  • 40. Wind Energy I Wind profile What is the difference between the two approaches ? u(z2) u(z1) Michael Hölling, WS 2010/2011 slide 30
  • 41. Wind Energy I Wind profile What is the difference between the two approaches ? u(z2) u(z1) Michael Hölling, WS 2010/2011 slide 31
  • 42. Wind Energy I Site characterization / assessment IEC demands information for site characterization: annual mean wind velocity parameters for Weibull distribution of 10-min averaged wind speeds annual mean wind profile σ<u>10min turbulence intensity Ti = < u >10min Michael Hölling, WS 2010/2011 slide 32
  • 43. Wind Energy I Alternative approach What happens in reality ? Michael Hölling, WS 2010/2011 slide 33
  • 44. Wind Energy I Alternative approach What happens in reality ? Michael Hölling, WS 2010/2011 slide 34