SlideShare una empresa de Scribd logo
1 de 24
POTENCIAL DE MEMBRANA
 
 
 
 
 
 
 
 
 
5. Potencial de membrana en reposo Potenciales de equilibrio para las concentraciones de Na+ y K+ en las neuronas En fibras musculares ,[object Object],[object Object],[object Object],[object Object],[object Object],E Na+ = E K+ = E reposo  = -70 mV
6. Potencial de membrana en reposo ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Células excitables:  aquellas capaces de producir un  potencial de acción Provoca  la contracción Conducción  impulso nervioso: transmisión señales Introducción ,[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object]
Excitabilidad celular ,[object Object],[object Object]
Si el  estímulo  es de suficiente intensidad puede sobrepasar un  umbral  de despolarización que dispara el  potencial de acción Excitabilidad celular
El potencial de acción
[object Object],[object Object],[object Object],[object Object],[object Object],El potencial de acción: etapas
Propagación del potencial de acción El potencial de acción se propaga hacia todas las direcciones, pero no retrocede, ya que lo canales de Na+ de la zona que se despolariza primero están inactivados
[object Object],[object Object],[object Object],[object Object],Características del potencial de acción
Acomodación El potencial umbral debe alcanzarse rápidamente. Su retraso temporal de la despolarización disminuye la eficiencia del proceso por la inactivación de parte de los canales Na +  voltaje dependientes. Características del potencial de acción
Absoluto Es el periodo de tiempo en el que el  axón es incapaz de responder  a un segundo estímulo. La causa son los canales Na +  en estado inactivo Relativo Es el periodo de tiempo en el que el axón  es capaz de responder  a un segundo  estímulo de una elevada intensidad . La causa es que se ha iniciado la repolarización y hay canales Na +  en estado cerrado.  Periodos refractarios
Potenciales en espiga:  son típicos del sistema nervioso. Su duración es aproximadamente de 0.4mseg y lo denominamos impulso nervioso. Potenciales en meseta:  la membrana no se repolariza inmediatamente tras la despolarización. Es típico de las células cardíacas, donde la meseta llega a durar entre 3 y 4 décimas de segundo, produciendo la contracción del corazón durante todo este periodo. Potenciales rítmicos:  descargas repetitivas de potencial de acción sin necesidad de estímulo que generan el latido cardíaco, los movimientos peristálticos o el ritmo respiratorio. Tipos de potenciales de acción

Más contenido relacionado

La actualidad más candente

4. potencial de membrana y potencial de acción
4.  potencial de membrana y potencial de acción4.  potencial de membrana y potencial de acción
4. potencial de membrana y potencial de acciónLuis Miguel Castillo Ulloa
 
potenciales de membrana y potenciales de accion
potenciales de membrana y potenciales de accionpotenciales de membrana y potenciales de accion
potenciales de membrana y potenciales de accionJordi Gtz
 
6.músculo liso
6.músculo liso6.músculo liso
6.músculo lisolorenijiju
 
Contribuciones del cerebelo y los ganglios basales al control motor global
Contribuciones del cerebelo y los ganglios basales al control motor globalContribuciones del cerebelo y los ganglios basales al control motor global
Contribuciones del cerebelo y los ganglios basales al control motor globalAndres Lopez Ugalde
 
Fisiologia contraccion muscular
Fisiologia contraccion muscularFisiologia contraccion muscular
Fisiologia contraccion muscularPERCY WILLIAMS
 
Clase 4 - Receptores Sencitivos - Circuitos Neuronales Para El Procesamiento ...
Clase 4 - Receptores Sencitivos - Circuitos Neuronales Para El Procesamiento ...Clase 4 - Receptores Sencitivos - Circuitos Neuronales Para El Procesamiento ...
Clase 4 - Receptores Sencitivos - Circuitos Neuronales Para El Procesamiento ...Patricia Gonzalez
 
Funciones motoras de la medula espinal reflejos medulares
Funciones motoras de la medula espinal reflejos medularesFunciones motoras de la medula espinal reflejos medulares
Funciones motoras de la medula espinal reflejos medularesClau Grc
 
Tema 5. sinapsis
Tema 5. sinapsisTema 5. sinapsis
Tema 5. sinapsisSalvadorGH
 
Regulación de tasa de filtración glomerular y de flujo plasmático renal
Regulación de tasa de filtración glomerular y de flujo plasmático renalRegulación de tasa de filtración glomerular y de flujo plasmático renal
Regulación de tasa de filtración glomerular y de flujo plasmático renalSara Leal
 
Sistema de transporte
Sistema de transporteSistema de transporte
Sistema de transporteKatty Luna
 

La actualidad más candente (20)

Canales ionicos y potencial de membrana
Canales ionicos y potencial de membranaCanales ionicos y potencial de membrana
Canales ionicos y potencial de membrana
 
Potencial de acción.
Potencial de acción.Potencial de acción.
Potencial de acción.
 
4. potencial de membrana y potencial de acción
4.  potencial de membrana y potencial de acción4.  potencial de membrana y potencial de acción
4. potencial de membrana y potencial de acción
 
Potencial de membrana biofisica
Potencial de membrana biofisicaPotencial de membrana biofisica
Potencial de membrana biofisica
 
potenciales de membrana y potenciales de accion
potenciales de membrana y potenciales de accionpotenciales de membrana y potenciales de accion
potenciales de membrana y potenciales de accion
 
6.músculo liso
6.músculo liso6.músculo liso
6.músculo liso
 
Contribuciones del cerebelo y los ganglios basales al control motor global
Contribuciones del cerebelo y los ganglios basales al control motor globalContribuciones del cerebelo y los ganglios basales al control motor global
Contribuciones del cerebelo y los ganglios basales al control motor global
 
Sistema Urinario Histología.
Sistema Urinario Histología.Sistema Urinario Histología.
Sistema Urinario Histología.
 
Fisiologia contraccion muscular
Fisiologia contraccion muscularFisiologia contraccion muscular
Fisiologia contraccion muscular
 
Clase 4 - Receptores Sencitivos - Circuitos Neuronales Para El Procesamiento ...
Clase 4 - Receptores Sencitivos - Circuitos Neuronales Para El Procesamiento ...Clase 4 - Receptores Sencitivos - Circuitos Neuronales Para El Procesamiento ...
Clase 4 - Receptores Sencitivos - Circuitos Neuronales Para El Procesamiento ...
 
02- Bioelectricidad propiedades activas
02- Bioelectricidad propiedades activas02- Bioelectricidad propiedades activas
02- Bioelectricidad propiedades activas
 
Funciones motoras de la medula espinal reflejos medulares
Funciones motoras de la medula espinal reflejos medularesFunciones motoras de la medula espinal reflejos medulares
Funciones motoras de la medula espinal reflejos medulares
 
Potencial de membrana
Potencial de membranaPotencial de membrana
Potencial de membrana
 
Tema 5. sinapsis
Tema 5. sinapsisTema 5. sinapsis
Tema 5. sinapsis
 
Regulación de tasa de filtración glomerular y de flujo plasmático renal
Regulación de tasa de filtración glomerular y de flujo plasmático renalRegulación de tasa de filtración glomerular y de flujo plasmático renal
Regulación de tasa de filtración glomerular y de flujo plasmático renal
 
Capitulo 5
Capitulo 5Capitulo 5
Capitulo 5
 
Excitación del músculo esquelético
Excitación del músculo esqueléticoExcitación del músculo esquelético
Excitación del músculo esquelético
 
Presentacion de potencial de membrana y de accion
Presentacion de potencial de membrana y de accionPresentacion de potencial de membrana y de accion
Presentacion de potencial de membrana y de accion
 
histologia de la Medula osea usat
histologia de la Medula osea  usathistologia de la Medula osea  usat
histologia de la Medula osea usat
 
Sistema de transporte
Sistema de transporteSistema de transporte
Sistema de transporte
 

Similar a Potencial de membrana_celular

Excitabilidad. potenciales de membrana.
Excitabilidad. potenciales de membrana.Excitabilidad. potenciales de membrana.
Excitabilidad. potenciales de membrana.Rodrigo Lopez
 
Excitabilidad. potenciales de membrana.
Excitabilidad. potenciales de membrana.Excitabilidad. potenciales de membrana.
Excitabilidad. potenciales de membrana.Rodrigo Lopez
 
Potencial
PotencialPotencial
Potencialanshy
 
Potencial de membrana
Potencial de membranaPotencial de membrana
Potencial de membranaBUAP
 
Tejido exitable2020
Tejido exitable2020Tejido exitable2020
Tejido exitable2020djamaro
 
Potencial de acción
Potencial de acciónPotencial de acción
Potencial de acciónCesar Luna
 
201602 sn sem 01 sesion 02 lectura.pptx
201602 sn sem 01 sesion 02 lectura.pptx201602 sn sem 01 sesion 02 lectura.pptx
201602 sn sem 01 sesion 02 lectura.pptxAbigail Lucero Rojas
 
Impulso Nervioso
Impulso NerviosoImpulso Nervioso
Impulso NerviosoMartinika
 
Señales eléctricas en las neuronas
Señales eléctricas en las neuronasSeñales eléctricas en las neuronas
Señales eléctricas en las neuronasSalvador López
 
Generación de Potenciales PostSinápticos Potencial de Acción
Generación de Potenciales PostSinápticos Potencial de AcciónGeneración de Potenciales PostSinápticos Potencial de Acción
Generación de Potenciales PostSinápticos Potencial de AcciónMedical & Gabeents
 
Potencial de reposo y potencial de acción.pptx
Potencial de reposo y potencial de acción.pptxPotencial de reposo y potencial de acción.pptx
Potencial de reposo y potencial de acción.pptxmel1507
 
Clase 3 Comunicacion II
Clase 3   Comunicacion IIClase 3   Comunicacion II
Clase 3 Comunicacion IILuis Fernando
 
[CapíTulo 2] SeñAles EléCtricas De Las CéLulas Nerviosas
[CapíTulo 2] SeñAles EléCtricas De Las CéLulas Nerviosas[CapíTulo 2] SeñAles EléCtricas De Las CéLulas Nerviosas
[CapíTulo 2] SeñAles EléCtricas De Las CéLulas NerviosasFreddy Cumbicos
 

Similar a Potencial de membrana_celular (20)

Excitabilidad. potenciales de membrana.
Excitabilidad. potenciales de membrana.Excitabilidad. potenciales de membrana.
Excitabilidad. potenciales de membrana.
 
Excitabilidad. potenciales de membrana.
Excitabilidad. potenciales de membrana.Excitabilidad. potenciales de membrana.
Excitabilidad. potenciales de membrana.
 
Potencial de membrana
Potencial de membranaPotencial de membrana
Potencial de membrana
 
Potencial de acción
Potencial de acciónPotencial de acción
Potencial de acción
 
Impulso Nervioso y Sinapsis
Impulso Nervioso y SinapsisImpulso Nervioso y Sinapsis
Impulso Nervioso y Sinapsis
 
Potencial
PotencialPotencial
Potencial
 
Potencial de membrana
Potencial de membranaPotencial de membrana
Potencial de membrana
 
Tejido exitable2020
Tejido exitable2020Tejido exitable2020
Tejido exitable2020
 
Potencial de acción
Potencial de acciónPotencial de acción
Potencial de acción
 
Potencial de Acción.pdf
Potencial de Acción.pdfPotencial de Acción.pdf
Potencial de Acción.pdf
 
201602 sn sem 01 sesion 02 lectura.pptx
201602 sn sem 01 sesion 02 lectura.pptx201602 sn sem 01 sesion 02 lectura.pptx
201602 sn sem 01 sesion 02 lectura.pptx
 
Impulso Nervioso
Impulso NerviosoImpulso Nervioso
Impulso Nervioso
 
Señales eléctricas en las neuronas
Señales eléctricas en las neuronasSeñales eléctricas en las neuronas
Señales eléctricas en las neuronas
 
3. Neurofisiologia
3.  Neurofisiologia3.  Neurofisiologia
3. Neurofisiologia
 
Anatomía
AnatomíaAnatomía
Anatomía
 
Generación de Potenciales PostSinápticos Potencial de Acción
Generación de Potenciales PostSinápticos Potencial de AcciónGeneración de Potenciales PostSinápticos Potencial de Acción
Generación de Potenciales PostSinápticos Potencial de Acción
 
Potencial de reposo y potencial de acción.pptx
Potencial de reposo y potencial de acción.pptxPotencial de reposo y potencial de acción.pptx
Potencial de reposo y potencial de acción.pptx
 
Sistema nervioso bog
Sistema nervioso bogSistema nervioso bog
Sistema nervioso bog
 
Clase 3 Comunicacion II
Clase 3   Comunicacion IIClase 3   Comunicacion II
Clase 3 Comunicacion II
 
[CapíTulo 2] SeñAles EléCtricas De Las CéLulas Nerviosas
[CapíTulo 2] SeñAles EléCtricas De Las CéLulas Nerviosas[CapíTulo 2] SeñAles EléCtricas De Las CéLulas Nerviosas
[CapíTulo 2] SeñAles EléCtricas De Las CéLulas Nerviosas
 

Más de Juan Diego

Seguridad en internet
Seguridad en internetSeguridad en internet
Seguridad en internetJuan Diego
 
Trabajo en equipo hra ch
Trabajo en equipo   hra chTrabajo en equipo   hra ch
Trabajo en equipo hra chJuan Diego
 
Sistema nervioso central
Sistema nervioso centralSistema nervioso central
Sistema nervioso centralJuan Diego
 
Sistema nervioso
Sistema nerviosoSistema nervioso
Sistema nerviosoJuan Diego
 
Repercusiones de la discapacidad
Repercusiones de la discapacidadRepercusiones de la discapacidad
Repercusiones de la discapacidadJuan Diego
 
Psicología social y de la salud
Psicología social y de la saludPsicología social y de la salud
Psicología social y de la saludJuan Diego
 
Psicologia de la discapacidad
Psicologia de la discapacidadPsicologia de la discapacidad
Psicologia de la discapacidadJuan Diego
 
Procesos afectivos
Procesos afectivosProcesos afectivos
Procesos afectivosJuan Diego
 
Inteligencia[1]
Inteligencia[1]Inteligencia[1]
Inteligencia[1]Juan Diego
 
Herencia y maduracion (3)
Herencia y maduracion (3)Herencia y maduracion (3)
Herencia y maduracion (3)Juan Diego
 
Diapo de autoestima
Diapo de autoestimaDiapo de autoestima
Diapo de autoestimaJuan Diego
 
Desarrollo evolutivo
Desarrollo evolutivoDesarrollo evolutivo
Desarrollo evolutivoJuan Diego
 
Conclusion d ela cominiccion efiucas
Conclusion d ela cominiccion efiucasConclusion d ela cominiccion efiucas
Conclusion d ela cominiccion efiucasJuan Diego
 
Cuando el liderazgo_no_es_suficiente
Cuando el liderazgo_no_es_suficienteCuando el liderazgo_no_es_suficiente
Cuando el liderazgo_no_es_suficienteJuan Diego
 
Cuando el liderazgo no es suficiente
Cuando el liderazgo no es suficienteCuando el liderazgo no es suficiente
Cuando el liderazgo no es suficienteJuan Diego
 

Más de Juan Diego (20)

Reflexion
Reflexion Reflexion
Reflexion
 
Bullyng CVM
Bullyng CVMBullyng CVM
Bullyng CVM
 
Seguridad en internet
Seguridad en internetSeguridad en internet
Seguridad en internet
 
Trabajo en equipo hra ch
Trabajo en equipo   hra chTrabajo en equipo   hra ch
Trabajo en equipo hra ch
 
Sistema nervioso central
Sistema nervioso centralSistema nervioso central
Sistema nervioso central
 
Sistema nervioso
Sistema nerviosoSistema nervioso
Sistema nervioso
 
Repercusiones de la discapacidad
Repercusiones de la discapacidadRepercusiones de la discapacidad
Repercusiones de la discapacidad
 
Psicología social y de la salud
Psicología social y de la saludPsicología social y de la salud
Psicología social y de la salud
 
Psicologia de la discapacidad
Psicologia de la discapacidadPsicologia de la discapacidad
Psicologia de la discapacidad
 
Psico 1
Psico 1Psico 1
Psico 1
 
Procesos afectivos
Procesos afectivosProcesos afectivos
Procesos afectivos
 
Inteligencia[1]
Inteligencia[1]Inteligencia[1]
Inteligencia[1]
 
Herencia y maduracion (3)
Herencia y maduracion (3)Herencia y maduracion (3)
Herencia y maduracion (3)
 
Discapacidad
DiscapacidadDiscapacidad
Discapacidad
 
Diapo de autoestima
Diapo de autoestimaDiapo de autoestima
Diapo de autoestima
 
Desarrollo evolutivo
Desarrollo evolutivoDesarrollo evolutivo
Desarrollo evolutivo
 
Conclusion d ela cominiccion efiucas
Conclusion d ela cominiccion efiucasConclusion d ela cominiccion efiucas
Conclusion d ela cominiccion efiucas
 
Hipoterapia
HipoterapiaHipoterapia
Hipoterapia
 
Cuando el liderazgo_no_es_suficiente
Cuando el liderazgo_no_es_suficienteCuando el liderazgo_no_es_suficiente
Cuando el liderazgo_no_es_suficiente
 
Cuando el liderazgo no es suficiente
Cuando el liderazgo no es suficienteCuando el liderazgo no es suficiente
Cuando el liderazgo no es suficiente
 

Potencial de membrana_celular

  • 2.  
  • 3.  
  • 4.  
  • 5.  
  • 6.  
  • 7.  
  • 8.  
  • 9.  
  • 10.  
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17. Si el estímulo es de suficiente intensidad puede sobrepasar un umbral de despolarización que dispara el potencial de acción Excitabilidad celular
  • 18. El potencial de acción
  • 19.
  • 20. Propagación del potencial de acción El potencial de acción se propaga hacia todas las direcciones, pero no retrocede, ya que lo canales de Na+ de la zona que se despolariza primero están inactivados
  • 21.
  • 22. Acomodación El potencial umbral debe alcanzarse rápidamente. Su retraso temporal de la despolarización disminuye la eficiencia del proceso por la inactivación de parte de los canales Na + voltaje dependientes. Características del potencial de acción
  • 23. Absoluto Es el periodo de tiempo en el que el axón es incapaz de responder a un segundo estímulo. La causa son los canales Na + en estado inactivo Relativo Es el periodo de tiempo en el que el axón es capaz de responder a un segundo estímulo de una elevada intensidad . La causa es que se ha iniciado la repolarización y hay canales Na + en estado cerrado. Periodos refractarios
  • 24. Potenciales en espiga: son típicos del sistema nervioso. Su duración es aproximadamente de 0.4mseg y lo denominamos impulso nervioso. Potenciales en meseta: la membrana no se repolariza inmediatamente tras la despolarización. Es típico de las células cardíacas, donde la meseta llega a durar entre 3 y 4 décimas de segundo, produciendo la contracción del corazón durante todo este periodo. Potenciales rítmicos: descargas repetitivas de potencial de acción sin necesidad de estímulo que generan el latido cardíaco, los movimientos peristálticos o el ritmo respiratorio. Tipos de potenciales de acción

Notas del editor

  1. Las variaciones en la diferencia de potencial a través de la membrana puede registrarse midiendo el voltaje al introducir un electrodo en el interior celular. El osciloscopio puede calibrarse de forma que un aumento en el valor de voltaje indique que el interior celular se ha hecho menos negativo (más positivo) en comparación con el exterior celular. Por el contrario una disminución en el valor de voltaje es indicativo que el interior se ha hecho mas negativo en comparación con el exterior celular. Así pues, si tras un estímulo adecuado penetran cargas positivas en el interior celular (a favor de gradiente) se producirá un aumento en el valor de voltaje llamada despolarización, que hace que la diferencia de potencial entre los dos electrodos disminuya. A la recuperación del potencial de membrana en reposo de denomina repolarización. Si el estímulo hace que el interior celular se haga más negativo se denomina hiperpolarización. Vamos a ver que es lo que ocurre exactamente en un punto de un axón. El axón gigante del calamar es un buen ejemplo para el estudio de las propiedades eléctricas pasivas. Debido a su gran tamaño, unos 2cm de longitud y unas 800  m de grosor, la extracción y manejo de dicho axón es relativamente sencillo. Una vez atados los extremos del axón, puede introducirse una micropipeta de vidrio llena de un electrolito fuerte como el KCl 3M, para disminuir la resistencia de la punta de la pipeta, en el axón. Cuando el extremo del microelectrodo está fuera del axón, no existe diferencia de potencial con respecto un segundo electrodo colocado en el medio extraxónico. Ello es debido a que entre ambos electrodos no existe una fuente de potencial y que la resistencia entre ambos electrodos es muy pequeña. La diferencia de voltaje se registra cuando el electrodo es introducido en el axoplasma. Si una vez dentro del axoplasma se da una pequeña descarga se induce la apertura de algunos canales dependientes de voltaje. La apertura de los canales Na+ facilita la entrada masiva de Na+ en ese punto a favor de concentración y por tanto se invertirá el potencial de la membrana. Dicha variación del potencial de membrana se propagará a lo largo de la membrana de una forma limitada y hacia ambos lados del axón. Podemos observar en la gráfica de la izquierda como la difusión iónica disminuye conforme nos alejamos del punto de estimulación. Si colocáramos electrodos a diferentes distancias del punto de estimulación observaríamos la gráfica inferior derecha. A mayor distancia, menor es la variación en el potencial de membrana detectada. A este tipo de respuesta se le denomina respuesta local. Podemos observar como cuanto mayor es la distancia menor es la amplitud del potencial del receptor. Todos los canales dependientes de voltaje no se abren con la misma intensidad de estimulación. Con un estímulo pequeño se abre una pequeña “subpoblación” de estos canales, conforme nos alejamos la intensidad de estímulo es menor, con lo que se reduce la subpoblación de canales Na+ dependientes de voltaje que se abren. Hasta un punto en que el estímulo ya no existe.
  2. Sin embargo, si el estímulo es tal que se alcanza un cierto valor umbral de despolarización de la membrana, la respuesta que se obtiene es bien diferente. La respuesta que se produce en el axón gigante de calamar no se atenúa con la distancia, sino que se propaga hasta el final del axón. Lo que ocurre exactamente es que la variación de voltaje abre Los canales Na+ voltaje dependientes, no unos pocos sino todos los canales Na+ que se encuentran próximos. La propia despolarización que se genera en la membrana es tal, que abre todos los canales Na+ adyacentes a la zona de estimulación, alcanzándose de nuevo los mismos niveles de despolarización. Del mismo modo se estimula el lado contiguo. De esta forma el potencial de acción desencadenado a partir de haberse alcanzado un cirte valor de despolarización se propaga hasta el final del axón. Hay que pensar que en realidad es un proceso dinámico. Y lo que en verdad está ocurriendo es que al alcanzar el valor umbral de despolarización se permite la entrada de Na+ por difusión al axoplasma. Esto induce un aumento en la despolarización de la membrana, lo cual genera la apertura de más canales Na+ dependientes de voltaje en la membrana del axón. Esta despolarización aún aumenta más la permeabilidad al ión. Así pues se produce un bucle de retroactivación en el que la entrada de Na+ y la despolarización experimentan una aceleración explosiva. Algo más lentos en su apertura son los canales K+ voltaje dependientes, así pues un poco después del cierre de los canales Na+ se abren los canales K+. La apertura de los canales K+ favorece la recuperación del potencial de reposo, por la salida del ión a favor de gradiente (-90mV). Este proceso llamado repolarización representa el final de un bucle de retroinhibición. A este conjunto de cambios de potencial de membrana se denomina potencial de acción o impulso nervioso, y como ya he indicado hay que pensar en el en un proceso dinámico. Posteriormente la bomba Na+/K+ restablecerá las concentraciones iniciales para cada uno de los iones, ya que, aunque se haya recuperado el potencial de membrana inicial las concentraciones de Na+ y K+ intracelulares se han modificado. Tanto la despolarización como la repolarización se producen por difusión de los iones según sus gradientes de concentración.
  3. Así pues, podemos dividir las etapas del potencial de acción en: Leer diapo.
  4. Ahora que ya sabemos que es y como se produce el potencial de acción, debemos preguntarnos cómo es posible que el potencial de acción siempre se dirige en una dirección? Fijémonos que en el caso del gráfico superior el potencial de acción siempre se aleja del punto de estimulación y no vuelve hacia él. O en el caso del dibujo inferior que se dirige de izquierda a derecha y en ningún momento ocurre a la inversa. Para entender este hecho vamos a estudiar las conformaciones moleculares de los canales dependientes de voltaje que participan en el desarrollo del potencial de acción.
  5. El potencial de acción sigue la ley del todo o nada, es decir o se produce o no. Si se alcanza el valor umbral de potencial de membrana se generará, sino se va perdiendo progresivamente la capacidad de despolarización conforme se aleja del punto de estimulación. Ley del todo o nada. Cuando se produce la despolarización de la membrana hasta un valor umbral permite que la variación en la permeabilidad del Na+ aumente el valor del potencial de membrana hasta un valor de +30mV. En condiciones normales no se hace más positivo porque los canales Na+ se cierran en seguida y porque los canales K+ se abren. El tiempo que permanecen abiertos los canales es totalmente independiente de la intensidad del estímulo. De forma que la amplitud de los potenciales de acción es todo o nada. Si la despolarización se encuentra por debajo del potencial umbral los canales voltaje dependientes se mantienen cerrados, si por el contrario alcanzan el umbral se dispara el potencial de acción. Además como los canales sólo se abren durante un periodo fijo de tiempo y la inactivación automática se mantiene hasta que se restablecen los valores normales de polaridad la duración y amplitud de los potenciales de acción es muy similar.
  6. El potencial de membrana umbral, debe ser alcanzado rápidamente, de otro modo el incremento temporal de la despolarización permitiría que parte de los canales Na + pasarán a un estado inactivo, con la consecuente pérdida en la eficacia del proceso. Esta situación haría que aumentara el valor del potencial umbral, incluso puede llegar a impedir el disparo del potencial de acción. A este proceso se lo denomina acomodación de la membrana al estímulo. El potencial de acción sigue la ley del todo o nada, es decir o se produce o no. Si se alcanza el valor umbral de potencial de membrana se generará, sino se va perdiendo progresivamente la capacidad de despolarización conforme se aleja del punto de estimulación. Ley del todo o nada. Cuando se produce la despolarización de la membrana hasta un valor umbral permite que la variación en la permeabilidad del Na+ aumente el valor del potencial de membrana hasta un valor de +30mV. En condiciones normales no se hace más positivo porque los canales Na+ se cierran en seguida y porque los canales K+ se abren. El tiempo que permanecen abiertos los canales es totalmente independiente de la intensidad del estímulo. De forma que la amplitud de los potenciales de acción es todo o nada. Si la despolarización se encuentra por debajo del potencial umbral los canales voltaje dependientes se mantienen cerrados, si por el contrario alcanzan el umbral se dispara el potencial de acción. Además como los canales sólo se abren durante un periodo fijo de tiempo y la inactivación automática se mantiene hasta que se restablecen los valores normales de polaridad la duración y amplitud de los potenciales de acción es muy similar.
  7. Periodo refractario Si se mantiene un estímulo de una intensidad determinada este se despolariza hasta alcanzar un umbral y comienza a producir potenciales de acción con una frecuencia determinada. Al aumentar la intensidad del estímulo se aumenta la frecuencia de los potenciales de acción de forma proporcional. Llegará un momento en que la disminución del intervalo entre potenciales de acción es mínima y no puede reducirse, es decir llegará un momento en que no puede producirse un nuevo potencial de acción porque el anterior no ha acabado. Durante la mayor parte del tiempo en que se está produciendo un potencial de acción el axón es refractario a responder a un segundo estímulo, independientemente de la intensidad de ese estímulo. A este periodo de tiempo se le denomina periodo refractario absoluto. La causa a nivel molecular del periodo refractario absoluto reside en el estado inactivo en que se encuentran los canales Na+ voltaje dependientes. La despolarización es incapaz de abrir los canales inactivos, sólo puede abrir los cerrados. Tras la apertura de los canales K+, es decir la membrana se encuentra en proceso de repolarización, se inicia un periodo de tiempo llamado periodo refractario relativo, ya que mediante una despolarización muy potente se pueden llegar a superar los efectos repolarizantes de los canales K+ abiertos y generar un potencial de acción.
  8. 1.1.      Tipos de potencial de acción Todos los potenciales de acción no transcurren de la misma manera. En función del tipo celular el perfil de despolarización puede ser diferente. Tomando dicho perfil como criterio de clasificación podemos encontrar: Potenciales en espiga: son típicos del sistema nervioso. Su duración es aproximadamente de 0.4mseg y lo denominamos impulso nervioso. Potenciales en meseta: originados porque existen casos en los que la membrana excitable no se repolariza inmediatamente tras la despolarización. Generan un perfil en el que se observa una meseta próxima al máximo de despolarización de la espiga. Es típico de las células cardíacas, donde la meseta llega a durar entre 3 y 4 décimas de segundo, produciendo la contracción del corazón durante todo este periodo. La meseta observada en el potencial de acción de células cardíacas se origina por varios factores: 1.      En el disparo del potencial de acción participan tanto los conductos rápidos como los lentos, estos últimos permiten Los primeros causan la porción en espiga mientras que los segundos, al permitir la difusión de Ca2+ y de algunos iones Na+ y tener una acción mas lenta y prolongada, generan la porción de meseta. 2.      La existencia de canales K+ dependientes de voltaje lentos en su activación, hace que éstos no se abran hasta el final de la meseta, lo cual retrasa la regeneración del potencial de membrana. Potenciales rítmicos: existen casos en el organismo en que se precisan descargas repetitivas de potencial de acción como en el latido cardíaco, en los movimientos peristálticos o en fenómenos neuronales como el control del ritmo respiratorio. A priori todos los tejidos excitables pueden realizar descargas repetitivas si el potencial umbral se disminuye lo bastante. De hecho un requisito para que exista ritmicidad es que la membrana, incluso en estado de reposo, sea lo suficientemente permeable al Na+ para que se genere la despolarización automática de la membrana. Por esta razón el potencial de membrana en reposo de éstas células está entre -60 y -70mV. Este potencial de membrana causa que no se mantengan cerrados todos los canales Na+ y que exista un flujo de Na+ y K+ al interior que aumente la despolarización, se abran más canales hasta la generación del potencial de acción. El proceso de feed-back positivo no sólo afecta a los canales Na+ sini también a los ya mencionados canales cálcico-sódicos.