SlideShare uma empresa Scribd logo
1 de 18
Baixar para ler offline
Estadística y
Probabilidad II
Probabilidad Conjunta
Ciclo escolar 2013-2014
Experimentos Aleatorios
• Todos estamos familiarizados con la importancia de los
experimentos en la ciencia y en la ingeniería. Un principio
fundamental es que si efectuamos tales experimentos
repetidamente bajo condiciones aproximadamente idénticas,
obtenemos resultados que son esencialmente los mismos.
• Sin embargo, hay experimentos en los cuales los resultados no son
esencialmente los mismos a pesar de que las condiciones sean
aproximadamente idénticas. Tales experimentos se denominan
experimentos aleatorios. Los siguientes son algunos ejemplos
– Si lanzamos una moneda el resultado del experimento es águila o sol.
– Si lanzamos un dado el resultado del experimento es uno de los
números en el conjunto {1, 2, 3, 4, 5, 6}
– Si lanzamos una moneda dos veces, el resultado puede indicarse por
{AA,AS,SA,SS}, es decir dos Aguilas, Aguila primero y luego sol, etc.
– Si tenemos una máquina que produce tornillos, el resultado del
experimento es que algunos pueden estar defectuosos. Así cuando se
produce un tornillo será un miembro del conjunto {defectuoso, no
defectuoso}.
Espacios Muéstrales y Sucesos
• Espacio muestral: Un conjunto Ω que consiste en todos los
resultados de un experimento aleatorio se llama un espacio
muestral y cada uno de los resultados se denomina punto muestral.
Con frecuencia habrá mas de un espacio muestral que describe los
resultados de un experimento pero hay comúnmente sólo uno que
suministra la mayoría de la información. Obsérvese que Ω
corresponde al conjunto universal.
• Suceso o Evento: Un suceso es un subconjunto 𝐴 del espacio
muestral Ω, es decir es un conjunto de resultados posibles. Si el
resultado de un experimento es un elemento de 𝐴 decimos que el
suceso 𝐴 ha ocurrido. Un suceso que consiste de un solo punto de
Ω frecuentemente se llama un suceso elemental o simple.
El concepto de Probabilidad
• En cualquier experimento aleatorio siempre hay incertidumbre
sobre si un suceso específico ocurrirá o no. Como medida de la
oportunidad o probabilidad con la que podemos esperar que un
suceso ocurra es conveniente asignar un número entre 0 y 1. Si
estamos seguros de que el suceso ocurrirá decimos que su
probabilidad es 100% o 1, pero si estamos seguros de que el suceso
no ocurrirá decimos que su probabilidad es cero. Por ejemplo, si la
probabilidad es de 1/4, diríamos que hay un 25% de oportunidad de
que ocurra y un 75% de oportunidad de que no ocurra.
• Existen dos procedimientos importantes por medio de los cuales
podemos obtener estimativos para la probabilidad de un suceso.
Enfoque de Probabilidad
Enfoque clássico o a priori
• Si un suceso puede ocurrir
en h maneras diferentes de
un número total de n
maneras posibles, todos
igualmente factibles,
entonces la probabilidad del
suceso es h/n.
Enfoque como frecuencia
relativa o a posteriori.
• Si después de n repeticiones
de un experimento, donde n
es muy grande, un suceso
ocurre h veces, entonces la
probabilidad del suceso es
h/n.
• Esto también se llama la
probabilidad empírica del
suceso.
Ejemplos
Probabilidad clásica o a priori
• Supóngase que deseamos la
probabilidad de que resulte
Águila en un solo
lanzamiento de una
moneda
Probabilidad de frecuencia
relativa o a posteriori.
• Si lanzamos una moneda
1000 veces y hallamos que
532 veces resultan águilas.
¿Cuál es la probabilidad de
que en el siguiente
lanzamiento obtengamos
águila?
Ejemplos
• Escribe el espacio muestral de los siguientes experimentos
aleatorios.
– Sacar una bola de una urna donde hay 5 bolas blancas y 5 bolas negras
– Los colores de un semáforo
• Determinar o estimar la probabilidad p de los siguientes sucesos
– Una tirada de un dado resulte impar.
– Al menos un águila en dos tiradas de una moneda.
– Un As, el 10 de diamante o el 2 de picas aparezca al sacar una sola
carta de una baraja inglesa.
– La suma de los puntos de dos dados sea 7.
– Qua aparezca un Sol en la próxima tirada de una moneda si han salido
56 águilas en 100 tiradas.
Actividad
• Se saca al azar una bola de una caja que contiene 6 bolas rojas, 4
bolas blancas y 5 azules. Halla la probabilidad de que la bola
extraída sea
a) Roja
b) Blanca
c) Azul
d) No roja
e) Roja o blanca
• En una clase hay 10 alumnas rubias, 20 morenas, 5 alumnos rubios
y 10 morenos hallar la probabilidad de que el representante del
salón
a) Sea hombre
b) Sea mujer morena
c) Sea hombre o mujer
Eventos
• Como eventos particulares tenemos el evento seguro
Ω, ya que un elemento de Ω puede ocurrir; y el evento
∅ que se llama evento imposible, ya que un elemento
de ∅ no puede ocurrir.
• Puesto que los eventos o sucesos son conjuntos es
lógico que las proporciones relativas a eventos puedan
traducirse a lenguaje de conjuntos e inversamente. En
particular tenemos un “algebra” de eventos que
corresponde al algebra de conjuntos.
Eventos
• Empleando las operaciones de conjuntos en sucesos en
Ω podemos obtener otros sucesos en Ω. Asi si 𝐴 y 𝐵
son eventos, entonces
 𝐴 ∪ 𝐵 es el evento “A o B o ambos”
 𝐴 ∩ 𝐵 es el evento “A y B”
 𝐴′ es el evento “no A”
 𝐴 − 𝐵 es el evento “A, pero no B”
• Si los conjuntos correspondientes a los eventos A y B
son disjuntos, es decir 𝐴 ∩ B = ∅, frecuentemente
decimos que los sucesos son mutuamente excluyentes.
Esto quiere decir que no pueden ocurrir ambos
Axiomas de Probabilidad
• Ambos enfoques, el clásico y el de frecuencias
relativas, presentan serias dificultades. El
primero debido a la vaguedad de las palabras
“igualmente factibles” y el segundo debido a
la vaguedad incluida en un “número muy
grande”.
• A causa de estas dificultades los matemáticos
en los últimos años se han orientado en un
enfoque Axiomático utilizando conjuntos.
Axiomas de Probabilidad
• Supóngase que tenemos un espacio muestral Ω. A cada
evento 𝐴 de Ω asociamos un numero real 𝑃(𝐴), es decir 𝑃 es
una función de valores reales. 𝑃 es llamada una función de
probabilidad, y 𝑃(𝐴) la probabilidad del evento 𝐴, si se
satisfacen los axiomas siguientes.
Axioma 1. Para cada evento A de Ω
𝑃(𝐴) ≥ 0
Axioma 2. Para cada evento seguro Ω
𝑃(Ω) = 1
Axioma 3. Si A y B son sucesos mutuamente excluyentes,
es decir 𝐴 ∩ 𝐵 = ∅, entonces
𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)
Algunos Teoremas Importantes sobre
Probabilidad
• 0 ≤ 𝑃 𝐴 ≤ 1
• 𝑃(∅) = 0
• 𝑃(𝐴’) = 1 − 𝑃(𝐴)
• 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)
Ejemplo
• Si 𝑃(𝐴) = 0.62, 𝑃(𝐵) = 0.49, 𝑃(𝐶) = 0.25,
𝑃(𝐴 ∩ 𝐵) = 0.35, 𝑃(𝐴 ∩ 𝐶) = 0.20,
𝑃 𝐵 ∩ 𝐶 = 0.18, calcule
• 𝑃(𝐵 ∪ 𝐶) =
• 𝑃 𝐴’ =
• 𝑃(𝐴 − 𝐵) =
Probabilidad Condicional
(Introducción)
• En una urna se tienen 9 bolas rojas, 7 azules y
8 bolas blancas. ¿Cuál es la probabilidad de
que al sacar dos bolas se obtengan dos bolas
blancas?
a) Si al sacar la primera bola, esta se devuelve a la
urna.
b) Si al sacar la primera bola, esta no se devuelve.
Probabilidad Condicional
• Sean 𝐴 y 𝐵 dos sucesos tales que 𝑃(𝐴) > 0. Denotamos por 𝑃(𝐵|𝐴) la
probabilidad de 𝐵 dado que 𝐴 ha ocurrido. Puesto que se sabe que 𝐴 ha
ocurrido, se convierte en el nuevo espacio muestral remplazando el
original Ω. De aquí llegamos a la definición.
𝑃(𝐵|𝐴) =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴
• O también
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴)
• En palabras, la ecuación anterior nos dice la probabilidad de que tanto A y
B ocurran simultáneamente.
• Si 𝑃 𝐵 𝐴 = 𝑃 𝐵 entonces se dice que 𝐴 y 𝐵 son eventos independientes
entre si, es decir, la ocurrencia de 𝐵 no depende en nada de si ocurre 𝐴 o
no.
• Cual es la probabilidad de obtener una bola roja y una azul
de una urna donde hay 4 bolas rojas, 6 bolas blancas y
5 bolas azules
a) Con remplazo
b) Sin remplazo
• Calcule la probabilidad de obtener dos ases al sacar dos
cartas de la baraja inglesa
a) Con remplazo
b) Sin remplazo
• Si 𝑃(𝐴) = 0.62, 𝑃(𝐵) = 0.49, 𝑃(𝐶) = 0.25, 𝑃 𝐴 ∩ 𝐵 =
0.35, 𝑃(𝐴 ∩ 𝐶) = 0.20, 𝑃(𝐵 ∩ 𝐶) = 0.18, calcule
a) 𝑃 𝐴 𝐵 =
b) 𝑃 𝐵 𝐴 =
c) 𝑃 𝐵 𝐶 =
Teorema de Bayes
• Si 𝐴1, 𝐴2, 𝐴3, … , 𝐴 𝑛 son eventos mutuamente excluyentes
y cuya unión es el espacio muestral Ω. Si 𝐵 es otro evento
cualquiera, entonces se da el siguiente teorema importante
𝑃(𝐴 𝑘|𝐵) =
𝑃 𝐴 𝑘 𝑃 𝐵 𝐴 𝑘
𝑃 𝐴𝑗 𝑃 𝐵 𝐴𝑗
𝑛
𝑗=1
• Esto nos permite hallar las probabilidades de los diferentes
sucesos que pueden causar la ocurrencia de 𝐵.
• Por esta razón con frecuencia se hace referencia al teorema
de Bayes como teorema de las causas.

Mais conteúdo relacionado

Mais procurados

Probabilidad condicional por-daimer-alex y martín
Probabilidad condicional por-daimer-alex y martínProbabilidad condicional por-daimer-alex y martín
Probabilidad condicional por-daimer-alex y martín
sistemas2013
 
Probabilidad y teorema de bayes class no3
Probabilidad y teorema de bayes class no3Probabilidad y teorema de bayes class no3
Probabilidad y teorema de bayes class no3
Valerya Aguilera
 
Presentacion probabilidad
Presentacion probabilidadPresentacion probabilidad
Presentacion probabilidad
Marichuy2513
 
Conceptos básicos de probabilidad
Conceptos básicos de probabilidadConceptos básicos de probabilidad
Conceptos básicos de probabilidad
pilosofando
 

Mais procurados (20)

Probab
ProbabProbab
Probab
 
02 - Introducción a la teoría de probabilidad
02 - Introducción a la teoría de probabilidad02 - Introducción a la teoría de probabilidad
02 - Introducción a la teoría de probabilidad
 
Cálculo De Probabilidades
Cálculo De ProbabilidadesCálculo De Probabilidades
Cálculo De Probabilidades
 
Trabajo final de estadistica
Trabajo final de estadisticaTrabajo final de estadistica
Trabajo final de estadistica
 
Probabilidad condicional por-daimer-alex y martín
Probabilidad condicional por-daimer-alex y martínProbabilidad condicional por-daimer-alex y martín
Probabilidad condicional por-daimer-alex y martín
 
Geometría Analítica con GeoGebra N°5
Geometría Analítica con GeoGebra N°5Geometría Analítica con GeoGebra N°5
Geometría Analítica con GeoGebra N°5
 
Probabilidad y teorema de bayes class no3
Probabilidad y teorema de bayes class no3Probabilidad y teorema de bayes class no3
Probabilidad y teorema de bayes class no3
 
Probabilidad
ProbabilidadProbabilidad
Probabilidad
 
Teoria de la probabilidad ensayo
Teoria de la probabilidad ensayoTeoria de la probabilidad ensayo
Teoria de la probabilidad ensayo
 
Probabilidad condicional
Probabilidad condicionalProbabilidad condicional
Probabilidad condicional
 
Probabilidad y Estadistica
Probabilidad y EstadisticaProbabilidad y Estadistica
Probabilidad y Estadistica
 
Cálculo de probabilidades y análisis combinatorio
Cálculo de probabilidades y análisis combinatorioCálculo de probabilidades y análisis combinatorio
Cálculo de probabilidades y análisis combinatorio
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Probabilidad
ProbabilidadProbabilidad
Probabilidad
 
Presentacion probabilidad
Presentacion probabilidadPresentacion probabilidad
Presentacion probabilidad
 
Binomio de newton
Binomio de newtonBinomio de newton
Binomio de newton
 
Conceptos básicos de probabilidad
Conceptos básicos de probabilidadConceptos básicos de probabilidad
Conceptos básicos de probabilidad
 
Teoria de la probabilidad
Teoria de la probabilidadTeoria de la probabilidad
Teoria de la probabilidad
 
Probabilidad I
Probabilidad IProbabilidad I
Probabilidad I
 
probabilidadesUSFA
probabilidadesUSFAprobabilidadesUSFA
probabilidadesUSFA
 

Semelhante a Probabilidad conjunta

Teoría y problemas de Calculo de Probabilidades ccesa007
Teoría y problemas de Calculo de Probabilidades  ccesa007Teoría y problemas de Calculo de Probabilidades  ccesa007
Teoría y problemas de Calculo de Probabilidades ccesa007
Demetrio Ccesa Rayme
 

Semelhante a Probabilidad conjunta (20)

Introducción a las Probabilidades ccesa007
Introducción a las Probabilidades ccesa007Introducción a las Probabilidades ccesa007
Introducción a las Probabilidades ccesa007
 
probabilidad
probabilidadprobabilidad
probabilidad
 
Teoría Básica de Probabilidad
Teoría Básica de ProbabilidadTeoría Básica de Probabilidad
Teoría Básica de Probabilidad
 
LOS ELEMENTOS DE LA PROBABILIDAD
LOS ELEMENTOS DE LA PROBABILIDAD LOS ELEMENTOS DE LA PROBABILIDAD
LOS ELEMENTOS DE LA PROBABILIDAD
 
ELEMENTOS DE LA PROBABILIDAD
ELEMENTOS DE LA PROBABILIDAD ELEMENTOS DE LA PROBABILIDAD
ELEMENTOS DE LA PROBABILIDAD
 
Probabilidad y reglas, ejemplos
Probabilidad y reglas, ejemplosProbabilidad y reglas, ejemplos
Probabilidad y reglas, ejemplos
 
Unidad 1 probbilidad
Unidad 1 probbilidadUnidad 1 probbilidad
Unidad 1 probbilidad
 
Elementos de la probabilidad y axiomas de probabilidad
 Elementos de la probabilidad y axiomas de probabilidad  Elementos de la probabilidad y axiomas de probabilidad
Elementos de la probabilidad y axiomas de probabilidad
 
Probabilidad. Ideas Básicas
Probabilidad. Ideas BásicasProbabilidad. Ideas Básicas
Probabilidad. Ideas Básicas
 
Elementos de Probabilidades
Elementos de ProbabilidadesElementos de Probabilidades
Elementos de Probabilidades
 
PROBABILIDADES
PROBABILIDADESPROBABILIDADES
PROBABILIDADES
 
Apuntes de Probabilidad
Apuntes de ProbabilidadApuntes de Probabilidad
Apuntes de Probabilidad
 
3.-Matemática-PPT-1.pptx
3.-Matemática-PPT-1.pptx3.-Matemática-PPT-1.pptx
3.-Matemática-PPT-1.pptx
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Concepto de Probabilidad
 Concepto de Probabilidad Concepto de Probabilidad
Concepto de Probabilidad
 
3ESO-PROBABILIDAD1-tipos sucesos.pptx
3ESO-PROBABILIDAD1-tipos sucesos.pptx3ESO-PROBABILIDAD1-tipos sucesos.pptx
3ESO-PROBABILIDAD1-tipos sucesos.pptx
 
3ESO Sucesos
3ESO Sucesos3ESO Sucesos
3ESO Sucesos
 
Clase 1
Clase 1Clase 1
Clase 1
 
Teoría y problemas de Calculo de Probabilidades ccesa007
Teoría y problemas de Calculo de Probabilidades  ccesa007Teoría y problemas de Calculo de Probabilidades  ccesa007
Teoría y problemas de Calculo de Probabilidades ccesa007
 

Mais de Artemio Villegas

Mais de Artemio Villegas (20)

Conceptos en estadistica
Conceptos en estadisticaConceptos en estadistica
Conceptos en estadistica
 
Presentación Estadística y Probabilidad I
Presentación Estadística y Probabilidad IPresentación Estadística y Probabilidad I
Presentación Estadística y Probabilidad I
 
Presentacion diferencial
Presentacion diferencialPresentacion diferencial
Presentacion diferencial
 
Limites
LimitesLimites
Limites
 
Distribucion Normal
Distribucion NormalDistribucion Normal
Distribucion Normal
 
Distribucion Binomial
Distribucion BinomialDistribucion Binomial
Distribucion Binomial
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
 
Tecnicas de conteo
Tecnicas de conteoTecnicas de conteo
Tecnicas de conteo
 
Medidas de tendencia central y dispersion
Medidas de tendencia central y dispersionMedidas de tendencia central y dispersion
Medidas de tendencia central y dispersion
 
Distribuciones de frecuencia y representaciones graficas
Distribuciones de frecuencia y representaciones graficasDistribuciones de frecuencia y representaciones graficas
Distribuciones de frecuencia y representaciones graficas
 
La Derivada
La DerivadaLa Derivada
La Derivada
 
Presentacion: Estadística y Probabilidad I
Presentacion: Estadística  y Probabilidad IPresentacion: Estadística  y Probabilidad I
Presentacion: Estadística y Probabilidad I
 
Distribuciones de frecuencia
Distribuciones de frecuenciaDistribuciones de frecuencia
Distribuciones de frecuencia
 
Conceptos en Estadística
Conceptos en EstadísticaConceptos en Estadística
Conceptos en Estadística
 
La Derivada
La DerivadaLa Derivada
La Derivada
 
Límites
LímitesLímites
Límites
 
Presentación: Calculo Diferencial e Integral 1
Presentación: Calculo Diferencial e Integral 1Presentación: Calculo Diferencial e Integral 1
Presentación: Calculo Diferencial e Integral 1
 
Tecnicas de integracion
Tecnicas de integracionTecnicas de integracion
Tecnicas de integracion
 
El Coeficiente de Correlación y la Recta de Mínimos Cuadrados
El Coeficiente de Correlación y la Recta de Mínimos CuadradosEl Coeficiente de Correlación y la Recta de Mínimos Cuadrados
El Coeficiente de Correlación y la Recta de Mínimos Cuadrados
 
Integrales definidas
Integrales definidasIntegrales definidas
Integrales definidas
 

Último

🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
MiNeyi1
 

Último (20)

Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 

Probabilidad conjunta

  • 1. Estadística y Probabilidad II Probabilidad Conjunta Ciclo escolar 2013-2014
  • 2. Experimentos Aleatorios • Todos estamos familiarizados con la importancia de los experimentos en la ciencia y en la ingeniería. Un principio fundamental es que si efectuamos tales experimentos repetidamente bajo condiciones aproximadamente idénticas, obtenemos resultados que son esencialmente los mismos. • Sin embargo, hay experimentos en los cuales los resultados no son esencialmente los mismos a pesar de que las condiciones sean aproximadamente idénticas. Tales experimentos se denominan experimentos aleatorios. Los siguientes son algunos ejemplos – Si lanzamos una moneda el resultado del experimento es águila o sol. – Si lanzamos un dado el resultado del experimento es uno de los números en el conjunto {1, 2, 3, 4, 5, 6} – Si lanzamos una moneda dos veces, el resultado puede indicarse por {AA,AS,SA,SS}, es decir dos Aguilas, Aguila primero y luego sol, etc. – Si tenemos una máquina que produce tornillos, el resultado del experimento es que algunos pueden estar defectuosos. Así cuando se produce un tornillo será un miembro del conjunto {defectuoso, no defectuoso}.
  • 3. Espacios Muéstrales y Sucesos • Espacio muestral: Un conjunto Ω que consiste en todos los resultados de un experimento aleatorio se llama un espacio muestral y cada uno de los resultados se denomina punto muestral. Con frecuencia habrá mas de un espacio muestral que describe los resultados de un experimento pero hay comúnmente sólo uno que suministra la mayoría de la información. Obsérvese que Ω corresponde al conjunto universal. • Suceso o Evento: Un suceso es un subconjunto 𝐴 del espacio muestral Ω, es decir es un conjunto de resultados posibles. Si el resultado de un experimento es un elemento de 𝐴 decimos que el suceso 𝐴 ha ocurrido. Un suceso que consiste de un solo punto de Ω frecuentemente se llama un suceso elemental o simple.
  • 4. El concepto de Probabilidad • En cualquier experimento aleatorio siempre hay incertidumbre sobre si un suceso específico ocurrirá o no. Como medida de la oportunidad o probabilidad con la que podemos esperar que un suceso ocurra es conveniente asignar un número entre 0 y 1. Si estamos seguros de que el suceso ocurrirá decimos que su probabilidad es 100% o 1, pero si estamos seguros de que el suceso no ocurrirá decimos que su probabilidad es cero. Por ejemplo, si la probabilidad es de 1/4, diríamos que hay un 25% de oportunidad de que ocurra y un 75% de oportunidad de que no ocurra. • Existen dos procedimientos importantes por medio de los cuales podemos obtener estimativos para la probabilidad de un suceso.
  • 5. Enfoque de Probabilidad Enfoque clássico o a priori • Si un suceso puede ocurrir en h maneras diferentes de un número total de n maneras posibles, todos igualmente factibles, entonces la probabilidad del suceso es h/n. Enfoque como frecuencia relativa o a posteriori. • Si después de n repeticiones de un experimento, donde n es muy grande, un suceso ocurre h veces, entonces la probabilidad del suceso es h/n. • Esto también se llama la probabilidad empírica del suceso.
  • 6. Ejemplos Probabilidad clásica o a priori • Supóngase que deseamos la probabilidad de que resulte Águila en un solo lanzamiento de una moneda Probabilidad de frecuencia relativa o a posteriori. • Si lanzamos una moneda 1000 veces y hallamos que 532 veces resultan águilas. ¿Cuál es la probabilidad de que en el siguiente lanzamiento obtengamos águila?
  • 7. Ejemplos • Escribe el espacio muestral de los siguientes experimentos aleatorios. – Sacar una bola de una urna donde hay 5 bolas blancas y 5 bolas negras – Los colores de un semáforo • Determinar o estimar la probabilidad p de los siguientes sucesos – Una tirada de un dado resulte impar. – Al menos un águila en dos tiradas de una moneda. – Un As, el 10 de diamante o el 2 de picas aparezca al sacar una sola carta de una baraja inglesa. – La suma de los puntos de dos dados sea 7. – Qua aparezca un Sol en la próxima tirada de una moneda si han salido 56 águilas en 100 tiradas.
  • 8. Actividad • Se saca al azar una bola de una caja que contiene 6 bolas rojas, 4 bolas blancas y 5 azules. Halla la probabilidad de que la bola extraída sea a) Roja b) Blanca c) Azul d) No roja e) Roja o blanca • En una clase hay 10 alumnas rubias, 20 morenas, 5 alumnos rubios y 10 morenos hallar la probabilidad de que el representante del salón a) Sea hombre b) Sea mujer morena c) Sea hombre o mujer
  • 9. Eventos • Como eventos particulares tenemos el evento seguro Ω, ya que un elemento de Ω puede ocurrir; y el evento ∅ que se llama evento imposible, ya que un elemento de ∅ no puede ocurrir. • Puesto que los eventos o sucesos son conjuntos es lógico que las proporciones relativas a eventos puedan traducirse a lenguaje de conjuntos e inversamente. En particular tenemos un “algebra” de eventos que corresponde al algebra de conjuntos.
  • 10. Eventos • Empleando las operaciones de conjuntos en sucesos en Ω podemos obtener otros sucesos en Ω. Asi si 𝐴 y 𝐵 son eventos, entonces  𝐴 ∪ 𝐵 es el evento “A o B o ambos”  𝐴 ∩ 𝐵 es el evento “A y B”  𝐴′ es el evento “no A”  𝐴 − 𝐵 es el evento “A, pero no B” • Si los conjuntos correspondientes a los eventos A y B son disjuntos, es decir 𝐴 ∩ B = ∅, frecuentemente decimos que los sucesos son mutuamente excluyentes. Esto quiere decir que no pueden ocurrir ambos
  • 11. Axiomas de Probabilidad • Ambos enfoques, el clásico y el de frecuencias relativas, presentan serias dificultades. El primero debido a la vaguedad de las palabras “igualmente factibles” y el segundo debido a la vaguedad incluida en un “número muy grande”. • A causa de estas dificultades los matemáticos en los últimos años se han orientado en un enfoque Axiomático utilizando conjuntos.
  • 12. Axiomas de Probabilidad • Supóngase que tenemos un espacio muestral Ω. A cada evento 𝐴 de Ω asociamos un numero real 𝑃(𝐴), es decir 𝑃 es una función de valores reales. 𝑃 es llamada una función de probabilidad, y 𝑃(𝐴) la probabilidad del evento 𝐴, si se satisfacen los axiomas siguientes. Axioma 1. Para cada evento A de Ω 𝑃(𝐴) ≥ 0 Axioma 2. Para cada evento seguro Ω 𝑃(Ω) = 1 Axioma 3. Si A y B son sucesos mutuamente excluyentes, es decir 𝐴 ∩ 𝐵 = ∅, entonces 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)
  • 13. Algunos Teoremas Importantes sobre Probabilidad • 0 ≤ 𝑃 𝐴 ≤ 1 • 𝑃(∅) = 0 • 𝑃(𝐴’) = 1 − 𝑃(𝐴) • 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)
  • 14. Ejemplo • Si 𝑃(𝐴) = 0.62, 𝑃(𝐵) = 0.49, 𝑃(𝐶) = 0.25, 𝑃(𝐴 ∩ 𝐵) = 0.35, 𝑃(𝐴 ∩ 𝐶) = 0.20, 𝑃 𝐵 ∩ 𝐶 = 0.18, calcule • 𝑃(𝐵 ∪ 𝐶) = • 𝑃 𝐴’ = • 𝑃(𝐴 − 𝐵) =
  • 15. Probabilidad Condicional (Introducción) • En una urna se tienen 9 bolas rojas, 7 azules y 8 bolas blancas. ¿Cuál es la probabilidad de que al sacar dos bolas se obtengan dos bolas blancas? a) Si al sacar la primera bola, esta se devuelve a la urna. b) Si al sacar la primera bola, esta no se devuelve.
  • 16. Probabilidad Condicional • Sean 𝐴 y 𝐵 dos sucesos tales que 𝑃(𝐴) > 0. Denotamos por 𝑃(𝐵|𝐴) la probabilidad de 𝐵 dado que 𝐴 ha ocurrido. Puesto que se sabe que 𝐴 ha ocurrido, se convierte en el nuevo espacio muestral remplazando el original Ω. De aquí llegamos a la definición. 𝑃(𝐵|𝐴) = 𝑃 𝐴 ∩ 𝐵 𝑃 𝐴 • O también 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) • En palabras, la ecuación anterior nos dice la probabilidad de que tanto A y B ocurran simultáneamente. • Si 𝑃 𝐵 𝐴 = 𝑃 𝐵 entonces se dice que 𝐴 y 𝐵 son eventos independientes entre si, es decir, la ocurrencia de 𝐵 no depende en nada de si ocurre 𝐴 o no.
  • 17. • Cual es la probabilidad de obtener una bola roja y una azul de una urna donde hay 4 bolas rojas, 6 bolas blancas y 5 bolas azules a) Con remplazo b) Sin remplazo • Calcule la probabilidad de obtener dos ases al sacar dos cartas de la baraja inglesa a) Con remplazo b) Sin remplazo • Si 𝑃(𝐴) = 0.62, 𝑃(𝐵) = 0.49, 𝑃(𝐶) = 0.25, 𝑃 𝐴 ∩ 𝐵 = 0.35, 𝑃(𝐴 ∩ 𝐶) = 0.20, 𝑃(𝐵 ∩ 𝐶) = 0.18, calcule a) 𝑃 𝐴 𝐵 = b) 𝑃 𝐵 𝐴 = c) 𝑃 𝐵 𝐶 =
  • 18. Teorema de Bayes • Si 𝐴1, 𝐴2, 𝐴3, … , 𝐴 𝑛 son eventos mutuamente excluyentes y cuya unión es el espacio muestral Ω. Si 𝐵 es otro evento cualquiera, entonces se da el siguiente teorema importante 𝑃(𝐴 𝑘|𝐵) = 𝑃 𝐴 𝑘 𝑃 𝐵 𝐴 𝑘 𝑃 𝐴𝑗 𝑃 𝐵 𝐴𝑗 𝑛 𝑗=1 • Esto nos permite hallar las probabilidades de los diferentes sucesos que pueden causar la ocurrencia de 𝐵. • Por esta razón con frecuencia se hace referencia al teorema de Bayes como teorema de las causas.