SlideShare uma empresa Scribd logo
1 de 37
Baixar para ler offline
1.0    INTRODUCTION


This chapter discuss about background of study, statement of problem, purpose, objective and
significance of the study.




1.1    BACKGROUND OF THE STUDY


This section will present detailed explanation of National Inflation Rate for Indonesia.
Inflation is the rate to measuring increase of goods price. There are certain processes to calculate
the Inflation in economic like we calculate GDP. So Inflation rate is important for the
government, academician, consumer also businessman to know economy situation for the
country. The rational why I am choose this topic is to open our mind and to know about our
neighbour economy. Then, with reference that I have in QMT 463 I can forecast one step ahead
with suitable models.




1.2    STATEMENT OF PROBLEM


The main problem in this case, is to choose the best fitted models to generate the forecast for
National Inflation Rate in Indonesia. By this guide it easy for me and other forecaster or
researcher to do this task.




                                                                                             1
There are 10 stages in forecasting procedure that I must follow to complete this task.


   i.   Determine the purpose and objective of the forecasting exercise.
  ii.   Selection of relevant theory
 iii.   Collection data
 iv.    Getting to know your data
  v.    Initial model estimation
 vi.    Model evaluation and revision
vii.    Initial forecast presentation
viii.   Final revision
 ix.    Forecast distribution
  x.    Establish monitoring system




1.3     PURPOSE OF STUDY


The purpose of this assignment is to identify, choose, calculate the best fitted model for the set
data that I have. This study also explains the related graph which can explain the National
Inflation Rate in Indonesia.


1.4     OBJECTIVES OF STUDY


The objectives of this study are:
1.4.1 To study about National Inflation Rate of Indonesia.
1.4.2 To measure the one step ahead forecast with suitable model.
1.4.3 To analyze the data set and discuss on the component of time series (graph) that related to
        the data set.
1.4.4 To search best fit model for the set data that I have.




                                                                                            2
3
1.5    SIGNIFICANCE OF THE STUDY


The study of will present detailed explanation of National Inflation Rate for Indonesia.
Inflation is the rate to measuring increase of goods price. There are certain processes to calculate
the Inflation in economic like we calculate GDP. So Inflation rate is important for the
government, academician, consumer also businessman to know economy situation for the
country. The Government, academician, consumer also businessman can use this information to
the industry and society to increase the level of awareness of economy.




                                                                                           4
2.0    METHODOLOGY
This chapter describes the methodology used to carry out the study on the benefit of eggshell
technology in industries. Only secondary research was used to get the data for the study. One set
data of National Inflation rate in Indonesia obtain through internet research will used as source of
information. The data was synthesized and summarized for the report, no primary research was
done, no interviews were conducted, no questionnaire will distribute and no observations will
make. These are the limitations of the study.




                                                                                           5
3.0      FINDINGS AND DISCUSSIONS


I have search through the internet to get the data set which has 36 month data. This data set I get
from Indonesia Statistic Ministry Web. This data set is called External Data because obtained
outside the normal operational activities of the firms and are beyond the management’s control.
When data obtained from secondary sources they are known as “Secondary Data”. The data set
can be seen in Figure1 and Table1.


From the data set that I have, in this task, I must use five models and then choose the best fitted
model.
   i.    Naïve Model
 ii.     Simple exponential smoothing Model
 iii.    Decomposition Method
 iv.     ARRES Method
  v.     Holt-Winters




                                                                                            6
Figure1 (National Inflation of Indonesia Graph)



                                  National Inflation of Indonesia
      2.50

      2.00

      1.50
  Inflation
      1.00

      0.50

      0.00
              1   3   5      7   9 11 13 15 17 19 21 23 25 27 29 31 33 35
      -0.50
                                                  Month

                                                                            Inflation



The graph in Figure1 shows that the National Inflation of Indonesia from January 2002 to
December 2004. The highest rate in January 2002 and the lowest data in March 2003. The trend
for the graph is decrease.




The table1 in the next page shows that all data set that I get obtain through internet. This data set
about the National Inflation Rate of Indonesia.




                                                                                            7
Table1 (Data set of Inflation Rate of Indonesia from January 2002-Disember2004)


          Year                       Month                        Inflation
          2002                         1                            1.99
                                       2                            1.50
                                       3                            -0.02
                                       4                            -0.24
                                       5                            0.80
                                       6                            0.36
                                       7                            0.82
                                       8                            0.29
                                       9                            0.53
                                      10                            0.54
                                      11                            1.85
                                      12                            1.20
          2003                         1                            0.80
                                       2                            0.20
                                       3                            -0.23
                                       4                            0.15
                                       5                            0.21
                                       6                            0.09
                                       7                            0.03
                                       8                            0.84
                                       9                            0.36
                                      10                            0.55
                                      11                            1.01
                                      12                            0.94
          2004                         1                            0.57
                                       2                            -0.02
                                       3                            0.36
                                       4                            0.97
                                       5                            0.88
                                       6                            0.48
                                       7                            0.39
                                       8                            0.09
                                       9                            0.02
                                      10                            0.56
                                      11                            0.89
                                      12                            1.04



                                                                                  8
3.1 NAIVE MODEL


Naïve with Trend Model


The application of this model is fairly common among organizations. One reason for its
popularity is that can be used even with fairly short time series. Thus, overcoming the common
problem in most organizations where insufficient data is a common phenomenon. Insufficient
data would prohibit the application of sophisticated modeling technique.

The one step ahead forecast is represented as, Ft+1 = yt (yt/ yt-1) where yt is the actual value at time
t, and yt-1 is the actual value in preceding period. This model implies that all future forecast can
be set to the equal the actual observed value in the most recent time period plus the growth rate
that is the trend value as measured by yt/ yt-1. Hence, if yt is greater than yt-1 then the trend is
upward and conversely if yt is less than yt-1 then trend is downward.


This model is highly sensitive to the change in the actual value. As such a sudden drop or sharp
increase in the value will severely affect the forecast. Furthermore, fitting this model type will
result in the loss of the first two observations in the series. On the other hand,this model can also
be used for short time series.




Fitting The Naïve With Trend Model With Excel


Table2 in the next page shows that how I am fitting Naïve with Trend Model with using Excel.
Firstly set the data like Table1. Then, make the column name fitted and type (D3*D3)/D2 in the
3rd row. Then drag the box until one step ahead. Then, calculate its MSE to compare with other
model. The forecast value that I get for January 2005 is 1.22 .The MSE            show that 24.23 and
the value of MAPE is 8.92 .




                                                                                                 9
Table2 (Fitting Naïve with Trend Model with Excel)
    Year            Month              t             Inflation          Fitted
    2002              1                1               1.99
                      2                2               1.50
                      3                3               -0.02             1.13
                      4                4               -0.24             0.00
                      5                5               0.80             -2.88
                      6                6               0.36             -2.67
                      7                7               0.82              0.16
                      8                8               0.29              1.87
                      9                9               0.53              0.10
                     10               10               0.54              0.97
                     11               11               1.85              0.55
                     12               12               1.20              6.34
    2003              1               13               0.80              0.78
                      2               14               0.20              0.53
                      3               15               -0.23             0.05
                      4               16               0.15              0.26
                      5               17               0.21             -0.10
                      6               18               0.09              0.29
                      7               19               0.03              0.04
                      8               20               0.84              0.01
                      9               21               0.36             23.52
                     10               22               0.55              0.15
                     11               23               1.01              0.84
                     12               24               0.94              1.85
    2004              1               25               0.57              0.87
                      2               26               -0.02             0.35
                      3               27               0.36              0.00
                      4               28               0.97             -6.48
                      5               29               0.88              2.61
                      6               30               0.48              0.80
                      7               31               0.39              0.26
                      8               32               0.09              0.32
                      9               33               0.02              0.02
                     10               34               0.56              0.00
                     11               35               0.89             15.68
                     12               36               1.04              1.41
    2005              1               37                         1.22


                                                                                 10
Table2 ( Continue )
   et            et²    (et/yt)*100
                             0
                             0
  -1.15          1.32      5753
  -0.24          0.06       100
  3.68          13.54       460
  3.03           9.16       841
  0.66           0.43        80
  -1.58          2.49       544
  0.43           0.18        81
  -0.43          0.18        79
  1.30           1.69        70
  -5.14         26.40       428
  0.02           0.00        3
  -0.33          0.11       167
  -0.28          0.08       122
  -0.11          0.01        76
  0.31           0.09       147
  -0.20          0.04       227
  -0.01          0.00        29
  0.83           0.69        99
 -23.16        536.39      6433
  0.40           0.16        72
  0.17           0.03        17
  -0.91          0.84        97
  -0.30          0.09        53
  -0.37          0.13      1828
  0.36           0.13       100
  7.45          55.50       768
  -1.73          3.01       197
  -0.32          0.10        66
  0.13           0.02        33
  -0.23          0.05       252
  0.00           0.00        4
  0.56           0.31        99
 -14.79        218.74      1662
  -0.37          0.14        36




                                      11
3.2 SIMPLE EXPONENTIAL SMOOTHING MODEL


Some people call this model Single Exponential Smoothing Technique. But one thing is sure, it
is the simplest form of model within the family of the exponential smoothing technique. The
model requires only one parameter, that is the smoothing constant α to generate the fitted values
and hence forecast.


The advantage of this procedure is that it takes into account the most recent forecast. In Simple
Exponential Smoothing Model, the forecast for the next and all subsequent periods are
determined by adjusting the current period forecast by apportion of the difference between the
current forecast and current actual value. This is described in term of minimum errors.


Hence, if the recent forecast proves to be accurate, then it seems reasonable to base the
subsequent forecast on these estimates. Likewise, if recent predictions have been subjected to
large errors, then new forecast will also take this into consideration.


Another advantage of this technique is that it is requires the retention of only a limited amount
the data. There is no need to store data for many periods, because the historical profile is
recorded in concise form in the current smoothed statistic.


Ft+m = α yt + (1-α)Ft


The main thing in simple exponential smoothing is to choose best value of α. The first procedure
relies heavily not only on ones personal knowledge about the problem being evaluated and but
also on the amount of past experience one has with regard to the variable involved. For instance,
if one’s experience leads one to believe that past values can still contribute significantly the
necessary information needed to generate the forecast values, the small value of α is assigned.
Conversely, large value of α is used when one believes that only the most recent information are
important to generate the forecast value.




                                                                                            12
The second procedure that require the application of certain measurement criterion that can be
used to determined the best value of α. This is called “error measurement”. Some people called it
Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percent Error
(MAPE). The main purpose of this procedure is to generate a set fitted values associated with
each value. This is with objective of choosing the alpha value such that when it applied to the
model it minimizes the error. More specifically, it is to search far an alpha that result I the
smallest error measurement.


Fitting The Exponential Using Excel


Firstly key in the data like Table3. Then, in the fitted column write the equation =(E3*C2)+((1-
E3)*D2) to get the fitted value. Then ,drag the box to get fitted data. From the Table3, forecast of
the January 2005 one step ahead is 1.22 . After that, calculate error, MSE and MAPE to compare
with other model.




                                                                                            13
Table3 (Fitting Simple Exponential Smoothing Model with α = 0.9)

    Year            Month             t            Inflation          Fitted
    2002              1               1              1.99
                      2               2              1.50
                      3               3              -0.02             1.13
                      4               4              -0.24             0.00
                      5               5              0.80             -2.88
                      6               6              0.36             -2.67
                      7               7              0.82              0.16
                      8               8              0.29              1.87
                      9               9              0.53              0.10
                     10              10              0.54              0.97
                     11              11              1.85              0.55
                     12              12              1.20              6.34
    2003              1              13              0.80              0.78
                      2              14              0.20              0.53
                      3              15              -0.23             0.05
                      4              16              0.15              0.26
                      5              17              0.21             -0.10
                      6              18              0.09              0.29
                      7              19              0.03              0.04
                      8              20              0.84              0.01
                      9              21              0.36             23.52
                     10              22              0.55              0.15
                     11              23              1.01              0.84
                     12              24              0.94              1.85
    2004              1              25              0.57              0.87
                      2              26              -0.02             0.35
                      3              27              0.36              0.00
                      4              28              0.97             -6.48
                      5              29              0.88              2.61
                      6              30              0.48              0.80
                      7              31              0.39              0.26
                      8              32              0.09              0.32
                      9              33              0.02              0.02
                     10              34              0.56              0.00
                     11              35              0.89             15.68
                     12              36              1.04              1.41
    2005              1              37                        1.22


                                                                               14
Et       et²      (et/yt)*100
                         0
                         0
 -1.15    1.32        5753
 -0.24    0.06         100
  3.68    13.54        460
  3.03    9.16         841
  0.66    0.43          80
 -1.58    2.49         544
  0.43    0.18          81
 -0.43    0.18          79
  1.30    1.69          70
 -5.14    26.40        428
  0.02    0.00           3
 -0.33    0.11         167
 -0.28    0.08         122
 -0.11    0.01          76
  0.31    0.09         147
 -0.20    0.04         227
 -0.01    0.00          29
  0.83    0.69          99
-23.16   536.39       6433
  0.40    0.16          72
  0.17    0.03          17
 -0.91    0.84          97
 -0.30    0.09          53
 -0.37    0.13        1828
  0.36    0.13         100
  7.45    55.50        768
 -1.73    3.01         197
 -0.32    0.10          66
  0.13    0.02          33
 -0.23    0.05         252
  0.00    0.00           4
  0.56    0.31          99
-14.79   218.74       1662
 -0.37    0.14          36
Total    872.12   ∑|(et/yt)*100|   321
MSE       24.23      MAPE          8.92




                                          15
3.3 DECOMPOSITION METHOD


The process of generating the forecast values using this methodology is basically the reverse of
the process of decomposing the components. What is done here is to integrate the individual
components that have been identified and isolated earlier using past data points in the forecast
periods. This is made on the basis of either one assumptions used when the data were initially
analyze. For instance, if these components are assumed to be related in multiplicative manner,
such that y = T.S.C.I , then the forecast is simply the product of these components. Similarly, if
the assumption takes the additive form, y = T+S+C+I.


It should be note that the application of the decomposition method is basically made on a very
important assumption. It is assumed that the patterns or characteristics of the data as exhibited in
the past will be repeated in the future. Even if there is any change, it is not expected to seriously
affect the future estimates.


To make the job more easier in decomposition method, I have use a simple linear trend for this
purpose which can easily be extrapolated by using excel.


Where


T = α + βt




                                                                                            16
Figure2 (Linear Trend for National Inflation in Indonesia)


                                                Inflation and Trend

               2.50


               2.00


               1.50
   Inflation




               1.00


               0.50


               0.00
                       1      3   5   7   9   11 13 15    17 19       21 23   25 27        29 31 33      35

               -0.50
                                                           Month
   y = -0.0071x + 0.7099
                R2 = 0.0202                                                    Inflation     Linear (Inflation)




From the graph in figure2, we can see downward trend over 36 month period from January 2002
to December 2004. Based on adjusted seasonal indices, it is determined that the highest rate of
inflation in Indonesia is November. The highest being the month of November, recording an
index of 219.32 percent. The lowest rate is in March as evident with lowest index with 9.59
percent.


Y = -0.0071x + 0.0799


From the estimated linear equation, it ca be conclude that over the period time the National
Inflation Rate of Indonesia have been increase at average monthly rate of 0.0799.




                                                                                                       17
Table4 (Decomposition Method)

Year    Month     t    Inflation   Moving Total     Centered MT   C.M.Average
2002      1       1       1.99
          2       2       1.50
          3       3      -0.02
          4       4      -0.24
          5       5       0.80
          6       6       0.36
          7       7       0.82         9.62               18.05      0.75
          8       8       0.29         8.43               15.56      0.65
          9       9       0.53         7.13               14.05      0.59
         10      10       0.54         6.92               14.23      0.59
         11      11       1.85         7.31               14.03      0.58
         12      12       1.20         6.72               13.17      0.55
2003      1      13       0.80         6.45               12.11      0.50
          2      14       0.20         5.66               11.87      0.49
          3      15      -0.23         6.21               12.25      0.51
          4      16       0.15         6.04               12.09      0.50
          5      17       0.21         6.05               11.26      0.47
          6      18       0.09         5.21               10.16      0.42
          7      19       0.03         4.95                9.67      0.40
          8      20       0.84         4.72                9.22      0.38
          9      21       0.36         4.50                9.59      0.40
         10      22       0.55         5.09               11.00      0.46
         11      23       1.01         5.91               12.49      0.52
         12      24       0.94         6.58               13.55      0.56
2004      1      25       0.57         6.97               14.30      0.60
          2      26      -0.02         7.33               13.91      0.58
          3      27       0.36         6.58               12.82      0.53
          4      28       0.97         6.24               12.49      0.52
          5      29       0.88         6.25               12.38      0.52
          6      30       0.48         6.13               12.36      0.52
          7      31       0.39         6.23
          8      32       0.09
          9      33       0.02
         10      34       0.56
         11      35       0.89
         12      36       1.04
2005      1      37                               -2.09


                                                                            18
Table4 (continue)
 Unadjusted SI      Adjusted SI   Linear Trend   Deseasonalised Data
                      109.20          0.64              0.0182
                       15.89          0.57              0.0944
                        9.59          0.50             -0.0021
                       92.86          0.43             -0.0026
                       92.51          0.35              0.0086
                       49.17          0.28              0.0073
     109.03            50.04          0.21              0.0164
      44.73           113.16          0.14              0.0026
      90.53            77.59          0.07              0.0068
      91.08            90.68          0.00              0.0060
     316.46           219.32          -0.07             0.0084
     218.68           165.46          -0.14             0.0073
     158.55           109.20          -0.21             0.0073
      40.44            15.89          -0.28             0.0126
     -45.06             9.59          -0.36            -0.0240
      29.78            92.86          -0.43             0.0016
      44.76            92.51          -0.50             0.0023
      21.26            49.17          -0.57             0.0018
       7.45            50.04          -0.64             0.0006
     218.66           113.16          -0.71             0.0074
      90.09            77.59          -0.78             0.0046
     120.00            90.68          -0.85             0.0061
     194.08           219.32          -0.92             0.0046
     166.49           165.46          -0.99             0.0057
      95.66           109.20          -1.07             0.0052
      -3.45            15.89          -1.14            -0.0013
      67.39             9.59          -1.21             0.0375
     186.39            92.86          -1.28             0.0104
     170.60            92.51          -1.35             0.0095
      93.20            49.17          -1.42             0.0098
                       50.04          -1.49             0.0078
                      113.16          -1.56             0.0008
                       77.59          -1.63             0.0003
                       90.68          -1.70             0.0062
                      219.32          -1.78             0.0041
                      165.46          -1.85             0.0063
                      109.20          -1.92


                                                                       19
Table5 (Adjusted Seasonal Indices)


  Year         1      2       3       4         5   6     7      8       9       10     11     12
  2002                                                  109.03 44.77   90.53    91.08 316.46 218.68
  2003      158.55   40.44 -45.06 29.78 44.76 21.26      7.45 218.66   90.09   120.00 194.08 166.49
  2004      95.66    -3.45 67.39 186.39 170.60 93.20
  Total     254.21   36.99 22.33 216.17 215.36 114.46 116.48 263.43 180.62 211.08 510.54 385.17
 Mean       127.11   18.50 11.17 108.09 107.68 57.23 58.24 131.72 90.31 105.54 255.27 192.59
Adj Mean    109.20   15.89 9.59   92.86 92.51 49.17 50.04 113.16 77.59 90.68 219.32 165.46




                                                                                       20
Inflation,Deseasonalised data and Linear Trend

                 2.50
                 2.00
                 1.50
                 1.00
                 0.50
                 0.00




     Inflation
                 -0.50 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
                 -1.00
                                                                                Figure3 (Inflation, Deseasonalized Data and Linear Trend)




                 -1.50    Inflation
                 -2.00    Linear Trend
                 -2.50
                          Deseasonalised Data
                                                Month




21
3.4 ADDAPTIVE RESPONSE RATE EXPONENTIAL SMOOTHING (ARRES)


ARRES is different from other exponential method. It is because, other exponential method
discussed that, the value of parameter alpha used assumed constant for all time periods.
However, over time events may take place that affect the subsequent data behaviour. Some of
these events have been described earlier. For example, people may change their desire to buy a
certain product or there is change in the level of output as a result of technology change.


In these situation, to maintain the same value for alpha for all time periods may not be realistic
decision. Thus, the development of ARRES is an attempt to overcome this problem by
incorporating the effect of the changing pattern of the data series.


Ft+1 = αt yt + (1-αt) Ft

This indicates that the value of alpha is only appropriate at a particular period t, and maybe
different at different value of t.


As in any exponential smoothing technique, the appropriate initial values are required to start the
algorithm. In this case, value are for F0, α0, E0 and AET0.




Fitting ARRES With Excel


Firstly set up the data in the Table6,the make assumption alpha and beta with certain number
between 1 and 0. then in the fitted column write the equation =$H$2*C2+(1-$H$2)*C2 then drag
the box to the down. After that, calculate the MSE and retest the alpha and beta which have
smallest MSE.




                                                                                           22
Table6 ( Fitting ARRES with Excel )
  Year        Month       Inflation   Fitted            Et      Et
  2002          1            1.99      1.99           0.00    0.00
                2            1.50      1.99           -0.49   -0.05
                3           -0.02      1.50           -1.52   -0.20
                4           -0.24     -0.02           -0.22   -0.20
                5            0.80     -0.24           1.04    -0.07
                6            0.36      0.80           -0.44   -0.11
                7            0.82      0.36           0.46    -0.05
                8            0.29      0.82           -0.53   -0.10
                9            0.53      0.29           0.24    -0.07
               10            0.54      0.53           0.01    -0.06
               11            1.85      0.54           1.31    0.08
               12            1.20      1.85           -0.65   0.00
  2003          1            0.80      1.20           -0.40   -0.04
                2            0.20      0.80           -0.60   -0.09
                3           -0.23      0.20           -0.43   -0.13
                4            0.15     -0.23           0.38    -0.08
                5            0.21      0.15           0.06    -0.06
                6            0.09      0.21           -0.12   -0.07
                7            0.03      0.09           -0.06   -0.07
                8            0.84      0.03           0.81    0.02
                9            0.36      0.84           -0.48   -0.03
               10            0.55      0.36           0.19    -0.01
               11            1.01      0.55           0.46    0.04
               12            0.94      1.01           -0.07   0.03
  2004          1            0.57      0.94           -0.37   -0.01
                2           -0.02      0.57           -0.59   -0.07
                3            0.36     -0.02           0.38    -0.02
                4            0.97      0.36           0.61    0.04
                5            0.88      0.97           -0.09   0.03
                6            0.48      0.88           -0.40   -0.02
                7            0.39      0.48           -0.09   -0.02
                8            0.09      0.39           -0.30   -0.05
                9            0.02      0.09           -0.07   -0.05
               10            0.56      0.02           0.54    0.01
               11            0.89      0.56           0.33    0.04
               12            1.04      0.89           0.15    0.05
  2005          1                              1.04


                                                                      23
AEt     α      β      e²      (et/yt)*100
0.00   0.90   0.10   0.00            0
1.05   0.90   0.10   0.24           33
1.05   0.90   0.10   2.31         7600
0.92   0.22   0.10   0.05           92
1.01   0.07   0.10   1.08          130
0.94   0.12   0.10   0.19          122
0.95   0.06   0.10   0.21           56
0.96   0.11   0.10   0.28          183
0.93   0.07   0.10   0.06           45
0.91   0.07   0.10   0.00            2
1.04   0.07   0.10   1.72           71
0.96   0.00   0.10   0.42           54
0.94   0.04   0.10   0.16           50
0.97   0.10   0.10   0.36          300
0.95   0.13   0.10   0.18          187
0.94   0.08   0.10   0.14          253
0.91   0.07   0.10   0.00           29
0.92   0.07   0.10   0.01          133
0.91   0.07   0.10   0.00          200
0.99   0.02   0.10   0.66           96
0.95   0.03   0.10   0.23          133
0.92   0.01   0.10   0.04           35
0.95   0.04   0.10   0.21           46
0.91   0.03   0.10   0.00            7
0.95   0.01   0.10   0.14           65
0.96   0.07   0.10   0.35         2950
0.94   0.03   0.10   0.14          106
0.97   0.04   0.10   0.37           63
0.91   0.03   0.10   0.01           10
0.95   0.02   0.10   0.16           83
0.91   0.03   0.10   0.01           23
0.94   0.05   0.10   0.09          333
0.91   0.06   0.10   0.00          350
0.96   0.01   0.10   0.29           96
0.94   0.04   0.10   0.11           37
0.92   0.05   0.10   0.02           14
              ∑e²    10.27   ∑|(et/yt)*100|   9826.65
              MSE     0.27      MAPE           272.96




                                                    24
3.5 HOLT-WINTER’S METHOD


All earlier exponential models are good as long as they deal with non seasonal data. When
seasonality exists, a more suitable model is needed. Holt-Winters is one such technique that takes
into account the trend and seasonality factors.




Fitting Holt-Winters Using Excel
Holt-Winters consist of three basic equation that define the level component, the trend
component and the seasonality component. Two assumption can be made with regard to the
relationship of these component.


Level Component
Lt = α ( yt / st-s ) + ( 1-α ) ( Lt-1 + bt-1 )


Trend Component
bt = β ( Lt Lt-1 ) + ( 1-β ) bt-1


Seasonal Component
St = γ (yt / Lt ) + (1-γ) St-s


The forecast
Ft+m = (Lt + bt * m) St-s+m

As usual, when fitting the model, some initial value are required. For ease of computation, some
simple technique will discuss here.


Determine the Initial Value
To determine the initial value, a simple procedure used to take the average of the first 12 quarters
(month).




                                                                                          25
b0 = 1/s ( (ys+1 – y1 ) / s) + (ys+2 – y1 ) / s2) + ......


where s = 12 (represent the number of month in year)




The initial value of the seasonal component of the first 12 month are calculated by using the ratio
of the actual values to the mean of the first 12 values as represent by Lo in which


St = Yt / Lt




                                                                                         26
Table7 ( Fitting Holt winter using excel )
   Year        Month         Inflation        Lt       bt        St
   2002          1              1.99                            1.18
                 2              1.50                            0.89
                 3             -0.02                           -0.01
                 4             -0.24                           -0.14
                 5              0.80                            0.48
                 6              0.36                            0.21
                 7              0.82                            0.49
                 8              0.29                            0.17
                 9              0.53                            0.32
                10              0.54                            0.32
                11              1.85                            1.10
                12              1.20           1.68    -0.39    0.71
   2003          1              0.80           0.80    -0.83    1.17
                 2              0.20           0.17    -0.65    0.92
                 3             -0.23          15.36    13.61   -0.01
                 4              0.15           4.95    -8.01   -0.13
                 5              0.21          -0.26    -5.49    0.35
                 6              0.09          -0.81    -1.05    0.18
                 7              0.03          -0.32     0.34    0.43
                 8              0.84           3.90     3.83    0.18
                 9              0.36           2.46    -0.91    0.30
                10              0.55           1.68    -0.79    0.32
                11              1.01           0.91    -0.77    1.10
                12              0.94           1.08     0.08    0.73
   2004          1              0.57           0.62    -0.41    1.14
                 2             -0.02           0.03    -0.58    0.75
                 3              0.36         -23.69   -21.41   -0.01
                 4              0.97         -15.20     5.50   -0.12
                 5              0.88           0.09    14.31    1.31
                 6              0.48           4.99     5.84    0.17
                 7              0.39           2.89    -1.30    0.40
                 8              0.09           0.72    -2.08    0.17
                 9              0.02          -0.22    -1.06    0.26
                10              0.56           1.14     1.11    0.34
                11              0.89           1.10     0.08    1.07
                12              1.04           1.37     0.26    0.73
   2005          1              1.86           1.63     0.26    1.14



                                                                       27
Fitted    α     β      γ      et      e²     (et/yt)*100
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
         0.8   0.9   0.10     0       0             0
 1.53    0.8   0.9   0.10   -0.73    0.53          91
-0.03    0.8   0.9   0.10    0.23    0.05         115
 0.01    0.8   0.9   0.10   -0.24    0.06         102
-4.14    0.8   0.9   0.10    4.29   18.39        2859
-1.45    0.8   0.9   0.10    1.66    2.77         792
-1.23    0.8   0.9   0.10    1.32    1.75        1469
-0.91    0.8   0.9   0.10    0.94    0.88        3131
 0.00    0.8   0.9   0.10    0.84    0.70         100
 2.44    0.8   0.9   0.10   -2.08    4.32         577
 0.50    0.8   0.9   0.10    0.05    0.00          10
 0.98    0.8   0.9   0.10    0.03    0.00           3
 0.10    0.8   0.9   0.10    0.84    0.70          89
 1.35    0.8   0.9   0.10   -0.78    0.61         137
 0.20    0.8   0.9   0.10   -0.22    0.05        1099
 0.01    0.8   0.9   0.10    0.35    0.12          98
 5.66    0.8   0.9   0.10   -4.69   22.02         484
-3.37    0.8   0.9   0.10    4.25   18.03         483
 2.62    0.8   0.9   0.10   -2.14    4.57         445
 4.66    0.8   0.9   0.10   -4.27   18.23        1095
 0.28    0.8   0.9   0.10   -0.19    0.04         212
-0.41    0.8   0.9   0.10    0.43    0.18        2126
-0.41    0.8   0.9   0.10    0.97    0.94         173
 2.48    0.8   0.9   0.10   -1.59    2.52         178
 0.85    0.8   0.9   0.10    0.19    0.03          18
 1.86    0.8   0.9   0.10   ∑e²     97.50   ∑|(et/yt)*100|    9448
                            MSE      2.71      MAPE          262.44




                                                                 28
4.0 CONCLUSSION


1.       Where you need to find the initial value of the models that you have used. Why was
the method ?


Determine the Initial Value
To determine the initial value, a simple procedure used to take the average of the first 12 quarters
(month).


b0 = 1/s ( (ys+1 – y1 ) / s) + (ys+2 – y1 ) / s2) + ......


where s = 12 (represent the number of month in year)




The initial value of the seasonal component of the first 12 month are calculated by using the ratio
of the actual values to the mean of the first 12 values as represent by Lo in which


St = Yt / Lt




2.       You are to find the best fitted model. In the other words to find the best parameter
value.


The smallest MSE among the model is ARRES which its MSE = 0.27 . So, the best parameter
value among the model that I have used is ARRES.


But the smallest MAPE that I have is NAÏVE model which is MAPE = 8.92 . But the main
disadvantage of this measure lies in its relevancy as it is valid only for ratio scale data ( data with
meaning full zero ) . For this reason , MAPE is potentially explosive for large forecast error
when the actual value observation close to the zero. In addition, percentage measure do not treat
errors of overestimate and underestimate.



                                                                                            29
3.     Present the result of your analysis. Which of the model do you think would perfom
the best forecast?



 MODEL        Naïve with Trend         Single Exponential       ARRES Method          Holt Winters
                                              α=0.9                α=0.9                 α=0.9
                                                                   β=0.1                 β=0.1
                                                                                         γ=0.0
  MSE                24.23                      0.29                   0.27               2.71
 Forecast             1.22                      1.02                   1.04               1.86



From the table above, we can see the lowest MSE is 0.27 which is ARRES Method with α=0.9,
β=0.1 . So I choose ARRES Method as the best model in this task.


ARRES is different from other exponential method. It is because, other exponential method
discussed that, the value of parameter alpha used assumed constant for all time periods.
However, over time events may take place that affect the subsequent data behaviour. Some of
these events have been described earlier. For example, people may change their desire to buy a
certain product or there is change in the level of output as a result of technology change.


In this case, Inflation rate maybe change in certain time period because Income factor, GDP, cost
of production, price elasticity and other related factor.


In these situation, to maintain the same value for alpha for all time periods may not be realistic
decision. Thus, the development of ARRES is an attempt to overcome this problem by
incorporating the effect of the changing pattern of the data series.




                                                                                           30
5.0 APPENDICES

Table1 ( Fitting Simple Exponential α=0.1 )
  Year     Month     Inflation   Fitted        α       Et      et²    (et/yt)*100
  2002       1          1.99      1.99        0.10    0.00    0.00          0
             2          1.50      1.99        0.10   -0.49    0.24         33
             3         -0.02      1.94        0.10   -1.96    3.85        9805
             4         -0.24      1.74        0.10   -1.98    3.94        827
             5          0.80      1.55        0.10   -0.75    0.56         93
             6          0.36      1.47        0.10   -1.11    1.24        309
             7          0.82      1.36        0.10   -0.54    0.29         66
             8          0.29      1.31        0.10   -1.02    1.03        351
             9          0.53      1.20        0.10   -0.67    0.46        127
            10          0.54      1.14        0.10   -0.60    0.36        111
            11          1.85      1.08        0.10    0.77    0.60         42
            12          1.20      1.15        0.10    0.05    0.00          4
  2003       1          0.80      1.16        0.10   -0.36    0.13         45
             2          0.20      1.12        0.10   -0.92    0.85        462
             3         -0.23      1.03        0.10   -1.26    1.59        548
             4          0.15      0.91        0.10   -0.76    0.57        503
             5          0.21      0.83        0.10   -0.62    0.38        295
             6          0.09      0.77        0.10   -0.68    0.46        753
             7          0.03      0.70        0.10   -0.67    0.45        2233
             8          0.84      0.63        0.10    0.21    0.04         25
             9          0.36      0.65        0.10   -0.29    0.09         82
            10          0.55      0.62        0.10   -0.07    0.01         13
            11          1.01      0.62        0.10    0.39    0.15         39
            12          0.94      0.66        0.10    0.28    0.08         30
  2004       1          0.57      0.68        0.10   -0.11    0.01         20
             2         -0.02      0.67        0.10   -0.69    0.48        3465
             3          0.36      0.60        0.10   -0.24    0.06         68
             4          0.97      0.58        0.10    0.39    0.15         40
             5          0.88      0.62        0.10    0.26    0.07         30
             6          0.48      0.64        0.10   -0.16    0.03         34
             7          0.39      0.63        0.10   -0.24    0.06         61
             8          0.09      0.60        0.10   -0.51    0.26        571
             9          0.02      0.55        0.10   -0.53    0.28        2664
            10          0.56      0.50        0.10    0.06    0.00         11
            11          0.89      0.51        0.10    0.38    0.15         43
            12          1.04      0.54        0.10    0.50    0.25         48
  2005       1          0.59                  0.10   Total   19.16   ∑|(et/yt)*100|   6063
                                                     MSE      0.53      MAPE        168.4109


                                                                          31
Table2 ( Fitting Simple Exponential α=0.5 )
  Year     Month     Inflation   Fitted        α       et      et²    (et/yt)*100
  2002       1          1.99      1.99        0.50    0.00    0.00          0
             2          1.50      1.99        0.50   -0.49    0.24         33
             3         -0.02      1.75        0.50   -1.77    3.12        8825
             4         -0.24      0.86        0.50   -1.10    1.22        459
             5          0.80      0.31        0.50    0.49    0.24         61
             6          0.36      0.56        0.50   -0.20    0.04         54
             7          0.82      0.46        0.50    0.36    0.13         44
             8          0.29      0.64        0.50   -0.35    0.12        120
             9          0.53      0.46        0.50    0.07    0.00         12
            10          0.54      0.50        0.50    0.04    0.00          8
            11          1.85      0.52        0.50    1.33    1.77         72
            12          1.20      1.18        0.50    0.02    0.00          1
  2003       1          0.80      1.19        0.50   -0.39    0.15         49
             2          0.20      1.00        0.50   -0.80    0.63        398
             3         -0.23      0.60        0.50   -0.83    0.69        360
             4          0.15      0.18        0.50   -0.03    0.00         23
             5          0.21      0.17        0.50    0.04    0.00         20
             6          0.09      0.19        0.50   -0.10    0.01        109
             7          0.03      0.14        0.50   -0.11    0.01        364
             8          0.84      0.08        0.50    0.76    0.57         90
             9          0.36      0.46        0.50   -0.10    0.01         28
            10          0.55      0.41        0.50    0.14    0.02         25
            11          1.01      0.48        0.50    0.53    0.28         52
            12          0.94      0.75        0.50    0.19    0.04         21
  2004       1          0.57      0.84        0.50   -0.27    0.07         48
             2         -0.02      0.71        0.50   -0.73    0.53        3632
             3          0.36      0.34        0.50    0.02    0.00          5
             4          0.97      0.35        0.50    0.62    0.38         64
             5          0.88      0.66        0.50    0.22    0.05         25
             6          0.48      0.77        0.50   -0.29    0.08         60
             7          0.39      0.63        0.50   -0.24    0.06         60
             8          0.09      0.51        0.50   -0.42    0.17        464
             9          0.02      0.30        0.50   -0.28    0.08        1394
            10          0.56      0.16        0.50    0.40    0.16         72
            11          0.89      0.36        0.50    0.53    0.28         60
            12          1.04      0.62        0.50    0.42    0.17         40
  2005       1          0.83                  0.50   Total   11.33   ∑|(et/yt)*100|  10742
                                                     MSE      0.31      MAPE        298.3958




                                                                          32
Table3 ( Fitting Simple Exponential α=0.8 )
  Year     Month     Inflation   Fitted        α       et      et²    (et/yt)*100
  2002       1          1.99      1.99        0.80    0.00    0.00          0
             2          1.50      1.99        0.80   -0.49    0.24         33
             3         -0.02      1.60        0.80   -1.62    2.62        8090
             4         -0.24      0.30        0.80   -0.54    0.30        227
             5          0.80     -0.13        0.80    0.93    0.87        116
             6          0.36      0.61        0.80   -0.25    0.06         70
             7          0.82      0.41        0.80    0.41    0.17         50
             8          0.29      0.74        0.80   -0.45    0.20        155
             9          0.53      0.38        0.80    0.15    0.02         28
            10          0.54      0.50        0.80    0.04    0.00          7
            11          1.85      0.53        0.80    1.32    1.74         71
            12          1.20      1.59        0.80   -0.39    0.15         32
  2003       1          0.80      1.28        0.80   -0.48    0.23         60
             2          0.20      0.90        0.80   -0.70    0.48        348
             3         -0.23      0.34        0.80   -0.57    0.32        247
             4          0.15     -0.12        0.80    0.27    0.07        177
             5          0.21      0.10        0.80    0.11    0.01         54
             6          0.09      0.19        0.80   -0.10    0.01        108
             7          0.03      0.11        0.80   -0.08    0.01        265
             8          0.84      0.05        0.80    0.79    0.63         95
             9          0.36      0.68        0.80   -0.32    0.10         89
            10          0.55      0.42        0.80    0.13    0.02         23
            11          1.01      0.52        0.80    0.49    0.24         48
            12          0.94      0.91        0.80    0.03    0.00          3
  2004       1          0.57      0.93        0.80   -0.36    0.13         64
             2         -0.02      0.64        0.80   -0.66    0.44        3315
             3          0.36      0.11        0.80    0.25    0.06         69
             4          0.97      0.31        0.80    0.66    0.43         68
             5          0.88      0.84        0.80    0.04    0.00          5
             6          0.48      0.87        0.80   -0.39    0.15         82
             7          0.39      0.56        0.80   -0.17    0.03         43
             8          0.09      0.42        0.80   -0.33    0.11        371
             9          0.02      0.16        0.80   -0.14    0.02        684
            10          0.56      0.05        0.80    0.51    0.26         92
            11          0.89      0.46        0.80    0.43    0.19         49
            12          1.04      0.80        0.80    0.24    0.06         23
  2005       1          0.99                  0.80   Total   10.37   ∑|(et/yt)*100|  10453
                                                     MSE      0.29      MAPE        290.3682




                                                                          33
Table4 ( Fitting ARRES with excel α=0.1 )
Yea   Mont   Inflatio   Fitte                 AE
 r     h        n        d       et    Et      t     α     β      e²    (et/yt)*100
200                                           0.0   0.1
 2      1      1.99     1.99    0.00   0.00    0     0    0.10   0.00       0
                                  -      -    1.0   0.1
        2      1.50     1.99    0.49   0.05    5     0    0.10   0.24       33
                                  -      -    1.0   0.1
        3      -0.02    1.50    1.52   0.20    5     0    0.10   2.31      7600
                                  -      -    0.9   0.2
        4      -0.24    -0.02   0.22   0.20    2     2    0.10   0.05       92
                                         -    1.0   0.0
        5      0.80     -0.24   1.04   0.07    1     7    0.10   1.08      130
                                  -      -    0.9   0.1
        6      0.36     0.80    0.44   0.11    4     2    0.10   0.19      122
                                         -    0.9   0.0
        7      0.82     0.36    0.46   0.05    5     6    0.10   0.21       56
                                  -      -    0.9   0.1
        8      0.29     0.82    0.53   0.10    6     1    0.10   0.28      183
                                         -    0.9   0.0
        9      0.53     0.29    0.24   0.07    3     7    0.10   0.06       45
                                         -    0.9   0.0
       10      0.54     0.53    0.01   0.06    1     7    0.10   0.00       2
                                              1.0   0.0
       11      1.85     0.54    1.31   0.08    4     7    0.10   1.72       71
                                  -           0.9   0.0
       12      1.20     1.85    0.65   0.00    6     0    0.10   0.42       54
200                               -      -    0.9   0.0
 3      1      0.80     1.20    0.40   0.04    4     4    0.10   0.16       50
                                  -      -    0.9   0.1
        2      0.20     0.80    0.60   0.09    7     0    0.10   0.36      300
                                  -      -    0.9   0.1
        3      -0.23    0.20    0.43   0.13    5     3    0.10   0.18      187
                                         -    0.9   0.0
        4      0.15     -0.23   0.38   0.08    4     8    0.10   0.14      253
                                         -    0.9   0.0
        5      0.21     0.15    0.06   0.06    1     7    0.10   0.00       29
                                  -      -    0.9   0.0
        6      0.09     0.21    0.12   0.07    2     7    0.10   0.01      133
                                  -      -    0.9   0.0
        7      0.03     0.09    0.06   0.07    1     7    0.10   0.00      200
                                              0.9   0.0
        8      0.84     0.03    0.81   0.02    9     2    0.10   0.66       96
                                  -      -    0.9   0.0
        9      0.36     0.84    0.48   0.03    5     3    0.10   0.23      133
                                         -    0.9   0.0
       10      0.55     0.36    0.19   0.01    2     1    0.10   0.04       35
                                              0.9   0.0
       11      1.01     0.55    0.46   0.04    5     4    0.10   0.21       46
       12      0.94     1.01      -    0.03   0.9   0.0   0.10   0.00        7


                                                                                      34
0.07           1     3
200                           -      -    0.9   0.0
 4    1    0.57    0.94     0.37   0.01    5     1    0.10   0.14       65
                              -      -    0.9   0.0
      2    -0.02   0.57     0.59   0.07    6     7    0.10   0.35      2950
                                     -    0.9   0.0
      3    0.36    -0.02    0.38   0.02    4     3    0.10   0.14       106
                                          0.9   0.0
      4    0.97    0.36     0.61   0.04    7     4    0.10   0.37       63
                              -           0.9   0.0
      5    0.88    0.97     0.09   0.03    1     3    0.10   0.01       10
                              -      -    0.9   0.0
      6    0.48    0.88     0.40   0.02    5     2    0.10   0.16       83
                              -      -    0.9   0.0
      7    0.39    0.48     0.09   0.02    1     3    0.10   0.01       23
                              -      -    0.9   0.0
      8    0.09    0.39     0.30   0.05    4     5    0.10   0.09       333
                              -      -    0.9   0.0
      9    0.02    0.09     0.07   0.05    1     6    0.10   0.00       350
                                          0.9   0.0
      10   0.56    0.02     0.54   0.01    6     1    0.10   0.29       96
                                          0.9   0.0
      11   0.89    0.56     0.33   0.04    4     4    0.10   0.11       37
                                          0.9   0.0
      12   1.04    0.89     0.15   0.05    2     5    0.10   0.02        14
200                                                          10.2   ∑|(et/yt)*10   9826.6
 5    1              1.04                             ∑e²     7          0|          5
                                                      MS
                                                       E     0.27     MAPE         272.96




                                                                                      35
Table5 ( Fitting ARRES with excel α=0.5 )
Yea   Mont   Inflatio   Fitte                 AE
 r     h        n        d       et    Et      t     α     β      e²    (et/yt)*100
200                                           0.0   0.1
 2      1      1.99     1.99    0.00   0.00    0     0    0.10   0.00       0
                                  -      -    1.0   0.1
        2      1.50     1.99    0.49   0.05    5     0    0.10   0.24       33
                                  -      -    1.0   0.1
        3      -0.02    1.50    1.52   0.20    5     0    0.10   2.31      7600
                                  -      -    0.9   0.2
        4      -0.24    -0.02   0.22   0.20    2     2    0.10   0.05       92
                                         -    1.0   0.0
        5      0.80     -0.24   1.04   0.07    1     7    0.10   1.08      130
                                  -      -    0.9   0.1
        6      0.36     0.80    0.44   0.11    4     2    0.10   0.19      122
                                         -    0.9   0.0
        7      0.82     0.36    0.46   0.05    5     6    0.10   0.21       56
                                  -      -    0.9   0.1
        8      0.29     0.82    0.53   0.10    6     1    0.10   0.28      183
                                         -    0.9   0.0
        9      0.53     0.29    0.24   0.07    3     7    0.10   0.06       45
                                         -    0.9   0.0
       10      0.54     0.53    0.01   0.06    1     7    0.10   0.00       2
                                              1.0   0.0
       11      1.85     0.54    1.31   0.08    4     7    0.10   1.72       71
                                  -           0.9   0.0
       12      1.20     1.85    0.65   0.00    6     0    0.10   0.42       54
200                               -      -    0.9   0.0
 3      1      0.80     1.20    0.40   0.04    4     4    0.10   0.16       50
                                  -      -    0.9   0.1
        2      0.20     0.80    0.60   0.09    7     0    0.10   0.36      300
                                  -      -    0.9   0.1
        3      -0.23    0.20    0.43   0.13    5     3    0.10   0.18      187
                                         -    0.9   0.0
        4      0.15     -0.23   0.38   0.08    4     8    0.10   0.14      253
                                         -    0.9   0.0
        5      0.21     0.15    0.06   0.06    1     7    0.10   0.00       29
                                  -      -    0.9   0.0
        6      0.09     0.21    0.12   0.07    2     7    0.10   0.01      133
                                  -      -    0.9   0.0
        7      0.03     0.09    0.06   0.07    1     7    0.10   0.00      200
                                              0.9   0.0
        8      0.84     0.03    0.81   0.02    9     2    0.10   0.66       96
                                  -      -    0.9   0.0
        9      0.36     0.84    0.48   0.03    5     3    0.10   0.23      133
                                         -    0.9   0.0
       10      0.55     0.36    0.19   0.01    2     1    0.10   0.04       35
                                              0.9   0.0
       11      1.01     0.55    0.46   0.04    5     4    0.10   0.21       46
       12      0.94     1.01      -    0.03   0.9   0.0   0.10   0.00        7


                                                                                      36
0.07           1     3
200                           -      -    0.9   0.0
 4    1    0.57    0.94     0.37   0.01    5     1    0.10   0.14       65
                              -      -    0.9   0.0
      2    -0.02   0.57     0.59   0.07    6     7    0.10   0.35      2950
                                     -    0.9   0.0
      3    0.36    -0.02    0.38   0.02    4     3    0.10   0.14       106
                                          0.9   0.0
      4    0.97    0.36     0.61   0.04    7     4    0.10   0.37       63
                              -           0.9   0.0
      5    0.88    0.97     0.09   0.03    1     3    0.10   0.01       10
                              -      -    0.9   0.0
      6    0.48    0.88     0.40   0.02    5     2    0.10   0.16       83
                              -      -    0.9   0.0
      7    0.39    0.48     0.09   0.02    1     3    0.10   0.01       23
                              -      -    0.9   0.0
      8    0.09    0.39     0.30   0.05    4     5    0.10   0.09       333
                              -      -    0.9   0.0
      9    0.02    0.09     0.07   0.05    1     6    0.10   0.00       350
                                          0.9   0.0
      10   0.56    0.02     0.54   0.01    6     1    0.10   0.29       96
                                          0.9   0.0
      11   0.89    0.56     0.33   0.04    4     4    0.10   0.11       37
                                          0.9   0.0
      12   1.04    0.89     0.15   0.05    2     5    0.10   0.02        14
200                                                          10.2   ∑|(et/yt)*10   9826.6
 5    1              1.04                             ∑e²     7          0|          5
                                                      MS
                                                       E     0.27     MAPE         272.96




                                                                                      37

Mais conteúdo relacionado

Semelhante a Forecast Modelling (Single Variable)

Iirs Artificial Naural network based Urban growth Modeling
Iirs Artificial Naural network based Urban growth ModelingIirs Artificial Naural network based Urban growth Modeling
Iirs Artificial Naural network based Urban growth ModelingTushar Dholakia
 
Wealth Report - Asia by Julius Baer(2012.09)
Wealth Report - Asia by Julius Baer(2012.09)Wealth Report - Asia by Julius Baer(2012.09)
Wealth Report - Asia by Julius Baer(2012.09)Wealth Partners
 
centex 09/22/08
centex 09/22/08centex 09/22/08
centex 09/22/08finance18
 
Alan Clayton-Matthews 2013 Economic Forecast presented to Mass Econ 1/18/13
Alan Clayton-Matthews 2013 Economic Forecast presented to Mass Econ 1/18/13Alan Clayton-Matthews 2013 Economic Forecast presented to Mass Econ 1/18/13
Alan Clayton-Matthews 2013 Economic Forecast presented to Mass Econ 1/18/13taitken1
 
Slidecast Financial situation Unilever
Slidecast Financial situation UnileverSlidecast Financial situation Unilever
Slidecast Financial situation UnileverSam Guldemont
 
GartnerBI SP Session: Harnessing Mobile Intelligence by Steve Reynolds
GartnerBI SP Session: Harnessing Mobile Intelligence by Steve ReynoldsGartnerBI SP Session: Harnessing Mobile Intelligence by Steve Reynolds
GartnerBI SP Session: Harnessing Mobile Intelligence by Steve ReynoldsneutrinoBI
 
Asian core presentation 2012_an
Asian core presentation 2012_anAsian core presentation 2012_an
Asian core presentation 2012_anangidon
 
Is a credit crunch threatening the financing of the economy (BFF 12 june 2012)
Is a credit crunch threatening the financing of the economy (BFF 12 june 2012)Is a credit crunch threatening the financing of the economy (BFF 12 june 2012)
Is a credit crunch threatening the financing of the economy (BFF 12 june 2012)Cfinancing
 
centex UBS /11 /11/08
centex  UBS /11 /11/08centex  UBS /11 /11/08
centex UBS /11 /11/08finance18
 
Sl12 keynote - will economic growth return - final
Sl12   keynote - will economic growth return - finalSl12   keynote - will economic growth return - final
Sl12 keynote - will economic growth return - finalcabotmoney
 
Ch 06 financial management notes
Ch 06 financial management notesCh 06 financial management notes
Ch 06 financial management notesBabasab Patil
 
Dec 2009 Tatum Survey
Dec 2009 Tatum SurveyDec 2009 Tatum Survey
Dec 2009 Tatum Surveyfnapoli
 
Portfolio Risk Calculation
Portfolio Risk CalculationPortfolio Risk Calculation
Portfolio Risk CalculationSukant Arora
 
2011 Annual Review
2011 Annual Review2011 Annual Review
2011 Annual Reviewkeflex
 
AMA/Duke CMO Study - Feb. 2011
AMA/Duke CMO Study - Feb. 2011AMA/Duke CMO Study - Feb. 2011
AMA/Duke CMO Study - Feb. 2011ahonomichl
 
The cmo survey highlights and insights, feb 2011
The cmo survey highlights and insights, feb 2011The cmo survey highlights and insights, feb 2011
The cmo survey highlights and insights, feb 2011christinemoorman
 
AMA/Duke - The CMO Survey Highlights And Insights - Feb 2011
AMA/Duke - The CMO Survey Highlights And Insights - Feb 2011AMA/Duke - The CMO Survey Highlights And Insights - Feb 2011
AMA/Duke - The CMO Survey Highlights And Insights - Feb 2011Ann Honomichl
 
Wait, It's Actually SOCIAL Media?
Wait, It's Actually SOCIAL Media?Wait, It's Actually SOCIAL Media?
Wait, It's Actually SOCIAL Media?Robert Murray
 

Semelhante a Forecast Modelling (Single Variable) (20)

Iirs Artificial Naural network based Urban growth Modeling
Iirs Artificial Naural network based Urban growth ModelingIirs Artificial Naural network based Urban growth Modeling
Iirs Artificial Naural network based Urban growth Modeling
 
Wealth Report - Asia by Julius Baer(2012.09)
Wealth Report - Asia by Julius Baer(2012.09)Wealth Report - Asia by Julius Baer(2012.09)
Wealth Report - Asia by Julius Baer(2012.09)
 
centex 09/22/08
centex 09/22/08centex 09/22/08
centex 09/22/08
 
Alan Clayton-Matthews 2013 Economic Forecast presented to Mass Econ 1/18/13
Alan Clayton-Matthews 2013 Economic Forecast presented to Mass Econ 1/18/13Alan Clayton-Matthews 2013 Economic Forecast presented to Mass Econ 1/18/13
Alan Clayton-Matthews 2013 Economic Forecast presented to Mass Econ 1/18/13
 
Slidecast Financial situation Unilever
Slidecast Financial situation UnileverSlidecast Financial situation Unilever
Slidecast Financial situation Unilever
 
GartnerBI SP Session: Harnessing Mobile Intelligence by Steve Reynolds
GartnerBI SP Session: Harnessing Mobile Intelligence by Steve ReynoldsGartnerBI SP Session: Harnessing Mobile Intelligence by Steve Reynolds
GartnerBI SP Session: Harnessing Mobile Intelligence by Steve Reynolds
 
Asian core presentation 2012_an
Asian core presentation 2012_anAsian core presentation 2012_an
Asian core presentation 2012_an
 
Financial ratios
Financial ratiosFinancial ratios
Financial ratios
 
Is a credit crunch threatening the financing of the economy (BFF 12 june 2012)
Is a credit crunch threatening the financing of the economy (BFF 12 june 2012)Is a credit crunch threatening the financing of the economy (BFF 12 june 2012)
Is a credit crunch threatening the financing of the economy (BFF 12 june 2012)
 
centex UBS /11 /11/08
centex  UBS /11 /11/08centex  UBS /11 /11/08
centex UBS /11 /11/08
 
Sl12 keynote - will economic growth return - final
Sl12   keynote - will economic growth return - finalSl12   keynote - will economic growth return - final
Sl12 keynote - will economic growth return - final
 
Ch 06 financial management notes
Ch 06 financial management notesCh 06 financial management notes
Ch 06 financial management notes
 
Dec 2009 Tatum Survey
Dec 2009 Tatum SurveyDec 2009 Tatum Survey
Dec 2009 Tatum Survey
 
Portfolio Risk Calculation
Portfolio Risk CalculationPortfolio Risk Calculation
Portfolio Risk Calculation
 
2011 Annual Review
2011 Annual Review2011 Annual Review
2011 Annual Review
 
AMA/Duke CMO Study - Feb. 2011
AMA/Duke CMO Study - Feb. 2011AMA/Duke CMO Study - Feb. 2011
AMA/Duke CMO Study - Feb. 2011
 
The cmo survey highlights and insights, feb 2011
The cmo survey highlights and insights, feb 2011The cmo survey highlights and insights, feb 2011
The cmo survey highlights and insights, feb 2011
 
AMA/Duke - The CMO Survey Highlights And Insights - Feb 2011
AMA/Duke - The CMO Survey Highlights And Insights - Feb 2011AMA/Duke - The CMO Survey Highlights And Insights - Feb 2011
AMA/Duke - The CMO Survey Highlights And Insights - Feb 2011
 
Think!0310 Eng
Think!0310  EngThink!0310  Eng
Think!0310 Eng
 
Wait, It's Actually SOCIAL Media?
Wait, It's Actually SOCIAL Media?Wait, It's Actually SOCIAL Media?
Wait, It's Actually SOCIAL Media?
 

Último

Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdfChristopherTHyatt
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 

Último (20)

Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 

Forecast Modelling (Single Variable)

  • 1. 1.0 INTRODUCTION This chapter discuss about background of study, statement of problem, purpose, objective and significance of the study. 1.1 BACKGROUND OF THE STUDY This section will present detailed explanation of National Inflation Rate for Indonesia. Inflation is the rate to measuring increase of goods price. There are certain processes to calculate the Inflation in economic like we calculate GDP. So Inflation rate is important for the government, academician, consumer also businessman to know economy situation for the country. The rational why I am choose this topic is to open our mind and to know about our neighbour economy. Then, with reference that I have in QMT 463 I can forecast one step ahead with suitable models. 1.2 STATEMENT OF PROBLEM The main problem in this case, is to choose the best fitted models to generate the forecast for National Inflation Rate in Indonesia. By this guide it easy for me and other forecaster or researcher to do this task. 1
  • 2. There are 10 stages in forecasting procedure that I must follow to complete this task. i. Determine the purpose and objective of the forecasting exercise. ii. Selection of relevant theory iii. Collection data iv. Getting to know your data v. Initial model estimation vi. Model evaluation and revision vii. Initial forecast presentation viii. Final revision ix. Forecast distribution x. Establish monitoring system 1.3 PURPOSE OF STUDY The purpose of this assignment is to identify, choose, calculate the best fitted model for the set data that I have. This study also explains the related graph which can explain the National Inflation Rate in Indonesia. 1.4 OBJECTIVES OF STUDY The objectives of this study are: 1.4.1 To study about National Inflation Rate of Indonesia. 1.4.2 To measure the one step ahead forecast with suitable model. 1.4.3 To analyze the data set and discuss on the component of time series (graph) that related to the data set. 1.4.4 To search best fit model for the set data that I have. 2
  • 3. 3
  • 4. 1.5 SIGNIFICANCE OF THE STUDY The study of will present detailed explanation of National Inflation Rate for Indonesia. Inflation is the rate to measuring increase of goods price. There are certain processes to calculate the Inflation in economic like we calculate GDP. So Inflation rate is important for the government, academician, consumer also businessman to know economy situation for the country. The Government, academician, consumer also businessman can use this information to the industry and society to increase the level of awareness of economy. 4
  • 5. 2.0 METHODOLOGY This chapter describes the methodology used to carry out the study on the benefit of eggshell technology in industries. Only secondary research was used to get the data for the study. One set data of National Inflation rate in Indonesia obtain through internet research will used as source of information. The data was synthesized and summarized for the report, no primary research was done, no interviews were conducted, no questionnaire will distribute and no observations will make. These are the limitations of the study. 5
  • 6. 3.0 FINDINGS AND DISCUSSIONS I have search through the internet to get the data set which has 36 month data. This data set I get from Indonesia Statistic Ministry Web. This data set is called External Data because obtained outside the normal operational activities of the firms and are beyond the management’s control. When data obtained from secondary sources they are known as “Secondary Data”. The data set can be seen in Figure1 and Table1. From the data set that I have, in this task, I must use five models and then choose the best fitted model. i. Naïve Model ii. Simple exponential smoothing Model iii. Decomposition Method iv. ARRES Method v. Holt-Winters 6
  • 7. Figure1 (National Inflation of Indonesia Graph) National Inflation of Indonesia 2.50 2.00 1.50 Inflation 1.00 0.50 0.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 -0.50 Month Inflation The graph in Figure1 shows that the National Inflation of Indonesia from January 2002 to December 2004. The highest rate in January 2002 and the lowest data in March 2003. The trend for the graph is decrease. The table1 in the next page shows that all data set that I get obtain through internet. This data set about the National Inflation Rate of Indonesia. 7
  • 8. Table1 (Data set of Inflation Rate of Indonesia from January 2002-Disember2004) Year Month Inflation 2002 1 1.99 2 1.50 3 -0.02 4 -0.24 5 0.80 6 0.36 7 0.82 8 0.29 9 0.53 10 0.54 11 1.85 12 1.20 2003 1 0.80 2 0.20 3 -0.23 4 0.15 5 0.21 6 0.09 7 0.03 8 0.84 9 0.36 10 0.55 11 1.01 12 0.94 2004 1 0.57 2 -0.02 3 0.36 4 0.97 5 0.88 6 0.48 7 0.39 8 0.09 9 0.02 10 0.56 11 0.89 12 1.04 8
  • 9. 3.1 NAIVE MODEL Naïve with Trend Model The application of this model is fairly common among organizations. One reason for its popularity is that can be used even with fairly short time series. Thus, overcoming the common problem in most organizations where insufficient data is a common phenomenon. Insufficient data would prohibit the application of sophisticated modeling technique. The one step ahead forecast is represented as, Ft+1 = yt (yt/ yt-1) where yt is the actual value at time t, and yt-1 is the actual value in preceding period. This model implies that all future forecast can be set to the equal the actual observed value in the most recent time period plus the growth rate that is the trend value as measured by yt/ yt-1. Hence, if yt is greater than yt-1 then the trend is upward and conversely if yt is less than yt-1 then trend is downward. This model is highly sensitive to the change in the actual value. As such a sudden drop or sharp increase in the value will severely affect the forecast. Furthermore, fitting this model type will result in the loss of the first two observations in the series. On the other hand,this model can also be used for short time series. Fitting The Naïve With Trend Model With Excel Table2 in the next page shows that how I am fitting Naïve with Trend Model with using Excel. Firstly set the data like Table1. Then, make the column name fitted and type (D3*D3)/D2 in the 3rd row. Then drag the box until one step ahead. Then, calculate its MSE to compare with other model. The forecast value that I get for January 2005 is 1.22 .The MSE show that 24.23 and the value of MAPE is 8.92 . 9
  • 10. Table2 (Fitting Naïve with Trend Model with Excel) Year Month t Inflation Fitted 2002 1 1 1.99 2 2 1.50 3 3 -0.02 1.13 4 4 -0.24 0.00 5 5 0.80 -2.88 6 6 0.36 -2.67 7 7 0.82 0.16 8 8 0.29 1.87 9 9 0.53 0.10 10 10 0.54 0.97 11 11 1.85 0.55 12 12 1.20 6.34 2003 1 13 0.80 0.78 2 14 0.20 0.53 3 15 -0.23 0.05 4 16 0.15 0.26 5 17 0.21 -0.10 6 18 0.09 0.29 7 19 0.03 0.04 8 20 0.84 0.01 9 21 0.36 23.52 10 22 0.55 0.15 11 23 1.01 0.84 12 24 0.94 1.85 2004 1 25 0.57 0.87 2 26 -0.02 0.35 3 27 0.36 0.00 4 28 0.97 -6.48 5 29 0.88 2.61 6 30 0.48 0.80 7 31 0.39 0.26 8 32 0.09 0.32 9 33 0.02 0.02 10 34 0.56 0.00 11 35 0.89 15.68 12 36 1.04 1.41 2005 1 37 1.22 10
  • 11. Table2 ( Continue ) et et² (et/yt)*100 0 0 -1.15 1.32 5753 -0.24 0.06 100 3.68 13.54 460 3.03 9.16 841 0.66 0.43 80 -1.58 2.49 544 0.43 0.18 81 -0.43 0.18 79 1.30 1.69 70 -5.14 26.40 428 0.02 0.00 3 -0.33 0.11 167 -0.28 0.08 122 -0.11 0.01 76 0.31 0.09 147 -0.20 0.04 227 -0.01 0.00 29 0.83 0.69 99 -23.16 536.39 6433 0.40 0.16 72 0.17 0.03 17 -0.91 0.84 97 -0.30 0.09 53 -0.37 0.13 1828 0.36 0.13 100 7.45 55.50 768 -1.73 3.01 197 -0.32 0.10 66 0.13 0.02 33 -0.23 0.05 252 0.00 0.00 4 0.56 0.31 99 -14.79 218.74 1662 -0.37 0.14 36 11
  • 12. 3.2 SIMPLE EXPONENTIAL SMOOTHING MODEL Some people call this model Single Exponential Smoothing Technique. But one thing is sure, it is the simplest form of model within the family of the exponential smoothing technique. The model requires only one parameter, that is the smoothing constant α to generate the fitted values and hence forecast. The advantage of this procedure is that it takes into account the most recent forecast. In Simple Exponential Smoothing Model, the forecast for the next and all subsequent periods are determined by adjusting the current period forecast by apportion of the difference between the current forecast and current actual value. This is described in term of minimum errors. Hence, if the recent forecast proves to be accurate, then it seems reasonable to base the subsequent forecast on these estimates. Likewise, if recent predictions have been subjected to large errors, then new forecast will also take this into consideration. Another advantage of this technique is that it is requires the retention of only a limited amount the data. There is no need to store data for many periods, because the historical profile is recorded in concise form in the current smoothed statistic. Ft+m = α yt + (1-α)Ft The main thing in simple exponential smoothing is to choose best value of α. The first procedure relies heavily not only on ones personal knowledge about the problem being evaluated and but also on the amount of past experience one has with regard to the variable involved. For instance, if one’s experience leads one to believe that past values can still contribute significantly the necessary information needed to generate the forecast values, the small value of α is assigned. Conversely, large value of α is used when one believes that only the most recent information are important to generate the forecast value. 12
  • 13. The second procedure that require the application of certain measurement criterion that can be used to determined the best value of α. This is called “error measurement”. Some people called it Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE). The main purpose of this procedure is to generate a set fitted values associated with each value. This is with objective of choosing the alpha value such that when it applied to the model it minimizes the error. More specifically, it is to search far an alpha that result I the smallest error measurement. Fitting The Exponential Using Excel Firstly key in the data like Table3. Then, in the fitted column write the equation =(E3*C2)+((1- E3)*D2) to get the fitted value. Then ,drag the box to get fitted data. From the Table3, forecast of the January 2005 one step ahead is 1.22 . After that, calculate error, MSE and MAPE to compare with other model. 13
  • 14. Table3 (Fitting Simple Exponential Smoothing Model with α = 0.9) Year Month t Inflation Fitted 2002 1 1 1.99 2 2 1.50 3 3 -0.02 1.13 4 4 -0.24 0.00 5 5 0.80 -2.88 6 6 0.36 -2.67 7 7 0.82 0.16 8 8 0.29 1.87 9 9 0.53 0.10 10 10 0.54 0.97 11 11 1.85 0.55 12 12 1.20 6.34 2003 1 13 0.80 0.78 2 14 0.20 0.53 3 15 -0.23 0.05 4 16 0.15 0.26 5 17 0.21 -0.10 6 18 0.09 0.29 7 19 0.03 0.04 8 20 0.84 0.01 9 21 0.36 23.52 10 22 0.55 0.15 11 23 1.01 0.84 12 24 0.94 1.85 2004 1 25 0.57 0.87 2 26 -0.02 0.35 3 27 0.36 0.00 4 28 0.97 -6.48 5 29 0.88 2.61 6 30 0.48 0.80 7 31 0.39 0.26 8 32 0.09 0.32 9 33 0.02 0.02 10 34 0.56 0.00 11 35 0.89 15.68 12 36 1.04 1.41 2005 1 37 1.22 14
  • 15. Et et² (et/yt)*100 0 0 -1.15 1.32 5753 -0.24 0.06 100 3.68 13.54 460 3.03 9.16 841 0.66 0.43 80 -1.58 2.49 544 0.43 0.18 81 -0.43 0.18 79 1.30 1.69 70 -5.14 26.40 428 0.02 0.00 3 -0.33 0.11 167 -0.28 0.08 122 -0.11 0.01 76 0.31 0.09 147 -0.20 0.04 227 -0.01 0.00 29 0.83 0.69 99 -23.16 536.39 6433 0.40 0.16 72 0.17 0.03 17 -0.91 0.84 97 -0.30 0.09 53 -0.37 0.13 1828 0.36 0.13 100 7.45 55.50 768 -1.73 3.01 197 -0.32 0.10 66 0.13 0.02 33 -0.23 0.05 252 0.00 0.00 4 0.56 0.31 99 -14.79 218.74 1662 -0.37 0.14 36 Total 872.12 ∑|(et/yt)*100| 321 MSE 24.23 MAPE 8.92 15
  • 16. 3.3 DECOMPOSITION METHOD The process of generating the forecast values using this methodology is basically the reverse of the process of decomposing the components. What is done here is to integrate the individual components that have been identified and isolated earlier using past data points in the forecast periods. This is made on the basis of either one assumptions used when the data were initially analyze. For instance, if these components are assumed to be related in multiplicative manner, such that y = T.S.C.I , then the forecast is simply the product of these components. Similarly, if the assumption takes the additive form, y = T+S+C+I. It should be note that the application of the decomposition method is basically made on a very important assumption. It is assumed that the patterns or characteristics of the data as exhibited in the past will be repeated in the future. Even if there is any change, it is not expected to seriously affect the future estimates. To make the job more easier in decomposition method, I have use a simple linear trend for this purpose which can easily be extrapolated by using excel. Where T = α + βt 16
  • 17. Figure2 (Linear Trend for National Inflation in Indonesia) Inflation and Trend 2.50 2.00 1.50 Inflation 1.00 0.50 0.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 -0.50 Month y = -0.0071x + 0.7099 R2 = 0.0202 Inflation Linear (Inflation) From the graph in figure2, we can see downward trend over 36 month period from January 2002 to December 2004. Based on adjusted seasonal indices, it is determined that the highest rate of inflation in Indonesia is November. The highest being the month of November, recording an index of 219.32 percent. The lowest rate is in March as evident with lowest index with 9.59 percent. Y = -0.0071x + 0.0799 From the estimated linear equation, it ca be conclude that over the period time the National Inflation Rate of Indonesia have been increase at average monthly rate of 0.0799. 17
  • 18. Table4 (Decomposition Method) Year Month t Inflation Moving Total Centered MT C.M.Average 2002 1 1 1.99 2 2 1.50 3 3 -0.02 4 4 -0.24 5 5 0.80 6 6 0.36 7 7 0.82 9.62 18.05 0.75 8 8 0.29 8.43 15.56 0.65 9 9 0.53 7.13 14.05 0.59 10 10 0.54 6.92 14.23 0.59 11 11 1.85 7.31 14.03 0.58 12 12 1.20 6.72 13.17 0.55 2003 1 13 0.80 6.45 12.11 0.50 2 14 0.20 5.66 11.87 0.49 3 15 -0.23 6.21 12.25 0.51 4 16 0.15 6.04 12.09 0.50 5 17 0.21 6.05 11.26 0.47 6 18 0.09 5.21 10.16 0.42 7 19 0.03 4.95 9.67 0.40 8 20 0.84 4.72 9.22 0.38 9 21 0.36 4.50 9.59 0.40 10 22 0.55 5.09 11.00 0.46 11 23 1.01 5.91 12.49 0.52 12 24 0.94 6.58 13.55 0.56 2004 1 25 0.57 6.97 14.30 0.60 2 26 -0.02 7.33 13.91 0.58 3 27 0.36 6.58 12.82 0.53 4 28 0.97 6.24 12.49 0.52 5 29 0.88 6.25 12.38 0.52 6 30 0.48 6.13 12.36 0.52 7 31 0.39 6.23 8 32 0.09 9 33 0.02 10 34 0.56 11 35 0.89 12 36 1.04 2005 1 37 -2.09 18
  • 19. Table4 (continue) Unadjusted SI Adjusted SI Linear Trend Deseasonalised Data 109.20 0.64 0.0182 15.89 0.57 0.0944 9.59 0.50 -0.0021 92.86 0.43 -0.0026 92.51 0.35 0.0086 49.17 0.28 0.0073 109.03 50.04 0.21 0.0164 44.73 113.16 0.14 0.0026 90.53 77.59 0.07 0.0068 91.08 90.68 0.00 0.0060 316.46 219.32 -0.07 0.0084 218.68 165.46 -0.14 0.0073 158.55 109.20 -0.21 0.0073 40.44 15.89 -0.28 0.0126 -45.06 9.59 -0.36 -0.0240 29.78 92.86 -0.43 0.0016 44.76 92.51 -0.50 0.0023 21.26 49.17 -0.57 0.0018 7.45 50.04 -0.64 0.0006 218.66 113.16 -0.71 0.0074 90.09 77.59 -0.78 0.0046 120.00 90.68 -0.85 0.0061 194.08 219.32 -0.92 0.0046 166.49 165.46 -0.99 0.0057 95.66 109.20 -1.07 0.0052 -3.45 15.89 -1.14 -0.0013 67.39 9.59 -1.21 0.0375 186.39 92.86 -1.28 0.0104 170.60 92.51 -1.35 0.0095 93.20 49.17 -1.42 0.0098 50.04 -1.49 0.0078 113.16 -1.56 0.0008 77.59 -1.63 0.0003 90.68 -1.70 0.0062 219.32 -1.78 0.0041 165.46 -1.85 0.0063 109.20 -1.92 19
  • 20. Table5 (Adjusted Seasonal Indices) Year 1 2 3 4 5 6 7 8 9 10 11 12 2002 109.03 44.77 90.53 91.08 316.46 218.68 2003 158.55 40.44 -45.06 29.78 44.76 21.26 7.45 218.66 90.09 120.00 194.08 166.49 2004 95.66 -3.45 67.39 186.39 170.60 93.20 Total 254.21 36.99 22.33 216.17 215.36 114.46 116.48 263.43 180.62 211.08 510.54 385.17 Mean 127.11 18.50 11.17 108.09 107.68 57.23 58.24 131.72 90.31 105.54 255.27 192.59 Adj Mean 109.20 15.89 9.59 92.86 92.51 49.17 50.04 113.16 77.59 90.68 219.32 165.46 20
  • 21. Inflation,Deseasonalised data and Linear Trend 2.50 2.00 1.50 1.00 0.50 0.00 Inflation -0.50 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 -1.00 Figure3 (Inflation, Deseasonalized Data and Linear Trend) -1.50 Inflation -2.00 Linear Trend -2.50 Deseasonalised Data Month 21
  • 22. 3.4 ADDAPTIVE RESPONSE RATE EXPONENTIAL SMOOTHING (ARRES) ARRES is different from other exponential method. It is because, other exponential method discussed that, the value of parameter alpha used assumed constant for all time periods. However, over time events may take place that affect the subsequent data behaviour. Some of these events have been described earlier. For example, people may change their desire to buy a certain product or there is change in the level of output as a result of technology change. In these situation, to maintain the same value for alpha for all time periods may not be realistic decision. Thus, the development of ARRES is an attempt to overcome this problem by incorporating the effect of the changing pattern of the data series. Ft+1 = αt yt + (1-αt) Ft This indicates that the value of alpha is only appropriate at a particular period t, and maybe different at different value of t. As in any exponential smoothing technique, the appropriate initial values are required to start the algorithm. In this case, value are for F0, α0, E0 and AET0. Fitting ARRES With Excel Firstly set up the data in the Table6,the make assumption alpha and beta with certain number between 1 and 0. then in the fitted column write the equation =$H$2*C2+(1-$H$2)*C2 then drag the box to the down. After that, calculate the MSE and retest the alpha and beta which have smallest MSE. 22
  • 23. Table6 ( Fitting ARRES with Excel ) Year Month Inflation Fitted Et Et 2002 1 1.99 1.99 0.00 0.00 2 1.50 1.99 -0.49 -0.05 3 -0.02 1.50 -1.52 -0.20 4 -0.24 -0.02 -0.22 -0.20 5 0.80 -0.24 1.04 -0.07 6 0.36 0.80 -0.44 -0.11 7 0.82 0.36 0.46 -0.05 8 0.29 0.82 -0.53 -0.10 9 0.53 0.29 0.24 -0.07 10 0.54 0.53 0.01 -0.06 11 1.85 0.54 1.31 0.08 12 1.20 1.85 -0.65 0.00 2003 1 0.80 1.20 -0.40 -0.04 2 0.20 0.80 -0.60 -0.09 3 -0.23 0.20 -0.43 -0.13 4 0.15 -0.23 0.38 -0.08 5 0.21 0.15 0.06 -0.06 6 0.09 0.21 -0.12 -0.07 7 0.03 0.09 -0.06 -0.07 8 0.84 0.03 0.81 0.02 9 0.36 0.84 -0.48 -0.03 10 0.55 0.36 0.19 -0.01 11 1.01 0.55 0.46 0.04 12 0.94 1.01 -0.07 0.03 2004 1 0.57 0.94 -0.37 -0.01 2 -0.02 0.57 -0.59 -0.07 3 0.36 -0.02 0.38 -0.02 4 0.97 0.36 0.61 0.04 5 0.88 0.97 -0.09 0.03 6 0.48 0.88 -0.40 -0.02 7 0.39 0.48 -0.09 -0.02 8 0.09 0.39 -0.30 -0.05 9 0.02 0.09 -0.07 -0.05 10 0.56 0.02 0.54 0.01 11 0.89 0.56 0.33 0.04 12 1.04 0.89 0.15 0.05 2005 1 1.04 23
  • 24. AEt α β e² (et/yt)*100 0.00 0.90 0.10 0.00 0 1.05 0.90 0.10 0.24 33 1.05 0.90 0.10 2.31 7600 0.92 0.22 0.10 0.05 92 1.01 0.07 0.10 1.08 130 0.94 0.12 0.10 0.19 122 0.95 0.06 0.10 0.21 56 0.96 0.11 0.10 0.28 183 0.93 0.07 0.10 0.06 45 0.91 0.07 0.10 0.00 2 1.04 0.07 0.10 1.72 71 0.96 0.00 0.10 0.42 54 0.94 0.04 0.10 0.16 50 0.97 0.10 0.10 0.36 300 0.95 0.13 0.10 0.18 187 0.94 0.08 0.10 0.14 253 0.91 0.07 0.10 0.00 29 0.92 0.07 0.10 0.01 133 0.91 0.07 0.10 0.00 200 0.99 0.02 0.10 0.66 96 0.95 0.03 0.10 0.23 133 0.92 0.01 0.10 0.04 35 0.95 0.04 0.10 0.21 46 0.91 0.03 0.10 0.00 7 0.95 0.01 0.10 0.14 65 0.96 0.07 0.10 0.35 2950 0.94 0.03 0.10 0.14 106 0.97 0.04 0.10 0.37 63 0.91 0.03 0.10 0.01 10 0.95 0.02 0.10 0.16 83 0.91 0.03 0.10 0.01 23 0.94 0.05 0.10 0.09 333 0.91 0.06 0.10 0.00 350 0.96 0.01 0.10 0.29 96 0.94 0.04 0.10 0.11 37 0.92 0.05 0.10 0.02 14 ∑e² 10.27 ∑|(et/yt)*100| 9826.65 MSE 0.27 MAPE 272.96 24
  • 25. 3.5 HOLT-WINTER’S METHOD All earlier exponential models are good as long as they deal with non seasonal data. When seasonality exists, a more suitable model is needed. Holt-Winters is one such technique that takes into account the trend and seasonality factors. Fitting Holt-Winters Using Excel Holt-Winters consist of three basic equation that define the level component, the trend component and the seasonality component. Two assumption can be made with regard to the relationship of these component. Level Component Lt = α ( yt / st-s ) + ( 1-α ) ( Lt-1 + bt-1 ) Trend Component bt = β ( Lt Lt-1 ) + ( 1-β ) bt-1 Seasonal Component St = γ (yt / Lt ) + (1-γ) St-s The forecast Ft+m = (Lt + bt * m) St-s+m As usual, when fitting the model, some initial value are required. For ease of computation, some simple technique will discuss here. Determine the Initial Value To determine the initial value, a simple procedure used to take the average of the first 12 quarters (month). 25
  • 26. b0 = 1/s ( (ys+1 – y1 ) / s) + (ys+2 – y1 ) / s2) + ...... where s = 12 (represent the number of month in year) The initial value of the seasonal component of the first 12 month are calculated by using the ratio of the actual values to the mean of the first 12 values as represent by Lo in which St = Yt / Lt 26
  • 27. Table7 ( Fitting Holt winter using excel ) Year Month Inflation Lt bt St 2002 1 1.99 1.18 2 1.50 0.89 3 -0.02 -0.01 4 -0.24 -0.14 5 0.80 0.48 6 0.36 0.21 7 0.82 0.49 8 0.29 0.17 9 0.53 0.32 10 0.54 0.32 11 1.85 1.10 12 1.20 1.68 -0.39 0.71 2003 1 0.80 0.80 -0.83 1.17 2 0.20 0.17 -0.65 0.92 3 -0.23 15.36 13.61 -0.01 4 0.15 4.95 -8.01 -0.13 5 0.21 -0.26 -5.49 0.35 6 0.09 -0.81 -1.05 0.18 7 0.03 -0.32 0.34 0.43 8 0.84 3.90 3.83 0.18 9 0.36 2.46 -0.91 0.30 10 0.55 1.68 -0.79 0.32 11 1.01 0.91 -0.77 1.10 12 0.94 1.08 0.08 0.73 2004 1 0.57 0.62 -0.41 1.14 2 -0.02 0.03 -0.58 0.75 3 0.36 -23.69 -21.41 -0.01 4 0.97 -15.20 5.50 -0.12 5 0.88 0.09 14.31 1.31 6 0.48 4.99 5.84 0.17 7 0.39 2.89 -1.30 0.40 8 0.09 0.72 -2.08 0.17 9 0.02 -0.22 -1.06 0.26 10 0.56 1.14 1.11 0.34 11 0.89 1.10 0.08 1.07 12 1.04 1.37 0.26 0.73 2005 1 1.86 1.63 0.26 1.14 27
  • 28. Fitted α β γ et e² (et/yt)*100 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 0.8 0.9 0.10 0 0 0 1.53 0.8 0.9 0.10 -0.73 0.53 91 -0.03 0.8 0.9 0.10 0.23 0.05 115 0.01 0.8 0.9 0.10 -0.24 0.06 102 -4.14 0.8 0.9 0.10 4.29 18.39 2859 -1.45 0.8 0.9 0.10 1.66 2.77 792 -1.23 0.8 0.9 0.10 1.32 1.75 1469 -0.91 0.8 0.9 0.10 0.94 0.88 3131 0.00 0.8 0.9 0.10 0.84 0.70 100 2.44 0.8 0.9 0.10 -2.08 4.32 577 0.50 0.8 0.9 0.10 0.05 0.00 10 0.98 0.8 0.9 0.10 0.03 0.00 3 0.10 0.8 0.9 0.10 0.84 0.70 89 1.35 0.8 0.9 0.10 -0.78 0.61 137 0.20 0.8 0.9 0.10 -0.22 0.05 1099 0.01 0.8 0.9 0.10 0.35 0.12 98 5.66 0.8 0.9 0.10 -4.69 22.02 484 -3.37 0.8 0.9 0.10 4.25 18.03 483 2.62 0.8 0.9 0.10 -2.14 4.57 445 4.66 0.8 0.9 0.10 -4.27 18.23 1095 0.28 0.8 0.9 0.10 -0.19 0.04 212 -0.41 0.8 0.9 0.10 0.43 0.18 2126 -0.41 0.8 0.9 0.10 0.97 0.94 173 2.48 0.8 0.9 0.10 -1.59 2.52 178 0.85 0.8 0.9 0.10 0.19 0.03 18 1.86 0.8 0.9 0.10 ∑e² 97.50 ∑|(et/yt)*100| 9448 MSE 2.71 MAPE 262.44 28
  • 29. 4.0 CONCLUSSION 1. Where you need to find the initial value of the models that you have used. Why was the method ? Determine the Initial Value To determine the initial value, a simple procedure used to take the average of the first 12 quarters (month). b0 = 1/s ( (ys+1 – y1 ) / s) + (ys+2 – y1 ) / s2) + ...... where s = 12 (represent the number of month in year) The initial value of the seasonal component of the first 12 month are calculated by using the ratio of the actual values to the mean of the first 12 values as represent by Lo in which St = Yt / Lt 2. You are to find the best fitted model. In the other words to find the best parameter value. The smallest MSE among the model is ARRES which its MSE = 0.27 . So, the best parameter value among the model that I have used is ARRES. But the smallest MAPE that I have is NAÏVE model which is MAPE = 8.92 . But the main disadvantage of this measure lies in its relevancy as it is valid only for ratio scale data ( data with meaning full zero ) . For this reason , MAPE is potentially explosive for large forecast error when the actual value observation close to the zero. In addition, percentage measure do not treat errors of overestimate and underestimate. 29
  • 30. 3. Present the result of your analysis. Which of the model do you think would perfom the best forecast? MODEL Naïve with Trend Single Exponential ARRES Method Holt Winters α=0.9 α=0.9 α=0.9 β=0.1 β=0.1 γ=0.0 MSE 24.23 0.29 0.27 2.71 Forecast 1.22 1.02 1.04 1.86 From the table above, we can see the lowest MSE is 0.27 which is ARRES Method with α=0.9, β=0.1 . So I choose ARRES Method as the best model in this task. ARRES is different from other exponential method. It is because, other exponential method discussed that, the value of parameter alpha used assumed constant for all time periods. However, over time events may take place that affect the subsequent data behaviour. Some of these events have been described earlier. For example, people may change their desire to buy a certain product or there is change in the level of output as a result of technology change. In this case, Inflation rate maybe change in certain time period because Income factor, GDP, cost of production, price elasticity and other related factor. In these situation, to maintain the same value for alpha for all time periods may not be realistic decision. Thus, the development of ARRES is an attempt to overcome this problem by incorporating the effect of the changing pattern of the data series. 30
  • 31. 5.0 APPENDICES Table1 ( Fitting Simple Exponential α=0.1 ) Year Month Inflation Fitted α Et et² (et/yt)*100 2002 1 1.99 1.99 0.10 0.00 0.00 0 2 1.50 1.99 0.10 -0.49 0.24 33 3 -0.02 1.94 0.10 -1.96 3.85 9805 4 -0.24 1.74 0.10 -1.98 3.94 827 5 0.80 1.55 0.10 -0.75 0.56 93 6 0.36 1.47 0.10 -1.11 1.24 309 7 0.82 1.36 0.10 -0.54 0.29 66 8 0.29 1.31 0.10 -1.02 1.03 351 9 0.53 1.20 0.10 -0.67 0.46 127 10 0.54 1.14 0.10 -0.60 0.36 111 11 1.85 1.08 0.10 0.77 0.60 42 12 1.20 1.15 0.10 0.05 0.00 4 2003 1 0.80 1.16 0.10 -0.36 0.13 45 2 0.20 1.12 0.10 -0.92 0.85 462 3 -0.23 1.03 0.10 -1.26 1.59 548 4 0.15 0.91 0.10 -0.76 0.57 503 5 0.21 0.83 0.10 -0.62 0.38 295 6 0.09 0.77 0.10 -0.68 0.46 753 7 0.03 0.70 0.10 -0.67 0.45 2233 8 0.84 0.63 0.10 0.21 0.04 25 9 0.36 0.65 0.10 -0.29 0.09 82 10 0.55 0.62 0.10 -0.07 0.01 13 11 1.01 0.62 0.10 0.39 0.15 39 12 0.94 0.66 0.10 0.28 0.08 30 2004 1 0.57 0.68 0.10 -0.11 0.01 20 2 -0.02 0.67 0.10 -0.69 0.48 3465 3 0.36 0.60 0.10 -0.24 0.06 68 4 0.97 0.58 0.10 0.39 0.15 40 5 0.88 0.62 0.10 0.26 0.07 30 6 0.48 0.64 0.10 -0.16 0.03 34 7 0.39 0.63 0.10 -0.24 0.06 61 8 0.09 0.60 0.10 -0.51 0.26 571 9 0.02 0.55 0.10 -0.53 0.28 2664 10 0.56 0.50 0.10 0.06 0.00 11 11 0.89 0.51 0.10 0.38 0.15 43 12 1.04 0.54 0.10 0.50 0.25 48 2005 1 0.59 0.10 Total 19.16 ∑|(et/yt)*100| 6063 MSE 0.53 MAPE 168.4109 31
  • 32. Table2 ( Fitting Simple Exponential α=0.5 ) Year Month Inflation Fitted α et et² (et/yt)*100 2002 1 1.99 1.99 0.50 0.00 0.00 0 2 1.50 1.99 0.50 -0.49 0.24 33 3 -0.02 1.75 0.50 -1.77 3.12 8825 4 -0.24 0.86 0.50 -1.10 1.22 459 5 0.80 0.31 0.50 0.49 0.24 61 6 0.36 0.56 0.50 -0.20 0.04 54 7 0.82 0.46 0.50 0.36 0.13 44 8 0.29 0.64 0.50 -0.35 0.12 120 9 0.53 0.46 0.50 0.07 0.00 12 10 0.54 0.50 0.50 0.04 0.00 8 11 1.85 0.52 0.50 1.33 1.77 72 12 1.20 1.18 0.50 0.02 0.00 1 2003 1 0.80 1.19 0.50 -0.39 0.15 49 2 0.20 1.00 0.50 -0.80 0.63 398 3 -0.23 0.60 0.50 -0.83 0.69 360 4 0.15 0.18 0.50 -0.03 0.00 23 5 0.21 0.17 0.50 0.04 0.00 20 6 0.09 0.19 0.50 -0.10 0.01 109 7 0.03 0.14 0.50 -0.11 0.01 364 8 0.84 0.08 0.50 0.76 0.57 90 9 0.36 0.46 0.50 -0.10 0.01 28 10 0.55 0.41 0.50 0.14 0.02 25 11 1.01 0.48 0.50 0.53 0.28 52 12 0.94 0.75 0.50 0.19 0.04 21 2004 1 0.57 0.84 0.50 -0.27 0.07 48 2 -0.02 0.71 0.50 -0.73 0.53 3632 3 0.36 0.34 0.50 0.02 0.00 5 4 0.97 0.35 0.50 0.62 0.38 64 5 0.88 0.66 0.50 0.22 0.05 25 6 0.48 0.77 0.50 -0.29 0.08 60 7 0.39 0.63 0.50 -0.24 0.06 60 8 0.09 0.51 0.50 -0.42 0.17 464 9 0.02 0.30 0.50 -0.28 0.08 1394 10 0.56 0.16 0.50 0.40 0.16 72 11 0.89 0.36 0.50 0.53 0.28 60 12 1.04 0.62 0.50 0.42 0.17 40 2005 1 0.83 0.50 Total 11.33 ∑|(et/yt)*100| 10742 MSE 0.31 MAPE 298.3958 32
  • 33. Table3 ( Fitting Simple Exponential α=0.8 ) Year Month Inflation Fitted α et et² (et/yt)*100 2002 1 1.99 1.99 0.80 0.00 0.00 0 2 1.50 1.99 0.80 -0.49 0.24 33 3 -0.02 1.60 0.80 -1.62 2.62 8090 4 -0.24 0.30 0.80 -0.54 0.30 227 5 0.80 -0.13 0.80 0.93 0.87 116 6 0.36 0.61 0.80 -0.25 0.06 70 7 0.82 0.41 0.80 0.41 0.17 50 8 0.29 0.74 0.80 -0.45 0.20 155 9 0.53 0.38 0.80 0.15 0.02 28 10 0.54 0.50 0.80 0.04 0.00 7 11 1.85 0.53 0.80 1.32 1.74 71 12 1.20 1.59 0.80 -0.39 0.15 32 2003 1 0.80 1.28 0.80 -0.48 0.23 60 2 0.20 0.90 0.80 -0.70 0.48 348 3 -0.23 0.34 0.80 -0.57 0.32 247 4 0.15 -0.12 0.80 0.27 0.07 177 5 0.21 0.10 0.80 0.11 0.01 54 6 0.09 0.19 0.80 -0.10 0.01 108 7 0.03 0.11 0.80 -0.08 0.01 265 8 0.84 0.05 0.80 0.79 0.63 95 9 0.36 0.68 0.80 -0.32 0.10 89 10 0.55 0.42 0.80 0.13 0.02 23 11 1.01 0.52 0.80 0.49 0.24 48 12 0.94 0.91 0.80 0.03 0.00 3 2004 1 0.57 0.93 0.80 -0.36 0.13 64 2 -0.02 0.64 0.80 -0.66 0.44 3315 3 0.36 0.11 0.80 0.25 0.06 69 4 0.97 0.31 0.80 0.66 0.43 68 5 0.88 0.84 0.80 0.04 0.00 5 6 0.48 0.87 0.80 -0.39 0.15 82 7 0.39 0.56 0.80 -0.17 0.03 43 8 0.09 0.42 0.80 -0.33 0.11 371 9 0.02 0.16 0.80 -0.14 0.02 684 10 0.56 0.05 0.80 0.51 0.26 92 11 0.89 0.46 0.80 0.43 0.19 49 12 1.04 0.80 0.80 0.24 0.06 23 2005 1 0.99 0.80 Total 10.37 ∑|(et/yt)*100| 10453 MSE 0.29 MAPE 290.3682 33
  • 34. Table4 ( Fitting ARRES with excel α=0.1 ) Yea Mont Inflatio Fitte AE r h n d et Et t α β e² (et/yt)*100 200 0.0 0.1 2 1 1.99 1.99 0.00 0.00 0 0 0.10 0.00 0 - - 1.0 0.1 2 1.50 1.99 0.49 0.05 5 0 0.10 0.24 33 - - 1.0 0.1 3 -0.02 1.50 1.52 0.20 5 0 0.10 2.31 7600 - - 0.9 0.2 4 -0.24 -0.02 0.22 0.20 2 2 0.10 0.05 92 - 1.0 0.0 5 0.80 -0.24 1.04 0.07 1 7 0.10 1.08 130 - - 0.9 0.1 6 0.36 0.80 0.44 0.11 4 2 0.10 0.19 122 - 0.9 0.0 7 0.82 0.36 0.46 0.05 5 6 0.10 0.21 56 - - 0.9 0.1 8 0.29 0.82 0.53 0.10 6 1 0.10 0.28 183 - 0.9 0.0 9 0.53 0.29 0.24 0.07 3 7 0.10 0.06 45 - 0.9 0.0 10 0.54 0.53 0.01 0.06 1 7 0.10 0.00 2 1.0 0.0 11 1.85 0.54 1.31 0.08 4 7 0.10 1.72 71 - 0.9 0.0 12 1.20 1.85 0.65 0.00 6 0 0.10 0.42 54 200 - - 0.9 0.0 3 1 0.80 1.20 0.40 0.04 4 4 0.10 0.16 50 - - 0.9 0.1 2 0.20 0.80 0.60 0.09 7 0 0.10 0.36 300 - - 0.9 0.1 3 -0.23 0.20 0.43 0.13 5 3 0.10 0.18 187 - 0.9 0.0 4 0.15 -0.23 0.38 0.08 4 8 0.10 0.14 253 - 0.9 0.0 5 0.21 0.15 0.06 0.06 1 7 0.10 0.00 29 - - 0.9 0.0 6 0.09 0.21 0.12 0.07 2 7 0.10 0.01 133 - - 0.9 0.0 7 0.03 0.09 0.06 0.07 1 7 0.10 0.00 200 0.9 0.0 8 0.84 0.03 0.81 0.02 9 2 0.10 0.66 96 - - 0.9 0.0 9 0.36 0.84 0.48 0.03 5 3 0.10 0.23 133 - 0.9 0.0 10 0.55 0.36 0.19 0.01 2 1 0.10 0.04 35 0.9 0.0 11 1.01 0.55 0.46 0.04 5 4 0.10 0.21 46 12 0.94 1.01 - 0.03 0.9 0.0 0.10 0.00 7 34
  • 35. 0.07 1 3 200 - - 0.9 0.0 4 1 0.57 0.94 0.37 0.01 5 1 0.10 0.14 65 - - 0.9 0.0 2 -0.02 0.57 0.59 0.07 6 7 0.10 0.35 2950 - 0.9 0.0 3 0.36 -0.02 0.38 0.02 4 3 0.10 0.14 106 0.9 0.0 4 0.97 0.36 0.61 0.04 7 4 0.10 0.37 63 - 0.9 0.0 5 0.88 0.97 0.09 0.03 1 3 0.10 0.01 10 - - 0.9 0.0 6 0.48 0.88 0.40 0.02 5 2 0.10 0.16 83 - - 0.9 0.0 7 0.39 0.48 0.09 0.02 1 3 0.10 0.01 23 - - 0.9 0.0 8 0.09 0.39 0.30 0.05 4 5 0.10 0.09 333 - - 0.9 0.0 9 0.02 0.09 0.07 0.05 1 6 0.10 0.00 350 0.9 0.0 10 0.56 0.02 0.54 0.01 6 1 0.10 0.29 96 0.9 0.0 11 0.89 0.56 0.33 0.04 4 4 0.10 0.11 37 0.9 0.0 12 1.04 0.89 0.15 0.05 2 5 0.10 0.02 14 200 10.2 ∑|(et/yt)*10 9826.6 5 1 1.04 ∑e² 7 0| 5 MS E 0.27 MAPE 272.96 35
  • 36. Table5 ( Fitting ARRES with excel α=0.5 ) Yea Mont Inflatio Fitte AE r h n d et Et t α β e² (et/yt)*100 200 0.0 0.1 2 1 1.99 1.99 0.00 0.00 0 0 0.10 0.00 0 - - 1.0 0.1 2 1.50 1.99 0.49 0.05 5 0 0.10 0.24 33 - - 1.0 0.1 3 -0.02 1.50 1.52 0.20 5 0 0.10 2.31 7600 - - 0.9 0.2 4 -0.24 -0.02 0.22 0.20 2 2 0.10 0.05 92 - 1.0 0.0 5 0.80 -0.24 1.04 0.07 1 7 0.10 1.08 130 - - 0.9 0.1 6 0.36 0.80 0.44 0.11 4 2 0.10 0.19 122 - 0.9 0.0 7 0.82 0.36 0.46 0.05 5 6 0.10 0.21 56 - - 0.9 0.1 8 0.29 0.82 0.53 0.10 6 1 0.10 0.28 183 - 0.9 0.0 9 0.53 0.29 0.24 0.07 3 7 0.10 0.06 45 - 0.9 0.0 10 0.54 0.53 0.01 0.06 1 7 0.10 0.00 2 1.0 0.0 11 1.85 0.54 1.31 0.08 4 7 0.10 1.72 71 - 0.9 0.0 12 1.20 1.85 0.65 0.00 6 0 0.10 0.42 54 200 - - 0.9 0.0 3 1 0.80 1.20 0.40 0.04 4 4 0.10 0.16 50 - - 0.9 0.1 2 0.20 0.80 0.60 0.09 7 0 0.10 0.36 300 - - 0.9 0.1 3 -0.23 0.20 0.43 0.13 5 3 0.10 0.18 187 - 0.9 0.0 4 0.15 -0.23 0.38 0.08 4 8 0.10 0.14 253 - 0.9 0.0 5 0.21 0.15 0.06 0.06 1 7 0.10 0.00 29 - - 0.9 0.0 6 0.09 0.21 0.12 0.07 2 7 0.10 0.01 133 - - 0.9 0.0 7 0.03 0.09 0.06 0.07 1 7 0.10 0.00 200 0.9 0.0 8 0.84 0.03 0.81 0.02 9 2 0.10 0.66 96 - - 0.9 0.0 9 0.36 0.84 0.48 0.03 5 3 0.10 0.23 133 - 0.9 0.0 10 0.55 0.36 0.19 0.01 2 1 0.10 0.04 35 0.9 0.0 11 1.01 0.55 0.46 0.04 5 4 0.10 0.21 46 12 0.94 1.01 - 0.03 0.9 0.0 0.10 0.00 7 36
  • 37. 0.07 1 3 200 - - 0.9 0.0 4 1 0.57 0.94 0.37 0.01 5 1 0.10 0.14 65 - - 0.9 0.0 2 -0.02 0.57 0.59 0.07 6 7 0.10 0.35 2950 - 0.9 0.0 3 0.36 -0.02 0.38 0.02 4 3 0.10 0.14 106 0.9 0.0 4 0.97 0.36 0.61 0.04 7 4 0.10 0.37 63 - 0.9 0.0 5 0.88 0.97 0.09 0.03 1 3 0.10 0.01 10 - - 0.9 0.0 6 0.48 0.88 0.40 0.02 5 2 0.10 0.16 83 - - 0.9 0.0 7 0.39 0.48 0.09 0.02 1 3 0.10 0.01 23 - - 0.9 0.0 8 0.09 0.39 0.30 0.05 4 5 0.10 0.09 333 - - 0.9 0.0 9 0.02 0.09 0.07 0.05 1 6 0.10 0.00 350 0.9 0.0 10 0.56 0.02 0.54 0.01 6 1 0.10 0.29 96 0.9 0.0 11 0.89 0.56 0.33 0.04 4 4 0.10 0.11 37 0.9 0.0 12 1.04 0.89 0.15 0.05 2 5 0.10 0.02 14 200 10.2 ∑|(et/yt)*10 9826.6 5 1 1.04 ∑e² 7 0| 5 MS E 0.27 MAPE 272.96 37